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Abstract

One-class Classification (OCC) is an area of machine learning which addresses

prediction based on unbalanced datasets. Basically, OCC algorithms achieve

training by means of a single class sample, with potentially some additional

counter-examples. The current OCC models give satisfaction in terms of per-

formance, but there is an increasing need for the development of interpretable

models. In the present work, we propose a one-class model which addresses

concerns of both performance and interpretability. Our hybrid OCC method

relies on density estimation as part of a tree-based learning algorithm, called

One-Class decision Tree (OC-Tree). Within a greedy and recursive approach,

our proposal rests on kernel density estimation to split a data subset on the basis

of one or several intervals of interest. Thus, the OC-Tree encloses data within

hyper-rectangles of interest which can be described by a set of rules. Against

state-of-the-art methods such as Cluster Support Vector Data Description (Clus-

terSVDD), One-Class Support Vector Machine (OCSVM) and isolation Forest

(iForest), the OC-Tree performs favorably on a range of benchmark datasets.

Furthermore, we propose a real medical application for which the OC-Tree has

demonstrated its effectiveness, through the ability to tackle interpretable diag-
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nosis aid based on unbalanced datasets.

Keywords: One-class classification, decision trees, kernel density estimation,

explainable artificial intelligence

1. Introduction

As precious assets of knowledge extraction, data are massively collected in

the fields of industry and research, day by day. Though valuable, the prolif-

eration of data requires attention upon processing. In particular, unbalanced

datasets may be hardly addressed through the classical scheme of multi-class

prediction. The practice of One-Class Classification (OCC) has been developed

within this consideration [1, 2].

OCC is of major concern in several domains where it may be expensive

and/or technically difficult to collect data on a range of behaviors or phe-

nomenons [3]. For example, it may be quite affordable to gather data on the

representatives of a given pathology in medicine, or positive operating scenarios

of machines in the industry. The related complementary occurrences are, by

contrast, scarce and/or expensive to raise [2]. As a matter of fact, one-class

classifiers are trained on a single class sample, in the possible presence of a few

counter-examples. The resulting models allow to predict target (or positive)

patterns and to reject outlier (or negative) ones. Basically, OCC is pursued for

outlier (or anomaly) detection.

One-Class Support Vector Machine (OCSVM) and Support Vector Data De-

scription (SVDD) are among the most common OCC methods [4, 5]. OCSVM

aims at finding the hyper-plane that separates the target instances from the

origin with the wider margin, while SVDD aims at enclosing these instances

within a single hyper-sphere of minimal volume. Far from being contested, the

effectiveness of these methods has notably been improved with the development

of variants that better fit some data structures [6, 7, 8, 9, 10, 11]. Indeed,

the instances of a single class may be enclosed within several groupings in the

form of sub-concepts that it would be interesting to raise separately [12]. Clus-
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terSVDD [13] achieves such a purpose: this recent method may be seen as a

K-means algorithm [14] ruled by the results of distinct SVDD problems.

Admittedly, the current methods of OCC give satisfaction, but that is with-

out counting on the advent of explainable artificial intelligence which opens new

research horizons for machine learning in encouraging the development of in-

terpretable models [15]. In this regard, some methods have been developed as

post-hoc explainers on the predictions of classifiers [16, 17]. But a great chal-

lenge remains the development of interpretable models by nature, which provide

simultaneously high levels of performance. This challenge is the major source

of motivation for the present work.

Originally introduced for supervised classification, decision trees [18] provide

satisfaction in terms of interpretability. The extensions of the algorithm pro-

posed to tackle OCC often rely on the generation of outliers [19, 20]. However,

a decision tree is basically built under the hypothesis that the different classes

cover the whole domain by their representatives. Thus, the one-class variants

may associate the target class with a large subspace against the one which the

class occupies in reality. In a different perspective, the work of [21] revisits

the development of decision trees by orienting the training process towards the

isolation of outliers rather than of target instances. The intuition behind the

method, called Isolation Forest (iForest), is that outliers are scarce and easily

detectable compared to target instances [21]. The outliers can thus be isolated

by means of a low number of divisions. An IF is an ensemble of trees built based

on a random choice of attributes and thresholds. For a given instance, if the

average path skimmed in the trees is short, the instance is predicted as outlier.

Kernel Density Estimation (KDE) [22] is another approach which can ad-

dress OCC intuitively, in computing the non-parametric estimation of a sample

distribution. Thresholded at a given level of confidence, this estimation is used

to reject any instance located beyond the decision boundary thus established.

However, KDE loses in performance and readability towards high dimensional

samples [19].

In the present work, we tackle OCC through a hybrid method, called One-
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Class decision Tree (OC-Tree), which is intended to combine the benefits of the

standard decision tree and KDE. The contributions of our work are exposed

below.

• Compared to previous adaptations of the decision tree to OCC, our pro-

posal rather focuses on the isolation of the target training instances through

a density-based hierarchical process of splitting, in which subdivisions are

based on closed intervals of interest. This innovative splitting mechanism

is supported by KDE.

• The combination of decision trees with kernel density estimators was orig-

inally proposed by Smyth et al. [23]. Such a method was intended to boost

the performances of the standard decision tree, in using a kernel density

estimator to compute posterior class probabilities, based exclusively on

the attributes belonging to a given decision chain. Our proposal differs in

some regards. Indeed, the work of [23] tackled multi-class classification,

through an approach which is implemented in two phases: (A) decision

tree induction and (B) kernel density estimation to compute class prob-

ability. Our proposal tackles OCC through a hybrid methodology where

density estimation is considered as a part of decision tree induction.

• The OC-Tree may be seen as the integration of a multi-dimensional KDE

within an intuitive and structured decision scheme. Indeed, the OC-Tree

encloses data within hyper-rectangles, based on a subset of training at-

tributes selected for their discriminative power.

• The method has shown favorable performances in comparison to reference

methods, including ClusterSVDD [13], OCSVM [4] and iForest [21] on

benchmark datasets.

• We apply our algorithm for the diagnosis of Attention Deficit Hyperactiv-

ity Disorder (ADHD), based on the ADHD-200 collection. In this regard,

the classification accuracy achieved by the OC-Tree is competitive in com-

parison to the results reported in the recent literature. We believe that the
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convenience and the interpretability of the OC-Tree make it a promising

model for future clinical practice.

To illustrate the objective of our OC-Tree, let us consider a toy example

proposed in Fig. 1 (left). The latter is processed in two distinct ways :

• with a multi-class decision tree. In this case, each Gaussian blob is asso-

ciated to a distinct class (C1, in red and C2, in green). The associated

space division is represented in dashed lines.

• with an OC-Tree. In this case, the Gaussian blobs are all the represen-

tatives of the same Class (called C). The limits of the corresponding

hyper-rectangles are represented in continuous lines. The complementary

space is the one of Outliers (called O).

As shown, multi- and one-class learning processes lead to different predictive

models (Fig. 1, right). Indeed, in the context of a multi-class problem, the class

representatives are supposed to share the whole domain in which the attributes

take their values. Hence, a decision tree learned with an algorithm like C4.5 [18,

24] proposes a decomposition of the whole space in hyper-rectangles by means of

one single attribute. On the opposite, aiming at solving a one-class classification

problem, we propose a learning process looking for target hyper-rectangles that

do not necessarily cover the whole domain in which the attributes take their

values, since there may exist outliers to discard.

The remainder of the paper is organized as follows. Sec. 2 describes our

algorithm which was assessed in comparison to reference methods according to

the experimental protocol presented in Sec. 3. We expose the related results

in Sec. 4. Then, in Sec. 5, we present a medical case study whose challenging

aspects can be appropriately addressed by the OC-Tree. Finally, we discuss and

summarize our findings in Sec. 6, before concluding the paper in Sec. 7.
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2. Our proposal

In a divide and conquer spirit, the implementation of our one-class tree rests

on successive density estimations to raise target areas as hyper-rectangles of

interest. We assess the relevance of a subdivision against an information gain

criterion adapted to OCC issues proposed by [20].

Let us consider χ ⊂ Rd a hyper-rectangle of dimensions d including target

training instances. Let us note A = {a1, a2, . . . , ad} the set of attributes and

X = {x1, x2, . . . , xn} the set of instances. The goal of our proposition is the

division of the initial hyper-rectangle χ in (non necessarily adjacent) sub-spaces

χti , represented by tree nodes ti, in absence of counter-examples.

Let us denote as At the set of eligible attributes for division at a given node

t. Thus, At ⊆ A. We note At = {a′1, a′2, . . . a′lt}, lt being the number of eligible

attributes at node t, with lt ≤ d accordingly. At each node t, the algorithm

searches the attribute a′j ∈ At which best cuts the initial sub-space χt into one

or several sub-space(s) χti such that:

χti = {x ∈ χt : Lti ≤ xa
′
j ≤ Rti} (1)

xa
′
j is the value of instance x for attribute a′j ; Lti and Rti are respectively the

left and right bounds of the closed sub-intervals raised to split the current node

t in target nodes ti, based on attribute a′j .

For each attribute a′j ∈ At, the algorithm achieves the following steps, at a

given node t.

1. Check if the attribute is still eligible and compute the related Kernel Den-

sity Estimation (KDE), i.e., an estimation of the probability density func-

tion f̂j(x) based on the available training instances (see Sec. 2.1).

2. Divide the space χt, based on the modes of f̂j(x) (see Sec. 2.2).

3. The quality of the division is assessed by the computation of the impurity

of the resulting nodes deriving from division (see Sec. 2.3).
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At each iteration, the attribute that achieves the best purity score is selected

to split the current node t in child nodes. If necessary, some branches are pre-

pruned in order to preserve the interpretability of the tree (see Sec. 2.4). The

algorithm is run recursively; termination occurs under some stopping conditions

(see Sec. 2.5).

In the rest of this paper, what we refer to as the training accuracy corre-

sponds to the rate of training instances included in target nodes. It follows that,

in this context of OCC, the training classification error corresponds to the rate

of training instances predicted as outliers by the predictive model.

2.1. Density estimation

In order to identify concentrations of target instances, we have to estimate

their distribution over the space, which can be provided by a Kernel Density

Estimation (KDE). In particular, our proposal is based on the popular Gaussian

kernel [22]:

f̂j(z) =
1

ntht

nt∑
i=1

K

(
z − xi
ht

)
with K(y) =

1√
2π

exp
−y2

2

where f̂j is the KDE related to attribute a′j , Xt = {x1, x2, . . . , xnt} is the set

of nt instances available at node t, K the kernel function and ht, a parameter

called bandwidth.

The parameter ht influences the pace of the resulting function f̂j(x) [22]. As

ht tends towards zero, f̂j(x) appears over-shaped while high values of ht induce

a less detailed density estimation. Adaptive methods, such as a least-squares

cross-validation, may help setting the bandwidth value [25, 26]. However, such

iterative techniques are computationally expensive; their use may be hardly

considered in this context of recursive divisions. Hence, we compute ht as [22]:

ht =

0.9 ·min(σ̂, IQR/1.34) · n−1/5t if IQR 6= 0

0.9 · σ̂ · n−1/5t otherwise

(2)

8
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Figure 2: Division mechanism

where σ̂ is the standard deviation of the sample Xt and IQR, the associated

inter-quartile range. The first relation corresponds to the Silverman’s rule of

thumb [22]. We consider the second relation to address samples with IQR = 0,

which may reveal very concentrated data, with the potential presence of some

singularities that should be eliminated.

2.2. Division

At node t, division is executed based on f̂j(x), in four steps.

(a) Clipping KDE (γ)

f̂j(x) is thresholded at the level γ ·maxx∈χt
f̂j(x).

This allows to raise a set of target sub-intervals Yj
t.

(b) Revision (α)

If f̂j(x) is k-modal (k 6= 1) and 1 ≤ |Yjt| < k, revision occurs since some
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modes were not identified. Each sub-interval of Yj
t is thus analyzed: if its

image by f̂j(x) includes at least a significant local minimum, the interval

is split in two sub-intervals around this (these) local minimum (minima).

The significance of a local minimum is assessed through a parameter α

(see below).

(c) Assessment (β)

The sub-intervals of Yj
t covering a number of training instances inferior

to a quantity β.|T | are dropped. This ensures keeping the most significant

target nodes.

(d) Shrinking

The detected sub-intervals are shrunk in closed intervals in a way to fit

the domain strictly covered by the related target training instances, as

defined by Eq. 1.

Actually, Yj
t may be updated at the end of steps (b), (c), (d).

If we consider the KDE presented by Fig. 2, (a) results in Yj
t = {[A,B]; [C,D]}.

As the density estimation is 3-modal in this case, a revision of the interval par-

titioning (b) is launched. It appears there is no need to split the sub-interval

[C,D] since the piecewise f̂j([C,D]) includes a single maximum. By contrast, a

local minimum is detected in m1, in the piecewise f̂j([A,B]). The sub-interval

[A,B] is thus split into three parts around the local minimum. Concretely, such

a split occurs if the local minimum is significant, i.e., sufficiently deep in com-

parison with both nearby local maxima. In mathematical terms:

f̂j(m1) ≤ α ·min(f̂j(M1), f̂j(M2)).

Thus Yj
t = {[A,m1[; [m1, C[; [C,D]}. Steps (c) and (d) are then launched. The

sub-intervals are shrunk around the target training instances (represented by

crosses in Fig.2), which results in:

Yj
t = {[Ljt1 , R

j
t1 ]; [Ljt2 , R

j
t2 ]; [Ljt3 , R

j
t3 ]}.
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The complement Yj
t represents the set of outlier sub-spaces: it may be repre-

sented by a single branch entitled ”else”.

Except for prior knowledge that would help choosing its value more specif-

ically, there should be no reason to set a high reject threshold β (e.g., > 2%)

since the training set is supposed to include a majority of target instances; this

would be penalizing with the exclusion of real target nodes as a consequence.

An appropriate value for parameter α may be selected by cross-validation; ac-

tually, a non-zero value for α (e.g., 0.5) will lead to revision, which appears to

be interesting if we want to detect precisely target groupings. Basically, the

value of the clipping threshold γ should be low (e.g., 0.05), because it aims at

rejecting outliers.

2.3. Impurity decrease computation

At this stage of the algorithm, we have to assess the quality of a division

in a particular context, i.e., the absence of representatives for at least a second

class. One way to achieve this task is to resort to the physical generation of n′t

outliers in each node [27, 19]; as a result of the division, each child node would

include a number of n′ti instances which would have to be estimated.

The virtual generation of outliers is worth considering as well. In this regard,

the work of [20] assumes each parent node includes uniformly distributed outliers

in equal number to that of the target instances, i.e., nt = n′t. Thus, the number

of outliers in each child node may be easily deduced:

n′ti = n′t
µ(χti)

µ(χt)
(3)

where µ denotes the measure of the hyper-rectangle to which it relates.

Assuming nt = n′t may appear counter-intuitive. Indeed, we would natu-

rally be inclined to assume, once and for all, n = n′ in the initial root node and

to deduce the number of outliers in each child node according to Eq. 3. But

throughout the iterations, this would lead to increase the scarcity of the out-

liers, and thus to their unfair representation in each node. The latter situation
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Root

a1 ∈ [1.6; 10.3]

a2 ∈ [−19.8;−10.3]

a1 ∈ [1.4; 10.3]

a2 ∈ [−21.0;−8.1]

a2 ∈ [1.6; 10.8]

a2 ∈ [1.5; 10.8]

a1 ∈ [−0.5; 9.2]

a2 ∈ [0.5; 11.5]

a1 ∈ [−2.0; 10.3]

a2 ∈ [−14.7;−5.8]

a2 ∈ [−14.7;−5.8]

a2 ∈ [−14.7;−5.8]

a2 ∈ [−14.7;−5.8]

a1 ∈ [12.7; 21.4]

a1 ∈ [25.3; 34.9]

a2 ∈ [1.1; 10.5]

a1 ∈ [25.3; 34.9]

a2 ∈ [1.1; 10.8]

a1 ∈ [24.7; 35.3]

Figure 3: Pre-pruning mechanism

corresponds to the well-known effect of the curse of dimensionality [28]. This

is why, to address this issue, the number of outliers in each node t is considered

as corresponding to the number nt of target instances prior to any division [20].

Based on this predictive calculation, the work of [20] gives a proxy for the

Gini impurity decrease for OCC. We adapt this result to our proposal where a

division may result in more than two child nodes ti, based on sub-intervals of

interest:

IProxyG (ti, 1 ≤ i ≤ rt) =

mt∑
i=1

ntin
′
ti

nti + n′ti

with n′ti = n′t
R
a′j
ti − L

a′j
ti

R
a′j
t − L

a′j
t

where rt is the total number of target and outlier sub-intervals, included in

Yj
t ∪ Yjt.

2.4. Pre-pruning mechanism

A branch of an OC-Tree is prepruned if there are no more eligible attributes

for division. An attribute is not eligible if:

12



• for this attribute, all the instances have the same value;

• the attribute was already used previously to cut the same target node

which was not split in several target nodes in the meantime;

• the computed bandwidth ht is strictly inferior to the minimum of the

difference between two (different) successive values in the set of available

instances, i.e., data granularity.

At a given node t, a division based on a non-eligible attribute makes no more

sense. Fig. 3 shows a tree trained on two attributes. The nodes in dotted lines

are developed in absence of a pre-pruning mechanism; the latter allows to get

a shorter and readable decision tree. Note that the branches related to outliers

were omitted for the sake of clarity.

The user has basically the choice to keep either the tree as (1) a full predictive

model which describes the development that brought to the space division, or

(2) the description of the final target hyper-rectangles as a set of sub-intervals

of interest regarding the attributes that were used for division.

2.5. Stopping conditions

Let us denote the training accuracy as Atr: it corresponds to the ratio of

training instances included in the target nodes. The algorithm stops under some

global and local conditions.

• Globally, the algorithm is stopped:

– if Atr remains stable after an iteration in which no additional target

node was raised. In this case, the training process reaches a stage

where the target sub-spaces are simply more precisely delimited on

the basis of additional attributes, with no further multiplication.

– if Atr < 1− ν, where ν is a parameter corresponding to the fraction

of training instances which we tolerate to reject and to consider as

outliers.

13



Approach A

Benchmark dataset 
+ 𝑥% uniformly 

distributed outliers 

Approach B
Benchmark data 

subset (instances ∈ ci)
+ 𝑥% outliers picked 

from C\ci

Initial dataset

Training set

Test set
33,3%

66,7%

Parameter tuning - 10-fold CV
(if required) 

Evaluation of the final 
predictive model

Model 
selection

Figure 4: Experimental pipeline

• Divisions may be stopped locally if there are compelling reasons to con-

vert a node in a leaf, i.e., when pre-pruning is necessary (see Sec. 2.4).

3. Experimental protocol

Figure 4 summarizes our experimental protocol which is explained in detail

in the following sections.

3.1. Reference methods

We compared the OC-Tree with three reference methods, namely the Clus-

terSVDD [13], One-Class Support Vector Machine (OCSVM) [4] and Isolation

Forest (iForest) [21].

The comparison of the OC-Tree with ClusterSVDD is highly relevant since

both methods pursue similar objectives, i.e., enclosing data within one or several

hyper-rectangle(s) and hyper-sphere(s) respectively. ClusterSVDD requires that

two parameters should be optimized on a dataset: ν and k which constitute

respectively, the upper bound on the fraction of instances lying outside the

decision boundary and the supposed number of clusters. Table 1 exposes a

theoretical comparison of the OC-Tree with ClusterSVDD.

OCSVM is a standard OCC method to which a comparison is thus worth

considering. We considered a gaussian kernel for this method, and we optimized

ν which pursues the same objective as in ClusterSVDD and OC-Tree. Thus, to

14



ClusterSVDD OC-Tree

• Detects target hyper-sphere(s).

• Requires to set the number of hyper-
sphere(s) as a parameter.

• Relies on two parameters: k, νSV DD.

• Results in a classification model
whose predictions are based on the
whole set of training attributes.

• Detects target hyper-rectangle(s).

• Does not require indications about
the number of hyper-rectangle(s) to
detect.

• Relies on four parameters: γ, β, α, ν.

• Results in a classification model
whose predictions are based on a sub-
set of training attributes.

Table 1: Comparison of ClusterSVDD & OC-Tree

ensure a fair comparison, we adjusted this parameter in the same way that we did

for ClusterSVDD. Finally, a method like iForest provides a relevant benchmark

since it is of the same nature than OC-Tree, i.e., a tree-based method, but built

in a very different way. Indeed, this ensemble technique aims at the development

of decision trees based on a random choice of attributes and thresholds. If the

average path length skimmed in the trees is low (resp. high), an instance is

predicted as outlier (resp. target). We used the standard parameter settings for

this method, since it was shown that the performances are ensured to be quite

optimal with such settings [21].

3.2. Benchmark datasets

In absence of benchmark data for OCC, it is standard practice to convert

multi-class problems into one-class ones for evaluation purposes. We thus con-

sidered a set of benchmark datasets (see Table 2), where each instance belongs

to a class ci among a set of C. The relevancy of OC-Tree and of the reference

methods on these datasets was assessed in two distinct ways.

A. All the instances, whatever their class, were considered as the representa-

tives of a same class. We injected in this dataset a certain percentage of

additional outliers following a uniform distribution [13]. (Approach A)

B. We adopted the one vs rest [19] strategy which consists of considering

a class ci ∈ C as a target one and the others as outliers [29, 27, 19,

15



# Classes # Features # Instances

Australian 2 14 690

Diabetes 2 8 268

Ionosphere 2 34 351

Iris 3 4 150

Satimage 6 36 4435

Segment 7 19 2310

Table 2: Benchmark datasets [33, 34]

30, 31, 32]. In this case, the outliers injected in a given data subset were

randomly picked among the representatives of the outlier classes, i.e., C\ci.
(Approach B)

Whether through approach A or B, the resulting dataset was split in a way that

two thirds constituted a training set, while the remaining was kept as a test set.

3.3. Evaluation metrics

As one-class classification deals with unbalanced datasets, we may hardly

consider true positives (or true targets) and true negatives (or true outliers) as

equally significant. On this regard, the couple precision-recall provides appro-

priate evaluation metrics [35].

Let us denote as TT (resp. TO), the number of True Targets (resp. True

Outliers), i.e., the number of instances correctly detected as targets (resp. out-

liers); FT (resp. FO) are the number of False Targets (resp. False Outliers)

[30]. Precision (P) and Recall (R) are defined as follows.

• Precision expresses the ratio of instances that were correctly predicted as

target ones to those which were predicted as such.

P =
TT

TT + FT
(4)

• Recall expresses the ratio of instances that were correctly predicted as

16



Method Settings

OC-Tree • γ = 0.05

• α = {0.5, 0.6, 0.7, 0.8}

• β = 2% (min. 5 inst./node)

• ν = {0.05, 0.1, 0.15, 0.2}

ClusterSVDD
• k (see Table 4)

• ν = {0.05, 0.1, 0.15, 0.2}

OCSVM ν = {0.05, 0.1, 0.15, 0.2}
iForest Not required

Table 3: Parameter settings

target ones to those which are truly target instances.

R =
TT

TT + FO
(5)

Precision and recall can be embedded in a single performance indicator, namely

the F1-score [35].

F1 = 2
P ·R
P +R

(6)

3.4. Model selection

The OC-Tree and some reference methods rely on a certain number of pa-

rameters that have to be adjusted appropriately. This parameter tuning was

achieved through a 10-fold Cross-Validation (10-fold CV) procedure, based on

the values presented in Table 3. Note that we conducted a grid search in the

case where we had to optimize two parameters.

The range of values for parameter k, i.e., the number of clusters in Clus-

terSVDD, has been differentiated depending on the considered dataset and the

approach under which the datasets were addressed, as defined in Sec. 3.2. Some
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Approach A Approach B

Australian {1, 2}

{1, 2, 3, 4, 5}
Diabetes {1, 2, 4}
Ionosphere {1, 2}
Iris {1, 2, 3}
Satimage {1, 3, 6, 9} [13]

Segment {1, 5, 7, 10, 14} [13]

Table 4: Selected values for parameter k (ClusterSVDD)

values are suggested in [13]. More particularly in regards to approach B, it ap-

peared to us reasonable to set a range of [1, 5] as possible values for parameter

k, regardless of the considered dataset. Indeed, in this case, each class of the

multi-class problem is considered for OCC. Thus, intuitively, one would expect

that data are concentrated within a small number of target groupings but in the

same time, the presence of a single class may reveal a structure of data different

from the one observed in the case of a multi-class problem. That is why k may

present higher values than those considered with approach A for some datasets.

Thus, except for iForest, each algorithm was tuned through a CV procedure,

in quest of the model which presents the best performance at the sense of the F1-

score (see Eq. 6). The model selection was naturally achieved on the training set

extracted from each dataset. The selected models were finally assessed against

a test set.

4. Results

In this section, we first propose to the reader a preliminary experiment on

synthetic data, to better understand the scope of the advocated method. We

then report the results achieved on benchmark datasets.

4.1. Preliminary experiment on synthetic data

We propose a first qualitative evaluation of our OC-Tree with ClusterSVDD

with respect to the detection of three Gaussian blobs enclosing altogether 1000

instances. The parameter settings are given below.
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ClusterSVDD OC-Tree

Figure 5: Detection of three Gaussian blobs with 2% of outliers included in the training set

ClusterSVDD OC-Tree

Figure 6: Detection of three Gaussian blobs with 5% of outliers included in the training set

• OC-Tree : γ = 0.05, α = 1, β = 0%, ν = 0.1.

• ClusterSVDD : k = 3, νSV DD = 0.1.

The parameters of OC-Tree were established in a quite penalizing way, in the

sense that setting α at 1 means a systematic revision of any division with the

risk of decomposing unnecessarily the space covered by the target instances.

Moreover, setting β at 0% means no node is dropped; this may potentially lead

to small hyper-rectangles to describe the target data.

Additional instances were added to the dataset in the form of uniformly

distributed outliers, in proportions of 2% and 5% of the initial training set size

respectively. The results are proposed in Figs. 5 and 6. Both methods detect the

blobs in the form of circles and rectangles respectively. However, it seems that
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Noise level
ClusterSVDD OC-Tree

Precision Recall Precision Recall

2% 0.998 0.917 0.998 0.985
5% 0.995 0.940 0.999 0.987

Table 5: Performance assessment on artificial data

OC-Tree is less sensitive to higher noise levels than ClusterSVDD (see Fig. 6).

Table 5 compares the performances of ClusterSVDD and OC-Tree in terms of

precision and recall.

4.2. Experiments on benchmark datasets

In the present section, we compare our algorithm to ClusterSVDD, OCSVM,

and iForest on benchmark datasets, according to the protocol summarized in

Sec. 3. Table 6 on the one hand, and Tables 7, 8 on the other hand summarize

the results for the approaches A and B respectively. We report the couple of

values Precision (P) – Recall (R) for a validation achieved on the test sets. The

results that are marked with an asterisk indicate that the corresponding method

outperforms OC-Tree of more than 2% in terms of F1-score. The lines that are

succeeded with ’(+)’ indicates that the OC-Tree achieves a score superior or

equal to the other techniques for the considered dataset.

4.2.1. Based on uniformly distributed noise – Approach A

Our first experiment was achieved on the benchmark datasets summarized

in Table 2, in which uniformly distributed noise was injected in proportions of

2, 5, 10, 15 % of the initial dataset sizes. It appears that the OC-Tree performs

favorably in comparison to the other reference methods. The improvements

achieved against iForest may be explained by the fact that the latter method

is properly intended for anomaly detection, and may thus have slightly lower

performances when the proportion of outliers in the training set is low [21],

especially for proportions of 2% and 5%. Moreover, compared to iForest, the

OC-Tree seems globally to better handle the ionosphere and satimage datasets.

Actually, the ionosphere dataset has a quite diffuse distribution of data along
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Dataset Noise level ClusterSVDD OCSVM iForest OC-Tree

Australian

2% 0.986 - 0.921 0.995 - 0.908 1.000 - 0.926 1.000 - 0.965 (+)
5% 0.973 - 0.926 0.977 - 0.922 1.000 - 0.922 1.000 - 0.970 (+)
10% 0.900 - 0.960 0.916 - 0.960 1.000 - 0.991* 0.900 - 0.996
15% 0.877 - 0.961 0.882 - 0.935 0.955 - 1.000 1.000 - 0.961 (+)

Diabetes

2% 1.000 - 0.941 1.000 - 0.941 1.000 - 0.874 0.992 - 0.965 (+)
5% 0.998 - 0.965* 0.988 - 0.957 0.996 - 0.914 0.992 - 0.911
10% 0.932 - 0.972 0.975 - 0.933 0.996 - 0.952 0.980 - 0.952
15% 0.974 - 0.897 0.974 - 0.901 0.965 - 0.988 0.992 - 0.945

Ionosphere

2% 0.972 - 0.914 0.972 - 0.897 0.981 - 0.879 1.000 - 1.000 (+)
5% 0.938 - 0.913 0.937 - 0.904 0.937 - 0.904 1.000 - 1.000 (+)
10% 0.884 - 0.939 0.880 - 0.904 0.904 - 0.912 0.983 - 1.000 (+)
15% 0.828 - 0.946 0.824 - 0.920 0.832 - 0.929 0.982 - 1.000 (+)

Iris

2% 1.000 - 0.902 1.000 - 0.961 1.000 - 0.922 1.000 - 0.941
5% 0.977 - 0.860 0.980 - 0.960 0.978 - 0.900 0.943 - 1.000 (+)
10% 0.979 - 0.920 1.000 - 0.940* 0.958 - 0.920 0.978 - 0.900
15% 0.902 - 0.920 0.889 - 0.960 0.889 - 0.960 0.862 - 1.000 (+)

Satimage

2% 0.995 - 0.945 0.996 - 0.957 0.996 - 0.890 0.996 - 0.968 (+)
5% 0.986 - 0.974 0.986 - 0.971 0.984 - 0.914 0.979 - 0.981 (+)
10% 0.991 - 0.981 0.977 - 0.946 0.952 - 0.922 0.981 - 0.969
15% 0.990 - 0.963 0.966 - 0.937 0.907 - 0.934 0.980 - 0.968

Segment

2% 0.999 - 0.963 0.999 - 0.974 1.000 - 0.912 1.000 - 1.000 (+)
5% 0.974 - 0.970 0.978 - 0.970 1.000 - 0.940 1.000 - 1.000 (+)
10% 0.927 - 0.980 0.930 - 0.979 1.000 - 0.991 0.993 - 1.000 (+)
15% 0.898 - 0.970 0.928 - 0.946 0.976 - 1.000* 0.872 - 0.996

Table 6: Results - Approach A (P-R)

some dimensions, which involves that some normal instances may lie far away

from the others. As it is built on a random choice of attributes, the iForest

method is likely to detect these instances as outliers. On the opposite, the OC-

Tree is built on attributes which concentrate the instances, so the ones lying

outside these concentrations may be really perceived as outliers. As regards

the satimage dataset, the low proportion of outliers in such a high dimensional

dataset may have disadvantaged the iForest method, with a difference in terms

of F1-score that can reach 5%. As regards the performances of OCSVM, they

are in some cases lower than OC-Tree, which may be explained by the fact that

OCSVM encloses data within a single boundary and can thus not exactly adjust

to the structure of data. Finally, as mentioned previously, ClusterSVDD may

be sensitive to noise, which explains why the OC-Tree provides better results in

some cases.
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Dataset Noise level ClusterSVDD OCSVM iForest OC-Tree

Australian (-1)

2% 0.984 - 0.945 0.983 - 0.914 0.991 - 0.875 0.992 - 0.977 (+)
5% 0.936 - 0.936 0.935 - 0.920 0.959 - 0.928 0.945 - 0.960 (+)
10% 0.902 - 0.960 0.919 - 0.912 0.941 - 0.896 0.890 - 0.968 (+)
15% 0.819 - 0.934 0.822 - 0.917 0.886 - 0.901 0.834 - 1.000 (+)

Australian (+1)

2% 0.980 - 0.951 0.980 - 0.951 0.980 - 0.951 0.990 - 0.980 (+)
5% 0.950 - 0.950 0.950 - 0.941 0.949 - 0.921 0.943 - 0.990 (+)
10% 0.906 - 0.950 0.932 - 0.950 0.947 - 0.891 0.901 - 0.990 (+)
15% 0.881 - 0.960 0.872 - 0.950 0.855 - 0.940 0.860 - 0.980

Diabetes (-1)

2% 0.978 - 0.978* 0.977 - 0.966* 0.976 - 0.910 0.976 - 0.910
5% 0.957 - 0.978* 0.956 - 0.967* 0.954 - 0.922* 0.952 - 0.878
10% 0.944 - 0.934 0.926 - 0.956 0.928 - 0.846 0.926 - 0.956 (+)
15% 0.863 - 0.921 0.876 - 0.955 0.874 - 0.933 0.862 - 0.910

Diabetes (+1)

2% 0.981 - 0.933 0.980 - 0.903 0.980 - 0.879 0.982 - 0.988 (+)
5% 0.945 - 0.951 0.956 - 0.927 0.955 - 0.909 0.942 - 0.982 (+)
10% 0.895 - 0.962 0.905 - 0.956 0.909 - 0.938 0.881 - 0.975
15% 0.853 - 0.938 0.858 - 0.938 0.871 - 0.919 0.856 - 0.963 (+)

Ionosphere (-1)

2% 0.974 - 0.881 0.967 - 0.690 0.971 - 0.810 0.977 - 1.000 (+)
5% 0.946 - 0.833 0.935 - 0.690 0.946 - 0.833 0.955 - 1.000 (+)
10% 0.872 - 0.829 0.857 - 0.732 0.872 - 0.829 0.943 - 0.805 (+)
15% 0.889 - 0.930 0.861 - 0.721 0.895 - 0.791 0.905 - 0.884 (+)

Ionosphere (+1)

2% 1.000 - 0.960 1.000 - 0.960 1.000 - 0.893 0.986 - 0.973 (+)
5% 0.973 - 0.973 0.986 - 0.946 0.986 - 0.919 0.947 - 0.959
10% 0.972 - 0.932 0.973 - 0.959 0.956 - 0.878 0.973 - 0.973 (+)
15% 0.920 - 0.958* 0.909 - 0.972 0.920 - 0.958* 0.861 - 0.944

Iris (1)

2% 1.000 - 1.000* 1.000 - 1.000 1.000 - 0.941* 1.000 - 0.882
5% 0.933 - 0.824 1.000 - 0.824 1.000 - 0.882 1.000 - 0.882 (+)
10% 0.938 - 0.833 0.938 - 0.833 1.000 - 1.000* 1.000 - 0.889 (+)
15% 0.941 - 0.842 0.941 - 0.842 1.000 - 1.000* 1.000 - 0.895

Iris (2)

2% 1.000 - 1.000 1.000 - 1.000 1.000 - 0.824 1.000 - 1.000 (+)
5% 0.944 - 1.000 0.944 - 1.000 0.944 - 1.000 0.944 - 1.000 (+)
10% 1.000 - 1.000 0.947 - 1.000 1.000 - 1.000 1.000 - 1.000 (+)
15% 1.000 - 1.000* 0.947 - 0.947 1.000 - 1.000* 0.947 - 0.947

Iris (3)

2% 1.000 - 0.824 1.000 - 0.824 1.000 - 0.824 1.000 - 1.000 (+)
5% 0.941 - 0.941* 0.933 - 0.824 0.933 - 0.824 0.938 - 0.882
10% 1.000 - 1.000* 1.000 - 0.722 1.000 - 1.000* 1.000 - 0.833
15% 0.929 - 0.684 1.000 - 0.789 1.000 - 0.895 1.000 - 0.895 (+)

Table 7: Results (P-R) - Approach B
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Dataset Noise level ClusterSVDD OCSVM iForest OC-Tree

Satimage (1)

2% 0.997 - 0.975 0.991 - 0.955 1.000 - 0.905 0.997 - 0.958
5% 0.977 - 0.964 0.980 - 0.972 0.997 - 0.952 0.983 - 0.972 (+)
10% 0.958 - 0.992 0.955 - 0.986 0.986 - 0.981 0.970 - 0.992 (+)
15% 0.914 - 0.981 0.914 - 0.978 0.959 - 0.983 0.918 - 0.992

Satimage (2)

2% 0.980 - 0.942 0.980 - 0.949 0.986 - 0.872 0.979 - 0.910
5% 0.994 - 0.981 1.000 - 0.975 1.000 - 0.898 0.980 - 0.955
10% 0.910 - 0.987 0.915 - 0.981 0.967 - 0.942 0.937 - 0.968
15% 0.925 - 0.948 0.902 - 0.955 0.950 - 0.987* 0.884 - 0.981

Satimage (3)

2% 0.984 - 0.984 0.984 - 0.981 1.000 - 0.953 0.987 - 0.959
5% 0.984 - 0.972 0.984 - 0.966 0.994 - 0.957 0.966 - 0.975
10% 0.942 - 0.985 0.944 - 0.988 0.979 - 0.985 0.972 - 0.948
15% 0.906 - 0.981 0.917 - 0.985 0.944 - 0.988 0.924 - 0.971

Satimage (4)

2% 0.984 - 0.933 0.984 - 0.933 0.992 - 0.926 0.984 - 0.933 (+)
5% 0.969 - 0.941 0.977 - 0.941 0.992 - 0.889 0.964 - 0.985 (+)
10% 0.907 - 0.948 0.920 - 0.948 0.961 - 0.918 0.917 - 0.985 (+)
15% 0.869 - 0.940 0.910 - 0.978 0.928 - 0.955 0.905 - 0.993 (+)

Satimage (5)

2% 0.980 - 0.948 0.979 - 0.935 0.993 - 0.869 0.966 - 0.941
5% 0.967 - 0.961 0.966 - 0.947 0.993 - 0.882 0.931 - 0.974
10% 0.937 - 0.955 0.932 - 0.968 0.942 - 0.929 0.921 - 0.968
15% 0.876 - 0.993 0.883 - 0.953 0.898 - 0.940 0.865 - 9.980

Satimage (6)

2% 0.997 - 0.977 0.994 - 0.977 1.000 - 0.951 0.994 - 0.986 (+)
5% 0.977 - 0.968 0.977 - 0.971 0.988 - 0.942 0.980 - 0.991 (+)
10% 0.948 - 0.986 0.950 - 0.986 0.977 - 0.980 0.961 - 0.980
15% 0.910 - 0.972 0.931 - 0.952 0.941 - 0.997 0.966 - 0.957

Segment (1)

2% 0.982 - 0.973* 0.982 - 0.982* 1.000 - 0.855 1.000 - 0.873
5% 0.981 - 0.972 0.972 - 0.981 1.000 - 0.906 1.000 - 0.934
10% 0.915 - 1.000 0.938 - 0.991 1.000 - 1.000* 0.945 - 0.972
15% 0.945 - 0.963 0.938 - 0.981 0.973 - 1.000* 0.919 - 0.953

Segment (2)

2% 0.991 - 0.955 0.990 - 0.936 1.000 - 0.882 1.000 - 0.927
5% 0.981 - 0.972 0.981 - 0.962 1.000 - 0.934 0.955 - 0.991 (+)
10% 0.910 - 0.944 0.927 - 0.944* 1.000 - 0.972 0.955 - 0.991
15% 0.855 - 0.991 0.851 - 0.963* 0.964 - 1.000* 0.990 - 0.897

Segment (3)

2% 0.981 - 0.918 0.981 - 0.936 0.990 - 0.927 1.000 - 0.982 (+)
5% 0.950 - 0.896 0.949 - 0.887 0.939 - 0.877 0.962 - 0.943 (+)
10% 0.909 - 0.935 0.925 - 0.925 0.951 - 0.916 0.904 - 0.972 (+)
15% 0.862 - 0.935 0.860 - 0.916 0.907 - 0.907 0.866 - 0.963 (+)

Segment (4)

2% 1.000 - 0.945 1.000 - 0.955 0.990 - 0.918 0.991 - 1.000 (+)
5% 0.952 - 0.934 0.981 - 0.962 0.990 - 0.925 0.981 - 0.991 (+)
10% 0.937 - 0.972 0.945 - 0.963 0.971 - 0.925 0.922 - 0.991 (+)
15% 0.898 - 0.991 0.906 - 0.991 0.927 - 0.953 0.869 - 0.991

Segment (5)

2% 0.981 - 0.945 0.981 - 0.964 0.990 - 0.927 0.991 - 0.964 (+)
5% 0.952 - 0.934 0.962 - 0.962 0.963 - 0.972 0.955 - 0.991 (+)
10% 0.917 - 0.925 0.920 - 0.963 0.936 - 0.963 0.921 - 0.981 (+)
15% 0.864 - 0.953 0.858 - 0.963 0.938 - 0.981* 0.862 - 0.991

Segment (6)

2% 0.991 - 0.964 0.991 - 0.964 1.000 - 0.909 0.990 - 0.936
5% 0.971 - 0.943 0.980 - 0.934 0.990 - 0.925 0.981 - 0.953 (+)
10% 0.955 - 0.991 0.964 - 0.991 0.981 - 0.991* 0.930 - 0.991
15% 0.946 - 0.981 0.946 - 0.981 0.964 - 0.991* 0.898 - 0.991

Segment (7)

2% 1.000 - 0.918 1.000 - 0.909 1.000 - 0.945 1.000 - 0.982 (+)
5% 0.970 - 0.925 0.970 - 0.906 1.000 - 0.925 1.000 - 0.972 (+)
10% 0.909 - 0.935 0.919 - 0.953* 1.000 - 0.981* 0.886 - 0.944
15% 0.863 - 0.944 0.871 - 0.944 0.939 - 1.000* 0.875 - 0.981

Table 8: Results (P-R) - Approach B
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4.2.2. Based on the one vs rest strategy – Approach B

In this case, the multi-class problems related to the considered datasets are

converted to one-class problems in which the representatives of the other classes

are considered as outliers, injected in proportions of 2, 5, 10, 15 % of the one-

class dataset sizes. In such a situation, we can expect that reference methods

such as OCSVM and iForest perform better since they handle the data of each

class separately. De facto, the OC-Tree shows overall smaller differences in

performance.

5. Application to the diagnosis of ADHD

In the previous section, we compared the OC-Tree on benchmark datasets

with reference one-class methods, against which it proved to perform favorably.

In the present section, we propose a real-world case study in which an algorithm

such as the OC-Tree is worth considering. The application is related to the

diagnosis of Attention Deficit Hyperactivity Disorder (ADHD).

5.1. Problem statement

ADHD is a neurodevelopmental disorder in children which has been subject

to a considerable number of studies, including those conducted on the ADHD-

200 collection [36]. This open and free database has been made available since

2012 in order to advance the state of knowledge about ADHD [37].

The epidemiology of ADHD depends on gender, and evidence suggests that

the disorder affects more often boys than girls [38]. Such a gender-differentiated

distribution poses some concerns about the development of diagnosis aid models

through multi-class classification. Indeed, unbalanced distributions of ADHD

and NeuroTypical (NT) subjects are often observed for each gender group in the

training sets related to ADHD. This applies to the ADHD-200 collection, and

more particularly to the corresponding NYU data subset. The boys’ training

sample includes approximately twice as many ADHD subjects as NT ones, and

the reverse trend is observed in the girls’ training sample. Fig. 7 presents the
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Predicted as . NT ADHD

NT 3 5

ADHD 1 19

Predicted as . NT ADHD

NT 4 0

ADHD 5 4

Figure 7: Confusion matrices achieved on the NYU test set for boys (left) and girls (right),
based on a multi-class decision tree [39]

confusion matrices related to the predictions recently achieved on the NYU test

set for boys and girls, based on a multi-class decision tree (according to the

methodology proposed in [39]). Actually, these results show the effects of class

unbalance within each gender group in the training set. Though providing an

overall satisfactory predictive accuracy, the final predictive model has a high

(resp. low) sensitivity and a low (resp. high) specificity in boys (resp. girls).

This bias is among the reasons that explain the limited applicability of such

a binary predictive model in the clinical practice setting. The OC-Tree may

alleviate this issue. We thus propose to tackle ADHD diagnosis on a gender-

differentiated basis, in focusing on the description of the neuropathology with

the OC-Tree.

5.2. Data

We consider the preprocessed ADHD-200 collection [40], and focus on the

NYU sample. Table 9 presents the distribution of the training and test data,

based on the gender and the diagnostic labels. For each subject, the sample in-

cludes blood-oxygen-level-dependent signals [41], at resting-state, given a brain

parcellation in 90 regions of interest (cf. AAL90 atlas [42]). We considered

the variance of the signals as predictors, since they proved to achieve success-

ful predictions [43, 39]. They were computed for brain regions included in two

functional systems which were associated to ADHD-related abnormalities in the

literature: the limbic system [39] and the Default Mode Network (DMN) [44, 45].

5.3. Tuning and assessment

In this context, a quick visualization of the data shows that the instances

are concentrated within a single grouping. Thus, there are no clusters to raise:
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Girls Boys

Training set
NT 50 43
ADHD 25 92

Test set
NT 4 8
ADHD 9 20

Table 9: Distribution of the NYU sample considered in our study

Training

ADHD
TestTest

NT

Figure 8: Cross-validation procedure used to tune the OC-Tree for ADHD prediction

26



the models may be reduced to a set of descriptive rules. This means that the

parameter α has no influence here. Five values were considered in order to tune

parameter ν = {0.05, 0.1, 0.15, 0.2, 0.25}. The parameter was tuned through

a 5-fold CV procedure, which is depicted in Fig. 8. The NT subjects of the

training set are fully used at each iteration as a test fold in combination to the

one extracted from the partitioning of the ADHD training set into 5 folds.

In OCC, performance metrics such as those presented in Sec. 3.3 are generally

computed with regards to the target class, i.e. ADHD in this case. However, in

the specific case of psychiatric diagnosis, there is a need for cautious predictions,

even though that would imply to wrongly predict a subject as neurotypical [46].

In other terms, high specificity and a reasonable level of sensitivity are require-

ments that a predictive model should meet in this context. We thus propose to

assess the model towards its capability to predict NT cases, and thus to compute

the metrics with respect to the NT group.

The models which achieve the best F1-score and precision were held as rel-

evant for boys and girls respectively. Indeed, let us recall that our choice to

assess the performance of the OC models towards the class of typical controls is

motivated by the need to favor high levels of specificity. However, this is an al-

ready existing trend in girls, given that there are generally more NT girls than

ADHD ones. Thus, to avoid falling into the traps of a somewhat insensitive

model and to ensure that ADHD cases are predicted in a reasonable number of

situations, we focus on the precision whose maximization is achieved through a

minimization of the number of false NT subjects.

5.4. Classification framework

On a gender-differentiated basis, we need to predict a diagnosis based on

the activity of brain regions included in the limbic system and/or the DMN.

As announced, this is achieved through the practice of OCC, in targeting the

ADHD group. For such a purpose, we assessed the relevance of four distinct

options presented below.

• O1: train the OC-Tree model on the features related to the limbic system.
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• O2: train the OC-tree model on the features related to the DMN.

• O3: train the OC-tree model on features related to both the limbic system

and DMN.

• O4: constitute an ensemble of OC classifiers by the aggregation of two

models trained on the limbic and DMN features separately.

In the case of the fourth option, a subject is diagnosed with ADHD once he/she

tests positive with both models. In the other cases, the subject is predicted as

disease-free, concerned with the need for a cautious diagnosis [46].

5.5. Final models and performance

In boys, the ensemble strategy as defined by option O4 appeared to be

the most successful, with a F1-score of 65.3% on the training set (ν = 0.25).

The results were most tightly contested in girls between option O1 and O3,

yielding respectively precision rates of 93.6% and 93.3% (ν = 0.15). We selected

the latter as a final model since it provides a more detailed description of the

pathology than O1, which is based only on two rules. Fig. 9 presents the final

confusion matrices for boys and girls.

Tables 10 and 11 present the decision rules (expressed in terms of the log-

arithm of the variance) related to boys and girls respectively. Note that (L)

and (R) denote brain regions included in the Left and Right hemispheres re-

spectively. Our results confirm that the resting-state activity of both the limbic

system and the DMN brings some discriminative information for ADHD diagno-

sis. The mental condition appears to be more complex to describe in boys, and

requires the combination of two distinct models. The girls’ model is by contrast

more minimalist. These important differences between boys and girls in terms

of models strengthens our conviction that a gender-differentiated classification

is definitely pertinent.

In alleviating the issue of class imbalance within each gender group, we

could improve the balance between the diagnostic specificity and sensitivity. If

we compare with the confusion matrices presented in Figs. 7 and 9, in boys, the

28



Predicted as . NT ADHD

NT 6 2

ADHD 6 14

Predicted as . NT ADHD

NT 4 0

ADHD 1 8

Figure 9: Confusion matrix achieved by the OC-Tree on the NYU test set for boys (left) and
girls (right)

improvement made on specificity (75% against 37.5% previously), was achieved

at the expense of the sensitivity (70% against 95% previously). In girls, the sen-

sitivity was doubled without loss of specificity. The overall prediction accuracy

was improved as well (78.0% against 73.2%).

6. Discussion

In Sec. 4, we showed that the OC-Tree presents favorable performances in

comparison to reference methods such as ClusterSVDD, OCSVM, and iForest,

in similar conditions. Depending on the targeted objectives, the OC-Tree may

be a wise choice to achieve a OCC task.

The presence of noise in the data may impair the performances of a method

like ClusterSVDD, while as a density-based method, the OC-Tree shows more

ability to reject such outliers in the data. Moreover, the OC-Tree is developed

to be as compact as possible, which constitutes a key to interpretability. In-

deed, the predictive model is based on the most discriminative attributes to

achieve OCC while ClusterSVDD and OCSVM do not consider such a selec-

tion; the corresponding models are computed based on the whole set of training

attributes. The OC-Tree also detects automatically the number of groupings

related to the class targeted by the classification. This constitutes a significant

advantage compared to ClusterSVDD which requires to set the number of pos-

sible clusters as an input parameter. As compared to the iForest technique, the

OC-Tree is more compact and readable while being able at the same time to

perform outlier rejection. Finally, the OC-Tree better fits to the structure of

the data as compared to OCSVM, since it allows the detection of sub-concepts

of a single class as target groupings.
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In Sec. 5, we were interested in a case study related to the diagnosis of

ADHD. Through this study, we could:

• show the interest of considering the OC-Tree rather than a multi-class

decision tree, given the effective availability of the data ;

• highlight the advantageous interpretability of the OC-Tree, which is an

important characteristic towards a concrete clinical applicability;

• consider one-class ensembles that may help in modeling complex condi-

tions while preserving the interpretability of the predictive framework.

These promising results tend to show that our model may be transposable to

medical practice as a diagnosis aid tool.

7. Conclusion & future work

In some applications, the limited availability of data has lead to look for

alternatives to the traditional supervised techniques. The practice of One-Class

Classification (OCC) has been considered in this context. This area of machine

learning has generated a considerable interest with the development of new

methods, some of which were adapted from supervised classification techniques.

In this work, we proposed a one-class decision tree by completely rethink-

ing the splitting mechanism considered to build such models. Our One-Class

Tree (OC-Tree) may be actually seen as an adaptation of the Kernel Density

Estimation (KDE) for the sake of interpretability, based on a subset of sig-

nificant attributes for the purpose of prediction. In that respect, our method

has shown favorable performances in comparison to reference methods such as

ClusterSVDD, one-class SVM and isolation forest. Against these approaches,

our one-class model is quite simple while being in the same time transparent

and performant. Such qualities are particularly valuable for medical diagno-

sis, where a balanced representation of the classes is not always ensured. We

could illustrate the benefits of the OC-Tree for the diagnosis of ADHD. Our
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results show that the OC-Tree constitutes a step towards greater applicability

of diagnosis aid models.

This work leaves some interesting perspectives. In particular, the parametriza-

tion of the KDE remains an open question as regards the computation of the

bandwidth h and the use of other kernels K. Indeed, on the one hand, our pro-

posal is based on a Gaussian kernel attractive by its mathematical properties,

but the pertinence of other configurations may be studied on a comparative

basis. On the other hand, deduced based on the Silverman’s rule of thumb, h

is quite sensitive to the training set content. In our proposal, this sensitivity is

controlled by setting a pre-pruning mechanism. In the future, we would like to

rise to the challenge of establishing a rule able to address this issue of sensitivity.
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