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a b s t r a c t

In clustering, similarity measure has been one of the major factors for discovering the natural grouping
of a given dataset by identifying hidden patterns. To determine a suitable similarity measure is an
open problem in clustering analysis for several years. The purpose of this study is to make known a
divergence based similarity measure. The notion of the proposed similarity measure is derived from
Jeffrey-divergence. Various features of the proposed similarity measure are explained. Afterwards we
develop fuzzy c-means (FCM) by making use of the proposed similarity measure, which guarantees to
converge to local minima. The various characteristics of the modified FCM algorithm are also addressed.
Some well known real-world and synthetic datasets are considered for the experiments. In addition
to that two remote sensing image datasets are also adopted in this work to illustrate the effectiveness
of the proposed FCM over some existing methods. All the obtained results demonstrate that FCM with
divergence based proposed similarity measure outperforms three latest FCM algorithms.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In data mining, the notion of clustering is an essential con-
cept when it comes to unsupervised machine learning algorithm.
Clustering is a division of a set of data points into groups by
identifying hidden patterns or inherent structures thus the data
points in the same cluster have similar properties whereas data
points in different groups have highly dissimilar properties. It
has wide range of uses for statistical data analysis [1–6] such
as performance monitoring for vehicle suspension system [1],
mitigating the risk of customer churn [2], fault detection [3],
face recognition [4], document clustering [5] and others. Over
the past few years, clustering has received considerable amount
of attention due to its importance. There is a large amount of
clustering algorithms available in literature for finding clusters
subject to various constraints. Some of the notable clustering
algorithms are k-means [7], DBSCAN [8], Affinity Propagation [9],
Normalize Cuts [10] and so on. However, the performance of a
clustering algorithm depends on application. Moreover, clustering
results rely heavily on similarity measure. In this study, perhaps
one of the most widely explored algorithms; fuzzy c-means (FCM)
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clustering is considered. The purpose of this research is to know
the importance of similarity measure in clustering. Thus, cluster-
ing criteria is same throughout this work. In general Euclidean
similarity measure is frequently used in clustering to minimize
the mean squared distance from each data point to its near-
est center. But, the Euclidean distance cannot always find more
accurate cluster boundaries. In recent years, it is observed that
investigators have been replacing the traditional Euclidean dis-
tance with the help of non-linear similarity measures to identify
more accurate cluster boundaries. Few of them do not follow
all the metric properties especially the triangle inequality prop-
erty [11–14]. General Bregman divergence as a similarity measure
was integrated with the k-means to improve the performance of
traditional k-means [11]. Interested readers can go through [15–
19] to know more about divergence based similarity measures
used in clustering. The main contributions of this study include
the following:

• A notion of similarity measure is proposed, which is derived
from Jeffrey-divergence.

• Various properties of the Jeffrey-divergence based proposed
similarity measure are explained.

• The proposed similarity measure is integrated with the tra-
ditional FCM clustering algorithm.

• The proof of convergence theorem of the modified FCM
algorithm is also discussed.

https://doi.org/10.1016/j.asoc.2019.106016
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• Simulations are done on nine real and four synthetic datasets
to show the performance of the proposed similarity measure
over three well-known distance metrics.

• Null hypothesis significance testing is conducted to say the
proposed similarity measure outperforms some of the state-
of-the-art similarity measures.

The remainder of the work is structured as follows. Section 2
presents a brief overview of FCM. Definition of the proposed
similarity measure and its various properties are discussed in
Section 3. Section 4 presents the modified FCM algorithm. Sim-
ulated results and discussion are illustrated in Section 5. Finally,
Section 6 addresses concluding remarks and future scope.

2. Clustering

Formal definition of clustering is described in this section.
A brief look of the conventional FCM is also illustrated since
comparative study is done between traditional FCM and proposed
one.

2.1. Basic principle

Let us consider a set of data points O[= o1, o2, . . . , om].
Clustering is splitting of O into c groups of similar data points,
K [= (κ1, κ2, . . . , κc)] thus the degree of association within group
is strong whereas bonding is weak between different clusters,
where 1 < c < m. Here, data point, oi is expressed using d-
dimensional feature vector, vi in Rn

+
, where i varies from 1 to m.

Mathematically, clustering problem is addressed as follows:

κi ̸= φ for i = 1, . . . , c,
κi ∩ κj = φ for i = 1, . . . , c; j = 1, . . . , c and i ̸= j,
∪

c
i=1 κi = K

2.2. Fuzzy c-means

In 1973, J. C. Dunn introduced FCM [20] and later on J. C.
Bezdek extended it in 1981 [21]. FCM finds groups by minimizing
the energy function, Ef (D, K ), which is stated in Eq. (1).

Ef (K ,D;O) =

m∑
y=1

c∑
x=1

(λxy)f ∥vy − κx∥
2, 1 ≤ f < ∞, (1)

where f is a real quantity, which represents the fuzziness co-
efficient. Furthermore, the affect of membership grades in the
performance index can be controlled by f . If we increase f then
the partition becomes fuzzier. Investigators showed that the FCM
converges for any value of f in between 1 and ∞. The λxy stands
for the degree of belongingness/membership of oy in group K
stored in D(O)(c×m). In case of crisp partitioning, λxy = 0 whereas
λxy = 1 only when oy belongs to κx. The oy and κx are d-
dimensional vectors. The former one is the yth data point whereas
the later one is the representative of cluster center. The ∥·∥ is the
distance between the center of a cluster and any data points. The
energy function depends on K and D, subject to criteria, which
are displayed in Eqs. (2) and (3).

c∑
x=1

λxy = 1, y = 1, 2, . . . ,m, (2)

where λxy ∈ [0, 1], x = 1, 2, . . . , c&y = 1, 2, . . . ,m.

0 <
m∑

y=1

λxy < c, x = 1, 2, . . . , c (3)

Fuzzy partition undergoes an iterative optimization approach
with the update of λxy and κx by Eqs. (4) and (5) respectively.

λ(i+1)
xy =

1

∑c
l=1

(
vy − κ

(i)
x

vy − κ
(i)
l

) 2
f−1

(4)

κ (i+1)
x =

∑m
y=1

[
λ
(i+1)
xy

]f
· vy∑m

y=1

[
λ
(i+1)
xy

]f (5)

These updates happen till maxxy{|λ
(i+1)
xy − λ

(i)
xy|} < ϵ, where ϵ

is known as terminating condition. The value of ϵ would be in
between 0 and 1. This method tends to meet to a local minimum
or a saddle point of Ef (D, K ).

3. The proposed similarity measure and its properties

In this section, we present the definition of the proposed
similarity measure and its various properties.

Definition 3.1. Eq. (6) is used to estimate Jeffreys-divergence, Jm,
which is stated over a set of all positive definite matrices of size
m × m [14].

∂(A, B) = (A − B)(log(A) − log(B)) (6)

where, |A| = determinant of A. An injective function is defined
as ψ : Rn

+
→ Jm thus ψ(O) = diag(o1, o2, . . . , om), where O =

(o1, o2, . . . , om) ∈ Rn
+

is a real positive vector. The description of
proposed similarity measure includes the following:

Definition 3.2. The similarity between any two data points,
a, b ∈ Rn

+
, can be expressed as a mapping S : Rn

+
×Rn

+
→ R+∪{0}

that can be thought as Eq. (7).

S(a, b) = ∂(ψ(a), ψ(b)) (7)

Some metric properties of the proposed similarity measure in-
cludes the following.

Proposition 3.1. S(a, b) = S(b, a)

Proof. S(a, b) = ∂(ψ(a), ψ(b)) = ∂(ψ(b), ψ(a)) = S(b, a)

Proposition 3.2. S(a, b) ≥ 0 and S(a, b) = 0 iff a = b

Proof. S(a, b) = ∂(ψ(a), ψ(b)) ≥ 0 and S(a, b) = 0 iff
∂(ψ(a), ψ(b)) = 0 iff ψ(a) = ψ(b) iff a = b

Thus, S is a similarity measure on Rn
+
, but it is not a distance

metric because it does not obey the triangle inequality prop-
erty. So, the proposed similarity measure can be represented as
S(a, b) =

∑m
i=1 ∂(ai, bi). At this time, we investigate some of the

properties of the proposed similarity measure.

Theorem 3.1. The proposed similarity measure is not a Bregman
divergence.

Proof. Theorem 3.1 can be proved by assuming the opposite.
Supposing the proposition that is the proposed similarity measure
was a Bregman divergence S(a, b) is false if S(a, b) is convex in a.
The S can also be articulated by Eq. (8).

S(a, b) =

m∑
i=1

(ai − bi)(log(ai) − log(bi)) (8)
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Fig. 1. Contour plot of norm ball for Euclidean distance and the proposed similarity measure.

We can differentiate both sides of Eq. (8) w.r.t ai to obtain the
following expression:

∂S
dai

= 1 −
bi
ai

+ log(ai) − log(bi)

∂2S
daidaj

= 0 when i ̸= j otherwise,

∂2S
∂a2i

=
bi
a2i

+
1
ai

In the range of {−∞,−1} ∪ {0, 1}, S(a, b), the values of ∂
2S
∂a2i

< 0.
Hence, S(a, b) is not convex in a. In other words, the proposed
similarity measure is not a Bregman divergence.

Theorem 3.2. S(e ◦ a, e ◦ b) = eS(a, b) for e ∈ Rn
+
, where e ◦ a

designates as the Hadamard product between e and a.

Proof.We know, (e◦a) = (e1a1, e2a2, . . . , emam). So, δ(eiai, eiai) =

(eiai − eibi)(log(eiai) − log(eibi)) =ei(ai − bi)(log ei + log ai −

log ei − log bi) = ei(ai − bi)(log ai − log bi)
∑m

i=1 δ(eiai, eibi) =∑m
i=1 eiδ(ai, bi) implying S(e ◦ a, e ◦ b) = eS(a, b)

Theorem 3.3. The proposed similarity measure is f-divergence.

Proof. A divergence is known as f-divergence if it can be stated
as φ(t) = aφ( ba ), where t =

b
a

The similarity between a ∈ Rn
+

and b ∈ Rn
+

be given as
S(a, b) =

∑m
i=1(ai − bi)(log(ai) − log(bi)) putting ti =

bi
ai

S(a, b) =

m∑
i=1

(ai − aiti)(log(ai) − log(aiti))

=

m∑
i=1

ai(1 − ti)(log(ai) − log(ai) − log(ti))

=

m∑
i=1

ai(1 − ti)(− log(ti))

=

m∑
i=1

ai(1 − ti)(log(
1
ti
))

m∑
i=1

φ(t) =

m∑
i=1

aiφ(
bi
ai
)

Since, S(a, b) can be expressed as
∑m

i=1 aiφ(
bi
ai
). Thus, the pro-

posed similarity measure is f-divergence.

Remark 3.1. Let us see another imperative characteristic of the
proposed similarity measure. Fig. 1 shows the profile of the
norm-balls in R2 surrounding the point (5000,5000) for Euclidean
distance (Fig. 1a) and the proposed similarity measure (Fig. 1b).
It is observed from Fig. 1 that the norm-ball of Euclidean distance
is like concentric circle whereas the proposed similarity measure
is somewhat like distorted ovals. It is also clear from Fig. 1b
that contour lines resemble each other as we move towards the
origin i.e. (0,0). Thus, we arrive at a conclusion that the Jeffreys
divergence between two points are higher when they are near
to origin and it decreases while they are away from the origin.
On the other hand, Euclidean distance between two points are
same irrespective of the position. For example, the Euclidean
distance and J-divergence between (3,3) and (5,5) is 2.82 and
2.043 respectively and for points (1003,1003) and (1005,1005)
they are 2.82 and 0.0079 respectively. Sometimes, this property
would be useful when clusters having different densities and
sizes.

4. Modified fuzzy c-means with the proposed similarity mea-
sure

The FCM with the proposed similarity measure achieves
grouping by solving Eq. (9).

min
K=(κ1,κ2,...,κc )∈Rm×c

D∈M

Ef (K ,D;O) =

m∑
y=1

c∑
x=1

(λxy)f S(oy, κx), 1 ≤ s < ∞

(9)

where,

M =

{
D = [λxy] x=1,2,...,c

y=1,2,...,m

⏐⏐⏐⏐λxy ∈ [0, 1],
c∑

x=1

λxy = 1,
m∑

y=1

λxy > 0

}
(10)

Exact solution of Eq. (10) does not exist [22]. An alternating
optimization method exists in literature to find a solution, which
is as follows:
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Fig. 2. Clustering results: (a) original data distribution (b) groups using M1 (c) groups using M2 (d) groups using M3 and (e) groups using M4 .

Theorem 4.1. Supposing τy =

{
x|x ∈ [1, c], oy = κ

(i)
x

}
where,

i is the epoch number. Eq. (11) is the alternative form of Eq. (4)
whereas Eq. (5) is alike. Both the Eqs. are necessary in alternating
optimization algorithm for the proof of convergence of Ef [23].

λ(i+1)
xy =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∑c
l=1

[
S(oy, κ

(i)
x )

S(oy, κ
(i)
l )

] 2
f−1
)−1

, if τy = 0

1
|τy|

, if τy ̸= 0 and x ∈ τy

0, if τy ̸= 0 and x /∈ τy

(11)

The FCM criterion in Eq. (9) can be stated through reduced uncon-
strained FCM criterion in Theorem 4.2.

Theorem 4.2. The reduced FCM criterion appears in Eq. (12), which
is alike [22,24,25]

min
K∈Rn×c

E ′

f (K ;O) =

m∑
y=1

[
c∑

x=1

S(oy, κx)
2

1−f

]1−f

(12)

K ∗ is a saddle point of E ′

f when (K ∗,D∗) is a saddle point of Ef .
(K ∗, F (K ∗)) is a saddle point of Ef when K ∗ is a saddle point of E ′

f ,
where F : Rm×c

→ M and F (K ) = D with each λxy calculated
by Eq. (11). The proof of theorem is beyond the scope of this study.
Interested readers are refereed to know in detail [24,25].

Convergence FCM: Supposing f (γ1, γ2, . . . , γk) = (
∑c

x=1 γ
s
x )

1/s,
where s =

1
1−f < 0. Then Eq. (12) can be expressed as
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Fig. 3. From left to right: Panchromatic image of DS12 and DS13 .

E ′

f (κ1, κ2, . . . , κc;O) =

m∑
y=1

f (γκ1, γκ2, . . . , γκx)|γxy=S(oy,κx)2 (13)

Lemma 4.1 can be defined through Eq. (13), where the RHS of
Eq. (14) is called as a majorant of E ′

f .

Lemma 4.1 (Majorant of E ′

f ).

E ′

f (κ1, κ2, . . . , κc;O) ≤ majeE ′

f = E ′

f (κ
(i)
1 , κ

(i)
2 , . . . , κ

(i)
c ;O)+

m∑
y=1

c∑
x=1

df
dγxy

|(i)

(
S(oy, κx)2 − S(oy, κ i

x)
2
) (14)

where, the derivative is taken at κ (i)
1 , κ

(i)
2 , . . . , κ

(i)
c .

Proof. L. Gröll el at. established the fact that f (γ1, γ2, . . . , γc) is
concave [22]. Hence,

f (γ1, γ2, . . . , γc) ≤ f (ρ1, ρ2, . . . , ρc) +

c∑
x=1

df
dγxρx

(γx − ρx) (15)

Eq. (16) can be obtained by replacing γx and ρx using γxy and ρxy
respectively and considering the sum over all y.

m∑
y=1

f (γ1y, γ2y, . . . , γcy) ≤

m∑
y=1

f (ρ1y, ρ2y, . . . , ρcy)

+

m∑
y=1

c∑
x=1

df
dγxyρxy

(γxy − ρxy) (16)

Eq. (17) can be inherited by assigning the value of γxy = d(oy, κx)2

and ρxy = d(oy, κ
(i)
x )2 as well as Eq. (14).

E ′

f (κ1, κ2, . . . , κk;O) ≤E ′

f (κ
(i)
1 , κ

(i)
2 , . . . , κ

(i)
c ;O)+

m∑
y=1

c∑
x=1

df
dγxy

|(i)

(
S(oy, κx)2 − S(oy, κ i

x)
2
)
(17)

Each majorant got from Eq. (14) is a global majorant. In other
words, a majorant is global along a random search direction. The
minimizers of global and directional majorants are identical iff
the search direction passes the global minimizer of the global
majorant.

Theorem 4.3 (Steepest Descent Algorithm for an Alternating Opti-
mization). If the step length is adjusted by the majorization principle,

Eq. (14), then the sequences κ (i+1)
x appeared in the alternating opti-

mization algorithm in the form of Eqs. (11) and (5) and the sequences
of a steepest descent algorithm applied to Eq. (12) are identical.

Proof. All the coefficients, df
dγxy

, of the rigidly convex terms d(oy,
κx)2 are non-negative.

df
dγxy

=
d

dγxy

[
c∑

x=1

γ s
xy

] 1
s

=

[
c∑

x=1

γ s
xy

] 1
s−1

γ s−1
xy

=

[
c∑

l=1

(
1
γly

)−s
] 1

s−1

(γ−s
xy )

1
s−1 =

[
c∑

l=1

γ−s
xy

γ−s
ly

] 1
s−1

=

[(
c∑

l=1

[
S(oy, κx)2

S(oy, κl)2

] 1
f−1
)−1]f

= (λxy)f ≥ 0

(18)

So, the majorant is convex w.r.t. each κx. Furthermore, majorant
is convex since one or more coefficients corresponding to each
κx is non-negative. Thus, the one and only minimizer, κo

x , of the
majorant by the first-order both enough and sufficient condition
is

▽κx maj(i) = E ′

f (κ1, κ2, . . . , κc;O)|κx=κox

= −2
m∑

y=1

df
dγxy

|(i)(oy − κo
x ) = 0, a = 1, 2, . . . , c (19)

So, the value of κ (i+1)
x is

κ (i+1)
x = κo

x =

∑m
y=1

df
dγxy

|(i)oy∑m
y=1

df
dγxy

|(i)
(20)

Eq. (20) would be same as Eq. (5) after replacing df
dγxy

|(i) by

(λ(i+1)
xy )f . The steepest descent may be calculated by Eq. (21).

κ (i+1)
x = κ (i)

x −
1

2
∑m

y=1
df

dγxy
|(i)  

steplength α
(i)
x

·

(
−2

m∑
b=1

df
dγxy

|(i)(oy − κ (i)
x )
)

  
▽κx E

′
f (κ1,κ2,...,κc ;O)|κl=κ

(i)
l , l=1,2,...,c

(21)

Finally, the global minimizer majorants are majorants along the
direction with steepest descent.

▽κx maj(i)E ′

f (κ1, κ2, . . . , κc;O)|κl=κ(i)l

= ▽κxE
′

f (κ1, κ2, . . . , κc;O)|κl=κ(i)l , l=1,2,...,c  
▽κx E

′(i)
f

(22)
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Table 1
The values of cluster validity indexes namely, ARI, NMI, SI, DI and DBI for
synthetic and real-world datasets.

Dataset M1 M2 M3 M4

DS1 1.0 1.0 1.0 1.0
DS2 0.988018 0.982036 0.982036 0.990105
DS3 0.875980 0.875845 0.898623 0.927475
DS4 0.463736 0.448327 0.432681 0.515745
DS5 0.921409 0.902619 0.979932 1.0
DS6 0.446451 0.431981 0.5476595 0.597594

ARI DS7 0.577500 0.78239 0.484217 0.881025
DS8 0.550272 0.550272 0.532513 0.915032
DS9 0.027349 0.0317099 0.020098 0.032356
DS10 0.528617 0.5391607 0.491424 0.903304
DS11 0.107842 0.107842 0.106418 0.950622
DS12 0.406837 0.3079934 0.407870 0.648688
DS13 0.320471 0.3204717 0.378029 0.390829
DS1 1.0 1.0 1.0 1.0
DS2 0.977740 0.966614 0.982036 0.990181
DS3 0.866303 0.868204 0.898623 0.906569
DS4 0.654322 0.643144 0.432681 0.686579
DS5 0.897779 0.879632 0.979932 0.983390
DS6 0.616544 0.593026 0.5476595 0.670032

NMI DS7 0.396832 0.53360 0.484217 0.856987
DS8 0.451882 0.4510854 0.532513 0.558972
DS9 0.027349 0.020370 0.020098 0.870295
DS10 0.486361 0.5040837 0.491424 0.841138
DS11 0.086286 0.086286 0.106418 0.915113
DS12 0.328378 0.2955786 0.512618 0.560183
DS13 0.019634 0.4407031 0.418665 0.471018
DS1 0.794916 0.794873 0.798578 0.813145
DS2 0.6931593 0.693228 0.693159 0.695152
DS3 0.572960 0.571924 0.571924 0.589525
DS4 0.256123 0.248279 0.248279 0.654126
DS5 0.577102 0.574844 0.577102 0.589541
DS6 0.315921 0.246860 0.315921 0.317859

SI DS7 0.399785 0.394392 0.399785 0.399891
DS8 0.410091 0.407459 0.410091 0.412264
DS9 0.027349 0.369059 0.027349 0.373494
DS10 0.691067 0.690935 0.691067 0.691234
DS11 0.530125 0.530125 0.530125 0.545125
DS12 0.314455 0.390665 0.297673 0.465552
DS13 0.021033 0.025401 0.021698 0.051497
DS1 1.904015 1.914016 1.904015 1.996216
DS2 1.667249 1.704798 1.667249 1.742156
DS3 1.25921 1.307801 1.307801 1.321452
DS4 0.463736 0.220063 0.463736 0.489652
DS5 1.897049 1.840235 1.840235 1.989932
DS6 0.444175 0.065613 0.446595 0.465213

DI DS7 1.423736 1.364377 1.484217 1.659659
DS8 1.00112 1.001708 1.532513 1.567329
DS9 1.257200 1.297200 1.020098 1.029349
DS10 1.300558 1.300383 1.491424 1.578617
DS11 1.397413 1.397412 1.106418 1.421578
DS12 0.392247 0.474642 0.509411 0.517705
DS13 0.391262 0.391262 0.377334 0.438756
DS1 0.144604 0.145413 0.144634 0.144604
DS2 0.165546 0.156589 0.156546 0.156546
DS3 0.122504 0.121585 0.121585 0.120504
DS4 0.187655 0.196655 0.141915 0.141915
DS5 0.172985 0.167492 0.167452 0.167452
DS6 0.507572 0.253338 0.513267 0.253338

DBI DS7 0.496210 0.472901 0.472901 0.468776
DS8 0.518281 0.521241 0.523546 0.518281
DS9 0.499654 0.499391 0.499391 0.027349
DS10 0.258860 0.257766 0.257766 0.257680
DS11 0.335503 0.319149 0.319149 0.319149
DS12 0.272598 0.539363 0.448134 0.136888
DS13 0.228156 0.228156 0.210953 0.202353

At this time, the convergence properties can be easily established
by aforementioned optimization theory.

Corollary 4.1 (Global Convergence of Reduced FCM). The reduced
FCM states in Eq. (9) that it converges to a saddle point globally.

Table 2
The computed p-Values based on clustering validity indexes for Wilcoxon’s
signed rank test to examine M4 over Mi , where 1 ≤ i ≤ 3.

Dataset M1 M2 M3

DS1 1 1 1
DS2 0.0025 0.0025 0.0025
DS3 0.0020 0.002 0.0020
DS4 0.0020 0.0020 0.0020
DS5 0.0020 0.0020 0.0020
DS6 0.0371 0.0440 0.0195

ARI DS7 0.0020 0.0020 0.0020
DS8 0.0022 0.0020 0.0015
DS9 0.0020 0.0020 0.0015
DS10 0.002 0.002 0.002
DS11 0.002 0.002 0.002
DS12 0.0020 0.0015 0.0025
DS13 0.0025 0.0020 0.0023

DS1 1 1 1
DS2 0.0025 0.0025 0.0025
DS3 0.0020 0.002 0.0020
DS4 0.0020 0.0020 0.0020
DS5 0.0020 0.0020 0.0020
DS6 0.0025 0.0025 0.0025

NMI DS7 0.0020 0.002 0.0020
DS8 0.0025 0.0025 0.0025
DS9 0.0025 0.0025 0.0025
DS10 0.0020 0.002 0.0020
DS11 0.0025 0.0025 0.0025
DS12 0.0020 0.0020 0.0025
DS13 0.0015 0.0020 0.0035

DS1 0.0020 0.0020 0.0020
DS2 0.0020 0.0020 0.0020
DS3 0.0020 0.0020 0.0020
DS4 0.0025 0.0020 0.0020
DS5 0.0020 0.0020 0.0020
DS6 0.0371 0.0840 0.0195

SI DS7 0.0022 0.0020 0.0020
DS8 0.0020 0.0025 0.0020
DS9 0.0020 0.0015 0.0020
DS10 0.0020 0.0020 0.0020
DS11 0.0020 0.0020 0.0020
DS12 0.0015 0.0010 0.0005
DS13 0.0020 0.0020 0.0020

DS1 0.0020 0.0020 0.0020
DS2 0.0020 0.0020 0.0020
DS3 0.0020 0.0020 0.0020
DS4 0.0025 0.0020 0.0020
DS5 0.0020 0.0020 0.0020
DS6 0.0025 0.0020 0.0020

DI DS7 0.0022 0.0020 0.0020
DS8 0.0020 0.0025 0.0020
DS9 0.0020 0.0015 0.0020
DS10 0.0025 0.0020 0.0020
DS11 0.0022 0.0022 0.0020
DS12 0.0020 0.0002 0.0005
DS13 0.0015 0.0020 0.0005

DS1 0.0020 0.0020 0.0020
DS2 0.0020 0.0020 0.0020
DS3 0.0015 0.0020 0.0022
DS4 0.0020 0.0020 0.0020
DS5 0.0020 0.0020 0.0020
DS6 0.0025 0.0020 0.0020

DBI DS7 0.0022 0.0020 0.0020
DS8 0.0020 0.0025 0.0020
DS9 0.0020 0.0015 0.0020
DS10 0.0020 0.0025 0.0020
DS11 0.0020 0.0020 0.0020
DS12 0.0150 0.0005 0.0002
DS13 0.0020 0.0015 0.0020

Proof. Using Lemma 4.1 E
′(i)
f − E

′(i+1)
f ≥ E

′(i)
f − maj(i)E ′

f

(
κ
(i+1)
1 ,

κ
(i+1)
2 , . . . , κ

(i+1)
c ;O

)
=
∑m

y=1
∑c

x=1
df

dγxy
|(i)

(
S
(
oy, κ

(i)
x
)2

−S
(
oy, κ

(i)
x +

α
(i)
x · ▽κxE

′(i)
f

)2) =
∑m

y=1
∑c

x=1
df

dγxy
|(i)

(
−2α(i)

x
(
oy − κ

(i)
x
)T

▽κx E
′(i)
f −



A. Seal, A. Karlekar, O. Krejcar et al. / Applied Soft Computing Journal 88 (2020) 106016 7

Fig. 4. Clustering results: (a) the output of DS12 using M1 (b) the output of DS12 using M2 (c) the output of DS12 using M3 (d) the output of DS12 using M4 .
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= 0. The RHS of the inequality is 0 if the LHS ap-

proaches to 0 because it is bounded by 0. Convergence to a
saddle point can be achievable from limi→∞
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sequence.

Corollary 4.2 (Local Convergence of Reduced FCM). There have
neighborhoods Z(κ∗

1 , κ
∗

2 , . . . , κ
∗
c ) if K = (κ∗

1 , κ
∗

2 , . . . , κ
∗
c ) is a

rigid local minimizer of E ′

f so as if a beginning point K (0)
=

(κ (0)
1 , κ

(0)
2 , . . . , κ

(0)
c ) is selected from the neighborhood, the FCM

algorithm converges to K ∗
= (κ∗

1 , κ
∗

2 , . . . , κ
∗
c ).

Proof. Since the FCM algorithm is a globally convergent gradient
approach using Corollary 4.1., the popular Capture Theorem can
be employed [26].

Corollary 4.3 (Convergence Rate of FCM). FCM coincides linearly
near a non-singular local minimum with a positive definite Hessian
matrix.

Proof. The proof of Corollary 4.3. employs a Taylor expansion
of E ′

f and the popular convergence rate theorem for quadratic
functions [26].

5. Experimental results and discussion

5.1. Description of datasets

Nine real-world and four synthetic datasets are adopted to
conduct experiments, where synthetic datasets contain 2_blobs
(DS1), 3_blobs (DS2), 5_blobs (DS3), and 10_blobs (DS4). Here,
the number of blobs means the number of clusters, which are
synthesized by normal distributions. The first row of Fig. 2 depicts
the data points distributions of DS1, DS2, DS3 and DS4. Seven
real-world datasets namely, Iris, Glass, Cleveland, Mammography,
Breast Cancer Wisconsin, Appendicitis and Bank Note Authentica-
tion are mustered from the UCI Machine Learning Repository [27]
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Fig. 5. Clustering results: (a) the output of DS13 using M1 (b) the output of DS13 using M2 (c) the output of DS13 using M3 (d) the output of DS13 using M4 .

and Keel Repository [28], which are designated as DS5, DS6, DS7,
DS8, DS9, DS10 and DS11 respectively.

Two sets of panchromatic and multi-spectral satellite images
are also adopted, which are labeled as DS12 and DS13. These are
acquired by worldview-2 sensor with a scale 1:25,000. Interested
readers are referred to [29] to know more about these datasets.
Panchromatic images of DS12 and DS13 are shown in Fig. 3. The
DS12 and DS13 have 8 and 5 different land covers.

5.2. Clustering validity measurement indexes

In clustering, measuring the ‘‘goodness’’ of the output clus-
ters is a fundamental problem. Validity indexes help to measure
the concept of goodness. Mathematical definition of a validity
index is as follows: Supposing O has m data points. The O can
be partitioned into c-groups viz., O1,O2, . . . ,Oc using a suitable
clustering algorithm. The V1, V2, . . . , Vc are the values of the
validity indexes of O1,O2, . . . ,Oc respectively. The Vh1 ≥ Vh2 ≥

· · · ≥ Vhc will depict Oh1 ↑ Oh2 ↑ ... ↑ Ohc , for any permutation
h1, h2, . . . , hc of {1, 2, . . . , c}, where Oi ↑ Oj denotes cluster Oi
is a better than Oj in some perception [30]. In general, cluster
validity indexes are broadly classified into two classes, viz., ex-
ternal and internal. The former one matches predicted cluster
labels produced by a clustering algorithm with the actual class
labels that are supplied externally. Two external validity indexes,
viz., Adjusted Rand Index (ARI) [31] and Normalized Mutual In-
formation (NMI) [32] are considered in this work. No external
information is required for internal validity index to measure
the ‘‘goodness’’ of clusters. Dunn index (DI) [30], Davies Boulden
Index (DBI) [30], and Silhouette index (SI) [33] are adopted as

internal cluster validity indexes to quantify the cohesiveness of
the obtained clusters. The range of NMI and ARI varies from 0 to
1. One indicates that two groups of data points are alike whereas
1 says that both the groups are completely dissimilar. Matching
is done between the predicted partition by a clustering algorithm
and the ground truth. On the other hand, internal clustering
evaluation metrics estimate the closeness of a data point to its
own group (cohesion) compared to other groups (separation).
The range of SI varies from −1 to +1, where a value close to
1 denotes that the data points are similar in its own group and
poorly dissimilar to neighbor groups. A higher DI and lower DBI
represent better clustering.

5.3. Computational protocols

Four simulations are conducted on all datasets using four
different similarity measures, which are as follows:

• M1: FCM with Euclidean distance
• M2: Minkowski weighted FCM
• M3: Weighting in FCM
• M4: FCM with the proposed similarity measure

Performance comparison: It confirms that identical randomly
selected centroids are considered for each of the method in order
to estimate the values of ARI, NMI, SI, DI, and DBI to maintain the
consistency in results. The performance of each method does not
depend on the selection of initial set of centroids. However, the
performance depends on the method. The same method is exe-
cuted 10 times on each dataset to list out clustering performances
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Table 3
The computed p-Values based on clustering validity indexes for Wilcoxon’s
ranksum test to examine M4 over Mi , where 1 ≤ i ≤ 3.

Dataset M1 M2 M3

DS1 1 1 1
DS2 0.0079 0.0079 0.0079
DS3 0.0020 0.0020 0.0020
DS4 1.5938e−05 1.5938e−05 1.5938e−05
DS5 1.1758e−05 1.5938e−05 1.3659e−05
DS6 1.5938e−05 1.1758e−05 1.5938e−05

ARI DS7 1.4523–05 1.5938e−05 1.5938e−05
DS8 1.5938e−05 1.4523–05 1.5938e−05
DS9 1.5938e−05 1.3659e−05 1.1758e−05
DS10 1.5938e−05 1.5938e−05 1.5938e−05
DS11 1.5938e−05 1.5938e−05 1.5938e−05
DS12 5.8927e−05 0.0015 0.0025
DS13 0.0020 1.5938e−05 5.8927e−05

DS1 1 1 1
DS2 0.0079 0.0079 0.0079
DS3 1.5938e−05 1.5938e−05 1.5938e−05
DS4 1.5938e−05 1.6874e−05 1.5938e−05
DS5 1.5938e−05 1.5938e−05 1.5938e−05
DS6 1.5938e−05 1.5938e−05 1.5938e−05

NMI DS7 1.4523–05 1.5938e−05 1.5938e−05
DS8 1.5938e−05 1.6874e−05 1.5938e−05
DS9 1.5938e−05 1.5938e−05 1.5938e−05
DS10 1.5938e−05 1.5938e−05 1.6874e−05
DS11 1.6874e−05 1.5938e−05 1.5938e−05
DS12 4.5938e−05 0.0025 1.5938e−05
DS13 0.0015 4.5938e−05 3.5938e−05

DS1 1.5938e−05 1.5938e−05 1.5938e−05
DS2 1.5938e−05 1.5938e−05 1.5938e−05
DS3 1.5938e−05 1.5938e−05 1.5938e−05
DS4 1.6584e−05 1.5938e−05 1.5938e−05
DS5 1.5938e−05 1.4521e−05 1.5938e−05
DS6 1.5938e−05 1.6584e−05 1.5938e−05

SI DS7 1.5938e−05 1.4521e−05 1.5938e−05
DS8 1.6584e−05 1.5938e−05 1.5938e−05
DS9 1.5938e−05 1.5938e−05 1.5938e−05
DS10 1.4521e−05 1.5938e−05 1.6584e−05
DS11 1.5938e−05 1.4521e−05 1.5938e−05
DS12 0.0035 1.5938e−05 1.5938e−05
DS13 3.5938e−05 0.0020 1.0688e−05

DS1 1.5938e−05 1.5938e−05 1.5938e−05
DS2 1.5938e−05 1.5938e−05 1.5938e−05
DS3 1.5938e−05 1.5938e−05 1.5938e−05
DS4 1.6584e−05 1.5938e−05 1.5938e−05
DS5 1.5938e−05 1.4521e−05 1.2546e−05
DS6 1.5938e−05 1.6584e−05 1.5938e−05

DI DS7 1.5938e−05 1.4521e−05 1.5938e−05
DS8 1.6584e−05 1.5938e−05 1.5938e−05
DS9 1.5938e−05 1.5938e−05 1.2546e−05
DS10 1.4521e−05 1.5938e−05 1.6584e−05
DS11 1.5938e−05 1.4521e−05 1.5938e−05
DS12 1.5938e−05 1.3258e−05 1.5688e−05
DS13 4.5938e−05 1.5938e−05 2.5938e−05

DS1 1.5938e−05 1.5938e−05 1.5938e−05
DS2 1.5938e−05 1.5938e−05 1.3654e−05
DS3 1.5938e−05 1.5938e−05 1.5938e−05
DS4 1.6584e−05 1.5938e−05 1.3654e−05
DS5 1.5938e−05 1.4521e−05 1.5938e−05
DS6 1.5938e−05 1.6584e−05 1.5938e−05

DBI DS7 1.5938e−05 1.4521e−05 1.5938e−05
DS8 1.6584e−05 1.5938e−05 1.3654e−05
DS9 1.3654e−05 1.5938e−05 1.5938e−05
DS10 1.4521e−05 1.5938e−05 1.6584e−05
DS11 1.5938e−05 1.4521e−05 1.5938e−05
DS12 5.1689e−05 1.4589e−05 1.5688e−05
DS13 1.5938e−05 2.5938e−05 2.8948e−05

in order to conduct Wilcoxon signed, ranksum and signtest. These
three experiments help to know whether two dependent data
points from populations having same distribution on the obtained
values of ARI, NMI, SI, DI and DBI using Mi, where 1 ≤ i ≤ 4.

Table 4
The computed p-Values based on clustering validity indexes for Wilcoxon’s sign
rank test to examine M4 over Mi , where 1 ≤ i ≤ 3.

Dataset M1 M2 M3

DS1 1 1 1
DS2 0.0025 0.0025 0.0025
DS3 0.0020 0.0020 0.0020
DS4 0.0020 0.0020 0.0020
DS5 0.0020 0.0020 0.0020
DS6 0.0371 0.0440 0.0195

ARI DS7 0.0020 0.0020 0.0020
DS8 0.0022 0.0020 0.0015
DS9 0.0020 0.0020 0.0015
DS10 0.0020 0.0020 0.0020
DS11 0.0020 0.0020 0.0020
DS12 0.0020 0.0015 0.0025
DS13 0.0020 0.0020 0.0020

DS1 1 1 1
DS2 0.0025 0.0025 0.0025
DS3 0.0020 0.0020 0.0020
DS4 0.0020 0.0020 0.0020
DS5 0.0020 0.0020 0.0020
DS6 0.0025 0.0025 0.0025

NMI DS7 0.0020 0.0020 0.0020
DS8 0.0025 0.0025 0.0025
DS9 0.0025 0.0025 0.0025
DS10 0.0020 0.0020 0.0020
DS11 0.0025 0.0025 0.0025
DS12 0.0020 0.0020 0.0020
DS13 0.0025 0.0020 0.0015

DS1 0.0020 0.0020 0.0020
DS2 0.0020 0.0020 0.0020
DS3 0.0020 0.0020 0.0020
DS4 0.0025 0.0020 0.0020
DS5 0.0020 0.0020 0.0020
DS6 0.0371 0.0840 0.0195

SI DS7 0.0022 0.0020 0.0020
DS8 0.0020 0.0025 0.0020
DS9 0.0020 0.0015 0.0020
DS10 0.0020 0.0020 0.0020
DS11 0.0020 0.0020 0.0020
DS12 0.0001 0.0015 0.0020
DS13 0.0015 0.0020 0.0025

DS1 0.0020 0.0020 0.0020
DS2 0.0020 0.0020 0.0020
DS3 0.0020 0.0020 0.0020
DS4 0.0025 0.0020 0.0020
DS5 0.0020 0.0020 0.0020
DS6 0.0025 0.0020 0.0020

DI DS7 0.0022 0.0020 0.0020
DS8 0.0020 0.0025 0.0020
DS9 0.0020 0.0015 0.0020
DS10 0.0025 0.0020 0.0020
DS11 0.0022 0.0022 0.0020
DS12 0.0002 0.0015 0.0020
DS13 0.0020 0.0005 0.0025

DS1 0.0020 0.0020 0.0020
DS2 0.0020 0.0020 0.0020
DS3 0.0015 0.0020 0.0022
DS4 0.0020 0.0020 0.0020
DS5 0.0020 0.0020 0.0020
DS6 0.0025 0.0020 0.0020

DBI DS7 0.0022 0.0020 0.0020
DS8 0.0020 0.0025 0.0020
DS9 0.0020 0.0015 0.0020
DS10 0.0020 0.0025 0.0020
DS11 0.0020 0.0020 0.0020
DS12 0.0020 0.0005 0.0015
DS13 0.0002 0.0001 0.0020

5.4. Results and discussion

Four experiments are performed on all the datasets described
in Section 5.1 and the estimated average values of ARI, NMI, SI, DI
and DBI using each method, Mi, are reported in Table 1. There is
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no doubt that the M4 outperforms other three methods presented
in Section 5.3 because most of the values of the adopted external
validity indexes approach 1, which prove the effectiveness of M4
and it happens since the proposed similarity measure is inte-
grated with traditional FCM. Table 1 also shows the values of used
internal validity indexes on all the datasets. All the computed
values establish the fact thatM4 is more successful thanMi, where
1 ≤ i ≤ 3 because the values produced by M4 are more precise to
ideal values compared to values generated using Mi, where 1 ≤

i ≤ 3. The second, third, fourth and fifth rows of Fig. 2 exhibit the
cluster-wise data distributions produced by M1, M2, M3 and M4
respectively on synthetic datasets. Moreover, clustering results on
DS12 by M1, M2, M3, and M4 are shown in Figs. 4a, 4b, 4c, and 4d
respectively. On the other hand, Figs. 5a, 5b, 5c, and 5d illustrate
the clustering outputs of M1, M2, M3, and M4 on DS13 respectively.
Some pseudo colors are used to represent each land cover of both
the remote sensing datasets. It is clear from Figs. 4 and 5 that
all the land covers are accurately identified by M4. For example,
crop land cover is correctly classified by M4, which is marked by
green color in Fig. 5d. On the other hand, all other methods are
misclassified crop land cover. These methods recognize crop land
cover as forest.

Three non-parametric statistical significance tests namely,
Wilcoxon’s signed, ranksum and signtest are performed for in-
dependent samples at the five percent significance level [34,35].
Four groups based on four methods are formed for each dataset,
where each group contains the values of the clustering validity
indexes estimated by 10 successive executions of the correspond-
ing method. Table 2 shows the p-values computed by Wilcoxon’s
signed rank test based on ARI, NMI, SI, DI and DBI separately for
comparing two groups namely, M4 to Mi, where 1 ≤ i ≤ 3 at a
time. Supposing E1, E2, E3, and E4 are the median values of each
group generated by M1, M2, M3, and M4 respectively. The null
hypothesis attempts to say that no statistically significant vari-
ation exists between the median values of two groups namely,
M4 to Mi, where i varies from 1 to 3. It is assumed to be true
until statistical evidence nullifies it for an alternative hypothesis.
Mathematically, H0 : E1 = Ei vs H1i : E1 > Ei , where i ∈

{2, 3, 4}. Most of the p-values noted in Table 2 are less than 5%
significance level i.e. 0.05. So, it indicates strong evidence against
the null hypothesis, denoting that the better median values of
the clustering validity indexes generated by M4 is statistically
significant and it does not happen by chance. Similarly, Tables 3
and 4 report the p-values obtained by the ranksum and sign test.
The most of the p-values of Tables 3 and 4 are less than 0.5. So,
we can reject the null hypothesis for 5% confidence level. There-
fore, the proposed method M4 outperforms Mi based on all the
results.

6. Conclusion

This work proposes a novel similarity measure on Rn
+
by con-

sidering Jeffreys-divergence. Various properties of the proposed
similarity measure are discussed. Traditional FCM algorithm is
revised by replacing the Euclidean distance with the help of
the proposed similarity measure. A theoretical analysis of the
modified FCM is addressed by furnishing the detail proof of
convergence. The modified FCM algorithm guarantees to a local
minima. We validate our claim through detailed experimental
results and statistical analysis on some synthetic and real-world
datasets including two sets of satellite images. The study of data
complexity metrics is a promising area of research in the field of
clustering because the performance depends on data points of a
dataset. It deserves further study.
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