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Abstract

The pursuit domain, or predator-prey problem is a standard testbed for the

study of coordination techniques. In spite that its problem setup is apparently

simple, it is challenging for the research of the emerged swarm intelligence. This

paper presents a particle swarm optimization (PSO) based cooperative coevo-

lutionary algorithm for the (predator) robots, called CCPSO-R, where real and

virtual robots coexist in an evolutionary algorithm (EA). Virtual robots sam-

ple and explore the vicinity of the corresponding real robots and act as their

action spaces, while the real robots consist of the real predators who actually

pursue the prey robot without fixed behavior rules under the immediate guid-

ance of the fitness function, which is designed in a modular manner with very

limited domain knowledge. In addition, kinematic limits and collision avoid-

ance considerations are integrated into the update rules of robots. Experiments

are conducted on a scalable swarm of predator robots with 4 types of preys,

the results of which show the reliability, generality, and scalability of the pro-
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posed CCPSO-R. Comparison with a representative dynamic path planning

based algorithm Multi-Agent Real-Time Pursuit (MAPS) further shows the ef-

fectiveness of CCPSO-R. Finally, the codes of this paper are public available at:

https://github.com/LijunSun90/pursuitCCPSOR.

Keywords: Swarm intelligence, Cooperative coevolution, Particle swarm

optimization, Pursuit domain, Virtual robot

1. Introduction

The pursuit domain, or predator-prey problem is a classical and interesting

research domain which acts as one of the widely used fundamental testbeds for

coordination techniques since it was proposed by Benda et al. [1]. On one hand,

its apparently simple problem setup and flexibility in approaches or concept

evaluations lead to both its popularity and the toy domain impression. On the

other hand, it is challenging and thus a good domain for the research of swarm

intelligence emerged from the cooperation among robots or agents, which has

drawn much attention of researchers on various versions of the pursuit domain.

At first, greedy coordination strategies were manually designed by Korf [2],

part of which were improved by Haynes et al. [3]. After that, Haynes et al.

[3–6] improved the pursuit performance using evolutionary algorithms, such as

genetic programming (GP) [7], strongly typed genetic programming (STGP)

[8], and cases learning methods successively. However, these methods cannot

assure 100% capture. In 2000s, Undeger and Polat [9] treated the multi-agent

dynamic pursuing problem in partially observable environments with obstacles

as a dynamic path planning and task allocation problem and proposed the multi-

agent real-time pursuit (MAPS) algorithm. Besides, much works have been

done in the field of reinforcement learning (RL). For example, Ishiwaka et al.

[10] investigated the mechanism of the emergence of the predators’ cooperative

behaviors aiming to capture the prey in the continuous world. Barrett et al.

[11, 12] evaluated the designed single agent in the ad hoc teamwork and took

the pursuit domain as one benchmark task. As researches going on, the capture
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reliability and the efficiency of approaches have both been improved. A detailed

survey on the pursuit domain can be found in [13].

In this paper, we deal with the dynamic pursuit domain problem with a scal-

able swarm of predator robots and types of the prey in bounded diagonal grid

worlds. Different from prior work, this paper treats the pursuit domain as an

optimization problem and proposes a particle swarm optimization (PSO) based

cooperative coevolutionary (CC) algorithm, called CCPSO-R (R is for robots),

where, to the best knowledge of authors, real and virtual robots coexist for the

first time in an evolutionary algorithm (EA). In detail, we have n subpopula-

tions, each of which has the same population size and evolves independently.

The first individual of each subpopulation always corresponds to a unique real

robot, which constitutes the swarm of cooperative real predator robots pursuing

the prey. The rest are virtual robots, which are always deployed around their

corresponding real robots, exploring the real robot’s vicinity in order to guide

the real robot to a more advantageous position under the supervision of the fit-

ness function defined on the pursuit task. Hence, in the view of the multi-agent

system (MAS), these virtual robots can be seen as the action space for each real

robot. Since the virtual robots only occupy part of a real predator’s vicinity, the

exploration of virtual robots is actually a sampling rather than an exhausted ex-

ploration to a vicinity, which is guided by a proven efficiency swarm intelligence

algorithm—PSO [14]. Therefore, the proposed CCPSO-R can be expected to

be more efficient and effective.

In addition, the collision avoidance consideration among real robots is in-

tegrated into the fitness function design, which not only separates the robotic

considerations from the EA itself and is thus different from the robotic PSO

(RPSO) [15]—the PSO variant specially designed for robots, but also enhances

the flexibility of the fitness function by modular design.

Furthermore, unlike previous incremental construction based EA methods

and RL algorithms, the proposed CCPSO-R is actually an on-line algorithm

which plans one step ahead for each robot and can reliably capture the prey even

without the training and learning stage under the immediate guidance of the
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fitness function. Meanwhile, similar to the common strategy in RL algorithms,

the other real robots (agents in MAS) are treated as parts of the dynamic

environment to the current robot without any central commander/controller.

The rest of the paper is organized as follows. First, the pursuit domain def-

inition and details adopted here are explained in Section 2. Then the proposed

CCPSO-R is described in Section 3. Experiments, comparisons, corresponding

results, and discussions are presented in Section 4. Finally, conclusions and

directions for future researches are given in Section 5.

2. The pursuit/predator-prey domain

Generally speaking, the pursuit domain problem can be considered as a

game where predators try to capture the prey with or without coordination.

However, as summarized in [13] and mentioned above, the pursuit domain has

various versions depending on different combinations of its parameters, such as

the type and size of the world, definition of the capture, team size, legal moves

and move orders for the predators and prey, distance metric, etc. In many

researches, a toroidal world is selected to simulate an infinite world, where a

robot comes out of one edge will comes in immediately from the opposite edge.

However, this kind of world is not practical. As depicted in Figure 1a, if the

(a) (b)

Figure 1: One trick of the coordination strategy in a toroidal world.

red pentagram is a linear prey which moves in a straight line towards north and
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just escapes the nearly encirclement of the predators (blue squares), in the real

infinite world, the predators will never catch the prey if they have the same

speed. But in the toroidal world, if the predators move as shown in Figure

1b, they will capture the linear prey in the next step. Therefore, in this paper,

rather than toroidal worlds, bounded grid worlds are selected, which can at least

represent partially, although not all, the real world scenarios, such as an indoor

room or an outdoor park with boundaries, etc.

Besides, as classified by Korf [2], the game with a discrete world (grid world

here) that only allows horizontal and vertical, totally 4 directions movements, is

called the orthogonal game, while the one which allows the horizontal, vertical

and diagonal 8 directions move is called the diagonal game. Again, towards

real applications, the diagonal game is more realistic [2] and thus one of the

assumptions of this paper. In particular, no collisions are allowed and orthog-

onal obstacles will be considered when the real (predator or prey) robot moves

diagonally, as illustrated in Figure 2. Under these assumptions, the capture can

Figure 2: Illustration of the orthogonal obstacles.

be defined as that every available orthogonal neighbor of the prey robot has

been occupied by a predator robot as shown in Figure 3. This may be different

from the definitions of some research work, especially the RL algorithms or path

planning based methods [9], where the capture is defined as that the position

of the prey is occupied by a predator. Thus, the capture is more difficult here.

As for the other details of the pursuit game, the prey robot always moves
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(a) (b) (c)

Figure 3: Illustration of the capture, taking 4 predator robots as an example.

first and then the predator robots move one by one in a fixed order, the natural

priorities of which can make the collision avoidance control easier and more re-

liable. Besides, the position of any real (prey or predator) robot is visible to all

the other robots. But there is no explicit communications, i.e. no explicit ne-

gotiations or coordination, among the robots. In other words, the coordination

among real predator robots, or subpopulations, is implicit here. In addition, as

will be seen later, no fixed behavior rules for the predator robots exist due to

the fact that the evolution, or the one step ahead plan, of a predator robot in

the dynamic environment is only guided by the fitness function.

3. Cooperative coevolution of real and virutal robots

In this paper, coevolved predators cooperate to encircle a prey, and the eval-

uation function is called the fitness function in EA [16], which is (functionally)

identical to an objective function in the optimization filed. So, the pursuit do-

main problem can be treated as an optimization problem in the sense that the

goal is to improve the fitness of the pursuit process. Concretely, the optimiza-

tion is conducted by a particle swarm optimization (PSO) based cooperative

coevolutionary (CC) algorithm called CCPSO-R.

3.1. Fitness function

According to the capture definition in Section 2 and the task that a swarm

of predator robots needs to encircle a prey robot, the fitness function should
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subject to the following metrics:

• CLOSURE fclosure: the prey robot should locate inside the convex hull

of the predator robots positions;

• SWARM EXPANSE fexpanse: the swarm of predator robots should con-

centrate around the prey robot, i.e., a smaller swarm expanse of the preda-

tor robots is preferred;

• UNIFORMITY funiformity: the predator robots should distribute uni-

formly around the prey robot;

• COLLISION AVOIDANCE frepel: collisions among real (predator/prey)

robots are not allowed in the practical sense.

It is obvious that a single predator robot itself cannot form a solution. In

CCPSO-R, a complete solution to the pursuit problem is composed by the posi-

tions of all the predator robots. However, before formulating the fitness function,

a definition needs to be introduced first.

Definition of Convex Hull [17]: The convex hull of the point set P ,

denoted by conv(P ), is the intersection of all convex regions that contain P .

An intuitive illustration of this definition can be found in [17] as in Figure

4.

(a) An nonconvex region en-

closing P .

(b) A convex region enclosing

P .
(c) The convex hull of P .

Figure 4: Illustration of the convex hull of the point set P [17].
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Further, we define the function:

inconv(p, conv(P ))
def
=


0, if point p is in conv(P )

0.5, if point p is on the edge of conv(P )

1, otherwise

(1)

Hence, the fitness function for the jth (j = 1, ..., Np) individual (robot) in

the ith (i = 1, ..., Ns) subpopulation pijrobots is defined as

f ij = f ij
repel · (f

ij
closure + f ij

expanse + f ij
uniformity) (2)

where

f ij
repel =

e−2·(NNDij−Dmin), if NNDij < Dmin

1, else

(3)

corresponds to the above COLLISION AVOIDANCE metric,

f ij
closure = inconv(pprey, conv(p11robots, ..., p

ij
robots, ..., p

Ns1
robots)) (4)

corresponds to the above CLOSURE metric,

f ij
expanse =

1

Ns
(

Ns∑
k=1,k 6=i

|pk1robots − pprey|+ |pijrobots − pprey|) (5)

corresponds to the above SWARM EXPANSE metric, and

f ij
uniformity = std

 N11 N12

N21 N22

 (6)

corresponds to the above UNIFORMITY metric.

In the formulas, NNDij is the nearest neighbor distance, i.e., the minimum

of the pairwise Euclidean distances between the jth individual in the ith sub-

population and all the real predator robots in the other subpopulations; Dmin

is a specified secure distance for collision avoidance; pprey is the position of the

prey robot; pijrobots is the position of the jth robot in the ith subpopulation;

std(·) stands for the standard deviation function; and Nkh(k = 1, 2;h = 1, 2)

is the counts of the real predator robots in the (k, h)-th bin out of the overall
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(a) 4 bins split around the prey

robot.

(b) An example for the uniformity

assessment.

Figure 5: Illustration of the uniformity assessment.

4 bins split by the horizontal and vertical lines which intersect at the position

of the prey robot, as shown in Figure 5. Note that, the number of the real

predator robots on the split lines is divided by 2 and equally assigned to the

two adjacent bins. Hence, N11 = N12 = N21 = N22 = 1 for the example in Fig-

ure 5b. However, the formula (6) cannot always give the objective uniformity

(a) The uniformity assessment is 0

by equation (6) based on the split

of Figure 5a.

(b) An alternative split method for

the uniformity assessment of equa-

tion (7).

Figure 6: Illustration of the alternative uniformity assessment.

assessment that is consistent with a human’s subjective judgment, as the dead-

lock phenomenon shown in Figure 6a. In this scenario, the prey robot always

keeps still in the center of the map, while the predator robots start to encircle
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the prey from randomly generated initial positions and stop forever since the

game state shown in Figure 6a, which is obviously not the expected capture

state. So, the deadlock phenomenon is a game state where the pursuit task

hasn’t been accomplished but all the predator robots stop forever as if they are

locked. One reason of the deadlock phenomenon is the fitness function wrongly

evaluates an intermediate game state as fittest, i.e., the task is finished. There-

fore, to design a better fitness function, in the uniformity assessment formula,

an alternative space split strategy is performed as shown in Figure 6b, and the

following uniformity assessment will replace equation (6) in such situations:

f ij
uniformity = std([N12, N21, N23, N32]) + std([N11, N13, N31, N33]), (7)

the first and second part of which are the axial and diagonal uniformity assess-

ments, respectively.

To be clearer, the fitness evaluation of pijrobots, i.e., the jth (j = 1, ..., Np)

individual (robot) in the ith (i = 1, ..., Ns) subpopulation, is illustrated in Figure

7.

Figure 7: Illustration of the fitness evaluation for pijrobots.

3.2. The proposed CCPSO-R algorithm

In CCPSO-R, there are Ns independently evolved subpopulations with sub-

population size Np, and the first individual of each subpopulation represents a
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unique real robot while the others represent virtual robots. All the real robots

consist of the predator robots swarm which actually pursue the prey robot in

the grid world, while the virtual robots are to explore the vicinity of the corre-

sponding real predator robot in its subpopulation and guide the predator robot

to a better position. So in this sense, virtual robots can be seen as the ac-

tion space of the corresponding real predator robot. The real predator robot

chooses its locally optimal action, but in terms of the global benefit of the whole

swarm of predators. That is, the evaluation of a robot position is conducted by

considering the rest real predator robots positions in the other subpopulations.

Since the proposed algorithm works in the modes of cooperative coevolution-

ary algorithms (CCEAs), it is called the cooperative coevolutionary PSO for

robots (CCPSO-R), as illustrated in Algorithm 1, which will be explained in

detail from 3 aspects: the update rules, the fitness evaluation, and the diversity

maintenance mechanism in the following.

3.2.1. Update rules

Two update rules are designed separately for virtual and real robots:

1. For a virtual robot j (j ∈ {2, ..., Np}), the PSO update rules are as follows:

vijrobots = nnd(w · vijrobots + c1 · r1 · (piijrobots − pijrobots)

+c2 · r2 · (pgirobots − pijrobots)) (8)

pijrobots = nbn((pijrobots + vijrobots), p
i1
robots) (9)

where

nnd(v) = arg min
pn∈SN

|∠pn − ∠v| (10)

and

SN = {(1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0), (−1,−1), (0,−1), (1,−1)}. (11)

nnd(v) outputs one of the 8 unit vectors in SN which has the minimum angle

distance with the input velocity v. By using the function nnd(·), every robot
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Algorithm 1: CCPSO-R

1 Initialization

2 while the prey is not captured and time limit is not reached do

3 for each subpopulation do

4 Re-evaluate the subpopulation due to environmental changes

5 for each virtual robot do

6 Update its velocity and position using (8) and (9)

7 Evaluate the fitness together with the rest real predator

robots

8 if unique virtual robots < Tv then

9 Re-initiate and re-evaluate the virtual robots

10 Update the velocity and position of the real predator robot using

(13) and (14)

11 Evaluate the fitness of the real predator robot together with the

rest real predator robots

12 if the real predator robot becomes the global best then

13 Re-initiate and re-evaluate the virtual robots

14 else if the predator robot gets trapped in a deadlock then

15 Add a random noise to the real predator robot position

16 Re-evaluate the whole population

17 if the real predator robots swarm get trapped in a local optimum

then

18 Add random noises to all the real predator robots positions

19 Re-evaluate the whole population

can only move one step by one step. In this way, unlike the multi-steps case in a

general PSO, the path planning and the worry about collisions in the half way to

a destination are not ever necessary . vijrobots is the velocity for the jth individual

(robot) in the ith subpopulation which has the position pijrobots. In addition,
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piijrobots is the individual historical best position for the jth individual (robot)

in the ith subpopulation, while pgirobots is the global best position of the ith

subpopulation. The coefficient w ∈ R is called the inertia weight, c1, c2 ∈ R+,

and r1, r2 are uniformly distributed random numbers in the range of (0, 1).

Besides,

nbn(pijrobots, p
i1
robots) =


arg min

pi1
b

|∠(pi1b − pi1robots)− ∠(pijrobots − pi1robots)|,

if pijrobots is out of the vicinity of pi1robots

pijrobots, otherwise

(12)

is designed to output the nearest boundary neighbor pi1b in the constrained

vicinity of the real predator robot pi1robots. This function is illustrated in Figure

8, where the constrained vicinity of pi1robots is shown in a dashed square, which

is determined as the minimum one that can accommodate the specified number

of virtual robots. Note that, the nbn(pijrobots, p
i1
robots) function in Equation (9)

is very important because it can assure all the virtual robots pijrobots(j ≥ 2) are

in the constrained vicinity of the real predator robot pi1robots, without which the

subpopulation may lose the vicinity exploring capability for the real predator

robot.

Figure 8: Illustration of the function nbn(pijrobots, p
i1
robots) in Equation (12).
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Figure 9: Illustration of the priority scheduler for the CC based fitness evaluation.

2. For the real robot (j = 1), the PSO update rules are as follows:

vi1robots = nnd(pgirobots − pi1robots) (13)

pi1robots = pi1robots + vi1robots (14)

So, the real predator robot does not need to perform any exploring task, but

just quickly becomes the global best in its subpopulation.

To summarize, by utilizing different optimization mechanisms for different

kinds of robots, virtual robots are responsible for exploring and finding potential

better positions in the vicinity of the real predator robot, while the real predator

robot in each subpopulation just makes use of the achievements of the virtual

robots and becomes the global best.

3.2.2. Fitness evaluation

From the practical point of view, no collisions of any two real robots are al-

lowed. Since we have totally Ns subpopulations in the cooperative coevolution

population, a priority scheduler is used to coordinate among them, as shown

in Figure 9. In particular, a priority scheduler will decide the order of move-

ments among real robots, which can be the evolving order of subpopulations
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in asynchronous situations, and can also be used to coordinate, for example,

two real robots when they both want to go to the same position in synchronous

situations.

To be as simple as possible, here we let the priorities be in consistent with the

indexes of the subpopulations. In other words, after the prey robot moves, the

subpopulations evolve one-by-one and the newly updated real predator robot

is counted into the dynamics of the environment for the fitness evaluations to

the subsequent subpopulations. So, if k > h, the predator pk1robots always moves

ahead of the predator ph1robots.

To evaluate the fitness of the jth individual in the ith subpopulation, a

complete solution should be first composed by replacing the ith real predator

robot with pijrobots from the real predator robots swarm:[
p11robots, ..., p

(i−1)1
robots , p

ij
robots, p

(i+1)1
robots , ..., p

Ns1
robots

]
.

Then, the fitness of a robot can be evaluated by equation (2), as shown in Figure

7.

3.2.3. Diversity maintenance mechanism

When a swarm intelligence algorithm converges, all individuals may be at-

tracted to the same position, no matter it is the global or local optimum. How-

ever, for the pursuit case here, the convergence of virtual robots in a subpopula-

tion brings the disadvantage that the capability of exploring potentially better

positions is getting worse. Therefore, if the number of unique virtual robots

in a subpopulation is defined as the subpopulation diversity, the diversity of

each subpopulation must be maintained to keep its exploring capability. Be-

sides, due to the existence of unexpected deadlocks, suitable strategies should

be integrated in the coordination algorithm to deal with such problems.

Based on the above ideas, we propose the diversity maintenance mechanisms

which are performed as follows:

• Update the population in each generation based on the scheme that the

fitness of the newly generated individual is not worse than its parental
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robot, which will guide the robot to explore more positions without harm

to the fitness.

• Redistribute the virtual robots once the number of unique virtual robots

positions in a subpopulation decreases below a threshold Tv, i.e., the sub-

population converges. That is, the subpopulation has found better solu-

tions and all robots are attracted to the global best. In this situation,

virtual robots should be redistributed to the space for better exploration.

This strategy corresponds to the line 8-9 in Algorithm 1.

• Redistribute virtual robots once the real predator robot becomes the global

best in the subpopulation. Because the role of virtual robots is to help the

corresponding real predator robot to find better positions, once this real

predator robot becomes the global best in its subpopulation, the object of

virtual robots is reached and they should be redistributed to the space to

find potential better positions for the real predator robot. This strategy

corresponds to the line 12-13 in Algorithm 1.

• Add a random noise to the position of the real predator robot if it is not

the global best in its subpopulation but abnormally keeps stills for a long

time, in which it must have gotten stuck in a deadlock. This strategy

corresponds to the line 14-16 in Algorithm 1.

• Add random noise to the positions of all the real predator robots if they

converge when the prey robot has not been captured, the situation of

which can be seen as that the swarm of predator robots gets trapped in a

local optimum. This strategy corresponds to the line 17-19 in Algorithm

1.

4. Experiments

In this section, two different experiments are presented. Experiment 1 is con-

ducted in a 30×30 grid world to verify the performance of the proposed CCPSO-

R. Experiment 2 is to compare CCPSO-R with a representative dynamic path
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planning based pursuit algorithm MAPS [9]. From the experimental results ,

pros and cons of two different strategies can be seen in spite that CCPSO-R

and MAPS are originally designed towards different capture definitions.

In particular, to verify the generality of algorithms, four types of preys are

implemented. The prey robot initially locates in the center of the world, but

behaves differently according to its type defined as follows:

• STILL PREY: the still prey keeps still in its initial position forever.

• RANDOM PREY: the random prey randomly moves to a next position

according to the uniform distribution.

• LINEAR PREY: the linear prey initially chooses one of the 8 directions

in which the number of predator robots is minimum, and moves in that

direction in a straight line since then. Only when the prey locates on

edges of the map, it will re-calculate a new direction according to the

same criterion. However, when the way of the linear prey is blocked by a

predator, it cannot move any more but only wait for the other predator

robots coming to encircle it.

• SMARTER LINEAR PREY: the smarter linear prey, represented as lin-

ear smart, is very similar to the linear prey. The only difference is that

when its way is blocked by a predator robot, it moves to an unoccupied

neighbor which has the minimum angle distance with its current direction

and then it continues its movement in its previous direction if there are

no obstacles.

From the above descriptions, the capabilities of the preys and the difficulties

of encircling preys can be intuitively ranked as “still prey < random prey <

linear prey < linear smart prey”, which will be further verified by the following

experiments.
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4.1. Experiment 1

4.1.1. Experimental setup

To verify the scalability of CCPSO-R, various sizes of the swarm of predators,

i.e., 4, 8, 12, 16 and 24, are used, from which we can expect the advantages

originated from the swarm intelligence of the swarm of predator robots.

The other implementation details are as follows: the initial real predator

robots are deployed randomly in the whole grid world without overlapping; the

population size of each subpopulation is 20; the prey robot moves in 90% of the

time ensuring that predators move faster or a longer distance than the prey;

in equation (3) Dmin = 1 which is the minimum secure distance between two

robots; in equation (9) the parameters w = 1, c1 = c2 = 2 which are set as

recommended in [14]; Tv is 9 in the line 8 of Algorithm 1 which is the number

of grids for a 3 × 3 vicinity; when the real robot is not the global best in its

subpopulation but keeps still over 5 iterations we say that it gets trapped in

a deadlock which corresponds to the line 14 of Algorithm 1; when the swarm

of predator robots keeps still over 10 iterations we say the swarm converged,

and if the swarm has converged but the prey hasn’t been captured we say that

the swarm gets trapped in a local optimum which corresponds to the line 17 of

Algorithm 1.

In addition, for environmental changes such as real predator robot posi-

tion change in other subpopulations, the current subpopulation needs to be

re-evaluated as shown in the line 4 of Algorithm 1, where the individual histor-

ical best position piijrobots will not be inherited, and the global best pgirobots will

be re-calculated. This is because, although the experimental results of inherit-

ing and not inheriting the individual historical memory piijrobots differ, it is hard

to select either one due to their competitive performances.

As for the performance metrics, we use the number of successful captures,

the average number of moves to capture the prey, and their standard deviations

over 100 randomly generated test cases given the maximum 1000 time steps,

the random seeds of which are set from 1 to 100.
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4.1.2. Simulation results

Table 1: Number of captures, average number of moves, and their standard deviations to

capture different preys with various number of predators out of 100 test cases.

No. of predators Metrics
Prey

Still Random Linear Linear Smart

4

No. of captures 100 100 100 100

Avg. of moves 30.450 49.840 46.900 204.060

Std. of moves 19.943 36.867 31.886 198.927

8

No. of captures 100 100 100 100

Avg. of moves 22.220 33.780 42.240 121.820

Std. of moves 13.384 23.039 46.583 111.922

12

No. of captures 100 100 100 100

Avg. of moves 20.470 24.520 30.190 76.780

Std. of moves 11.364 13.414 24.943 72.839

16

No. of captures 100 100 100 100

Avg. of moves 17.360 18.360 25.620 49.850

Std. of moves 9.648 11.277 23.560 50.048

24

No. of captures 100 100 100 100

Avg. of moves 15.060 14.060 19.670 35.400

Std. of moves 10.688 6.151 21.879 32.588

The simulation results are summarized in Table 1, from which it can be seen

that CCPSO-R is reliable with the capture rate being 100% in a limited time, no

matter what type of the prey it is. As expected before, to a swarm of predator

robots, the difficulties, in terms of the average number of moves, to capture

each type of prey can be generally ranked as “still prey < random prey < linear

prey < linear smart prey”, which can be seen more clearly from Figure 10. This

conclusion is in consistent with the common opinion in literature (such as [5]

and [13]) that compared with the random prey, the straight line moving prey
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Figure 10: Box plot of the moves to capture a specific prey with a specific number of predator

robots.

Figure 11: Bar graph of the average moves to capture a specific prey with a specific number

of predator robots.

is more effective because it breaks the movement locality. Hence, the straight

line moving prey is more difficult to be captured, which leads to the low capture

rates in previous work, such as the manually designed methods [2, 5], EA based

method [5] and the case learning method [6].

In addition, we show the data of Table 1 in the manner of Figure 11, from

which an evident fact can be found that the more predator robots the more
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efficient the pursuit is. Besides, from the decreasing standard deviations as more

real predator robots are involved, as shown in Figure 10, it can be concluded that

with the swarm size of the predator robots gets larger, the pursuit performance

is getting more and more stable and robust.

To give a more intuitive impression of the pursuit process, several repre-

sentative episodes taken from an experiment against the linear smart prey are

displayed in Figure 12.

4.1.3. Discussions

The results achieved in Section 4.1.2 can be explained from the algorithm’s

point of view. First, as we treat the pursuit domain as an optimization problem,

as long as the designed fitness function (or objective function) properly models

the investigated problem, minimizing the fitness function will lead predators to

a successful capture. Second, on one hand, every step of a real predator robot

is greedy since it moves to the best virtual robot position in its subpopulation;

on the other hand, each step of a real predator is not totally greedy since the

virtual robots exploration in its vicinity is not exhausted. So, predators may

eventually capture the prey but the process may be slow.

Besides, in some of the past work, such as RL and path planning approaches,

the capture is defined differently as that the prey position is occupied by a preda-

tor, the further idealization and simplification of which result in an unpractical

problem setup for robots applications. This paper adopts another conventional

definition that the prey is encircled by predators such that it cannot move any

more, which considers both the collision avoidance and the safety of robots from

the practical point of view. However, to further validate the effectiveness of the

proposed CCPSO-R, we will do the comparison in the next Sub-section.

4.2. Experiment 2

For pursuit domain problems, path planning and task allocation based strate-

gies are intuitive and may be the first solution that comes to one’s mind. There-

fore, in this section, we compare the proposed CCPSO-R with a representative
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 12: Illustration of the pursuit process, taking the pursuit of a linear smart prey as an

example. (a) is the initialization. From (a)-(b), the prey moves in the southeast direction in

a straight line. In (c), the prey encounters an orthogonal real predator robot. So, in (d), the

prey moves to a nearest unoccupied neighbor in the south. After that, from (d) to (e), the

prey continues to move in its previous straight line direction. Until (f), the prey reaches an

edge. So, in (g), the prey re-selects the north as its new escape direction. In (h), the prey is

captured. And in (i), the predator robots swarm converge.
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dynamic path planning based algorithm named MAPS [9].

4.2.1. Experimental setup

All the experimental setups are the same as the Experiment 1 except the

number of predator robots, the grid world sizes, and the way we calculate the

capture status. For fair comparisons, we modify the capture definition to the

one adopted by MAPS that the position of the prey is occupied by any predator.

In particular, we know that in CCPSO-R, when predators cooperate to encircle

the prey, there must be at least one such moment that the prey is adjacent to

a predator and they get common neighbors as illustrated in Figure 13. Because

diagonal obstacles are considered in our collision avoidance design, the number

of the common neighbors is at most 2 except the prey’s own position. If the

prey keeps still or moves to anyone of the common neighbors the next moment,

no matter it is compelled by other coordinated predators or just due to the

simplicity of itself, the adjacent predator can definitely occupy the prey’s new

location since predators always move after the prey. We can then say that the

prey is captured at this moment.

(a) Example 1. (b) Example 2. (c) Example 3.

Figure 13: Illustration of the modified capture status of CCPSO-R used in the comparison

with MAPS.

4.2.2. Simulation results

We run the two algorithms MAPS and CCPSO-R in the same randomly

generated scenarios where the initial predators and prey positions are the same.
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Table 2: Comparison results: Average number of moves and their standard deviations to

capture different preys with various number of predators in different sizes of grid worlds out

of 100 test cases.

Metrics Avg. of moves Std. of moves

Number of predators 4 8 4 8

Size of the grid map: 30× 30

Prey

Still
MAPS 7.09 4.87 3.777 2.751

CCPSO-R 6.5 4.66 2.819 2.271

Random
MAPS 9.01 6.78 6.973 5.868

CCPSO-R 8.3 6.04 3.335 2.828

Linear
MAPS 17.89 10.55 6.977 8.184

CCPSO-R 16.9 7.71 8.487 5.695

Linear MAPS 17.84 10.55 7.102 8.211

Smart CCPSO-R 16.92 7.75 8.474 5.723

Size of the grid map: 150× 150

Prey

Still
MAPS 36.6 26.16 18.229 14.633

CCPSO-R 33.37 23.07 13.9 10.992

Random
MAPS 38.62 28.55 18.968 16.516

CCPSO-R 35.84 26.07 13.654 11.401

Linear
MAPS 99.33 64.29 44.576 37.918

CCPSO-R 82.75 41.32 30.274 29.684

Linear MAPS 99.19 64.37 44.849 37.814

Smart CCPSO-R 82.84 41.44 30.192 29.798

To see whether the map size influences the comparison results much, a bigger

grid world size 150×150 together with a smaller grid map size 30×30 are applied

with two predator swarm sizes 4 and 8. Experimental results are summarized

in Table 2. Since both algorithms capture the prey 100%, we do not list the

“No. of captures” metric. It is not hard to understand that generally with the

increase of the predators number, less moves with smaller standard deviations
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Table 3: Statistical test for CCPSO-R vs. MAPS using the t-test at the 5% significance level.

World size 30× 30 150× 150

No. of
Prey p-value Significant p-value Significant

predators

4

Still 0.013848 Yes 0.0062804 Yes

Random 0.13224 No 0.02533 Yes

Linear 0.10273 No 7.3641e-05 Yes

Linear
0.11762 No 9.8947e-05 Yes

Smart

8

Still 0.13084 No 0.0017754 Yes

Random 0.11016 No 0.027238 Yes

Linear 0.00018443 Yes 1.3396e-11 Yes

Linear
0.00020334 Yes 1.1589e-11 Yes

Smart

are needed for a capture; and with the increase of the grid map size, values in

these two metrics increase accordingly.

To further validate the significance of the comparison results in Table 2, t-

tests are conducted at the 5% significance level, as shown in Table 3. It can be

seen that CCPSO-R significantly outperforms MAPS in 11 out of the total 16

experimental scenarios where more predators are involved with smarter preys

in bigger worlds.

4.2.3. Discussions

The comparison results show that although CCPSO-R is designed for the

coordinated encirclement of the prey until every available orthogonal neighbor

of the prey has been occupied by a predator, CCPSO-R also performs well in

the position occupying based capture definition, which proves the effectiveness

of the cooperative coevolutionary based coordination strategy.

In addition, compared with just occupying the same position of the prey with
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only one predator, occupying all the orthogonal neighbors of the prey simulta-

neously as uniformly as possible is more complicated. Therefore, the proposed

CCPSO-R can accomplish more complicated coordination tasks compared to

MAPS.

On the other hand, as presented in [9] that MAPS is a real-time pursuit

algorithm, its MATLAB version, which is rewritten by us from its original C++

codes, still runs faster than CCPSO-R. Because the calculation of the average

number of moves per second over all the test cases has a high requirement on the

runtime environment for fair comparison, we do not list this metric here. But we

can still get the following conclusions. MAPS is faster. However, one problem

of it is that its performance is constrained by the number of predators. Because

one important step in MAPS is to assign the possible escape directions of the

prey to every predator optimally by iterating every possible assignments, the

combinatorial number of which is (n− 1)! where n is the number of predators.

With the increase of n, this combinatorial number will increase very fast and it

is becoming less practical to get all the permutations at once, which also brings

more burden to the memory. This is also the reason that we only compare the

simulation results with up to 8 predators. But, for CCPSO-R, although it is not

as efficient as MAPS, its scalability on the predator swarm size is much better.

Finally, despite the fact that both MAPS and CCPSO-R adopt the same

sequential movement strategy that the prey always moves first and then the

predators move one by one, another loop is embedded in the current CCPSO-R

implementation that each real predator robot position can only be updated when

all its corresponding virtual robots have been updated sequentially, as shown

in line 5-10 of Algorithm 1. It is known that embedded loops are generally not

expected for an efficient algorithm. So, a parallel update and evaluation for the

virtual robots should alleviate the efficiency constrain of CCPSO-R which will

be investigated in future work.
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5. Conclusions

This paper treated the pursuit domain as an optimization problem and pre-

sented the cooperative coevolutionary algorithm—CCPSO-R, which, for the first

time, introduces the combination of the real robots and virtual robots into the

correspondences between the individual representation of an EA and the robots

in an application. Before the work in this paper, an individual in an EA will be

assigned to a real robot. However, in the proposed CCPSO-R algorithm, only

the first individual in each subpopulation corresponds to a real robot, while the

rest individuals are all virtual robots, who act as a kind of action space for real

robots by sampling and exploring their vicinities.

Besides, it should be noted that there are no fixed behavior rules for the

swarm of predator robots. Instead, the swarm of robots is guided directly by the

fitness function, which is designed in a modular manner by incorporating very

limited domain knowledge. As one module, the collision avoidance consideration

is integrated in the fitness function, which itself is another fitness function for

repelling and can be versatile by tuning its parameter Dmin. If the Dmin = 1, as

it is in this paper, the robot swarm can capture the prey while moving without

collisions.

Finally, we tested the performance—the generality, stability and scalability

of the proposed CCPSO-R with four types of preys—the still prey, the random

prey, the linear prey, and the linear smart prey. Experimental results have been

summarized based on 100 randomly generated test cases whose random seeds

are set as 1-100 for their reproducibility. Based on these experiments, it can be

concluded that the proposed CCPSO-R can always capture the prey stably and

no additional modifications are needed under different scenarios. In addition,

a comparison with a representative dynamic path planning and task allocation

based algorithm MAPS has also been conducted. Experimental results further

prove the outstanding performance of the proposed CCPSO-R.

However, to be simple, the coordination priority scheduler was designed

based on the subpopulation indexes, which indicates that the real predator
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robots move in a fixed sequential order. This may be unreasonable when it is

better to firstly move one specific predator which blocks others’ ways. In ad-

dition, predators move sequentially, rather than synchronously, will deteriorate

the pursuit efficiency when the swarm of predators gets larger. Therefore, three

works need to be done in future: one is to study the memory inheritance strat-

egy in dynamic optimization problems as mentioned in Section 4.1.1; one is to

implement the parallel update and evaluation for the virtual robots; one is to

improve the coordination scheduler towards the synchronous cooperation based

on parallel computing by learning from experiences.
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