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Abstract

Prediction of physiological time series is frequently approached by means of

machine learning (ML) algorithms. However, most ML techniques are not able

to directly manage time series, thus they do not exploit all the useful informa-

tion such as patterns, peaks and regularities provided by the time dimension.

Besides advanced ML methods such as recurrent neural network that preserve

the ordered nature of time series, a recently developed approach of genetic pro-

gramming, VE-GP, looks promising on the problem in analysis. VE-GP allows

time series as terminals in the form of a vector, including new strategies to ex-

ploit this representation. In this paper we compare different ML techniques on

the real problem of predicting ventilation flow from physiological variables with

the aim of highlighting the potential of VE-GP. Experimental results show the

advantage of applying this technique in the problem and we ascribe the good

performances to the ability of properly catching meaningful information from

time series.
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1. Introduction

Prediction of physiological time series is taking the place of classical monitor-

ing. The reasons behind this preferred approach are multiples. The acquisition

of some physiological data can, in fact, be very physically demanding [4] and

in field monitoring may be difficult where there is a lack of portable instru-

ments to directly register data [16]. Several techniques can be used to perform

these predictions, from classical linear regression to machine learning (ML) al-

gorithms [21]. All these techniques forecast time series by means of a training

phase in which they learn the relationships among predictors and target from

previously collected data. Since in the health-care domain data are complex

and heterogeneous, machine learning may provide more efficient methods for

the purpose rather than traditional regression method that do not catch com-

plex relationship between different variables.

However, an important issue is that none of these basic methods takes into

account the temporal component. To clarify, the problem that these techniques

have to tackle is the prediction of time series based on other time series, therefore

some inputs and the output are sequences of values collected/predicted at reg-

ular intervals. To present admissible dataset to the algorithms these sequences

are usually split into different observations creating a panel dataset [8]. This

strategy unfortunately implies the loss of information regarding the history of

the series (peaks and regularities) that may be useful to rebuild the correspond-

ing target series. Due to this lack, we decide to investigate the recently presented

vectorial genetic programming (VE-GP) [3] on the prediction of physiological

time series. VE-GP is a new approach of standard genetic programming that

allows vectors as terminals. Time series are therefore handled by VE-GP as

vectors, without splitting. This technique looks promising on these problems

because it can manage both vectors and scalars together, it can treat vectors of
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different lengths and it introduces changes in the initialization and primitive set

with the goal of exploiting at best the new allowed representation of terminals.

In this paper we compare several techniques that treat differently the time

dimension on a real physiological dataset. The specific involved problem is the

prediction of ventilation flows of running people based on heart rate, already

suggested as ventilation predictor [16, 20], and other physiological variables,

in order to monitor the inhaled load of pollutants. Six different techniques

are applied on physiological parameters to evaluate ventilation. On one hand

we consider linear regression (LR), random forest (RF), multilayer perceptron

(MLP) and genetic programming (GP) that use a dataset where time series

are split in different fitness cases. On the other, we investigate recurrent neural

network (RNN) that is frequently used to process time series and VE-GP. These

last two take into account the sequential nature of data, so they work on a

dataset where time series are vectors. While LR, RF, MLP, GP and RNN are

simply chosen as state of the art on regression problems as the one examined

here, VE-GP is chosen to exhibit its potential on this suitable problem.

The aim of the comparison is a first evaluation of the performances of the

methods according to data representation, therefore we do not strongly tune

each technique, but we rather consider general reasonable values for the param-

eters to make them perform at a reasonable level.

The paper is organized as follows: in Section 2 we discuss the most relevant

previous and related works concerning physiological time series prediction. Sec-

tion 3 describes the dataset involved. Sections 4 and 5 present the techniques

that we explore with a broader description of the new VE-GP. Section 6 shows

the analysis of the comparison between the different method and discusses the

obtained results. Finally, Section 7 concludes the paper.

2. Previous and Related Works

Study on the literature about ML and regression methods to predict physi-

ological time series is necessary to highlight the main drawbacks of these basic
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approaches.

Linear regression is usually the first modelling algorithm applied to a prob-

lem. However, it works well on plain dataset and relationships which are not

intrinsic features of physiological time series. In [7], LR models are applied to

predict ventilation series only from the heart rate series. Regardless of the sim-

ple dataset with only two variables involved, the authors conclude that further

evaluations are demanded.

ML algorithms, instead, carried out a wide range of predictions dealing with

physiological time series with very good results. Rather than panel data rep-

resentation, basic ML techniques frequently manage time series in other forms,

depending on the problem in analysis. However, these other data representa-

tions still can not capture all the information about the series. In [1] an artificial

neural network is implemented to predict blood glucose levels of diabetic people

using only continuous glucose monitoring data. The time series in this case

are divided into different variables. Despite the accurate performances, the ap-

proach has one major restraint: the number of input neurons is small (4) and

fixed, therefore the information concerning the history of blood monitoring is

very limited. The same approach of splitting the series in variables is found

in [13]. In this paper, GP is used to predict characteristics of the ECG R–R

interval variation from 9 ECG interval signals. Another common technique to

manage time series is the feature extraction. Meaningful statistical values are

derived from raw time series and used as predictors rather than considering the

time series itself. A RF is developed in [28] to predict sepsis using features

extracted from streaming physiological data in real-time.

This a priori processing of time series prevents the algorithms to learn mean-

ingful characteristics of the series directly from data and may cause a loss of

information. Therefore, methods that use the natural ordered representation of

time series are preferred. In [22] a RNN is involved to predict epileptic seizures

based on electroencephalography and again a RNN in [5] is applied to predict

dynamic respiratory state starting from heart rate, oxygen saturation and respi-

ration series. To enhance the capacity to learn long-term dependencies, deeper
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RNN such as long-short-term memory (LSTM) are chosen [27]. Regarding VE-

GP, it has only been tested on benchmark time series problems [3]. However, its

capability of dealing with different length time series and at the same time with

constants encourage the further investigation of this technique on real problems

such as physiological time series prediction.

3. The Dataset

The ML techniques are investigated on a real problem proposed by the Cen-

tre of Preventive Medicine and Sport - SUISM - University Structure of Hygiene

and Sport Sciences, Centre of excellence of the University of Turin. The goal

is to predict ventilation flow during outdoor activities based on physiological

variables in order to monitor the intake of air pollution.

To train and test the algorithms for predictions on real time collected val-

ues, data were recorded during an indoor trial conducted by the centre. The

relationship between variables and respiratory rate, in fact, does not change in

function of the conditions in which physical exercises are performed [2].

A group of 262 volunteers underwent an aerobic exercise on a trade mill in

order to measure some cardio-respiratory variables through a portable minia-

turized ergospirometer (K4, Cosmed, Italy, [24]). Tests were: basal metabolic

rate tests with a constant heart rate, threshold tests (in which the heart rate

increases up to the maximum of the lactic acid threshold, then suddenly de-

creases), and altitude tests (in which the air pressure is simulated in a definite

altitude level). The test started with a speed of 5 km/h that was incremented

of 1 km/h every minute. The participant could suspend the test when he/she

felt exhausted. Heart rate was recorded every 10 seconds as well as ventilation,

which is needed to evaluate models ability in prediction.

The methods LR, RF, MLP and GP work on a dataset M of 20496 rows

(instances, observations or fitness cases) and 5 columns (features or variables).

The features selected as predictors are: the age (AGE), the gender (a binary

value, equal to 1 for female) (SEX), the body mass index (BMI) and the heart
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rate (HR). The rightmost column of M contains the collected ventilation values,

which are considered as the target of our regression problem. We remark that

each row of M contains the heart rate and the ventilation of an individual at

a precise time instant. The dataset is drawn differently for RNN and VE-GP

according to the sequential representation that they admit. Starting from M ,

we group together in vectors the values of the same time series so that the new

dataset consists of 262 rows and 5 columns. Each row contains the age, the

gender, the BMI, the heart rate series and the ventilation series of a person.

4. State of Art of Machine Learning in the Health-Care Domain

In this section, we briefly introduce the ML algorithms usually enrolled when

facing the problem of prediction of physiological time series. While GP, RF,

MLP and LR handle time series by splitting them into different fitness cases,

RNN exploits the sequential nature of the time series.

4.1. Genetic Programming

Genetic programming is an evolutionary technique that breeds a population

of feasible models towards the fittest model of data through a process that mim-

ics the principles of evolution stated by C. Darwin [15]. Individuals that well

fit data are probabilistically selected and recombined using a set of variation

operators, called genetic operators, usually crossover and mutation. The per-

formance of an individual is measured through a specific function, called fitness

function, that formalizes the goal of the whole process.

For our problem, we opt for the classical tree-based representation of the GP

individuals, built by combining primitive functions from the function set F=

{+,−, ∗, //}, where // is the division operator protected as in [23], with the

elements of the terminal set T composed by the four variables of our dataset

(sex, age, BMI and heart rate), plus a random constant. To evaluate the trees

we first perform a linear scaling of the predicted output. Linear scaling is

a technique introduce in [12] to improve the performance of GP in difficult
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symbolic regression problems. Instead of applying the fitness measure directly

on the predicted output y, we perform a linear regression of the target t on y

to find out a and b such that the sum of squared errors between t and a + by

is minimized. Thus, we calculate the fitness as the root mean squared error

(RMSE) between predicted and scaled output and the real target. In this way

GP evolves trees so that the shape of their expression is more similar to the shape

of the target function. This prevents GP from spending too many generations

in finding the range of the output before adapting the shape.

We use a public GP toolbox called GPLab [26], that consists in a quite user-

friendly Matlab implementation of GP. Since the purpose of the paper is not to

optimize a precise modelling technique, we keep the default parameters of GP

proposed by the system and reported in Table 1.

4.2. Random Forest

Random Forest denotes an ensemble of Regression Trees presented by

Breiman in 2001 [6]. Starting from the classical bagging technique, Brieman

introduced a new learning phase for each of the trees in the forest. At each

node, the best split is produced involving only n variables, randomly selected

from the total N features. Differently from the ordinary technique, trees are

unlikely to be correlated since they do not select any more the same strong pre-

dictors. The output of the forest is the mean of the individual trees predictions.

In this work, we use the Brieman model implemented in R. Following the

main conclusion of [18], we fix the number of trees in the forest equal to 100.

The other parameters are kept at the values offered by the system and reported

in Table 1.

4.3. Multilayer Perceptron

Multilayer Perceptron is a feed-forward neural network [25]. It consists of at

least an input layer, a hidden layer of non linearly activated hidden nodes and

an output layer. We choose this method rather than simple perceptron because

it can capture more complex relationships that are inherent in the data.
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We consider the MLP implemented in the Matlab neural-network toolbox.

The network is trained using the Levenberg-Marquardt (LM) back-propagation

learning algorithm [19]. We only set the number of hidden nodes to 3, following

the rule of thumb that suggests to choose a number of hidden neurons between

1 and the number of input variables. In order to train and test the network on

the same data as the other techniques, we do not consider a validation set to

stop the learning phase. All the other parameters are reported in Table 1.

4.4. Linear Regression

Linear regression is the technique of establishing a linear relationship be-

tween the predictors and the target [10]. We perform LR using the available

function in R. Coefficients are determined by means of the least squares pro-

cedure. Since our problem deals with 5 predictors and 1 target each fitness

case is a point in the 5 dimension space and a LR model is a hyperplane in

the same space. The training consists therefore in finding the hyperplane in 5

dimension space that minimizes the sum of squared residuals (a residual being:

the difference between a collected value, and the predicted value provided by a

model).

4.5. Recurrent Neural Network and Long Short-Term Memory

Recurrent neural network is a type of artificial neural network designed to

handle sequence of data [9]. It memorizes information about the sequence of

inputs and use it for accurate predictions by means of loops in the network that

pass prior information forward. Basic RNN suffers from short-term memory: the

more steps of a sequence to process, the more trouble to retain information about

the previous steps. To solve this problem long short-term memory (LSTM) were

developed [11].

LSTM learns long-term dependencies using gates that are capable of under-

standing what information to store and what to remove. These mechanisms are

responsible for keeping track of the dependencies between the elements in the

input sequence. We choose LSTM rather than basic RNN so that the network
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can predict ventilation at instant t using information about the heart rate values

collected from the beginning of the activity until instant t.

LSTM is performed using the available implementation in Matlab deep learn-

ing toolbox. The core components of a LSTM network are a sequence input layer

and a LSTM layer that learns long-term dependencies between time steps of se-

quential data. The network is trained using the default Adam optimization [14],

with the number of epochs equal to 50. We set the batch size equal to 1 so that

different observations are not forced to be padded. In Table 1 we summarize

the parameters setting for LSTM.

Table 1: Parameters used to set ML algorithms.

GP Parameters

population size 500

max number of generations 300

initialization Ramped Half and Half [23]

selection method Lexicographic parsimony pressure [17]

elitism Best individual kept

crossover rate 0.9

mutation rate 0.1

max tree depth 17

RF Parameters

number of trees 100

MLP Parameters

learning algorithm LM backpropagation

hidden neurons 3

µ increase factor 0.1

µ decrease factor 10

initial µ 0.001

epochs 1000

LSTM Parameters
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learning algorithm Adam

hidden neurons LSTM layer 200

epochs 50

batch size 1

5. Vectorial GP

VE-GP is a recently introduced version of GP, developed to improve perfor-

mance when time series are inherent in the data [3]. This new technique does

not only consider a representation of the data directly in a vectorial form, but

also contains a set of new strategies, specialized on vectors. Here, we describe

the main novelties of this approach.

Primitive set

In GP, the primitive set is usually composed by terminals and functions that

are combined to build a model in a tree structure. In VE-GP, besides allowing

vectors as terminals, new functions are included as primitives. In all cases we

define scalars as vector of length 1.

Functions of arity 1. In order to capture the behaviour of a vector, aggregate

functions are involved in the primitive set. These functions combine together

multiple entries of a vector into one value of possible more significant meaning.

Two possible versions of aggregate functions are available in VE-GP: standard

and cumulative. While standard versions collapse the whole vector, cumulative

versions collapse different portions of the vector. To clarify, when cumulative

aggregate functions receive a vector V = [V1, V2, . . . , Vn] as input, they return

another vector W = [W1,W2, . . . ,Wn] as output, where, for each j = 1, 2, . . . , n,

Wj is the value of the standard aggregate function applied to [V1, . . . , Vj−1, Vj ].

Arity 1 primitives are fully explained in Table 2.
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The choice between standard and cumulative versions depends on the record-

ing time of the vectorial variables. Some problems in fact wish to predict a se-

quence of values based on other simultaneous time sequences so that the entries

of the target refer to the same time instants as the entries of the predictors.

In this case, since standard aggregate functions put together all the values of

a sequence, they are not allowed among primitives because target values can

not depend on future predictor values. Therefore only cumulative aggregate

functions take part into the primitive set.

Table 2: Aggregate functions of arity 1. The first column identifies the primitive

function, the second column briefly describes it and the third column returns the

outcome of the function applied on a given vector v (in this example, v=[3, 1.5,

2.1, 4]).

Primitive

function

(pf)

Description pf(v)

V mean Returns the mean of a vector V mean([1, 2.5, 4.3, 0.7]) = 2.1

V max,

V min

Returns the maximum/minimum of a vector V max([3, 1.5, 2.1, 4]) = 4

V min([3, 1.5, 2.1, 4]) = 1.5

V sum Returns the sum of a vector V sum([3, 1.5, 2.1, 4]) = 10.6

C mean Returns the cumulative mean of a vector C mean([3, 1.5, 2.1, 4]) = [3, 2.3, 2.2, 2.7]

C sum Returns the cumulative sum of a vector C sum([3, 1.5, 2.1, 4]) = [3, 4.5, 6.6, 10.6]

C max,

C min

Returns the cumulative maximum/minimum of a

vector

C max([3, 1.5, 2.1, 4]) = [3, 3, 3, 4]

C min([3, 1.5, 2.1, 4]) = [3, 1.5, 1.5, 1.5]

Functions of arity 2. Classical arity 2 functions are adapted and extended in

order to manage different kinds of inputs. When two vectors are involved, the

shortest is completed with the null-element of the considered function, with an

exception in case one of the two vectors has length 1, thus it is a scalar. In this

last case in fact, to highlight the static nature of scalars, the scalar is replicated

up to the length of the vector. To clarify, Table 3 describes in detail arity 2

functions.

11



Table 3: Functions of arity two. The first column identifies the primitive func-

tion, the second column briefly describes it, the third column returns the out-

come of the function applied on a given scalar s and vector v1 and the fourth

column returns the outcome of the function applied on two vectors v1 and v2

(in this example, s=1.2, v1=[3, 2.1, 4.6], v2=[1.2, 3.6, 0.8, 2.5]).

Primitive

function

(pf)

Description pf(s,v1) pf(v1,v2)

VSUMW Returns the element-

wise sum between two

vectors, completed if

necessary according to

5

VSUMW(1.2, [3, 2.1, 4.6]) =

[4.2, 3.3, 5.8]

VSUMW([3, 2.1, 4.6], [1.2, 3.6, 0.8, 2.5]) =

[4.2, 5.7, 5.4, 2.5]

V W Returns the element-

wise difference between

two vectors, completed

if necessary according

to 5

V W(1.2, [3, 2.1, 4.6]) =

[−1.8,−0.9,−3.4]

V W([3, 2.1, 4.6], [1.2, 3.6, 0.8, 2.5]) =

[1.8,−1.5, 3.8,−2.5]

VprW Returns the element-

wise product between

two vectors, completed

if necessary according

to 5

VprW(1.2, [3, 2.1, 4.6]) =

[3.6, 2.5, 5.5]

VprW([3, 2.1, 4.6], [1.2, 3.6, 0.8, 2.5]) =

[3.6, 7.6, 3.7, 2.5]

VdivW Returns the element-

wise division *(pro-

tected version as [23])

between two vectors,

completed if necessary

according to 5

VdivW(1.2, [3, 2.1, 4.6]) =

[0.4, 0.6, 0.3]

VdivW([3, 2.1, 4.6], [1.2, 3.6, 0.8, 2.5]) =

[2.5, 0.6, 5.8, 0.4]

Initialization

The new functions of the primitive set are inclined to be frequently misused,

especially in the initialization step. In fact, when aggregate functions are too

frequently applied on scalars the result is a huge tree full of useless branches.

Moreover some trees may have a scalar output when the goal is instead to

predict a time series. Therefore, to ensure a pool of proper initial trees as the
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starting point for the evolutionary process, VE-GP proposes a new initialization

strategy:

• n1 individuals, during the generation with one of the classical techniques

[23], are forced to apply aggregate functions only to vectorial variables;

• n2 individuals are generated with one of the classical techniques [23] and

checked in their output. If individual t returns a scalar, a vectorial termi-

nal X and an arity 2 function f are randomly selected and the tree t is

replaced with the following tree, using post-fix notation, (f t X);

• the remaining n3 individuals are generated with one of the classical tech-

niques [23].

The classical generation method is the same for all the three groups of indi-

viduals and the subdivision depends on the user.

Fitness evaluation

In order to evaluate the fitness of trees with a scalar output, VE-GP repli-

cates the value up to the length of the corresponding target, transforming the

output into a constant vector. To clarify, let T = V mean(V ) be the explicit

form of a tree where V is a vectorial variable. Let v = [1.2, 3.5, 4.6, 0.5] be

the collected value of V for the first fitness case and let t = [2.3, 4.5, 6.7, 1.8]

be the corresponding value of the target. The evaluation of T on the first fit-

ness case is therefore 2.45, but we expect a vector of length 4, thus we assume

[2.45, 2.45, 2.45, 2.45] as the actual prediction of T on the first fitness case.

Nonetheless, these trees are penalized by multiplying their fitness with a

huge constant. This suggest to the algorithm to not select them as they are

unlikely to be a good predictive model.

VE-GP parameters are set according to default values which are mainly the

same as the standard GP and which allows an as fair as possible comparison

with the other techniques. The terminal set is composed by the four scalar

variables age, sex, BMI and a random constant and by the vectorial heart rate.
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The functions set is formed by VSUMW, V W, VprW, VdivW and by the cumulative

C mean and C min since ventilation and heart rate are collected simultaneously.

Fitness is calculated applying RMSE on linear scaled outputs as described in

4.1 and [12]. Table 4 reports the parameters setting.

Table 4: Parameters used to set VE-GP algorithm.

VE-GP Parameters

population size 500

max number of generations 300

initialization Ramped Half and Half with rules [23]

selection method Lexicographic parsimony pressure [17]

elitism Best individual kept

crossover rate 0.9

mutation rate 0.1

max tree depth 17

6. Experiments: Results and Discussion

To estimate how accurately the predictive techniques perform, we adopt a

stochastic cross validation approach. We perform 50 runs of each algorithm

considering 50 random splits of the dataset into training and test set. The

training set is the dataset provided to the algorithm in order to learn, while the

test set comprehends unseen data used to test the algorithm in predicting the

target. The training set always contains 70% of the participants (183 people)

randomly selected, while the test set includes the remaining 30% (79 people).

The measure of comparison selected is the median RMSE between the pre-

dicted and the real ventilation values over the 50 test sets. We choose the

median rather than the mean because of the presence of stochastic methods

such as GP and VE-GP which are more inclined to have outliers. Boxplot and

statistics concerning the test errors can be found in Figure 1 and Table 5. In
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Figure 1 the errors are represented in logarithmic scale.
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Figure 1: RMSE on the test set in logarithmic scale for the different algorithms. Ticks values

on y-axis refer to the untransformed error values.
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Table 5: Statistics about the RMSE of the different techniques on the test set.

GP LR LSTM MLP RF VE-GP

mean 129.8 21.5 17.2 20.8 22.5 20.1

standard deviation 715.3 1.0 1.6 1.1 1.3 10.0

median 21.4 21.3 17.1 20.7 22.4 18.2

Table 5 reveals that VE-GP outperforms all the other techniques except

LSTM. To assess statistical significance of difference in performance between

VE-GP and the other techniques, we firstly perform a Kruskal-Wallis non-

parametric ANOVA test with a significance level of α = 0.05. The resulting

p-value reported in Table 6 shows the significant difference in median perfor-

mance between the methods. Moreover, we apply pairwise Wilcoxon tests with

α = 0.05/5 = 0.01 after Bonferroni correction.

The test p-values are reported in Table 6. Statistical analysis indicates that

VE-GP consistently outperforms LR, RF, ST-GP and MLP, but it is beaten by

LSTM.

From these results we can infer the importance of keeping together ordered

sequences such as ventilation and heart rate, in a structure like for instance a

vector to improve the accuracy of predictions.

Table 6: Statistical significance of the difference in performances between the

methods.

Kruskal-Wallis test p < 10−16

VE-GP vs GP VE-GP vs LR VE-GP vs LSTM VE-GP vs MLP VE-GP vs RF

p = 1.3 · 10−11 p = 9.5 · 10−12 p = 5.8 · 10−6 p = 2.0 · 10−9 p = 7.3 · 10−14

Besides RMSE, performances evaluation should consider the capability of

methods in catching the shape of ventilation flow. For this reason, we selected

three different persons with the common feature of being poorly represented in

the whole dataset so that we can even show the ability of the methods in gen-
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eralization. One person has a BMI greater than 25 (16% of the entire dataset),

one person is a female (5% of the entire dataset) and the last one is greater than

50 years old (7% of the entire dataset).

Figures 2,3,4 show the collected and the predicted ventilations of the three

people for all the methods involved on a random run that included them in the

test set.
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Figure 2: Predicted vs observed ventilation for a person with BMI > 25. The dashed line

represents the collected values of ventilation, while the other line represents the predicted

values of ventilation by the corresponding method.

All the methods are good in finding intriguing characteristics of ventilation

shape such as peaks and monotony and reveal good capabilities in generalization.

Moreover, VE-GP and LSTM shows smooth ventilation series. A possible reason

of this behaviour is the fact that they receive the whole heart rate series as input,

therefore they have the possibility to remove noise and irregular roughness from

it and highlight meaningful features.
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Figure 3: Predicted vs observed ventilation for a female. The dashed line represents the

collected values of ventilation, while the other line represents the predicted values of ventilation

by the corresponding method.
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Figure 4: Predicted vs observed ventilation for a person of age > 50. The dashed line repre-

sents the collected values of ventilation, while the other line represents the predicted values

of ventilation by the corresponding method.
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In Table 7 we report the training CPU time of a random run of each algo-

rithm.

Table 7: CPU training times in seconds.

GP LR LSTM MLP RF VE-GP

19131.348 0.242 2068.032 3.124 1.264 44020.415

Clearly there are large differences in times which depend on the software and

hardware used for the implementations, and moreover on the fact that the codes

are not optimized. These differences could be of importance in context where

the training needs to be performed in real time. In this application, however,

each ML method has its own learning phase which is surely time consuming,

but once done, the resulting predictive model is quickly executable on all unseen

data. The running time, furthermore, does not compromise the quality of the

solution. In our concern, the quality of the predictive model depends on the

accuracy and the generalization ability.

6.1. Analysis of the best solutions

Among all the techniques used in this paper, GP, VE-GP and LR are the

most popular for producing interpretable solutions. This property let us further

investigate how time series treatment influences the performance of a method.

Due to the large size and complexity of the best solutions provided by the

genetic programming approaches, we base our analysis on the features selection

characteristic. The aim is to find out how the time component may change which

variables are preferred or ignored more often. Unfortunately, this analysis is not

possible for black box methods such as RF, MLP and LSTM.

The standardized coefficients in LR give a measure of the change in the target

(in standard deviations) for every standard deviation change in the predictor

variables. Since the higher standardized coefficient is the one of heart rate (0.80),

we assume that the linear model already view this variable as an impacting one,

missing however some information.
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Concerning GP and VE-GP we measure the median occurrence of the vari-

ables in the 50 best models. Table 8 shows the frequencies.

Table 8: Median occurrence of variables in the solutions found by genetic pro-

gramming approaches.

HR SEX AGE BMI

GP 49.5 29 47 63

VE-GP 78.5 10.5 11.5 26

As Table 8 shows, the most recurrent feature in GP is BMI while in VE-GP

the most frequent one is HR. We deem therefore that GP is not able to give

the right importance to the flow of heart rate. These observations highlight the

importance of keeping together ordered sequences which is the key feature of

VE-GP.

7. Conclusion

In the health-care domain, prediction of physiological time series relies on

machine learning (ML) techniques that automatically discover insightful rela-

tionships between variables. However, the sequence of measures of a physiologi-

cal variable over time is presented to classical ML methods as a group of different

fitness cases. This representation may cause a loss of useful information about

the behaviour of time series. Thus, prediction of physiological time series may

require more advanced ML techniques such as long short-term memory network

(LSTM), that consider the time relationship among data. Beside these, the

newly introduced vectorial genetic programming (VE-GP) seems suitable for

the problem in analysis due to its capability of treating time series as vectors.

The goal of this paper is therefore a preliminary comparison of ML techniques

that deal differently with the time component on the problem of predicting

ventilation flow from other physiological variables including heart rate series.
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VE-GP turned out to be a promising technique in the field of machine learn-

ing for time series prediction. This approach not only consider time series as

vectors, but is able to manage time series of different length and scalar vari-

ables without forced padding. Moreover, VE-GP is able to extract meaningful

features from the predictor time series (heart rate) that improves the target

prediction (ventilation), which is not possible for classical ML methods. More-

over, VE-GP still allows the interpretability of the solution which may provide

meaningful information about the problem. Although VE-GP performances are

overcame by LSTM, we have to remind that there is no particular tuning of

the technique. Since we purposely do not optimize VE-GP implementation, we

can expect improvements in performances when VE-GP parameters are prop-

erly tuned. The use of VE-GP therefore becomes encouraging even on a real

problem, reinforcing its potential and hinting its application on other similar

problems of the health-care domain.
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