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Abstract

Decision Trees (DTs) have been adapted to Multi-Label Classification (MLC).
These adaptations are known as Multi-Label Decision Trees (ML-DT). In this
research, a new ML-DT based on the Nonparametric Predictive Inference
Model on Multinomial data (NPI-M) is proposed. NPI-M is an imprecise
probabilities model that provides good results when it is applied to DTs in
standard classification. Unlike other models based on imprecise probabili-
ties, NPI-M is a nonparametric approach and it does not make unjustified
assumptions before observing data. It is shown that the new ML-DTs based
on NPI-M is more robust to noise than the ML-DT based on precise prob-
abilities. As the intrinsic noise in MLC might be higher than in traditional
classification, it is expected that the new ML-DT based on the NPI-M outper-
forms the already existing ML-DT. This fact is validated with an exhaustive
experimentation carried out in this work on different MLC datasets with sev-
eral levels of added noise. In it, many MLC evaluation metrics are employed
in order to measure the performance of the algorithms. The experimental
analysis shows that the proposed ML-DT based on NPI-M obtains better
results than the ML-DT that uses precise probabilities, especially when we
work on data with noise.
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Preprint submitted to Applied Soft Computing December 3, 2019



Multi-Label Classification, Multi-Label Decision Tree, NPI-M, Multi-Label
Credal Decision Tree, noise

1. Introduction

The Multi-Label Classification (MLC) is a task within the Machine Learn-
ing field whose goal is to predict the set of labels that are associated with an
instance. Nowadays, it is applied to many domains like text categorization,
[1, 2], biology [3, 4] or image recognition [5]. In these domains, it is more
suitable to consider that an example has associated multiple labels, instead
of assuming that an instance only has a single value of the class variable, as
in traditional supervised classification.

Many approaches to solving the MLC problem have been developed so
far. A summary of most of them can be seen in [6]. Basically, there are
two kinds of algorithms for MLC. On the one hand, problem transformation
methods convert the MLC problem into multiple well-known classification
tasks. On the other hand, the algorithm adaptation methods modify the
already existing algorithms for traditional classification to solve the MLC
problem.

Within the second group of MLC algorithms, quite simple, interpretable
and transparent models such as the Decision Trees (DT) have been adapted
to MLC. Specifically, in [7], the well-known C4.5 algorithm [8] was modified
to solve the MLC task. It is called Multi-Label Decision Tree (ML-DT).

The adaptation of DT to MLC proposed so far, called ML-DT, uses pre-
cise probabilities theory in the split criterion. For traditional supervised
classification, new DTs based on imprecise probabilities theory have been
developed. They are called Credal Decision Trees (CDT) [9]. Basically, in
the building process, they utilize uncertainty measures on credal sets (closed
and convex sets of probability distributions). CDTs have been shown to have
quite good performance [10, 11, 12], especially when the data contains class
noise. Besides, it has been shown, via exhaustive experimentations carried
out in [13, 14], that the version of C4.5 proposed, based on imprecise prob-
abilities, called Credal C4.5 (CC4.5), outperforms C4.5 when class noise is
introduced in the data.

The CDTs mentioned in the previous paragraph use the Imprecise Dirich-
let Model (IDM) [15], a formal model of imprecise probabilities based on
probability intervals. The IDM verifies several principles that have been
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claimed to be desirable for inference [15]. The most remarkable of them is
the representation invariance principle, which establishes that inferences on
future events should be independent of the arrangement and labeling of the
sample space. However, IDM assumes prior knowledge about the data, which
is not very desirable. It is explained in more detail in [15]. Moreover, the
performance of the IDM has a strong dependence on a parameter, called s,
when it is used in classification [16].

For the previous reasons, a Non-Parametric Model for Predictive Inference
on Multinomial data (NPI-M) is proposed in [17]. This model does not make
unjustified assumptions before observing data. Furthermore, NPI-M is a
nonparametric approach.

The NPI-M has been shown to be more suitable than the IDM to be
applied to CDTs for classification, as shown in [18]. Actually, the CDTs
based on IDM depend strongly on the parameter s and CDTs with NPI-M
always have an equivalent performance to CDTs based on IDM with the best
s value.

Summarising, in classification, CDTs based on NPI-M are more robust to
high levels of noise than DTs based on precise probabilities. In addition, in
MLC the intrinsic noise might be higher than in standard classification. This
is due to an obvious reason: The probability that one instance has an error in
one label in MLC, where we have multiple tags, is higher than the probability
that one example has an error in the class value in standard classification. For
these reasons, in this research, a new adaptation of Decision Trees for MLC
based on the NPI-M, called Multi-Label Credal Decision Tree (ML-CDT), is
proposed.

An extensive experimental study is carried out in this work on differ-
ent MLC datasets with several levels of added noise. In order to measure
the performance of the algorithms, many evaluation metrics for MLC are
utilized. This experimentation shows that, in general, ML-CDT has better
performance than ML-DT, being the improvement more significative if there
is more noise introduced in the data. Therefore, it is concluded that it is very
suitable to apply the NPI-M to the adaptations of DTs to MLC, especially
when the data contains noise.

The rest of this paper is structured as follows: Section 2 describes the
necessary previous knowledge: The Multi-Label Classification paradigm, the
Multi-Label Decision Tree, the probability intervals theory and the Nonpara-
metric Predictive Inference Model on Multinomial data. The new adaptation
of Decision Tree to Multi-Label Classification based on the NPI-M is exposed
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in Section 3. The experimental analysis carried out in this work is detailed
in Section 4. Finally, Section 5 is devoted to the concluding remarks and
future work.

2. Background

2.1. Multi-Label Classification

2.1.1. Paradigm

The Multi-Label Classification (MLC) assumes that multiple labels are
associated with an instance, unlike traditional supervised classification, where
each example only belongs to a single state of the class variable. Hence, the
MLC task aims to predict the set of labels corresponding to an instance,
described through a set of attributes.

Formally, in MLC, it is started from a d-dimensional space attribute X =(
X1, X2, . . . , Xd

)
⊆ Rd and a set of q labels L = {l1, l2, . . . , lq}. Normally,

q > 1.
As in traditional classification, in MLC, it is learned a model from a

training set D = {(xi,Li), 1 ≤ i ≤ m} of m examples. It allows to predict
the set of labels corresponding to an instance. For the i-th instance, xi is its
set of attributes and Li ⊆ L is its labels set, 1 ≤ i ≤ m. The label lj is said
to be relevant for the instance xi if the example has associated it. Else, it is
said that the label lj is irrelevant for xi.

The quality of the model, measured in terms of its complexity and its
predictive capacity, is indicated via a criterion Q.

The criterion Q is tried to be maximized by finding a function h : X→ 2L

that, for each instance, gives its set of labels predicted as relevant for the
example.

Alternatively, in many cases, the goal is to find a real-valuated function
f : X×L→ R that tries to maximize Q. It is interpreted as follows: f(x, lj)
indicates, for an instance described by the set of attributes x, the posterior
probability that the label lj is relevant for x.

For an instance x, a ranking function rank fx : L → {1, 2, . . . , q} is
derived from f . It is implicitly defined verifying that if f(x, li) > f(x, lj)
then rank fx(li) < rank fx(lj), where li, lj ∈ L.

It can be considered a threshold function t : X → R. This function lets
obtain the set of labels associated with x given f . In fact, the set of labels
that are relevant for x can be extracted in the following way:
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h(x) = {lj ∈ L | f(x, lj) > t(x), 1 ≤ j ≤ q} . (1)

Basically, there are three options to calibrate the threshold:

• In some cases, a constant value, which is often equal to 0.5, is used for
the function t. An example of this point can be seen in [7]. When it
is disposed of all the new test examples, the constant can be fixed by
minimizing the difference between the label cardinality, defined as the
average number of labels per instance, in training and test sets. In [19]
can be found an example of this issue.

• The second option is that the threshold function is induced from the
training examples [20]. For instance, the function t is sometimes as-
sumed to be linear. A more detailed explanation of this can be found
in [21, 22].

• Finally, some algorithms, such as Calibrated Label Ranking (CLR)
[23], start from the label ranking of the instances and employ their
own mechanism for determining how many relevant labels has each
example.

2.1.2. Main approaches to MLC

A large number of algorithms for MLC have been proposed so far. In
[6] a summary of most of them is shown. Essentially, the MLC algorithms
developed can be divided into two groups:

• Problem transformation methods: The algorithms that belong to
this category transform the MLC problem into well-known classifica-
tion scenarios. For instance, Binary Relevance [24] or Classifier Chains
[19] consider a binary problem per label and after they combine the pre-
dictions in order to provide a MLC solution. Other algorithms, such
as Calibrated Label Ranking [23] convert the MLC problem into the
task of label ranking. On the other hand, the Random k-labelsets algo-
rithm [25] transforms the MLC task into several multi-class classifica-
tion problems, combining the solutions in order to provide a multi-label
prediction.

• Algorithm adaptation methods: The algorithms of this kind tackle
the MLC problem by adapting the already existing algorithms for tra-
ditional classification to MLC. For example, the K-Nearest Neighbour
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algorithm was adapted in [26]. In [7] it is proposed an adaptation of De-
cision Trees to MLC. Support Vector Machines were adapted to MLC
in [27].

In this work we will focus on the adaptation of Decision Trees for Multi-
Label Classification, which is explained in Section 2.2.

2.2. Multi-Label Decision Trees

As in DTs for traditional classification, in the adaptations of DTs to
MLC, called Multi-Label Decision Trees (ML-DT) [7], each node represents
an attribute or feature variable and, for each possible value of that attribute,
there is an associated branch. In order to branch in each node, it is selected
the attribute that provides the maximum information gain according to a
split criterion. When entering a feature in a node does not provide more
information on the class variable via that criterion, a leaf or terminal node is
obtained. Whereas in DTs for traditional classification each terminal node is
labeled with a class value, in ML-DT, each leaf is labeled with a set of labels.

In the building process, the main difference between DTs for traditional
classification and ML-DTs resides in the split criterion.

The split criterion used in ML-DT considers the Shannon entropy [28] for
each label lj ∈ L:

H(lj) = −pj log2 pj − (1− pj) log2(1− pj), (2)

being pj the probability that the label lj is relevant for an instance, which is
estimated via relative frequencies:

pj =
m∑
i

[[lj ∈ Li]]

m
, (3)

where [[lj ∈ Li]] is a function that takes the value 1 if the condition lj ∈ Li

is satisfied and 0 otherwise.
Once the entropy for each label lj, 1 ≤ j ≤ q, is defined, it can be

obtained the entropy of the label set L simply by summing the entropy of all
the labels:

H(L) =

q∑
j=1

H(lj). (4)
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Now, it is possible to define the split criterion used in ML-DT. Essentially,
for an attribute A whose set of possible values is {a1, . . . , an}, in a similar
way than in DTs for traditional classification, it consists of the information
gain of the label set achieved by dividing the data set along the feature A.
It is defined as follows:

IG(L, A) = H(L)−
n∑

i=1

P (A = ai)H(L | A = ai), (5)

where P (A = ai) is estimated via relative frequencies and H(L | A = ai) is
the entropy of the label set in the partition of the data set in which A = ai,
∀i = 1, 2, . . . , n.

For continuous attributes, it is considered the binary discretization that
gives the maximum information gain. More formally, if A is a continuous
attribute, let a1, a2, . . . , aN be the values that it takes for each one of the
instances. For each of them, aj, a discrete attribute Aj is considered, which
takes for an instance the value 0 if the value of A for the example is lower
than aj and 1 otherwise, ∀j = 1, . . . , N . Each discretized attribute Aj has
an associated conditionated entropy H(L | Aj) = P (Aj = 0)H(L | Aj =
0) + P (Aj = 1)H(L | Aj = 1). Thus, it is considered the value aj such
that the corresponding discrete attribute Aj has the minimum conditional
entropy associated H(L | Aj), 1 ≤ j ≤ N .

Similarly to DTs for traditional classification, in ML-DT, when an unseen
instance x is required to be classified, it is followed a path from the root node
to a leaf using its attribute values. Let N be the total number of instances in
that terminal node and nj the number of instances that have associated the
label lj in the leaf, ∀j = 1, 2, . . . , q. Then, the predicted posterior probability
f that the label lj is relevant for the example is simply obtained via relative
frequencies:

f(x, lj) =
nj

N
,∀j = 1, 2, . . . , q. (6)

The predicted label set for the instance x consists of those labels for which
the predicted posterior probability of being relevant for x is greater or equal
than 1

2
:

h(x) =

{
lj | f(x, lj) ≥

1

2
, 1 ≤ j ≤ q

}
. (7)
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2.3. Probability intervals

The probability intervals theory [29] is a particular case of the more gen-
eral lower and upper probability theory [30]. Let us suppose that we have a
variable X whose set of possible values is {x1, . . . , xK}. In the probability in-
tervals theory, the bounds {[l(xi), u(xi)]}, ∀i = 1, . . . , K determine the lower
and upper probabilities P∗ and P ∗ of each event. Clearly, P∗(xi) = l(xi) and
P ∗(xi) = u(xi), ∀i = 1, . . . , K. It must also be verified that:

K∑
i=1

P∗(xi) ≤ 1,

K∑
i=1

P ∗(xi) ≥ 1.

Each given set of probability intervals I = {[l(xi), u(xi)]} gives rise to a
credal set, P(I), defined in the following way:

P(I) =

{
p |

K∑
i=1

p(xi) = 1, p(xi) ∈ [l(xi), u(xi)] , ∀i = 1, . . . , K

}
. (8)

It is possible that, for a set of probability intervals I, there are some values
for a particular interval that cannot be part of any probability distribution
in P(I). In these cases the intervals are unnecessarily wide. In order to avoid
this point, the concept of reachable intervals is used [29]:

Definition 1. A set of probability intervals I = {[l(xi), u(xi)]}, i = 1, . . . , K
is said to be reachable if, ∀vi ∈ {l(xi), u(xi)} there is a probability distribution
p ∈ P(I) verifying that p(xi) = vi, ∀i = 1, . . . , K

The following result, proved in [29], can be used in order to check if a set
of probability intervals is reachable.

Proposition 1. A given interval set I = {[l(xi), u(xi)]}, i = 1, . . . , K is
reachable if and only if it verifies that, ∀i = 1, . . . , K:

K∑
j=1,j 6=i

l(xj) + u(xi) ≤ 1,
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K∑
j=1,j 6=i

u(xj) + l(xi) ≥ 1.

If the probability intervals are reachable, the upper and lower probabilities
can be extracted from I following this result:

Proposition 2. With the above notation, if I is a reachable set of probability
intervals, the lower and upper probabilities are determined by:

P∗(A) = max

{∑
x∈A

l(x), 1−
∑
x/∈A

u(x)

}
,

P ∗(A) = min

{∑
x∈A

u(x), 1−
∑
x/∈A

l(x)

}
.

∀A ⊆ X.

2.4. Non-Parametric Predictive Inference Model for Multinomial data

The Non-Parametric Predictive Inference Model for Multinomial data
(NPI-M) is proposed in [17, 31]. It is based on a variation of Hill’s assumption
A(n) [32, 33], that relates to predictive inference involving n real-valued data
observations Yi = yi, i = 1, . . . , n. These observed data correspond to obser-
vations associated with a latent variable which creates n intervals in a circular
way, represented as Ij = (yj, yj+1), ∀j = 1, . . . , n − 1 and In = (yn, y1). Ac-
cording to the circular-A(n) assumption, the next observation will fall into any
of these intervals with equal probability, P (Yn+1 ∈ Ij) = 1

n
, ∀j = 1, . . . , n.

Let us suppose that there are K distinct categories c1, . . . , cK altogether
and that k of these categories c1, . . . , ck have been already observed (obvi-
ously, k ≤ K). Suppose that, among the n observations, nj belong to the

category cj, ∀j = 1, . . . , k, and that
∑k

i=1 ni = n. We suppose in this research
that we know the value of K.

The concept that underlies NPI-M consists of a latent-variable probabil-
ity wheel representation of the data. On this representation, each one of
our observations is represented by a line from the center of the wheel to its
boundary. Thus, the wheel is partitioned into n slices with equal size. From
the circular-A(n) assumption it is deduced that the probability that the next
observation is in any given slice is 1

n
. Then, it must be decided which cate-

gory of these slices should represent. [17, 31] assumes that each category can
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only be represented by one single sector of the wheel. Consequently, two or
more lines representing the same category must always be positioned next
to each other on the wheel. Two cases are distinguished: If two lines that
represent the same category border to a slice, that slice must be assigned to
this category. However, when a slice is bordered by two lines which represent
distinct categories, it might be assigned to one of the two categories associ-
ated with the slice’s bordering lines, or to any category that has been not
observed yet.

If J ⊆ {1, . . . , K}, a general event of interest can be represented as fol-
lows:

E = Yn+1 ∈ ∪j∈J cj. (9)

Let OJ be the index-set for the categories belonging to E that have been
already observed:

OJ = J ∩ {1, . . . , k} . (10)

Similarly, let us call UJ to the set of indices for the categories in E that
have not been observed yet:

UJ = J ∩ {k + 1, . . . , K} . (11)

Let us consider r = |OJ | and l = |UJ |.
The NPI-M lower probability for the general event E is determined by

building a configuration of the probability wheel which provides the minimum
number of slices that are assigned to E. With the above notation, the lower
probability for E based on the observations is given by [31]:

P∗(E) =
nJ −min(K − r − l, r)

n
, (12)

where nJ =
∑

j∈J nj.
Analogously, the upper probability for the event E is obtained by assign-

ing the maximum possible number of slices to E. It is extracted as follows:

P ∗(E) =
nJ + min(r + l, k − r)

n
. (13)

For a singleton event {Yn+1 ∈ ci} we have the following lower and upper
probabilities:
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P∗(Yn+1 ∈ c) = max

{
0,
ni − 1

n

}
, P ∗(Yn+1 ∈ c) = min

{
ni + 1

n
, 1

}
. (14)

Then, it is obtained the following set of probability intervals for singleton
events:

I =

{
[li, ui] , li = max

{
0,
ni − 1

n

}
, ui = min

{
ni + 1

n
, 1

}
,∀i = 1, 2, . . . , K

}
.

(15)
The two following results are proved in [34]:

Proposition 3. I is a set of reachable probability intervals.

Proposition 4. The set of lower and upper probabilities generated by I is
the same as the produced by the NPI-M lower and upper probabilities produced
by (14).

Therefore, applying the NPI-M to a set of n observations, the lower and
upper probabilities of any event can be obtained only by using those of the
singleton events. This set of lower and upper probabilities associated with
the singleton events gives rise to a reachable set of probability intervals, and,
in consequence, to a credal set. However, not all the distributions within
this set are compatible with the NPI-M, as it is shown with an example in
[34]. In fact, the set of probability distributions that are compatible with the
NPI-M is a strict subset of the credal set generated by the lower and upper
probabilities of the singleton events.

Considering all the probability distributions of the credal set derived from
I which are compatible with the set of lower and upper probabilities obtained
from NPI-M, it is derived an approximate model, called A-NPI-M [34]. This
model uses the convex hull of the set of distributions compatible with the
NPI-M. Hence, it corresponds to the structure defined by the singleton prob-
abilities. Hence, with the A-NPI-M, the exact model is simplified. Further-
more, with the approximate model, it is avoided to consider a difficult set of
constraints. The A-NPI-M represents a standard credal set via a reachable
set of probability intervals. For more details, see [34]. When both NPI-M
and A-NPI-M are employed in DTs for traditional classification the results
are almost identical, as it is shown in [18]. Thus, in this work, it is used
the A-NPI-M. However, for the sake of simplicity, we say that we utilize the
NPI-M.
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3. Multi-Label Credal Decision Tree

The Multi-Label Credal Decision Tree (ML-CDT), proposed in this work,
starts from the ML-DT, explained in Section 2.2. There are two main dif-
ferences between both algorithms: the split criterion and the method used
to assign the posterior probabilities that the labels are relevant for new in-
stances.

Let us suppose that N is the total number of instances in a certain node
and that nj, (respectively, n′j) is the number of instances in that node for
which the label lj is relevant, (respectively, irrelevant) ∀j = 1, 2, . . . , q.

Let us consider, for each label lj, 1 ≤ j ≤ q, the probability intervals
associated with the NPI-M corresponding to the events that the label lj is
relevant and irrelevant for an instance:

Ilj =

[
max

{
0,
nj − 1

N

}
,min

{
nj + 1

N
, 1

}]
, (16)

I ′lj =

[
max

{
0,
n′j − 1

N

}
,min

{
n′j + 1

N
, 1

}]
. (17)

For each label lj, 1 ≤ j ≤ q, these probability intervals, as shown in
Section 2.3, give rise to this credal set:

P(lj) =
{
p | p(lj) ∈ Ilj , (1− p(lj)) ∈ I ′lj

}
. (18)

The split criterion used in ML-CDT considers the maximum of entropy
in the credal set P(lj), ∀j = 1, 2, . . . , q.

H∗(P(lj)) = max
p∈P(lj)

H(p). (19)

The algorithm to calculate the distribution that provides the maximum
value of entropy H∗(lj), ∀j = 1, . . . , q is given in the Figure 1. It is based on
the algorithm for A-NPI-M proposed in [34].1.

H∗ is a well-established measure that verifies good properties [35].

1In [34] it is shown that the set of probabilities associated with probability intervals
resulting from the NPI-M and the credal set corresponding to the A-NPI-M give rise to
quite similar values of the maximum of entropy. For this reason and the sake of simplicity,
in this research we use the algorithm associated with the A-NPI-M
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Procedure Distribution of maximum of entropy in P(lj)(training set
D of N instances, nj number of instances in D that has associated the
label lj, n

′
j number of instances for which lj is irrelevant)

1. If
∣∣nj − n′j

∣∣ ≤ 2 then
1.1 p̂(lj) = 1

2

1.2 p̂′(lj) = 1
2

2. Else If nj < n′j then

2.1 p̂(lj) =
nj+1

N

2.2 p̂′(lj) =
n′
j−1

N

3. Else

3.1 p̂(lj) =
nj−1

N

3.2 p̂′(lj) =
n′
j+1

N

4. Return p̂.

Figure 1: Pseudo-code of the calculation of the distribution that produces the maximum
of entropy for lj

The ML-CDT takes into account the sum of the maximum of entropies
in the corresponding credal sets overall labels lj, 1 ≤ j ≤ q:

H∗(L) =

q∑
j=1

H∗(P(lj)). (20)

The split criterion used in ML-CDT is similar to the one used in ML-DT.
However, the first one is based on the maximum of entropy in the correspond-
ing credal set for each label. Therefore, if A is an attribute and {a1, . . . , an}
are its possible values, the split criterion for ML-CDT is called Imprecise
Information Gain (IIG), and it is defined by the following formula:

IIG(L, A) = H∗(L)−
n∑

i=1

P (A = ai)H
∗(L | A = ai), (21)

where H∗(L | A = ai) is the maximum of entropy H∗(L) (on the correspond-
ing credal set) in the partition of the dataset composed by those instances
that verify that A = ai, ∀i = 1, . . . , n.
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For continuous attributes, ML-CDT makes a discretization similar to the
one made in ML-DT: it is considered the binary discretization that gives the
maximum value of IIG. More formally, if A is a continuous attribute, let
a1, a2, . . . , aN be the values that it takes for each one of the instances. For
each of them, aj, a discrete attribute Aj is considered, which takes, for an
instance, the value 0 if the value of A for the example is lower than aj and
1 otherwise, ∀j = 1, . . . , N . Each discretized attribute Aj has an associated
conditionated maximum of entropy over the corresponding credal set H∗(L |
Aj) = P (Aj = 0)H∗(L | Aj = 0) + P (Aj = 1)H∗(L | Aj = 1). Thus, it is
considered the value aj such that the corresponding discrete attribute Aj has
the minimum value of H∗(L | Aj), 1 ≤ j ≤ N .

If it is wanted to classify an unseen instance x, a path from the root to a
leaf node is followed. When the terminal node is reached, following the above
notation for the total number of examples and the total number of instances
for which each label lj is relevant or irrelevant, 1 ≤ j ≤ q, the predicted
posterior probability that lj is relevant for x is the one that provides the
maximum of entropy in the corresponding credal set P(lj), i.e:

f(x, lj) = arg max
p∈P(lj)

H(p). (22)

As in ML-DT, the labels predicted as relevant are those for which the
predicted posterior probability is greater or equal than 1

2
:

h(x) =

{
lj | f(x, lj) ≥

1

2
, 1 ≤ j ≤ q

}
. (23)

3.1. Differences between ML-DT and ML-CDT

3.1.1. Size of the training set

It is easy to observe that if the value of N is higher, i.e, if the training

set is larger, then the intervals
[
max

(
nj−1

N
, 0
)
,min

(
nj+1

N
, 1
)]

and[
max

(
n′
j−1

N
, 0
)
,min

(
n′
j+1

N
, 1
)]

are narrower. In consequence, the corre-

sponding credal set has fewer probability distributions that are really dif-
ferent from the one obtained by relative frequencies. Hence, in upper levels
of the tree, when N is often pretty large, IG and IIG, defined respectively,
in (5) and (21), provide similar values and, consequently, ML-DT and ML-
CDT have similar behavior. However, in lower levels of the tree, when the
size of the training set is usually small, the intervals are narrower. This, the
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associated credal set might contain many probability distributions which are
probably very distinct from the one utilized to calculate the Shannon En-
tropy H. In this way, in these cases, IG and IIG might give no similar values
since H and H∗ might be quite different. Therefore, ML-DT and ML-CDT
behave similarly at upper levels of the tree but they can be very distinct at
lower levels.

3.1.2. Stop criterion

For a variable A whose possible values are {a1, . . . , an}, the value of
IIG(L, A) can be negative, unlike IG(L, A). The reason is that, according
to [34], the imprecise information gain for a label l ∈ L, H∗(l)−

∑n
i=1 P (A =

ai)H
∗(l | A = ai) can be negative, unlike the information gain H(l) −∑n

i=1 P (A = ai)H(l | A = ai). Hence, ML-CDT avoids to select attributes
that worsen the information of the label set. Therefore, overfitting in ML-
CDT should be lower than in ML-DT because the branching of the tree often
stops before in ML-CDT than in ML-DT.

3.1.3. Predicitions at leaf nodes

As it can be easily observed, for both ML-DT and ML-CDT, in a leaf
node, a label lj is predicted as relevant for an instance if and only if nj ≥ n′j.
Therefore, the decision rule at leaf nodes is the same for both algorithms.
Regarding the posterior probabilities for the labels, the ones predicted by
ML-DT are the ones estimated via relative frequencies, whereas the poste-
rior probabilities predicted by ML-CDT are the ones that give rise to the
maximum of entropy on the corresponding credal sets. Thus, as we show
below, the predicted posterior probabilities by ML-CDT are less sensitive to
noise than the ones predicted by ML-DT.

3.1.4. Data with noise

It can be shown that, for a label l ∈ L, the Shannon entropy H is more
sensitive to noise than the maximum of entropy H∗ over the corresponding
credal set. We illustrate this issue with a simple example below.

Let us suppose that we have a dataset D of size N . Let us denotate n1 as
the number of instances that have associated the label l and n′1 the number
of instances for which l is irrelevant. Let us suppose that n′1 > n1 + 3 and
that n1 > 2. Let Dn be a noisy dataset derived from D by changing the value
of the label l for one instance for which l is irrelevant (in the noisy dataset
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the instance has associated the label). With these assumptions, we have the
following result.

Proposition 5. HDn(l)−HD(l) ≥ H∗(PDn(l))−H∗(PD(l))

Proof:. We have that:

HD(l) = −n
′
1

N
log2

n′1
N
−−n1

N
log2

n1

N

HDn(l) = −n
′
1 − 1

N
log2

n′1 − 1

N
− n1 + 1

N
log2

n1 + 1

N

Hence:

HDn(l)−HD(l) = −n
′
1 − 1

N
×log2(n′1−1)− n1 + 1

N
×log2(n1 +1)+

n′1
N

log2(n′1)

+
n1

N
log2(n1) +

log2(N)

N
× [n′1 − 1 + n1 + 1− n′1 − n1] =

−(n′1 − 1) log2(n′1 − 1)− (n1 + 1) log2(n1 + 1) + n′1 log2(n′1) + n1 log2(n1)

N

Now, it is easy to observe that the distribution that produces the max-

imum of entropy in PD(l) is p̂(l) = n1+1
N

and p̂′(l) =
n′
1−1

N
. It is also easily

checkable that the distribution that gives rise to the maximum of entropy in

PDn(l) is p̂n(l) = n1+2
N

and p̂′n(l) =
n′
1−2

N
.

Thus:

H∗(PDn(l))−H∗(PD(l)) =
−(n′1 − 2) log2(n′1 − 2)− (n′1 + 2) log2(n1 + 2)

N

+
(n′1 − 1) log2(n′1 − 1) + (n1 + 1) log2(n1 + 1)

N

Therefore,

HDn(l)−HD(l) ≥ H∗(PDn(l))−H∗(PD(l))⇔

−(n′1 − 1) log2(n′1 − 1)− (n1 + 1) log2(n1 + 1) + n′1 log2(n′1) + n1 log2(n1) ≥
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−(n′1 − 2) log2(n′1 − 2)− (n′1 + 2) log2(n1 + 2)

+(n′1 − 1) log2(n′1 − 1) + (n1 + 1) log2(n1 + 1)⇔

n′1 log2(n′1) + n1 log2(n1) + (n′1 − 2) log2(n′1 − 2) + (n1 + 2) log2(n1 + 2) ≥

2(n′1 − 1) log2(n′1 − 1) + 2(n1 + 1) log2(n1 + 1)

Since the logarithm function is convex:

n′1 log2(n′1) + (n′1 − 2) log2(n′1 − 2) ≥ 2(n′1 − 1) log2(n′1 − 1),

(n1 + 2) log2(n1 + 2) + n1 log2(n1) ≥ 2(n1 + 1) log2(n1 + 1);

it is quite easy to check that our hypothesis holds.
�

Remark that the main difference between the split criteria of ML-CDT
and ML-DT is that the first one uses H∗, whereas the second one employs
H. Hence, from the previous proposition it is followed that, when a label is
modified for an instance of the dataset D, the split criterion used in ML-CDT
is less sensitive to the change than the one used in ML-DT. We show below
an example of this point, which is very based on one given in [14]. In this ex-
ample, the superscript D (respectively, Dn) indicates that the corresponding
measure is calculated over the dataset D (respectively, Dn).

Example 1. Let D be a dataset of size N = 15. Let us suppose that for
5 instances a certain label l is irrelevant and the other 10 instances has
associated the label l. Let us also suppose that we have two binary attributes
A1 and A2. For each one of the possible values of the attributes, the instances
are arranged as follows:

A1 = 0→ (n1 = 4, n′1 = 5)
A1 = 1→ (n1 = 6, n′1 = 0)
A2 = 0→ (n1 = 1, n′1 = 5)
A2 = 1→ (n1 = 9, n′1 = 0)
We have that:

HD(l) = −10

15
log2(

10

15
)− 5

15
log2(

5

15
) = 0.918

HD(l | A1 = 0) = −4

9
log2(

4

9
)− 5

9
log2(

5

9
) = 0.991
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HD(l | A1 = 1) = 0

Hence, the information gain of A1 associated with l is:

IGD(l, A1) = HD(l)−P (A1 = 0)HD(l | A1 = 0)−P (A1 = 1)HD(l | A1 = 1) =

0.918− 0.991× 0.6 = 0.3237

Regarding A2:

HD(l | A2 = 0) = −1

6
log2(

1

6
)− 5

6
log2(

5

6
) = 0.65

HD(l | A2 = 1) = 0

Information gain of A2 corresponding to l:

IGD(l, A2) = HD(l)−P (A2 = 0)HD(l | A2 = 0)−P (A2 = 1)HD(l | A2 = 1) =

0.918− 0.65× 0.4 = 0.6583

Imprecise information gain of A1 associated with l:

H∗(PD(l)) = 0.971

H∗(PD(l | A1 = 0)) = 1

H∗(PD(l | A1 = 1)) = 0.65

IIGD(l, A1) = H∗(PD(l))− P (A1 = 0)H∗(PD(l | A1 = 0))−

P (A1 = 1)H∗(PD(l | A1 = 1)) = 0.971− 0.6− 0.26× 0.4 = 0.111

Imprecise information gain of A2 associated with l:

H∗(PD(l | A2 = 0)) = 0.65

H∗(PD(l | A2 = 1)) = 0.5033

IIGD(l, A2) = H∗(PD(l))− P (A2 = 0)H∗(PD(l | A2 = 0))−
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P (A2 = 1)H∗(PD(l | A2 = 1)) = 0.971− 0.4× 0.65− 0.5033× 0.6 = 0.409

As IGD(l, A1) < IGD(l, A2) and IIGD(l, A1) < IIGD(l, A2), if we only
had the label l, the attribute A2 would be selected in order to branch the tree
in ML-DT, as well as in ML-CDT.

Let us suppose that noise is introduced in the dataset by changing the
value of l for an instance that verifies that A1 = 0 and A2 = 1. The label in
this noisy dataset is irrelevant for the instance, whereas in the clean one the
instance had associated the label l. In this noisy dataset Dn, the instances
are arranged as follows:

A1 = 0→ (n1 = 3, n′1 = 6)
A1 = 1→ (n1 = 6, n′1 = 0)
A2 = 0→ (n1 = 1, n′1 = 5)
A2 = 1→ (n1 = 8, n′1 = 1)
Values of IG and IIG in this noisy dataset:

HDn(l) = − 9

15
log2(

9

15
)− 6

15
log2(

6

15
) = 0.971

HDn(l | A1 = 0) = −3

9
log2(

3

9
)− 6

9
log2(

6

9
) = 0.9183

HDn(l | A1 = 1) = 0

IGDn(l, A1) = HDn(l)−P (A1 = 0)HDn(l | A1 = 0)−P (A1 = 1)HDn(l | A1 = 1) =

0.971− 0.9183× 0.6 = 0.42

HDn(l | A2 = 0) = −1

6
log2(

1

6
)− 5

6
log2(

5

6
) = 0.65

HDn(l | A2 = 1) = −8

9
log2(

8

9
)− 1

9
log2(

1

9
) = 0.5033

IGDn(l, A2) = HDn(l)−P (A2 = 0)HDn(l | A2 = 0)−P (A2 = 1)HDn(l | A2 = 1) =

0.971− 0.65 ∗ 0.4− 0.5033× 0.6 = 0.409

H∗(PDn(l)) = 0.9968
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H∗(PDn(l | A1 = 0)) = 0.9911

H∗(PDn(l | A1 = 1)) = 0.65

IIGDn(l, A1) = H∗(PDn(l))− P (A1 = 0)H∗(PDn(l | A1 = 0))−

P (A1 = 1)H∗(PDn(l | A1 = 1)) = 0.9968− 0.6× 0.9911− 0.65× 0.4 = 0.1421

H∗(PDn(l | A2 = 0)) = 0.65

H∗(PDn(l | A2 = 1)) = 0.5033

IIGDn(l, A2) = H∗(PDn(l))− P (A2 = 0)H∗(PDn(l | A2 = 0))−

P (A2 = 1)H∗(PDn(l | A2 = 1)) = 0.9968− 0.4× 0.65− 0.5033× 0.6 = 0.4055

For this noisy dataset IGDn(l, A2) < IGDn(l, A1) and IGDn(l, A1 <
IGDn(l, A2). Hence, for ML-DT, the attribute A1 is now selected for splitting
the dataset (supposing that l is the only label), unlike with the clean dataset.
Nevertheless, for ML-CDT, the selected splitting attribute is the same that
the one choosen with the clean dataset: A2

In this way, in the previous example, IIG is not affected by the noise in
the label l, unlike IG. It illustrates the fact that the split criterion used in
ML-CDT is less sensitive to noise than the one used in ML-DT. Therefore,
it can be deduced than ML-CDT should be more robust to noise than ML-
DT since the main difference between both algorithms resides in the split
criterion. In this work, this issue is checked with an extensive experimental
analysis.

3.2. Noise in MLC

In the real world, as it is known, datasets can contain intrinsic noise,
i.e, they can contain noise despite not being manipulated. As we have said
previously, datasets in MLC might have more intrinsic noise than datasets
in standard classification. In this Section we argue it with more detail.

Let us suppose that, in traditional classification, p is the probability that
one instance has a wrong class value. Let us suppose that, in MLC, one
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instance also has probability p of having associated incorrectly a label o vice-
versa is also p.

In standard classification, one instance has the right value of the class
variable with probability:

1− p
Nevertheless, in MLC, the probability that one example has no mistake

in any of the labels is:

(1− p)q

In the prior situation, let us consider the values of q and p are, respectively,
q = 10 and p = 0.05. Then, the probability that one instance has the correct
value of the class variable in traditional classification is:

1− 0.05 = 0.95

On the other hand, the probability that the example has the right value
for all the labels in MLC is:

(0.95)10 = 0.6

Hence, the probability that one example has an erroneous value for at
least one label is 0.4. Consequently, although one instance has an incorrect
value in one label with a quite small probability, it might be pretty notable
that the example has an error in any label, as occurs in this scenario. There-
fore, it is easily observable that in MLC the intrinsic noise can be notably
higher than in standard classification. For this reason, it is suitable to use a
classifier that is robust to noise in MLC.

Summarizing, the intrinsic noise in MLC is probably higher than in stan-
dard classification and ML-CDT, which is based on the NPI-M, should be
less sensitive to noise than ML-DT, as argued in Section 3.1. For this reason,
it is appropriate to apply the NPI-M to the adaptations of DTs to MLC.

4. Experimentation

4.1. Experimental setup

4.1.1. Datasets:

In this experimental analysis, we have utilized 12 MLC datasets. Nine
of them were employed in an extensive experimentation carried out in [36],
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in which multiple MLC algorithms were compared. We have not used the
other three datasets used in that research due to their excessive computa-
tional cost. Instead, another four datasets have been utilized, which can be
downloaded from the web site of mulan http://mulan.sourceforge.net/

datasets.html.
Table 1 shows the principal characteristics of each database. Specifically,

it allows us to see, for each dataset, its number of instances, its number of
attributes (continuous and discrete), its number of labels, its label cardinality,
its label density, defined as the label cardinality divided by the number of
labels, i.e, the proportion of labels which are relevant for an instance (on
average) and its domain.

Dataset N N DA N CA N L L C L D Domain
bibtex 7395 1836 0 159 2.4 0.015 Text
birds 645 2 258 19 1.014 0.053 Multimedia
cal500 502 0 68 174 26.044 0.15 Multimedia
corel5k 5000 499 0 374 3.52 0.009 Multimedia

emotions 593 0 72 6 1.87 0.311 Multimedia
enron 1702 1001 0 53 3.38 0.064 Text
flags 194 9 10 7 3.392 0.485 Multimedia

genbase 662 1186 0 27 1.252 0.046 Biology
mediamill 43907 0 120 101 4.38 0.043 Multimedia
medical 978 1449 0 45 1.24 0.028 Text
scene 2407 0 294 6 1.07 0.179 Multimedia
yeast 2417 0 103 14 4.24 0.303 Biology

Table 1: Datasets employed in the experimental research. N is the size of the dataset, N DA and N CA

are, respectively, is the number of discrete and continuous attributes, N L is the number of labels, L C is

the label cardinality and L D is the label density

As can be observed, the datasets are diverse in terms of label cardinality,
number of discrete and continuous features, number of examples and labels.

Essentially, our datasets come from three domains:

• Text categorization: The datasets that cover this domain are bibtex
[37], which contains information about meta data of bibtex items, enron
[38], that contains data about emails of Enron seniors, and medical [39],
a dataset whose instances correspond to documents with a summary of
a patient symptom history.
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• Biology: Two datasets are associated with this domain. The first of
them is genbase [40], that contains data about proteins. The second
dataset corresponding to biology is yeast [27], which covers information
about functions of genes.

• Multimedia: Within this domain, birds [41] covers data about birds
audios. Cal500 [42] contains information about pieces of music. Corel5k
[43] is a dataset whose examples correspond to Corel images which
have been segmented by normalised cuts. Emotions [44] covers data
about pieces of music labeled with emotions. Flags contains informa-
tion about flags of the countries. Mediamill [45] covers data about
concepts which appear in videos. Finally, scene [24] contains informa-
tion about scenes, which can be annotated in the following six con-
texts:mountain, urban, beach, sunset, field and fall-folliage.

Thus, our datasets are also varied in terms of thematic. Actually, they
cover the main domains of MLC. Therefore, it can be said that the datasets
used in this experimentation are representative.

4.1.2. Procedure:

In this experimentation two algorithms have been used: ML-DT, which
uses a standard split criterion based on precise probabilities, and ML-CDT,
the adaptation proposed in this work of DTs to MLC that utilizes using
imprecise probabilities and uncertainty measures on sets of probabilities re-
sulting from the NPI-M in the split criterion.2 We have implemented both
algorithms in the mulan library [46]. For this purpose, we have used some of
the structures provided in Weka [47].

In order to measure the performance of both algorithms 17 metrics have
been used. Among them, Subset Accuracy, Hamming Loss, Accuracy, Pre-
cision, Recall and F1 correspond to the category of example-based classifi-
cation measures. Six of the metrics are based on label classification: Micro
Precision, Macro Precision, Micro Recall, Macro Recall, Micro F1 and Macro
F1. With respect to ranking labels in instances, we have used 5 measures:

2It has not been considered in this research the ML-CDT that uses uncertainty measures
on the credal sets resulting from the IDM because this model has a strong dependence of
a parameter. In fact, with its standard value, it obtains poor results when it is used for
MLC in the ML-CDT procedure.
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Ranking Loss, Coverage, Average Precision, One Error and Binary Cross-
Entropy. All of these measures were employed in an extensive experimenta-
tion with MLC methods carried out in [36], except for Binary Cross Entropy.
However, this last metric is very appropriate to measure the quality of the
estimated probabilities for binary variables, and it has been very utilized
in the literature in these cases. In Appendix A it can be found a detailed
explanation of the evaluation metrics used in this research.

In this experimental analysis, we have considered three noise levels for
each label: 0%, 5%, and 10%. We have done the following procedure of CV
of 5 folds for each dataset and each noise level: We have divided each dataset
into 5 partitions and, for each one of them, we have carried out an iteration in
which we have considered the corresponding partition for testing and the rest
of the data for training. For each label, x% of the instances in the training
set have been selected and the value of their label has been modified. Part of
the functionality provided in mulan has been used to create the partitions.
Both algorithms have used the same partitions for each dataset. In order
to generate noise, we have used the Weka filters (specifically, AddNoise),
with the parameters that are given by default in this software (except for
the corresponding to the noise level, as it is obvious). The model has been
learned through this noisy dataset and each one of the evaluation metrics is
extracted by utilizing the test set.

4.1.3. Statistical Evaluation:

In our experimental study, for each metric and each noise level, there are
two algorithms to compare: ML-DT and ML-CDT. In this way, following
the indications of [48, 49], the Wilcoxon test [50] has been used in order
to determine which classifier performs better than the other one and if the
differences are statistically significant or not, with a level of significance of
α = 0.05. For the Wilcoxon test, we have used the R software [51].

4.2. Results and discussion

Tables 2, 3 and 4 show, respectively, a summary of the obtained results
by each classifier for each metric with 0%, 5% and 10% of added noise.
Specifically, for each metric, they allow us to see, according to the Wilcoxon
test, which classifier is better than the other one and if the differences are
significative or not. It is also shown the number of wins for each metric, which
is defined as the number of datasets in which the corresponding algorithm
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performs better than the other one. In Appendix B, the complete results of
this experimental study can be found.

Metric ML-DT ML-CDT Wins ML-DT Wins ML-CDT
Hamming Loss (•) 0 12

Subset Accuracy (-) 2 9
Accuracy (-) 5 7
Precision (-) 2 10

Recall (•) 11 1
F1 (-) 5 7

Micro Precision (•) 0 12
Macro Precision (-) 5 7

Micro Recall (•) 11 1
Macro Recall (•) 10 2

Micro F1 (-) 5 7
Macro F1 (-) 4 8
Coverage (•) 1 11

Ranking Loss (•) 1 11
Average Precision (-) 3 9

One Error (-) 3 9
Binary Cross-Entropy (•) 0 12

Table 2: Summary of the results obtained by ML-DT and ML-CDT for each metric when
there is no noise introduced in the data. (•) indicates that the algorithm of the column
performs significantly better than the other one. (-) means that the classifier of the column
performs better than the other one but the results are statistically equivalent.

4.2.1. Example-based classification metrics:

As can be observed, in Hamming Loss the performance obtained by ML-
CDT is always significantly better than the one obtained by ML-DT. It
implies that, on average, the difference between the real and the predicted
label sets for the examples are smaller for ML-CDT than for ML-DT for
all the noise levels. The reason for this fact is that in MLC the intrinsic
noise is probably higher than in traditional classification and, as we have
argued in Section 3.1, ML-CDT performs better than ML-DT when the data
contains noise. On the other hand, ML-DT always predicts more relevant
labels correctly than ML-DT, due to the better results obtained in Recall.
This is because ML-CDT stops branching the tree before than ML-DT and
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Metric ML-DT ML-CDT Wins ML-DT Wins ML-CDT
Hamming Loss (•) 0 12

Subset Accuracy (•) 2 9
Accuracy (-) 3 9
Precision (•) 1 11

Recall (•) 10 2
F1 (-) 3 9

Micro Precision (•) 1 10
Macro Precision (-) 2 10

Micro Recall (•) 12 0
Macro Recall (•) 12 0

Micro F1 (-) 3 9
Macro F1 (-) 7 5
Coverage (•) 2 10

Ranking Loss (•) 2 10
Average Precision (-) 3 9

One Error (-) 3 9
Binary Cross-Entropy (•) 0 12

Table 3: Summary of the results obtained by ML-DT and ML-CDT for each metric when
5% of noise is introduced in the data. (•) indicates that the algorithm of the column
performs significantly better than the other one. (-) means that the classifier of the
column performs better than the other one but the results are statistically equivalent.
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Metric ML-DT ML-CDT Wins ML-DT Wins ML-CDT
Hamming Loss (•) 0 12

Subset Accuracy (•) 0 11
Example-Based Accuracy (•) 2 10
Example-Based Precision (•) 1 11

Recall (•) 11 1
F1 (•) 2 10

Micro Precision (•) 1 11
Macro Precision (•) 1 11

Micro Recall (•) 11 1
Macro Recall (•) 11 1

Micro F1 (•) 2 10
Macro F1 (-) 6 6
Coverage (•) 2 10

Ranking Loss (•) 2 10
Average Precision (-) 4 8

One Error (-) 4 8
Binary Cross-Entropy (•) 0 12

Table 4: Summary of the results obtained by ML-DT and ML-CDT for each metric when
10% of noise is introduced in the data. (•) indicates that the algorithm of the column
performs significantly better than the other one. (-) means that the classifier of the column
performs better than the other one but the results are statistically equivalent.
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the proportion of instances that have associated a certain label in MLC tends
to be very low. Consequently, in a large number of cases, ML-CDT does not
reach parts of the tree for which a label is correctly predicted as relevant.
Nevertheless, in these parts of the tree the noise influences negatively.

When there is no noise introduced in the data, the results in the rest of
the example-based classification metrics are statistically equivalent according
to the Wilcoxon test. However, the number of wins of ML-CDT in Preci-
sion and Subset Accuracy is considerably higher than the wins of ML-DT
in both of the previous metrics. Hence, ML-CDT predicts less irrelevant
labels as relevant (Precision) than ML-DT and the first algorithm predicts
correctly the entire relevant label set for more instances than the second one
(Subset Accuracy). The reason why ML-CDT performs better than ML-DT
in Precision is that, as we say in the previous paragraph, ML-CDT stops
branching the tree before than ML-DT, avoiding reaching parts of the tree
where the noise has a negative influence. Likewise, ML-CDT obtains bet-
ter results than ML-DT in Subset Accuracy because ML-CDT outperforms
ML-DT with noisy data and in MLC there might be intrinsic noise in the
data.

With 5% of noise, the differences in Precision and Subset Accuracy are
significative, favorable to ML-CDT. Besides, as without noise in the data,
ML-CDT achieves significantly better performance in Hamming Loss than
ML-DT, whereas ML-DT obtains significantly better results in Recall. The
results obtained in Accuracy, which measures how the algorithm predicts the
labels for the examples in general, and in F1, which consists of the harmonic
mean between Precision and Recall, are statistically equivalent. Nevertheless,
in both of the previous metrics, the number of wins of ML-CDT is notably
higher than the number of wins of ML-DT (9 versus 3 in both metrics).

When the level of noise introduced in the data is 10%, ML-CDT ob-
tains significantly better performance than ML-DT for all example-based
classification metrics, except for Recall. In this last measure, the results are
significantly favorable to ML-DT again.

In summary, the higher is the level of noise in the data, the higher is
the improvement of ML-CDT over ML-DT in example-based classification
metrics, except in Recall, where the results are always better for ML-DT.
This is because ML-CDT is more robust to noise than ML-DT, although the
first algorithm stops branching the tree before than the second one, avoiding
to reach parts of the tree where some labels are predicted as relevant for the
instances. This fact is more emphasized as there is more noise introduced in
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the data.

4.2.2. Label-based classification metrics:

Firstly, for all the noise levels, the results corresponding to Precision av-
eraged over all pairs label-example (Micro Precision) are significantly better
in ML-CDT than in ML-DT. On the other hand, ML-DT always achieves sig-
nificantly better results than ML-CDT in the Recall averaged over all labels
(Macro Recall) and in the Recall averaged over all the pairs label-instance
(Micro Recall). These points are because, as we comment above, ML-CDT
stops branching the tree before than ML-DT and, in consequence, reaches
fewer parts of the tree where some labels for the instances are predicted as
relevant and the noise influences negatively.

When there is no noise introduced in the data the results obtained in the
rest of label-based classification metrics are statistically equivalent according
to the Wilcoxon test.

The results are similar when there is a 5% of noise introduced in the data.
However, remark that in Macro Precision, which is the Precision averaged on
all labels, in 10 datasets the result is better for ML-CDT, whereas ML-DT
obtains better performance according to this metric in only 2 datasets.

With 10% of noise, in Macro Precision, the results obtained by ML-CDT
are significantly better than the ones obtained by ML-DT. The performance
in terms of the harmonic mean between Micro Precision and Micro Recall
(Micro F1) is significantly better with ML-CDT than with ML-DT. The re-
sults in Macro F1, the harmonic mean between Precision and Recall averaged
over all labels, are statistically equivalent, as happens with 0 and 5% of noise.

The fact that the harmonic mean between Micro Precision and Micro
Recall (Micro F1) is more favorable to ML-CDT as there is more noise in-
troduced in the data is principally due to ML-CDT is more robust to noise
than ML-DT, as we have argued in Section 3.1.

4.2.3. Example-based ranking metrics:

It is easy to check that, for all noise levels, the results obtained by ML-
CDT in example-based ranking metrics are better than the ones obtained
by ML-DT. Consequently, in general, ML-CDT predicts a higher posterior
probability for relevant labels and lower for irrelevant ones than ML-DT.

More specifically, ML-CDT achieves significantly better performance in
ordering fewer pairs of relevant and irrelevant labels reversely (Ranking Loss).
Furthermore, average the number of steps that are required to go down to
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cover all the relevant labels for an instance is considerably lower with ML-
CDT than with ML-DT, due to the significantly better results obtained in
Coverage. The results obtained in Binary Cross-Entropy by ML-CDT are
significantly better than the ones obtained by ML-DT. It implies that the
predicted posterior probabilities are closer to one for the relevant labels and
nearer to cero for labels that are not associated with the instances with ML-
CDT than with ML-DT. In the other two example-based ranking metrics the
results are statistically equivalent according to the Wilcoxon test. Neverthe-
less, in both measures, the number of wins of ML-CDT is notably higher
than the number of wins of ML-DT.

The reasons for the previous points are that, as we have shown in Section
3.1, the building process of ML-CDT is less sensitive to noise than the one
used in ML-DT. Furthermore, in the terminal nodes, the posterior probabili-
ties estimated by ML-DT are the ones corresponding to relative frequencies,
whereas the ones estimated by ML-CDT are the ones that give rise to the
maximum of entropy in the corresponding credal sets. Therefore, the poste-
rior probabilities predicted by ML-CDT are more robust to noise than the one
predicted by ML-DT. Besides, it is convenient to remark that in leaf nodes
there are uaually few instances and the difference between both algoritms is
notable.

4.2.4. Summary:

Firstly, as we have commented before, the predictions about the relevant
label sets of the instances are generally better with ML-CDT than with ML-
DT. The higher is the level of noise introduced in the data, the more notable
is this improvement. It happens because if the level of noise is higher, the
predictions of the relevant labels are worsened, and ML-CDT is less sensitive
to noise than ML-DT.

Secondly, ML-DT predicts more relevant labels correctly than ML-CDT,
since the first algorithm always obtains better performance in the metrics
associated with Recall. On the other hand, ML-CDT predicts less irrelevant
labels as relevant than ML-DT, due to the better results in the measures
corresponding to Precision. The performances obtained by both algorithms
in the metrics associated with F1 (harmonic mean between Precision and
Recall) are statistically equivalent without noise. However, when noise is
introduced in the data, the results are more favorable to ML-CDT. The
reasons for the previous fact have been commented above: in MLC for some
labels, there are very few instances that have associated them. Besides,
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ML-CDT might stop the tree before than ML-DT. Thus, in many cases,
ML-CDT does not reach parts of the tree where relevant labels are predicted
correctly. However, in these parts of the tree, the noise has a quite negative
influence and there, the irrelevant labels sometimes are predicted erroneously
as relevant. Since ML-CDT considers that the data set is less reliable than
ML-DT, as the noise is higher, the harmonic means between Precision and
Recall are more favorable to ML-CDT.

Also, ML-CDT, for all noise levels, achieves better performance than
ML-DT in predicting a greater posterior probability for the relevant labels
and lower for the irrelevant ones, as commented in example-based ranking
metrics. The results obtained in Binary Cross-Entropy allows us to deduce
that the quality of the estimated posterior probabilities is better for ML-CDT
than for ML-DT. The reasons are that the noise has a negative influence
on the ranking of labels given by the adaptations of DTs to MLC and the
building process of ML-CDT is more robust to noise than the one employed
in ML-DT. Moreover, the posterior probabilities predicted by ML-CDT are
the ones that give rise to the maximum of entropy in the corresponding
credal sets, unlike the ones that utilize relative frequencies, as in ML-DT. As
we have said before, in terminal nodes there are often few instances and the
differences ML-CDT and ML-DT are notable. Hence, the predicted posterior
probabilities are less sensitive to noise in the case of ML-CDT.

In general, the number of metrics for which ML-CDT obtains significantly
better performance than ML-DT is always higher than the number of mea-
sures for which the results are significantly better with ML-DT. Moreover,
the more is the level of noise in the data, the higher is the difference.

Therefore, it can be concluded that the use of the NPI-M supposes an
improvement in the adaptations of DTs to MLC, being this improvement
more notable as more noise is introduced in the data.

5. Conclusions and Future Work

In this work, we have proposed a new adaptation of Decision Trees to
Multi-Label Classification based on imprecise probabilities. It uses uncer-
tainty measures on credal sets resulting from the Non-Parametric Predictive
Model for Inference in the split criterion and at the time of labeling the
instances.

It has been shown that this new Multi-Label Decision Tree is more ro-
bust to noise than the already existing one, based on precise probabilities.
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Furthermore, we have argued that in Multi-Label Classification the intrin-
sic noise is usually higher than in standard classification. Hence, the Non-
Parametric Predictive Model for Inference is suitable to be applied to the
adaptation of Decision Trees to Multi-Label Classification due to its perfor-
mance on datasets with high levels of noise.

An extensive experimentation has been carried out in this work on differ-
ent datasets with several levels of added noise. In it, we have employed many
Multi-Label Classification metrics in order to compare the performance of the
algorithms. This experimental analysis has shown that, in general, the new
Multi-Label Decision Tree based on the Non-Parametric Predictive Model
for Inference has a better performance than the already existing Multi-Label
Decision Tree. This improvement is more notable as more noise is introduced
in the data.

As future work, the Non-Parametric Predictive Model for Inference can
be also used in the ensembles of Decision Trees in Multi-Label Classification.
It is expected that these future ensembles of Multi-Label Decision Tree with
imprecise probabilities obtain better results than the already existing ones,
which use precise probabilities.
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Appendix A. Evaluation measures

In this Section we explain the evaluation metrics utilized in order to com-
pare the performance of the MLC algorithms considered in the experiments.
We suppose that it is disposed of a test set of size N {x1, . . . ,xN}. The same
notation of Section 2.1 is employed.

Example-based classification measures:

Example-based classification metrics [2, 52, 53] focus on the predictions
made in the test examples.

• Subset Accuracy: It indicates the proportion of instances whose pre-
dicted label set coincides with its set of relevant labels:
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Subset Accuracy(h) =
1

N

N∑
i=1

I(h(xi) = Li), (24)

being I an indicator function, which has the value 1 if the condition is
verified and 0 otherwise.

• Hamming Loss:

It indicates the number of times, on average, an example-label is clas-
sified incorrectly:

Hamming Loss(h) =
1

N

N∑
i=1

1

q
|h(xi)4Li| , (25)

where 4 denotes the symmetric difference between two sets, which
indicates how many elements belong to one set and not to the other
one.

• Accuracy:

It consists of the average Jaccard similarity coefficient between the set
of labels predicted as relevant and the set of labels that are associated
with an instance:

Accuracy(h) =
1

N

N∑
i=1

|h(xi) ∩ Li|
|h(xi) ∪ Li|

. (26)

• Precision:

It indicates the proportion of the labels predicted as relevant that are
really relevant for the instances, on average:

Precision(h) =
1

N

N∑
i=1

|h(xi) ∩ Li|
|h(xi)|

. (27)

• Recall:

It measures the proportion of relevant labels for the examples that are
predicted as relevant, on average:
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Recall(h) =
1

N

N∑
i=1

|h(xi) ∩ Li|
|Li|

. (28)

• F1:

It is the harmonic mean between Example-based Precision and Example-
based Recall:

F1(h) =
1

N

N∑
i=1

2× |h(xi) ∩ Li|
|h(xi)|+ |Li|

. (29)

Label based classification measures:

These measures [25] assume that each label is a binary class variable,
whose value is 1 for an instance if the corresponding label if relevant for it
and 0 else.

• Macro Precision:

It is defined by the Precision averaged across all the labels:

Macro Precision =
1

q

q∑
j=1

tpj
tpj + fpj

, (30)

being fpj and tpj the number of false positives and true positives for
the label j, respectively, 1 ≤ j ≤ q.

• Macro Recall:

It indicates the Recall averaged across all the labels:

Macro Recall =
1

q

q∑
j=1

tpj
tpj + fnj

, (31)

where, for the label lj, fnj is the corresponding number of false nega-
tives.
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• Macro F1:

It consists of the harmonic mean between Recall and Precision, com-
puted for each tag and averaged over all labels.

Macro F1 =
1

q

q∑
j=1

2× rj × pj
rj + pj

, (32)

being pj and rj, respectively, the Precision and Recall for the jth label.

• Micro Precision:

It is the average of the Precision over all the instance-label pairs

Micro Precision =

∑q
j=1 tpj∑q

j=1 tpj +
∑q

j=1 fpj
. (33)

• Micro Recall:

It indicates the average of the Recall averaged over all the instance-label
pairs.

Micro Recall =

∑q
j=1 tpj∑q

j=1 tpj +
∑q

j=1 fnj

. (34)

• Micro F1:

It consists of the harmonic mean between Micro Precision and Micro
Recall.

Micro F1 =
2×Micro Precision×Micro Recall

Micro Rrecision+Micro Recall
. (35)

Ranking based measures:

Ranking-based metrics [2, 52, 53, 25] focus on the real-valuated function
returned by the multi-label classifier and on its related ranking function.

• One Error:

It is the proportion of examples for which the top-ranked label is not
associated with it. Formally:
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One Error(f) =
1

N

N∑
i=1

I(arg max
l∈L

f(xi, l) /∈ Li). (36)

• Coverage:

It indicates the average number of steps that are required to do going
down the rank of labels to cover all the labels that are associated with
an instance.

Coverage(f) =
1

N

N∑
i=1

max
l∈Li

{rank fxi
(l)} − 1. (37)

• Ranking Loss:

It consists of the average proportion of label pairs which are ordered in
a reverse way for a particular example. Formally:

Let Zi = {( ln, lm) | f(xi, lm) ≤ f(xi, ln), lm ∈ Li, ln ∈ Li}, being Li the
complementary set of Li. This metric is given by:

Ranking Loss(f) =
1

N

N∑
i=1

|Zi|
|Li|

∣∣Li

∣∣ . (38)

• Average precision:

It measures, on average, the proportion of labels which are higher punc-
tuated than a relevant one.

Let us consider Λi =
{
l
′ | rank fxi

(l
′
) ≤ rank fxi

(l), l
′ ∈ Li

}
. This

measure is defined as follows:

Average Precision(f) =
1

N

N∑
i=1

|Λi|
rank fxi

(l)
. (39)

• Binary Cross-Entropy:

It indicates, on average, how far away from the real value of the labels
of the instances (1 if the label is relevant for the example and 0 if the
label is not associated with the instance) are the predicted posterior
probabilities.
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binary cross entropy(f) =
1

N

N∑
i=1

1

q

q∑
j=1

[[lj ∈ Li]] log(f(xi, lj))+

[[lj /∈ Li]] log(1− f(xi, lj)).

The lower is the value of Coverage, Ranking Loss, One Error and Binary
Cross-Entropy, the better is the performance. Nevertheless, with Average
Precision, the opposite happens.

Appendix B. Complete experimental results

In this Section we show the complete results from the experimental study.
Specifically, the results for each dataset used in the experiments, for each
noise and for each metric are presented. In each case, the best result is
marked in bold.

Table 5: Complete Subset Accuracy results.
0% 5% 10%

Dataset ML-DT ML-CDT ML-DT ML-CDT ML-DT ML-CDT
bibtex 0.0368 0.0031 0.0147 0.0072 0.0103 0.0134
birds 0.1767 0.4574 0.1054 0.445 0.1147 0.4062

CAL500 0 0 0 0 0 0
Corel5k 0.0006 0 0.0006 0 0.0004 0.0018
emotions 0.172 0.241 0.1179 0.2006 0.1347 0.2056

enron 0.01 0.0147 0.0065 0.0182 0.007 0.0252
flags 0.0721 0.1555 0.0309 0.1555 0.031 0.1196

mediamill 0.0517 0.0551 0.0323 0.0559 0.0285 0.052
medical 0.135 0.2372 0.0133 0.1708 0.002 0.1779
genbase 0 0.6995 0 0.7177 0 0.5042
scene 0.3257 0.504 0.2613 0.4911 0.2505 0.4495
yeast 0.0662 0.1419 0.0658 0.1353 0.0521 0.1216
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Table 6: Complete Hamming Loss results.
0% 5% 10%

Dataset ML-DT ML-CDT ML-DT ML-CDT ML-DT ML-CDT
bibtex 0.0488 0.0142 0.5688 0.038 0.6085 0.0633
birds 0.0945 0.0537 0.4505 0.0721 0.4605 0.1324

CAL500 0.263 0.1371 0.3843 0.1871 0.5457 0.2106
Corel5k 0.049 0.0098 0.4543 0.0153 0.6811 0.0308
emotions 0.2963 0.2645 0.3862 0.3112 0.3745 0.3188

enron 0.14 0.0586 0.6043 0.1028 0.5736 0.1238
flags 0.3513 0.2906 0.3829 0.2987 0.4151 0.3068

mediamill 0.0621 0.0328 0.3545 0.0444 0.3457 0.0714
medical 0.0759 0.0212 0.7932 0.0396 0.9193 0.0698
genbase 0.9247 0.0161 0.9536 0.0399 0.9536 0.0517
scene 0.1976 0.1576 0.297 0.199 0.3339 0.2342
yeast 0.3201 0.2559 0.3699 0.2883 0.4005 0.3119

Table 7: Complete Accuracy results.
0% 5% 10%

Dataset ML-DT ML-CDT ML-DT ML-CDT ML-DT ML-CDT
bibtex 0.1824 0.0482 0.0742 0.0522 0.0575 0.0572
birds 0.3162 0.476 0.1923 0.4471 0.2021 0.4154

CAL500 0.2363 0.1863 0.2184 0.1908 0.1871 0.1979
Corel5k 0.0719 0.0001 0.0435 0.0014 0.0294 0.0078
emotions 0.4606 0.5063 0.4009 0.4657 0.4159 0.4659

enron 0.2645 0.2306 0.1567 0.238 0.1636 0.2266
flags 0.5397 0.577 0.5176 0.5776 0.502 0.5685

mediamill 0.35 0.3649 0.2445 0.3656 0.2405 0.3512
medical 0.3564 0.3033 0.0879 0.2316 0.0435 0.2402
genbase 0.0475 0.7597 0.0464 0.7806 0.0464 0.5409
scene 0.4975 0.5556 0.4344 0.5488 0.4153 0.5153
yeast 0.4164 0.4688 0.4011 0.4556 0.378 0.4431

Table 8: Complete Precision results.
0% 5% 10%

Dataset ML-DT ML-CDT ML-DT ML-CDT ML-DT ML-CDT
bibtex 0.2123 0.144 0.086 0.1448 0.0667 0.1458
birds 0.3485 0.5101 0.2113 0.4476 0.2178 0.416

CAL500 0.2967 0.6347 0.2658 0.5895 0.2177 0.5598
Corel5k 0.0802 0.0001 0.0483 0.0033 0.0323 0.0152
emotions 0.536 0.5836 0.4531 0.5362 0.4833 0.5398

enron 0.308 0.5829 0.1796 0.4828 0.1878 0.5212
flags 0.5957 0.6625 0.5651 0.6527 0.5495 0.6427

mediamill 0.4225 0.7032 0.2912 0.6873 0.2869 0.6791
medical 0.3662 0.3732 0.0914 0.2948 0.044 0.3024
genbase 0.0475 0.8254 0.0464 0.8285 0.0464 0.5637
scene 0.5111 0.5785 0.4463 0.5731 0.427 0.5359
yeast 0.4963 0.6054 0.4728 0.5873 0.4475 0.5629
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Table 9: Complete Recall results.
0% 5% 10%

Dataset ML-DT ML-CDT ML-DT ML-CDT ML-DT ML-CDT
bibtex 0.4339 0.0482 0.7118 0.0767 0.7162 0.1071
birds 0.4379 0.476 0.4568 0.4592 0.4796 0.4664

CAL500 0.5338 0.2069 0.6257 0.274 0.7377 0.3119
Corel5k 0.3473 0.0097 0.6182 0.0071 0.7783 0.0301
emotions 0.6638 0.6834 0.6714 0.6746 0.6641 0.677

enron 0.6806 0.245 0.8501 0.3244 0.82 0.318
flags 0.831 0.7527 0.8398 0.7744 0.8412 0.7822

mediamill 0.6374 0.3981 0.7317 0.4175 0.7124 0.4212
medical 0.8604 0.3033 0.9651 0.2503 0.9864 0.2879
genbase 0.9957 0.769 1 0.8366 1 0.5977
scene 0.6647 0.5999 0.6859 0.642 0.6953 0.6437
yeast 0.6582 0.6182 0.6892 0.633 0.6745 0.6443

Table 10: Complete F1 results.
0% 5% 10%

Dataset ML-DT ML-CDT ML-DT ML-CDT ML-DT ML-CDT
bibtex 0.2527 0.0699 0.1084 0.074 0.087 0.0788
birds 0.3658 0.4845 0.2363 0.4487 0.2461 0.4209

CAL500 0.3736 0.3089 0.349 0.3146 0.3086 0.3246
Corel5k 0.1234 0.0001 0.0755 0.002 0.0518 0.0104
emotions 0.5606 0.5987 0.5062 0.5597 0.5205 0.5614

enron 0.3875 0.3299 0.2402 0.3316 0.2481 0.3186
flags 0.6726 0.6927 0.6551 0.6958 0.6436 0.6903

mediamill 0.4676 0.478 0.3364 0.4786 0.3328 0.4629
medical 0.4637 0.326 0.1325 0.253 0.0751 0.2622
genbase 0.0896 0.7819 0.0876 0.8049 0.0876 0.5561
scene 0.5572 0.5747 0.5024 0.5743 0.4848 0.5458
yeast 0.5381 0.5805 0.5242 0.569 0.5013 0.5587

Table 11: Complete Micro Precision results.
0% 5% 10%

Dataset ML-DT ML-CDT ML-DT ML-CDT ML-DT ML-CDT
bibtex 0.1367 1 0.019 0.0516 0.0175 0.0333
birds 0.2989 0.4239 0.0877 0.0486 0.0837 0.077

CAL500 0.2915 0.6347 0.227 0.3716 0.1894 0.3183
Corel5k 0.0708 0.0971 0.0128 0.0128 0.0108 0.0122
emotions 0.519 0.5621 0.4248 0.5005 0.4357 0.4926

enron 0.2612 0.5929 0.0834 0.2653 0.0839 0.218
flags 0.6 0.667 0.5716 0.6554 0.5476 0.6489

mediamill 0.3719 0.742 0.0854 0.4866 0.0858 0.2781
medical 0.2495 0.8171 0.0324 0.3874 0.0289 0.1443
genbase 0.0475 0.9484 0.0464 0.5566 0.0464 0.4768
scene 0.4639 0.5576 0.3408 0.4629 0.3104 0.403
yeast 0.479 0.5712 0.4316 0.5208 0.4033 0.4887
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Table 12: Complete Micro Recall results.
0% 5% 10%

Dataset ML-DT ML-CDT ML-DT ML-CDT ML-DT ML-CDT
bibtex 0.4193 0.06 0.7032 0.087 0.7105 0.1103
birds 0.5614 0.0578 0.7028 0.0209 0.7414 0.1125

CAL500 0.5297 0.1997 0.6231 0.2655 0.7357 0.3057
Corel5k 0.3467 0.0004 0.6167 0.0072 0.778 0.0296
emotions 0.6714 0.6823 0.6776 0.6748 0.6622 0.6796

enron 0.6545 0.2569 0.8277 0.3467 0.7969 0.3361
flags 0.8309 0.7897 0.8392 0.8013 0.8398 0.8051

mediamill 0.6278 0.3716 0.7372 0.3865 0.7195 0.3961
medical 0.8514 0.3 0.959 0.2622 0.9858 0.2935
genbase 0.993 0.7001 1 0.7813 1 0.5708
scene 0.6558 0.5888 0.6829 0.6298 0.6916 0.6354
yeast 0.6559 0.6193 0.6874 0.6345 0.6712 0.6431

Table 13: Complete Micro F1 results.
0% 5% 10%

Dataset ML-DT ML-CDT ML-DT ML-CDT ML-DT ML-CDT
bibtex 0.2061 0.1131 0.0369 0.0647 0.0341 0.0506
birds 0.3872 0.0985 0.152 0.0273 0.1494 0.0868

CAL500 0.3759 0.3036 0.3299 0.2985 0.2951 0.3022
Corel5k 0.1175 0.0011 0.025 0.0084 0.0212 0.0164
emotions 0.5853 0.6162 0.5215 0.5746 0.5251 0.5701

enron 0.3734 0.3573 0.1511 0.2992 0.1516 0.2566
flags 0.6959 0.7228 0.6798 0.7206 0.6622 0.7171

mediamill 0.4671 0.4951 0.153 0.4301 0.1532 0.3259
medical 0.3851 0.4382 0.0627 0.2796 0.0562 0.1901
genbase 0.0907 0.7999 0.0886 0.6487 0.0886 0.5113
scene 0.5431 0.5722 0.4534 0.5324 0.4276 0.493
yeast 0.5536 0.5942 0.5297 0.5714 0.5037 0.5552

Table 14: Complete Macro Precision results.
0% 5% 10%

Dataset ML-DT ML-CDT ML-DT ML-CDT ML-DT ML-CDT
bibtex 0.1358 0.0075 0.0186 0.0218 0.0173 0.0201
birds 0.2839 0.0578 0.0824 0.0421 0.0794 0.0705

CAL500 0.1602 0.0793 0.1531 0.1482 0.1495 0.1502
Corel5k 0.0486 0.15 0.0103 0.0094 0.0098 0.0109
emotions 0.5145 0.5559 0.4234 0.4918 0.4297 0.4885

enron 0.1264 0.1121 0.0688 0.0865 0.0687 0.0835
flags 0.5456 0.6107 0.5245 0.6094 0.5135 0.6039

mediamill 0.1387 0.0406 0.054 0.0627 0.0539 0.0585
medical 0.2508 0.3601 0.0318 0.1205 0.0287 0.0489
genbase 0.046 0.5331 0.0464 0.2955 0.0464 0.2166
scene 0.4998 0.5591 0.3537 0.4635 0.3145 0.4028
yeast 0.3646 0.3984 0.3439 0.3725 0.3311 0.3592
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Table 15: Complete Macro Recall results.
0% 5% 10%

Dataset ML-DT ML-CDT ML-DT ML-CDT ML-DT ML-CDT
bibtex 0.3353 0.0068 0.6641 0.0326 0.681 0.0564
birds 0.4845 0.0537 0.6172 0.0163 0.6796 0.0977

CAL500 0.2851 0.0966 0.4179 0.1087 0.5932 0.1563
Corel5k 0.1235 0.1467 0.4092 0.0057 0.5795 0.0197
emotions 0.6593 0.662 0.6674 0.6585 0.6505 0.675

enron 0.3187 0.1153 0.6498 0.1202 0.6047 0.1366
flags 0.7754 0.7391 0.7874 0.7385 0.7956 0.7509

mediamill 0.2987 0.0306 0.5157 0.0469 0.5125 0.0798
medical 0.4951 0.3683 0.6094 0.1197 0.6638 0.0857
genbase 0.7556 0.541 0.7852 0.4268 0.7852 0.2915
scene 0.6644 0.6018 0.6892 0.6438 0.697 0.6478
yeast 0.5103 0.4218 0.5547 0.4492 0.5488 0.4702

Table 16: Complete Macro F1 results.
0% 5% 10%

Dataset ML-DT ML-CDT ML-DT ML-CDT ML-DT ML-CDT
bibtex 0.1827 0.007 0.0353 0.0246 0.033 0.0271
birds 0.3345 0.0536 0.1356 0.0209 0.1354 0.0716

CAL500 0.1995 0.0857 0.2087 0.1011 0.214 0.1284
Corel5k 0.0602 0.1467 0.0189 0.0046 0.0183 0.0092
emotions 0.5756 0.5958 0.5136 0.557 0.513 0.5592

enron 0.1691 0.1122 0.1067 0.0879 0.1056 0.0843
flags 0.6283 0.6513 0.617 0.6465 0.6079 0.6567

mediamill 0.1844 0.0328 0.0796 0.0453 0.0792 0.0531
medical 0.2942 0.3637 0.056 0.1135 0.0514 0.0547
genbase 0.0827 0.5327 0.0833 0.3352 0.0833 0.2317
scene 0.5648 0.5761 0.4641 0.5353 0.4314 0.4944
yeast 0.42 0.4036 0.413 0.4027 0.3996 0.4016

Table 17: Complete Ranking Loss results.
0% 5% 10%

Dataset ML-DT ML-CDT ML-DT ML-CDT ML-DT ML-CDT
bibtex 0.3007 0.2113 0.287 0.2455 0.3237 0.2661
birds 0.1559 0.1473 0.1554 0.1604 0.1565 0.1711

CAL500 0.3845 0.1809 0.3764 0.2185 0.3577 0.2368
Corel5k 0.4717 0.1441 0.3932 0.1666 0.3301 0.1849
emotions 0.2942 0.2292 0.3361 0.2634 0.3498 0.2854

enron 0.2193 0.1031 0.1813 0.1366 0.222 0.1546
flags 0.2961 0.2556 0.3357 0.2754 0.3557 0.2682

mediamill 0.1563 0.0525 0.1608 0.0607 0.206 0.08
medical 0.0725 0.0982 0.1066 0.1115 0.1053 0.1217
genbase 0.1557 0.01 0.1566 0.0263 0.1573 0.0653
scene 0.2114 0.1797 0.2433 0.2009 0.2606 0.229
yeast 0.3198 0.231 0.3337 0.2555 0.3677 0.2799
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Table 18: Complete One Error results.
0% 5% 10%

Dataset ML-DT ML-CDT ML-DT ML-CDT ML-DT ML-CDT
bibtex 0.6154 0.7198 0.7025 0.7454 0.7343 0.7588
birds 0.7349 0.8016 0.7612 0.8326 0.7783 0.8419

CAL500 0.5397 0.1155 0.5538 0.1852 0.4703 0.1992
Corel5k 0.8132 0.7764 0.7824 0.7692 0.7936 0.7664
emotions 0.4049 0.3559 0.4672 0.3912 0.4673 0.4182

enron 0.3931 0.376 0.4383 0.3849 0.4301 0.4407
flags 0.3238 0.2726 0.3758 0.2727 0.3451 0.2675

mediamill 0.3268 0.201 0.3272 0.2195 0.3782 0.2409
medical 0.18 0.5296 0.4775 0.6042 0.4949 0.5757
genbase 0.7416 0.1162 0.7416 0.1117 0.7416 0.322
scene 0.4047 0.3922 0.447 0.4126 0.4578 0.4371
yeast 0.3492 0.3045 0.3765 0.3446 0.4357 0.3674

Table 19: Complete Coverage results.
0% 5% 10%

Dataset ML-DT ML-CDT ML-DT ML-CDT ML-DT ML-CDT
bibtex 70.8926 47.5905 64.9024 54.8811 71.3719 59.6375
birds 3.9674 3.8248 3.831 4.0822 3.8868 4.2729

CAL500 166.7654 129.3176 164.1748 135.8787 155.7104 136.4531
Corel5k 287.8468 120.5674 254.965 136.1556 220.9626 146.9834
emotions 2.4839 2.0711 2.6089 2.2092 2.7168 2.3105

enron 25.6047 14.0697 21.1962 16.8145 23.3036 17.7864
flags 4.1297 3.9731 4.3043 4.0457 4.459 4.0811

mediamill 41.3202 17.8061 38.2073 19.125 43.7239 21.5757
medical 4.1273 5.2019 5.7065 5.8991 5.5625 6.3209
genbase 4.7722 0.5571 4.7966 1.0161 4.8298 2.13
scene 1.1458 0.9842 1.3103 1.0915 1.3972 1.2327
yeast 8.6517 7.2115 8.6752 7.4587 9.0009 7.6918

Table 20: Complete Average Precision results.
0% 5% 10%

Dataset ML-DT ML-CDT ML-DT ML-CDT ML-DT ML-CDT
bibtex 0.3485 0.2473 0.267 0.2256 0.2388 0.2138
birds 0.5235 0.4427 0.5024 0.4062 0.4817 0.4055

CAL500 0.3326 0.4981 0.344 0.4678 0.3594 0.4542
Corel5k 0.1537 0.2083 0.1742 0.2108 0.1798 0.2126
emotions 0.697 0.7473 0.6624 0.7214 0.6571 0.7041

enron 0.5497 0.5659 0.5397 0.5525 0.5235 0.5159
flags 0.7705 0.7829 0.7402 0.7695 0.7257 0.7715

mediamill 0.5715 0.6789 0.5715 0.6657 0.5283 0.6463
medical 0.8294 0.5617 0.5919 0.5146 0.5934 0.5303
genbase 0.4316 0.9268 0.4341 0.9233 0.4321 0.7629
scene 0.7281 0.747 0.6953 0.7292 0.6849 0.7061
yeast 0.6442 0.7036 0.6308 0.6808 0.5994 0.6627
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Table 21: Complete Binary Cross-Entropy results.
0% 5% 10%

Dataset ML-DT ML-CDT ML-DT ML-CDT ML-DT ML-CDT
bibtex 143.0411 10.3074 1665.8423 16.7924 1782.1928 25.5771
birds 33.0715 3.2829 157.6753 3.9639 161.1881 5.1859

CAL500 842.9059 57.8521 1231.7676 64.6487 1749.0878 69.9017
Corel5k 337.8832 16.324 3129.81 31.0223 4692.5358 49.3165
emotions 32.7453 3.0986 42.6874 3.3595 41.3939 3.3887

enron 136.6849 8.3549 589.9294 11.0241 559.9768 13.4961
flags 45.301 3.7887 49.3729 3.9073 53.5219 4.0048

mediamill 115.4692 10.0265 659.5249 14.0049 643.2242 19.8996
medical 62.9378 4.4924 657.5463 5.6436 762.0054 7.8775
genbase 459.8889 1.3345 474.2927 2.7768 474.2927 4.7212
scene 21.8344 2.1346 32.8226 2.3008 36.9019 2.4948
yeast 82.5386 7.0919 95.3947 7.3346 103.2745 7.6661
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