
1	Introduction
Deep	learning	paradigm	is	arguably	the	fastest	growing	branch	of	machine	learning	and	artificial	intelligence	(AI)	at	the	moment	[1,2].	Deep	neural	networks	(DNNs)	are	entirely	based	on	the	artificial	neural	networks	and

probabilistic	type	of	uncertainties	[3].	They	have	demonstrated	eye-catching	successes	on	image	classification	[4,5],	speech	processing	[6,7]	and	many	other	complex	problems	[8,9]	that	traditional	machine	learning	approaches	are

struggling	with.

Despite	of	the	impressive	advances	DNNs	have	achieved,	the	research	communities	and	enterprises	are	increasingly	demanding	explainable	AI	[10,11].	Indeed,	DNN-based	AI	algorithms	nowadays	are	more	frequently	getting

involved	for	making	decisions	in	financial	and	safety-critical	applications	[12,13].	However,	DNNs	are	the	typical	type	of	“black	box”	models	with	a	very	high	level	of	complexity	level	that	only	computers	can	understand.	It	is	reported

that	such	“black	box”	models	can	provide	a	wrong	outcome	with	high	confidence	by	modifying	just	one	pixel	in	the	input	images	[14].	The	lack	of	transparency	and	explainability	can	pose	a	significant	obstacle,	especially	for	highly

regulated,	high-risk/high-value	 industries.	Therefore,	 there	 is	a	high	demand	 in	developing	alternative	architectures,	 learning	and	model	structure	paradigms	 that	can	provide	offer	[15]:	 (1)	high	 levels	of	precision	comparable	or

surpassing	the	level	achieved	by	humans	or/and	by	the	state-of-the-art	methods	(including	DNNs);	(2)	be	highly	transparent,	interpretable,	easy	to	explain	and	use	for	humans;	(3)	computationally	efficient,	fast	to	train	and	use;	(4)

computational	resource	and	training	data	lean	—	able	to	be	trained	with	a	single	or	handful	or	examples	per	class,	not	requiring	computer	accelerators,	such	as	GPU,	HPC,	etc.

As	one	of	the	pillars	of	the	computational	intelligence,	fuzzy	rule-based	(FRB)	systems	are	a	mathematical	tool	to	describe	the	human	reasoning	and	decision-making	processes	[11].	FRB	systems	take	the	form	of	zero-order,
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Abstract

Pioneering	 the	 traditional	 fuzzy	 rule-based	 (FRB)	 systems,	 deep	 rule-based	 (DRB)	 classifiers	 are	 able	 to	 offer	 both	 human-level	 performance	 and	 transparent	 system	 structure	 on	 image	 classification	 problems	 by

integrating	zero-order	fuzzy	rule	base	with	a	multi-layer	image-processing	architecture	that	is	typical	for	the	deep	learning	paradigm.	Nonetheless,	it	is	frequently	observed	that	the	inner	structures	of	DRB	classifiers	can

become	over	sophisticated	and	not	interpretable	for	humans	when	applied	to	large-scale,	complex	problems.	To	tackle	the	issue,	one	feasible	solution	is	to	construct	a	tree	structural	classification	model	by	aggregating	the

possibly	huge	number	of	prototypes	identified	from	data	into	a	much	smaller	number	of	more	descriptive	and	highly	abstract	ones.	Therefore,	in	this	paper,	we	present	a	novel	hierarchical	deep	rule-based	(H-DRB)	approach

that	is	capable	of	summarizing	the	less	descriptive	raw	prototypes	into	highly	generalized	ones	and	self-arranging	them	into	a	hierarchical	prototype-based	structure	according	to	their	descriptive	abilities.	By	doing	so,	the	H-

DRB	classifier	can	offer	the	high-level	performance	and,	most	importantly,	full	transparency	and	human-interpretability	foron	various	problems	including	large-scale	ones.	The	proposed	concept	and	generical	principles	are

verified	through	numerical	experiments	based	on	a	wide	variety	of	popular	benchmark	image	sets.	Numerical	results	demonstrate	that	the	promise	of	the	H-DRB	approach.
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first-order,	or	higher-order	IF…THEN	rules	that	are	highly	interpretable	by	humans,	and	they	have	been	successfully	applied	for	various	classification	problems	[10,16].	The	majority	of	modern	FRB	systems	are	designed	for	processing

nonstationary	streaming	data	“on	the	fly”	by	self-updating	and	self-evolving	itstheir	system	structure	and	meta-parameters	to	follow	the	changing	data	pattern.	The	most	popular	FRB	models	include,	but	are	not	limited	to,	DENFIS

[17],	SAFIS	[18],	PANFIS	[19]	and	IT2FNN	[20].	Currently,	fuzzy	rule-basedFRB	systems	have	been	successfully	implemented	for	many	real-world	applications	[21].	Interested	readers	are	referred	to	the	recent	survey	[22]	for	more

information.	Nonetheless,	it	is	also	generally	recognized	that	FRB	systems	usually	could	not	reach	the	same	level	performance	as	DNNs	for	very	complex,	large-scale	problems,	such	as	image	recognition,	due	to	the	simpler	system

structure	and	operating	mechanism	than	DNNs.

By	combining	the	zero-order	self-organizing	FRB	system	with	a	multi-layer	image-processing	architecture,	a	generic	approach	for	image	classification	named	deep	rule-based	(DRB)	classifier	is	proposed	in	[23].	Instead	of	using

hundreds	of	millions	of	weights	which	bear	no	direct	and	clear	link	with	the	problem,	the	DRB	classifier	is	defined	by	the	extracted/identified	meaningful	prototypes.	It	is	able	to	demonstrate	highly	accurate	performance	on	image

classification	on	par	with	DNNs,	and,	at	 the	same	time,	offers	high-level	 transparency	and	human-interpretability	 that	are	typical	 for	 traditional	FRB	systems	only.	Due	to	 the	nature	of	 the	image	classification	problems,	 the	 DRB

classifier	will	demonstrate	stronger	performance	if	more	images	with	better	quality,	higher	variation	and	diversity	are	provided	for	training	[24].	Given	a	large-scale	training	set,	depending	on	the	complexity	of	data	structure,	the	DRB

classifier	may	identify	a	huge	number	of	prototypes	from	training	samples	to	achieve	highly	accurate	classification	performance	surpassing	the	DNN-based	alternatives.	However,	gaining	too	many	prototypes	significantly	impairs	the

transparency	and	human-interpretability	of	DRB	because	they	largely	increase	the	overall	system	complexity	of	the	overall	system	is	largely	increased.	These	prototypes	also	become	a	heavy	computational	burden	for	both	the	learning

and	decision-making	processes	of	the	classifier	because	each	training/validation	image	will	be	compared	with	all	identified	prototypes	in	terms	of	their	visual	similarity.

A	commonly-used	approach	to	address	large-scale	multi-class	classification	problems	is	to	learn	a	hierarchical	inter-class	structure	from	data	tofor	performing	classification	in	a	coarse-to-fine	manner	[25–30].	Training	a	tree

classifier	to	organize	different	categories	hierarchically	based	on	their	visual	similarity	can	effectively	improve	the	computational	efficiency	during	decision-making	and	also	simplify	the	complexity	of	the	classification	task	itself	[30].

However,	the	majority	of	existing	hierarchical	classifiers	suffer	from	the	problem	of	inter-level	error	propagation	due	to	the	iterative	structural	optimization	process	involved	during	system	identification	[30,31].	More	recently,	a	novel

hierarchical	prototype-based	(HP)	approach	described	in	[32]	presented	an	alternative	tree	structure	for	classification	bypassing	the	aforementioned	problem	by	self-organizing	prototype-based	hierarchies	derived	from	training	data

per	category	individually.	Nonetheless,	the	main	issue	with	the	HP	classifier	is	that	its	systemmodel	structuredepth	and	classification	performancestructure	are	controlledinfluenced	by	externally	controlled	parameters.

In	 this	paper,	we	propose	a	novel	hierarchical	deep	rule-based	(H-DRB)	classifier,	which	 is	capable	of	self-organizing	a	multi-layer	premise	part	 for	each	IF…THEN	rule	 from	the	 identified	prototypes	per	class	 through	an

autonomous	process	free	from	user-	and	problem-specific	parameters.	The	bottom	layer	of	the	hierarchical	premise	part	is	composed	of	all	the	prototypes	identified	directly	during	the	training	process,	and	the	top	layer	consists	of

much	less	but	more	descriptive	and	representative	prototypes.	The	proposed	H-DRB	classifier	can	achieve	very	high	classification	performance	by	using	the	top-layer	prototypes	for	classification,	on	par	with,	or	even	surpassing	its

precursor	 (DRB)	 as	well	 as	many	 state-of-the-art	DNN-based	approaches,	 but	with	much	higher	 computational	 efficiency	 for	 decision-making.	 In	 addition,	 since	 the	 top	 layer	 of	 the	H-DRB	 classifier	 has	 orders	 of	 magnitude	 less

prototypes,	the	learned	knowledge	can	be	conveniently	visualized	and	explained	to	end	users,	which	eenablesing	them	to	quickly	learn	the	general	picture	of	the	problems.	Numerical	examples	based	on	various	widely	used	benchmark

image	data	sets	are	performed	to	demonstrate	the	effectiveness	and	validity	of	the	proposed	concept	and	general	principles.

In	summary,	the	main	contributions	of	this	paper	include:	(1)	a	new	approach	that	self-organizes	multi-layer	hierarchical	premise	parts	for	zero-order	IF…THEN	rules;	(2)	the	capability	to	summarize	the	extracted	knowledge

from	data	into	a	very	small	number	of	highly	descriptive	and	representative	prototypes;	(3)	the	ability	of	performing	extremely	efficient	decision-making	with	a	high	level	of	precision.	Moreover,	the	proposed	H-DRB	approach	is	also

free	from	externally	controlled	parameters,	prior	assumptions	on	data	generation	model	as	well	as	the	problem	of	inter-level	error	propagation.

The	remainder	of	this	paper	is	organized	as	follows.	Section	2	summarizes	the	architecture,	training	and	validation	processes	of	the	DRB	classifier.	The	algorithmic	process	of	self-organizing	a	hierarchical	prototype-based

structure	is	presented	in	Section	3.	Numerical	examples	are	given	in	Section	4,	and	this	paper	is	concluded	by	Section	5.

2	Deep	rule-based	classifier
In	this	section,	the	general	architecture,	algorithmic	procedures	of	the	DRB	classifier	are	briefly	described	to	make	this	paper	self-contained.	Key	notations	are	summarized	in	Table	1	for	clarity.

Table	1	Definitions	of	key	notations	used	in	this	paper.

Notations Definitions

Number	of	image	classes

A	particular	image

	C

	I



Feature	vector	of	

Data	density

Multimodal	data	density

Discriminative	representation	extracted	from	 by	the	feature	descriptor

Data	space

Dimensionality	of	the	data	space

Number	of	prototypes	of	the	 th	class

Degree	of	visual	similarity

Number	of	processed	training	images	of	the	 th	class

Global	mean	of	feature	vectors	of	training	images	of	the	 th	class.

Raw	prototypes	of	the	 th	class

Feature	vectors	of	

The	 th	raw	prototype	of	the	 th	class

Feature	vector	of	

Cardinality	of	

Radius	of	the	influential	area	area	of	influence	of	

Highly	descriptive	prototypes	of	the	 th	class	obtained	after	the	 filtering	round

Feature	vectors	of	

The	 th	highly	descriptive	prototype	of	the	 th	class	obtained	after	the	 filtering	round

Feature	vector	of	

Cluster	formed	around	

Cardinality	of	

Number	of	filtering	rounds	before	the	algorithm	converges

	x 	I

	D

	DM

	F(I) 	I	

	RM

	M

	Ni 	i	

	λi

	Ki 	i	

	μi 	i	

	{P}i 	i	

	{p}i 	{P}i

	Pi,j 	j	 	i	

	pi,j 	Pi,j

	Si,j 	Pi,j

	ri,j 	Pi,j

	 	i	 	tth	

	 	

	 	j	 	i	 	tth	

	 	

	 	

	 	

	Ti



Data-driven	threshold	for	identifying	neighbouring	prototypes

2.1	General	architecture
The	general	architecture	of	a	DRB	classifier	is	given	by	Fig.	1	[23].	As	we	can	see	from	this	figure,	a	the	typical	DRB	classifier	is	composed	of	the	following	four	components:

(1)	Pre-processing	module.

This	module	facilitates	the	subsequent	feature	extraction	process	by	involving	a	number	of	commonly	used	pre-processing	techniques	for	data	preparation	and	augmentation.	This	can	largely	improve	the	generalization	ability

of	 the	 DRB	 classifier.	 Thus,	 in	 practice,	 the	 pre-processing	 module	 usually	 consists	 of	 a	 number	 of	 sub-layers,	 and	 these	 sub-layers	 have	 different	 functionalities,	 for	 example,	 mean	 subtraction,	 normalization,	 rotation,	 scaling,

segmentation	[23].

(2)	Feature	descriptor.

The	feature	descriptor	converts	each	image	to	a	more	informative	and	meaningful	vector	form:	 by	projecting	it	into	a	new	data	space	 ( is	the	dimensionality	of	the	data	space)	[23].	F stands	 for	 the	 feature

extraction	process,	and	 represents	the	feature	vector	of	a	particular	image	 extracted	by	the	descriptor,	which	can	be	of	any	types,	including	the	low-level	[33]	or	high-level	[34–36]	ones.	An	ensemble	of	different	 feature

descriptors	can	may	be	created	to	further	improve	the	descriptive	ability.

(3)	Massively	parallel	rule	base.

The	massively	parallel	rule	base	is	the	“learning	engine”.	This	component	is	an	ensemble	of	massively	parallel	IF…THEN	rules	identified	through	a	fully	autonomous	and	highly	human-interpretable	manner.	The	premise	part	of

each	IF…THEN	rule	is	composed	of	a	(possibly	huge)	number	of	prototypes	identified	from	the	training	images	of	a	particular	class	(thus,	one	rule	per	class),	and	is	formulated	as	[23]:

where	“ ”	denotes	similarity,	which	is	a	form	of	 fuzzy	degree	of	membership;	 is	the	 th	prototype	of	the	 th	class,	 ;	 is	 the	number	of	prototypes	of	 the	 th	class;	 and	 is	 the	 number	 of	 image

classescategories	in	the	training	set.

(4)	Decision-maker.

This	component	determines	the	semantic	label	of	each	validation	image.

2.2	System	identification	process
In	this	subsection,	the	learning	process	of	 the	DRB	classifier	 is	described.	In	the	following	algorithmic	procedure,	the	identification	process	of	the	 th	IF…THEN	rule	 is	given.	The	same	process	can	be	applied	to	all	other

IF…THEN	rules	within	the	same	rule	base	[23].
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Fig.	1	General	architecture	of	DRB	classifiers.
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The	identification	process	of	the	i IF…THEN	rule:

Step	1.	The	feature	vector	of	the	current	image	of	the	 th	class,	 is	extracted	and	normalized	by	the	its norm:

where	 .

If	this	is	the	first	image,	namely,	 ,	the	global	meta-parameters	of	the	 th	IF…THEN	rule	are	initialized	by:

where	 is	the	number	of	prototypes;	 denotes	the	global	mean	of	feature	vectors	of	images	of	the	 th	class.	The	lLocal	meta-parameters	of	the	first	prototype	of	the	 th	IF…THEN	rule	are	then	initialized	as:

where	 is	 the	 feature	 vector	 of	 ;	 is	 the	 cardinality	 of	 (number	 of	 images	 associated	 with	 );	 is	 the	 radius	 of	 the	 area	 of	 influence	 of	 ;	 is	 a	 small	 value	 to	 stabilize	 ,	 and	

.	At	the	end,	the	 th	IF…THEN	rule	is	initialized	as:

Otherwise	(namely,	 ),	the	global	mean	 is	updated	by	 :

Step	2.	The	dData	densitiesy	values	at	 and	 ,	 ,…,	 are	calculated	by	Eq.	(7):

where	 ;	 .

The	nearest	prototype,	 to	 is	identified	by	Eq.	(8):

Step	3.	Condition	1	is	examined	firstly	to	see	whether	 can	be	a	new	prototype:

Condition	1:

If	Condition	1	is	met,	a	new	prototype	is	added	by	Eq.	(10):
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and	the	IF…THEN	rule	is	updated	accordingly:

Otherwise,	the	lolocal	meta-parameters	of	the	nearest	prototype	are	updated:

Then,	the	algorithm	goes	back	to	Step	1	if	new	images	are	available.

2.3	Validation	process
During	thisthe	validation	process,	 for	a	particular	validation	 image	 ,	each	 IF…THEN	rule	will	produce	a	score	of	confidence,	 based	on	 the	visual	 similarity	values	between	 and	 its	 prototypes	 following	 the	 “nearest

prototype”	principle:

The	decision	maker,	then,	determines	the	label	of	 based	on	the	 scores	of	confidence	(namely,	 )	following	the	“winner	takes	all”	principle:

3	Self-organizing	the	premise	part	into	a	hierarchical	form
In	this	section,	we	present	an	approach	to	self-organize	a	multiple-layered	premise	part	for	each	IF…THEN	rule	of	the	DRB	classifier	based	on	the	identified	prototypes,	resulting	in	a	hierarchical	system	structure.	The	obtained

model	is	renamed	as	the	hierarchical	DRB	(H-DRB)	classifier.

The	general	architecture	of	the	H-DRB	classifier	is	depicted	in	Fig.	2,	where	 at	the	bottom	layer	of	the	massively	parallel	rule	base	is	the	set	of	all	raw	prototypes	identified	during	the	“one	pass”	learning	process,	and	

is	a	set	of	highly	descriptive	prototypes	at	the	top	layer;	 ,	 ,…,	 are	the	sets	of	prototypes	at	the	first,	second,	last	hidden	layers.

In	 this	 paper,	 the	 hierarchical	 premise	 parts	 of	 the	 IF…THEN	 rules	 are	 achieved	 by	 clustering.	 However,	 despite	 that	 many	 clustering	 approaches	 exist	 [37],	 in	 this	 paper,	 we	 are	 particularly	 interested	 in	 the	 recently

introduced	autonomous	data	partitioning	(ADP)	algorithm	[38].	ADP	is	non-parametric,	fully	data-driven	and	free	from	prior	assumptions	and	user-	and	problem-specific	parameters.	The	main	benefit	for	using	this	algorithm	is	that	ADP

can	identify	the	local	peaks	of	multimodal	distribution	of	the	existing	prototypes,	 ( )	through	a	non-parametric	filtering	operation	based	on	the	multimodal	data	density.	Each	filtering	round	(assuming	the	 th	round)

results	in	a	smaller	but	more	representative	group	of	prototypes,	 than	the	group	of	prototypes	obtained	from	the	previous	filtering	rounds	 ( ).	The	filtering	operation	leads	to	a	small	number	of

highly	descriptive	prototypes,	 in	the	end,	where	 denotes	the	number	of	filtering	round	in	whichbefore	the	ADP	algorithm	converges.	This	naturally	givesproduces	a	multiple-layered	architecture	formed	by	prototypes.	With	the

help	of	the	ADP	algorithm,	the	DRB	classifier	is	able	to	self-organize	a	hierarchical	architecture	for	the	premise	part	of	each	IF…THEN	rule	as	Eq.	(15),	which	resultsresulting	in	the	proposed	H-DRB	classifier.

(11)

(12)

	I	 	λi(I)	 	I	

(13)

		I	 		C	 		λ1(I),λ2(I),…,λC(I)	

(14)

	 	

	 	 	 	 	 	 	

	{P}i	 	i	=	1,2,…,C	 	t	

	 	 	 	 	 	

	 	 	Ti	

(15)



where	 ;	 is	 the	 number	 of	 prototypes	 at	 the	 top	 layer;	 are	 the	 prototypes	 at	 the	 bottom	 layer	 of	 the	 hierarchical	 architecture	 that	 are	 connected	 to	 through	 the	 hidden	 layers;	

are	the	prototypes	connected	to	 .

It	is	worth	to	noticeing	that,	although	the	massively	parallel	rule	base	of	the	H-DRB	classifier	has	multiple	layers,	we	are	particular	interested	in	the	bottom	and	top	layers.	The	top	layer	of	the	massively	parallel	rule	base

contains	a	small	number	of	highly	descriptive	and	generalized	prototypes,	which	are	very	useful	for	human	experts	to	interpret	the	problem,	and	it	can	be	used	for	highly	efficient	classification	as	well.	The	bottom	layer	contains	all	the

identified	prototypes	with	fine	details	and	can	be	used	for	showing	end-users	the	full	picture	of	the	problems.	All	the	other	layers	in	-between	are	the	by-products	of	the	multiple-layered	architecture	identification	process,	and	they	are

less	important	compared	with	the	bottom	and	top	ones.	Therefore,	they	can	be	viewed	as	hidden	layers.	By	default,	the	H-DRB	classifier	will	use	the	top	layer	for	decision-making	with	Eqs.	(13)	and	(14).

The	algorithmic	procedure	of	the	ADP	algorithm	is	describedsummarized	as	follows	[38].	Similarly,	the	algorithm	is	applied	to	the	prototypes	of	each	class	 independently	to	find	the	more	descriptive	prototypes	 .

The	identification	process	of	the	highly	descriptive	prototypes	of	the	i class:

Step	1.	Firstly,	data	densities	of	the	feature	vectors,	denoted	by	 of	the	identified	prototypes	 in	the	feature	space	are	calculated	by	Eq.	(16):

where	 ;	 .

The	feature	vector	with	the	highest	data	density	value	(re-denoted	by	 )	is	identified	using	Eq.	(17):

and	 is	removed	from	 ,	namely,	 .

Then,	the	feature	vector	nearest	to	 is	identified	and	removed	from	 :

and,	 can	be	identified	by	finding	the	feature	vector	that	is	closet	to	 .	By	repeating	the	same	process,	one	can	obtain	a	rank-ordered	sequence,	namely,	 .

Step	2.	The	lLocal	maxima	of	the	data	density,	denoted	by	 ( )	are	identified	from	 by	Condition	2:

Condition	2:

	 	 	 Hi	 	 	 	 	

	 	 	

	{P}i	 	 	

Fig.	2	General	architecture	of	H-DRB	classifiers.
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Step	3.	Images	with	the	feature	vectors	that	are	the	most	similar	to	 are	selected	as	the	corresponding	visual	prototypes	 at	the	 th	layer	of	the	 th	hierarchy	( ;	 is	the	cardinality	of	 ):

Step	4.	Clusters	 are	formed	using	 to	partition	the	feature	space	by	assigning	the	feature	vector	of	each	training	image	of	the	 th	class	based	on	the	following	principle	( ):

Then,	the	multimodal	data	density	at	the	centre	of	each	cluster	is	calculated	as	follows:

where	 ;	 is	the	cardinality	of	

Step	5.	The	data-driven	threshold,	 that	defines	the	radius	of	neighbouring	area	around	each	cluster	centre	is	derived	from	data	by	Eq.	(23):

where	 .

Then,	for	each	cluster,	 ,	the	collection	of	its	neighbouring	clusters,	denoted	by	 are	is	identified	by	Condition	3:

Condition	3:

where	 ;	 .

The	loLocal	maxima	of	multimodal	data	density	are	identified	by	Condition	4,	which	are	denoted	by	 :

Condition	4:

where	 .	After	 is	identified,	the	algorithm	goes	back	to	Step	3	and	begins	a	new	iteration	( )	until	the	prototypes	do	not	change	any	morethe	algorithm	converges.

An	 illustrative	example	of	 the	H-DRB	classifier=	using	MNIST	 images	 is	given	 in	Fig.	3.	 In	 this	 example,	10	handwritten	 images	of	digit	 1	 and	10	handwritten	 images	of	digit	 2,	 respectively,	 are	 selected	 for	 training	 the

hierarchical	deep	rule-based	classifierH-DRB	(see	Fig.	3(a));	the	identified	hierarchical	IF…THEN	rules	from	these	images	are	given	in	Fig.	3(b).	One	may	also	seenotice	the	connections	between	the	top	and	bottom	layer	prototypes.

The	hierarchical	architecture	is	also	visualized	in	a	data	space	formed	by	the	top	two	principle	component	analysis	(PCA)	scores;	the	lLinks	between	the	original	images	and	bottom	layer	prototypes	are	depicted	by	the	lines	in	green,

and	the	links	between	the	top	and	bottom	layer	prototypes	are	given	by	the	lines	in	yellow.
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4	Numerical	experiments	and	discussions
In	this	section,	we	consider	a	number	of	popularly	studied	problems	to	benchmark	our	approach.	The	algorithms	were	developed	on	MATLAB	R2018a	platform,	numerical	experiments	were	conducted	on	a	desktop	with	dual

core	processor	3.60	GHz 2	and	16	GB	RAM.

4.1	Dataset	descriptions	and	experimental	settings
In	this	paper,	eight	benchmark	datasets	are	used	for	numerical	examples.	The	kKey	information	of	these	datasets	is	summarizedgiven	in	Table	2.	Detailed	descriptions	of	the	eight	datasets	can	be	found	from	[39–46].

For	MNIST	and	Fashion	MNIST	datasets,	different	numbers	of	samples	(5000,	10000,	20000,	30000,	40000,	50000	and	60000,	respectively)	formfrom	the	training	sets	are	randomly	chosen	for	training,	and	the	testing	sets	are

used	for	classification	performance	evaluation.	In	the	experiments	with	these	two	datasets,	the	pre-processing	module	of	the	H-DRB	classifier	has	only	one	normalization	layer	that	transforms	the	pixel	value	range	of	the	images	from	

into	 .	Here	we	employ	the	GIST	feature	descriptor	[47]	for	feature	extraction,	which	results	in	a	512	×	1	dimensional	feature	vector	from	each	image.	The	architecture	of	the	H-DRB	classifier	for	the	two	datasets	is	given	in

Fig.	4(a).

Table	2	Key	information	of	the	eight	benchmark	datasets.

Dataset #	Images #	Class #	Images	Per	Class #	Pixels

MNIST	[39] Training	set 60000 10 6000 28	×	28

Testing	set 10000 1000

Fig.	3	Illustrative	example	using	MNIST	images.
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Fashion	MNIST	[40] Training	Set 60000 6000

Testing	set 10000 1000

RSSCN7	[42] 2800 7 400 400	×	400

Singapore	[41] 1086 9 42–179 256	×	256

UCMerced	[43] 2100 21 100

WuHan-RS19	[44] 950 19 50 600	×	600

Caltech101	[45] 8677 101 40–800

Caltech256	[46] 29780 256 80–800

For	RSSCN7,	Singapore,	UCMerced,	WuHan-RS19,	Caltech101	and	Caltech256	datasets,	we	create	an	ensemble	of	pre-trained	AlexNet	[34]	and	VGG-VD-16	[35]	DNN	models	for	feature	extraction.	The	ensemble	descriptor	will

extract	a	highly	discriminative	representation	from	each	training/testing	image,	 as:

where	 stands	for	the	9192	×	1	dimensional	discriminative	representation	vector	of	 ;	 and	 are	the	1	×	4096	dimensional	activations	obtained	from	the	first	fully	connected	layer	of	the	two	DNN	models	[48].

FFollowing	the	common	practice,	for	Singapore	dataset,	20%	of	the	images	per	class	are	selected	out	to	form	the	training	set	and	the	remaining	ones	are	used	for	testing.	For	RSSCN7	dataset,	20%	and	50%	images	per	class	are

used	for	training,	the	remaining	80%	and	50%	are	used	for	testing,	respectively.	For	UCMerced	dataset,	we	follow	the	50:50	and	80:20	splits	to	build	the	training	and	testing	sets,	and	the	ratios	are	set	as	40:60	and	60:40	for	the

WuHan-RS19	dataset.	For	these	four	benchmark	datasets,	the	pre-processing	module	of	the	H-DRB	classifier	firstly	crops	five	sub-images	(centre	and	four	corners	[34,49])	from	each	input	image	according	to	the	required	sizes	by	the

pre-trained	DNNs	and,	then,	we	further	create	three	new	images	from	each	sub-image	by	flipping	it	horizontally,	vertically	and	in	both	directions.	Thus,	in	total,	20	new	sub-images	are	created	from	each	remote	sensing	image.	These

sub-images	are	subtracted	by	respective	their	means	and	passed	to	the	ensemble	feature	descriptor.	Finally,	the	9192	×	1	dimensional	feature	vector	of	the	input	image	is	obtained	as	the	average	of	the	discriminative	representations	of

the	20	sub-images.	The	architecture	for	the	four	remote	sensing	problems	is	given	in	Fig.	4(b).

For	Caltech101	dataset,	15	and	30	images	per	class	are	randomly	selected	out	and	used	for	training	purpose.	For	Caltech256	dataset,	we	randomly	pickselect	out	15,	30,	45	and	60	images	per	class	for	training.	The	remaining

images	are	used	for	testing.	For	these	two	datasets,	the	pre-processing	module	of	H-DRB	firstly	resizes	the	images	into	the	required	sizes	by	the	two	DNNs	withinof	the	ensemble	descriptor,	and	then,	performs	mean	subtraction	before

feature	extraction.	The	architecture	of	H-DRB	classifier	for	Caltech	datasets	is	given	in	Fig.	4(c).

Under	the	same	experimental	protocols,	we	also	involve	the	DRB,	support	vector	machine	(SVM)	[50],	k-nearest	neighbour	(KNN)	[51]	and	semi-supervised	deep	rule-based	(SSDRB)	[52]	approaches	classifiers	for	comparison.	In

the	numerical	 examples,	DRB	uses	 the	 same	architecture	 as	H-DRB	and	 serves	 as	 the	baseline.	Both	SVM	and	KNN	are	 the	most	widely-used	generic	 classifiers	by	 the	DNN-based	approaches	 and	 they	have	demonstrated	 very

attractive	performance	on	various	benchmark	problems	[53,54].	In	this	paper,	SVM	uses	linear	kernel	function,	and	 is	set	to	be	1	for	KNN.	For	fair	comparison,	both	classifiers	use	the	same	inputs	as	the	hierarchical	massively	parallel	rule

base	of	the	H-DRB	classifier	during	the	training	and	validation	stages.	The	SSDRB	classifier	is	introduced	as	a	semi-supervised	learning	extension	of	DRB.	In	the	numerical	experiments,	SSDRB	also	uses	the	same	architecture	as	H-DRB	for

image	processing.	SSDRB	follows	the	offline	semi-supervised	learning	strategy,	and	the	user-controlled	parameter	 is	set	to	be	1.2	following	[52].	Furthermore,	regarding	the	performance	evaluation,	we	will	also	report	the	state-of-

the-art	results	from	the	existing	publications	literature	for	better	informed	comparison.	As	mentioned	in	Section	3,	only	the	top	layer	of	the	H-DRB	classifier	is	used	for	classification	unless	specifically	declared	otherwise.	The	reported

numbers	 of	 identified	 prototypes	 of	 the	 H-DRB	 classifier	 are	 calculated	 from	 the	 top	 layer	 prototypes	 by	 default	 because	 prototypes	 of	 the	 bottom	 layer	 are	 no	 longer	 involved	 in	 decision-making.	 Note	 that	 if	 H-DRB	 performs

classification	with	its	bottom	layer	prototypes,	the	results	will	be	exactly	the	same	as	DRB
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4.2	Numerical	results
The	first	case	we	consider	aree	the	MNIST	[39]	and	Fashion	MNIST	[40]	datasets.	The	pPerformance	of	the	H-DRB	classifier	in	terms	of	average	number	of	prototypes	per	class,	classification	accuracy	on	testing	sets,	training	and

testing	time	consumption	(both	in	seconds)	on	the	two	datasets	are	tabulated	in	Table	3,	respectively.	The	pPerformance	of	the	DRB	classifier	is	also	reported	as	the	baseline.

As	one	can	see	from	Table	3,	the	DRB	classifier	has	a	very	large	number	of	prototypes	and	its	classification	performance	is	slightly	better	than	the	H-DRB	classifier.	However,In	contrast,	the	H-DRB	classifier	has	much	less	top-layer

prototypes	in	each	rule	(80%	less)	but	is	still	able	to	achieve	highgood	classification	accuracy	rates	(in	the	worst	case,	4%	lower	than	DRB).	Note	that	the	H-DRB	classifier	takes,	in	average,	less	than	0.02	s	to	learn	from	a	single	image

during	the	training	process.	During	the	validation	process,	as	one	can	see	from	the	same	table,	DRB	takes	less	than	0.15	s	to	determine	the	class	label	for	a	testing	image,	which	is	already	quite	efficient.	The	validation	process	of	H-

DRB	is	even	more	efficient,	which	only	takes	less	than	0.02	s	for	each	unlabeled	unlabelled	image.	This	only	comes	with	the	price	of	slightly	more	training	time	needed	for	self-organizing	its	hierarchical	structure.	Moreover,	both,	the

training	and	validation	processes	can	be	conducted	in	parallel	for	each	IF…THEN	rule	within	the	hierarchical	massively	parallel	rule	base	of	the	H-DRB	classifier	and,	thus,	the	computational	efficiency	can	be	further	speeded	up,	in	this

case,	10	times	faster.	The	pPerformance	(in	terms	of	classification	accuracy,	%)	of	the	H-DRB	classifier	is	also	compared	with	SVM,	KNN,	SSDRB	and	other	alternatives,	and	the	comparison	results	are	tabulated	in	Table	4.

Table	3	Performance	of	H-DRB	and	DRB	classifiers	on	MNIST	and	Fashion	MNIST	datasets.

Dataset #	Training	images Algorithm #	Prototypes	per	class Accuracy,% Training	time,	s Testing	time,	s

MNIST 5000 H-DRB 45.8 96.3 3.4 16.3

DRB 237.5 97.1 2.5 132.0

10000 H-DRB 88.4 97.0 14.5 32.8

DRB 463.3 97.7 12.4 270.6

20000 H-DRB 139.2 97.6 80.6 102.2

DRB 907.4 98.2 73.1 552.3

30000 H-DRB 242.1 97.9 201.6 147.3

Fig.	4	Architectures	of	the	H-DRB	classifier	used	for	different	benchmark	problems.



DRB 1339.5 98.4 182.7 782.1

40000 H-DRB 310.7 98.1 336.8 180.6

DRB 1772.0 98.5 302.0 973.5

50000 H-DRB 377.1 98.2 518.0 216.7

DRB 2202.9 98.6 460.9 1217.0

60000 H-DRB 437.4 98.3 749.8 240.0

DRB 2631.0 98.6 662.5 1407.9

Fashion	MNIST 5000 H-DRB 39.9 83.8 3.4 15.3

DRB 230.9 84.9 2.6 131.0

10000 H-DRB 76.5 85.1 12.6 24.2

DRB 457.8 86.0 10.3 224.4

20000 H-DRB 139.2 85.7 81.1 69.7

DRB 907.4 87.0 71.0 517.8

30000 H-DRB 182.7 85.8 202.1 108.8

DRB 1353.9 87.6 171.6 757.5

40000 H-DRB 208.4 85.4 384.7 127.2

DRB 1792.9 88.0 312.4 1009.5

50000 H-DRB 222.7 84.9 577.5 132.6

DRB 2229.6 88.4 470.6 1219.9

60000 H-DRB 232.7 84.9 836.9 135.7

DRB 2662.5 88.6 673.4 1422.4

The	H-DRB	classifier	is	further	compared	with	the	selected	results	from	literature	in	terms	of	classification	accuracy	(%)	and	computational	efficiency	(of	the	training	process),	and	the	comparison	is	given	tabulated	in	Table	5.

Note	that	many	alternative	approaches	reported	in	this	table,	such	as	[57,58],	actually	use	GPU	for	computation.

Table	4	Performance	comparison	on	MNIST	and	Fashion	MNIST	datasets	with	partial	training	set	(the	best	result	is	in	bold).

Dataset #	Training	images H-DRB DRB SVM KNN SSDRB eClass1	[55] TEDA	Class	[56]

MNIST 5000 96.3 97.1 97.3 96.8 97.4 96.9 97.2

10000 97.0 97.7 97.9 97.5 97.8 97.2 97.4

20000 97.6 98.2 98.2 98.0 98.2 97.3 97.5

30000 97.9 98.4 98.4 98.2 98.4 97.5 97.7

40000 98.1 98.5 98.5 98.3 98.5 97.5 97.7

50000 98.2 98.6 98.5 98.3 98.6 97.5 97.7

60000 98.3 98.6 98.6 98.4 98.6 97.5 97.6

Fashion	MNIST 5000 83.8 84.9 86.5 84.9 85.0 – –



10000 85.1 86.0 87.7 86.2 86.0 – –

20000 85.7 87.0 88.6 87.1 87.1 – –

30000 85.8 87.6 88.9 87.7 87.7 – –

40000 85.4 88.0 89.2 88.1 88.0 – –

50000 84.9 88.4 89.5 88.4 88.4 – –

60000 84.9 88.6 89.4 88.7 88.6 – –

As	one	can	see	from	Tables	4	and	5,	the	proposed	H-DRB	classifier	is	able	to	outperform	or,	at	least,	on	par	with	various	comparative	approaches	in	terms	of	classification	accuracy.	Moreover,	its	computational	efficiency	is	on	the

same	level	of	SVM	classifiers.	However,	one	need	to	notice	that	the	training	process	of	the	SVM	classifiers	is	not	parallelizable	and	limited	to	offline.	Meanwhile,	the	massively	parallel	IF…THEN	rules	of	the	H-DRB	classifier	can	be	trained

independently	and	updated	with	new	data	samples	recursively.

Table	5	Performance	comparison	on	MNIST	and	Fashion	MNIST	datasets	with	the	literature	(the	best	result	is	in	bold).

Algorithm MNIST Fashion	MNIST

Accuracy,	% Training	time Accuracy,	% Training	time

H-DRB 98.3 12	min,	29	s 84.9 13	min,	57	s

DRB 98.6 11	min,	2	s 88.6 11	min,	13	s

Logistic	Regression	[40] 90.9 26	h,	10	min,	12	s 83.9 2	h,	59	min,	26	s

Decision	tree	classifier	[40]
Maximum	split:	50

88.6 2	min,	14	s 78.9 36	s

Passive	Aggressive	Classifier 88.0 29	s 77.3 42	s

Multiple	Layer	Perception	[40]
Actitation	Activation	function:	RELU
Hidden	layer	size:	100

97.2 6	min,	55	s 87.1 16	min,	3	s

SVM	[40]
Polynomial	kernel

97.6 1	h,	15	min,	29	s 89.7 1	h,	12	min,	39	s

SVM	[40]
Gaussian	kernel

97.3 48	min,	32	s 89.7 1	h,	15	min,	25	s

Committee	of	7	DCNNs	[57] 99.7 98	h
(14	h	per	DCNN)

– –

Committee	of	35	DCNNs	[58] 99.8 490	h
(14	h	per	DCNN)

– –

Invariant	Feature	Hierarchies	[59] 99.4 No	Information – –

Two-Stage	Predictive	Sparse	Decomposition	[59] 99.5 – –

DRB	Ensemble	with	GIST	Feature	[23] 99.3 2	h,	30	min – –

DRB	Ensemble	with	HOG	Feature	[23] 98.9 – –

DRB	Ensemble	with	Combined	GIST	and	HOC	Features	[23] 99.3 – –

Committee	of	DRB	Ensembles	with	HOG	Feature	and	with	GIST	Feature	[23] 99.3 5	h – –

DRB	Ensemble	Cascade	[23] 99.6 – –

		∼	

		∼	



In	the	second	case,	we	consider	the	RSSCN7	[42],	Singapore	[41],	UCMerced	[43]	and	WuHan-RS19	[44]	datasets.	The	cClassification	accuracy	rates	of	the	H-DRB	classifier	on	the	four	benchmark	datasets	are	reported	in	Table	6.

The	aAverage	numbers	of	prototypes	identified	per	class	of	the	H-DRB	and	DRB	classifiers	are	given	in	Fig.	5.	Similarly,	we	also	compare	the	performance	of	the	H-DRB	classifier	with	the	state-of-the-art	approaches	reported	in	literature.

Table	6	Performance	comparison	on	remote	sensing	datasets.

Algorithm RSSCN7 Singapore UCMerced Wuhan-RS19

20%	Training 50%	Training 50%	Training 80%	Training 40%	Training 60%	Training

H-DRB 86.2	±	0.9 89.8	±	0.7 97.1	±	0.6 91.8	±	0.7 95.5	±	1.1 93.1	±	1.1 94.1	±	0.9

DRB 87.2	±	0.8 90.8	±	0.5 97.3	±	0.4 92.9	±	0.3 96.7	±	1.3 93.3	±	0.8 94.7	±	0.4

SVM 88.7	±	0.9 91.1	±	0.5 97.7	±	0.6 93.3	±	0.4 96.8	±	1.3 94.9	±	1.1 95.9	±	0.8

KNN 87.6	±	0.8 91.4	±	0.5 97.7	±	0.4 94.4	±	0.6 97.0	±	0.9 93.6	±	0.8 95.3	±	0.7

SSDRB 88.0	±	0.6 91.1	±	0.5 97.8	±	0.5 94.1	±	0.6 97.8	±	1.2 93.4	±	1.0 94.9	±	0.4

Gan	et	al.	[41] – – 90.9 – 91.1 – –

Yang	&	Newsam	[43],	[60] 76.3	±	0.9 81.3	±	0.6 – 71.9	±	0.8 74.1	±	3.3 75.3	±	1.4 80.1	±	2.0

Hu	et	al.	[49] – – – – 98.5 – 98.9

Xia	et	al.	[60] 85.6	±	1.0 88.9	±	0.6 94.1	±	1.0 95.2	±	1.2 95.1	±	1.2 96.2	±	0.6

Wu	et	al.	[61] – 90.4	±	0.6 – – 92.7	±	0.8 – –

Wu	et	al.	[62] – 86.4	±	0.7 – – 91.8	±	1.3 – –

Zhao	et	al.	[63] – 89.1 – – 97.8 – –

Lazebnik	et	al.	[60,64] 68.9	±	0.7 72.9	±	0.9 – 58.3	±	1.9 62.4	±	1.9 54.4	±	2.2 58.5	±	2.3

Jegou	et	al.	[60,65] 77.3	±	0.6 82.3	±	1.2 – 73.2	±	1.0 78.2	±	1.7 76.4	±	2.0 80.8	±	2.2

Bian	et	al.	[66] – – – 94.2	±	1.0 95.8	±	1.0 95.4	±	0.8 96.4	±	0.8

Huang	et	al.	[67] – – – – 93.0	±	1.2 – 94.3	±	1.0

Chen	et	al.	[68] – – – – 90.0	±	2.1 – 91.0	±	1.5

Qi	et	al.	[69] – – – – 91.1	±	0.7 – 91.7	±	1.1

Nogueira	et	al.	[70] – – – – 99.5	±	0.5 – 94.5	±	1.2

Chaib	et	al.	[71] – – – – 97.4	±	1.8 – 98.7	±	0.2

Wang	et	al.	[72] – – – 96.8	±	0.1 99.1	±	0.4 97.5	±	0.5 99.8	±	0.3

Fig.	5	Average	numbers	of	prototypes	identified	per	class	from	the	remote	sensing	datasets.	The	blue	bars	correspond	to	the	H-DRB	classifier	and	the	orange	bars	correspond	to	the	H-DRB	classifier.



Shao	et	al.	[73] – – – – 92.4	±	0.6 – 94.5	±	1.0

For	better	demonstration,	we	visualize	in	Fig.	6	the	identified	prototypes	of	the	top	and	bottom	layers	of	the	H-DRB	classifier	from	the	training	images	of	four	different	classes	at	identified	during	one	particular	experiment	using

WuHan-RS19	dataset.	In	this	experiment,	40%	of	the	images	per	class	are	used	for	training	and	the	rest	are	used	for	testing.	The	four	classes	used	for	visualization	are	commercial,	forest,	railway	station	and	residential.

It	is	well-known	that	the	performance	of	an	image	classification	algorithm	is	subject	to	the	image	processing	and	augmentation	techniques	involved.	Therefore,	in	the	following	numerical	example,	we	compare	the	performance

of	the	H-DRB	and	DRB	classifiers	with	five	different	image	processing	architectures	on	Singapore,	UCMerced	and	WuHan-RS19	datasets.	For	clarity,	the	architecture	as	presented	in	Fig.	4(a)	is	re-denoted	as	Arch.	1.	For	Arch.	2,	the

same	architecture	as	Arch.	1	is	employed	but	only	the	pre-trained	VGG-VD-16	model	is	used	for	feature	extraction.	For	Arch.	3,	 the	pre-trained	CaffeNet	[74]	is	further	involved	to	form	the	ensemble	feature	descriptor	on	the	basis	of

Arch.	1.	The	architecture	used	in	[75]	is	involved	as	Arch.	4,	where	each	input	image	is	segmented	to	five	sub-images	(centre	and	four	corners)	and	the	VGG-VD-16	model	is	used	for	feature	extraction.	The	architecture	used	in	[76]	is

involved	in	the	experiment	as	Arch.	5,	where	AlexNet	,VGG-VD-16	and	CaffeNet	are	used	for	creating	the	ensemble	feature	descriptor	and	each	input	image	is	segmented	to	20	sub-images	same	as	settingArch.	3.	However,	the	operating

mechanism	of	the	H-DRB	classifiers	with	Arch.	4	and	5	are	different	from	Arch.	1–3	in	the	sense	that	the	classifiers	are	trained	and	tested	with	the	feature	vectors	of	sub-images	instead.	Therefore,	Arch.	4	and	Arch.	5	can	better	utilize

the	local	semantic	information	for	classification.	The	pPerformance	comparison	between	different	architectures	are	is	given	in	Table	7	 in	terms	of	classification	accuracy	(%).	The	aAverage	training	and	testing	time	consumptions	(in

seconds)	of	the	H-DRB	and	DRB	classifiers	with	the	respective	five	architectures	across	the	numerical	experiments	are	reported	in	the	same	table.

By	comparing	between	Arch.	1–3,	one	can	tell	from	Table	7	that	the	both,	H-DRB	and	DRB	classifiers	perform	better	if	the	employed	feature	descriptor	is	more	powerful.	However,	the	computational	complexity	will	significantly

increase	if	the	dimensionality	of	the	feature	vectors	is	too	high	(see	Arch.	3).	If	the	classifier	is	trained	with	the	segments	of	images	instead	(see	Arch.	4	and	5),	it	can	achieve	even	higher	accuracy	at	the	price	of	lower	computational

efficiency.

In	the	final	case,	we	consider	the	well-known	Caltech	101	[45]	and	Caltech256	[46]	datasets.	The	classification	accuracy	rates	of	the	H-DRB	classifier	and	the	comparative	alternatives	on	the	two	datasets	are	reported	in	Table	8.

The	aAverage	numbers	of	prototypes	that	the	H-DRB	classifier	identifies	form	the	training	images	of	each	class	are	given	in	Fig.	7	and	compared	with	the	DRB	classifier.

Fig.	6	Example	of	identified	prototypes	at	the	bottom	and	top	layers	of	the	H-DRB	classifier.



Table	7	Performance	comparison	of	H-DRB	and	DRB	with	different	architectures.

Algorithm Accuracy,	% Time	Consumption,	s

Singapore UCMerced WuHan-RS19 Training Testing

50% 80% 40% 60%

Arch.	1 H-DRB 97.1 91.8 95.5 93.1 94.1 1.8 2.5

DRB 97.3 92.9 96.7 93.3 94.7 1.5 12.9

Arch.	2 H-DRB 92.4 88.9 93.3 90.0 90.8 0.9 1.6

DRB 95.6 91.6 96.1 91.4 93.0 0.7 6.6

Arch.	3 H-DRB 96.5 92.8 96.5 93.7 94.7 3.5 4.9

DRB 96.7 93.7 97.4 94.2 95.1 2.8 22.6

Arch.	4 H-DRB 97.3 90.2 94.5 93.7 94.4 10.0 21.3

DRB 97.8 90.9 95.8 93.0 93.5 9.8 97.8

Arch.	5 H-DRB 97.8 93.6 97.4 94.9 96.2 653.0 1743.9

DRB 97.8 94.0 97.3 95.2 96.3 617.0 7424.3

Interestingly,	as	one	can	observe	from	Table	8,	the	that	H-DRB	performs	much	better	for	classification	than	DRB.	This	is	because	images	between	different	classes	of	the	Caltech	datasets	are	more	distinctive	from	each	other	and,

thus,	using	a	small	amount	of	highly	descriptive	prototypesH-DRB	can	achieve	very	good	classification	accuracy	using	only	a	smaller	amount	of	highly	descriptive	prototypes.	In	this	casecontrast,	the	DRB	classifier	will	performs	worse	due	to	the

overfitting.

Table	8	Numerical	results	on	Caltech101	datasetCaltech	datasets.

Algorithm Caltech101 Caltech256

15 30 15 30 45 60

H-DRB 86.7	±	0.7 89.5	±	0.6 64.7	±	0.4 68.9	±	0.3 71.2	±	0.3 73.1	±	0.3

DRB 84.9	±	0.6 88.6	±	0.5 62.4	±	0.3 67.1	±	0.3 69.8	±	0.3 71.9	±	0.3

SVM 87.3	±	1.0 90.3	±	0.9 Out	of	System	Memory

KNN 86.7	±	0.6 90.0	±	0.5 62.5	±	0.3 67.2	±	0.3 69.9	±	0.3 72.1	±	0.3

SSDRB 85.5	±	0.9 89.2	±	0.7 64.1	±	0.4 68.0	±	0.2 70.4	±	0.3 72.3	±	0.3

Gao	et	al.	[5] 71.3	±	0.6 77.6	±	1.0 35.1	±	0.4 42.1	±	0.3 46.0	±	0.3 48.5	±	0.3

Xie	et	al.	[77] 76.0 82.5 36.4 45.1 48.0 50.3

Li	et	al.	[78] – 89.2 – – – 74.9

Wang	et	al.	[79] 64.0	±	0.4 71.4	±	1.2 – – – –

Yang	et	al.	[80] 67.0	±	0.5 73.2	±	0.5 27.7	±	0.5 34.0	±	0.4 37.5	±	0.6 40.1	±	0.9

Saban	et	al.	[81] 68.5 75.0 – – – –

Pan	et	al.	[82] 77.2	±	0.6 85.8	±	0.4 36.6	±	0.6 47.2	±	0.7 50.8	±	0.4 52.9	±	0.5

Zhang	et	al.	[83] – – 61.5	±	0.4 67.7	±	0.7 69.8	±	0.5 72.8	±	0.4



Zhang	et	al.	[84] – – 47.6	±	0.6 55.4	±	0.6 59.1	±	0.5 61.7	±	0.5

4.3	Discussions
Based	on	the	numerical	examples	presented	in	this	section,	the	following	four	remarks	are	worth	noting:

Firstly,	it	is	very	interesting	to	be	noticednotice	that	H-DRB	can	achieve	similar	or,	sometimes,	even	better	classification	accuracy	rates	on	various	benchmark	datasets	various	problems	with	a	much	smaller	number	of	top-layer

prototypes	(around	80%	less)	compared	with	DRB.	This	raises	the	question	that	what	is	the	minimum	number	of	prototypes	required	by	thea	classifier	to	achieve	the	top-level	classification	performance.	This	needs	to	be	further	studied

in	order	to	fully	understand	the	advantages	and	limitations	of	prototype-based	classifiers.

Secondly,	both	H-DRB	and	DRB	identify	prototypes	from	training	images	in	a	more	straightforward	manner	without	any	iterative	optimization	process.	Thus,	they	are	outperformed	by	SVM	and	KNN	in	some	cases.	Since	the

optimality	of	prototypes	determine	the	performance	of	the	prototype-based	approaches	[48],	one	may	need	to	introduce	a	prototype	optimization	mechanism	to	H-DRB	and	DRB	to	maximize	their	strength.

Thirdly,	the	performance	(accuracy	and	efficiency)	of	both	H-DRB	and	DRB	is	highly	subject	to	their	architecture	for	image	processing	(see	the	comparison	between	five	architectures	in	Table	7).	Generally,	both	approaches

perform	 more	 accurate	 classification	 on	 testing	 images	 if	 more	 discriminative	 representations	 are	 extracted	 from	 imageseach	 image	 and	 more	 local	 information	 is	 exploited.	 On	 the	 other	 handAt	 the	 same	 time,	 their	 computational

efficiency	ismay	decreased	as	a	trade-off	because	of	the	increase	of	the	dimensionality	of	feature	vectors.	Therefore,	it	is	worth	exploring	alternative	ways	to	fuse	the	feature	vectors	extracted	by	different	feature	descriptors.	In	addition,	iIn	this	paper,

only	the	standard	image	processing	techniques	are	employed,	and	the	architecture	of	the	classifier	has	to	be	designed	specifically	for	each	type	of	problems.	It	will	be	a	strong	novelty	to	incorporate	a	more	generic,	self-adaptive	image

processing	architecture	for	the	proposed	H-DRB	classifier,	which	is	applicable	to	different	types	of	problems.

Finally,	 in	 this	paper,	 both	H-DRB	and	DRB	employ	 standard	pre-trained	DNNs	 for	 feature	 extraction.	As	 a	 result,	 they	are	 outperformed	by	 some	of	 the	 latest	 state-of-the-art	DNN-based	approaches	which	 involve	more

sophisticated	fine	tuning	and	feature	selection,	such	as	[70,72].	Therefore,	another	interesting	direction	for	future	work	is	to	involve	the	fine-tuned	DNNs	as	feature	descriptors	for	the	proposed	approach,	and	further	employ	the	state-

of-the-art	feature	selection	techniques	for	dimensionality	reduction.

5	Conclusion
In	this	paper,	a	novel	classification	approach,	called	H-DRB,	is	presented	for	large-scale	multi-class	image	classification	problems.	The	kKey	feature	that	sets	H-DRB	apart	from	alternative	zero-order	FRB	systems	is	its	zero-

order	massively	parallel	IF…THEN	rules	with	multi-layer	premise	parts	from	training	images	self-organized	from	datatraining	images	through	an	autonomous,	non-parametric	learning	process.	Numerical	results	presented	in	this	paper

demonstrated	that	H-DRB	can	achieve	similar	or	even	better	classification	accuracy	than	DRB	on	various	benchmark	datasets	with	a	much	smaller	number	of	top-layer	prototypes	(80%	less)	and	much	higher	computational	efficiency

(5–10	times	faster)	for	decision-making.	The	multi-layer	premise	parts	also	bring	the	H-DRB	approach	the	advantage	of	being	highly	transparent	and	human-interpretable	for	large-scale,	complex	classification	problems.

Nonetheless,	we	have	to	admit	that	the	main	focus	of	this	paper	is	to	demonstrate	the	proposed	concept	and	general	principles.	Only	the	basic	data	pre-processing	and	augmentation	techniques	were	employed	by	the	proposed

approach,	and	the	pre-trained	DNN	models	employedused	for	feature	extraction	were	not	fine-tuned	to	improve	their	descriptive	abilities	on	the	particular	problems	used	for	experimental	demonstration.	Therefore,	there	is	a	large

room	for	performance	improvement	of	the	H-DRB	classifier.	As	future	works,	there	are	a	few	considerations.	Firstly,	we	will	analyse	the	optimality	of	the	identified	prototypes	and	explore	the	general	principle	for	determineing	the	best

number	of	prototypes	needed	by	the	proposed	approach	to	achieve	the	best	balance	between	classification	accuracy	and	computational	efficiency.	We	will	also	involve	fine-tuned	DNNs	for	feature	extraction	and	more	advanced	image

Fig.	7	Average	numbers	of	prototypes	identified	per	class	from	the	Caltech	datasets.	The	blue	bars	correspond	to	the	H-DRB	classifier	and	the	orange	bars	correspond	to	the	H-DRB	classifier.



pre-processing	and	augmentation	techniques	to	compete	for	the	best	performance,	and	experiment	with	self-adaptive	architectures	suitable	for	different	types	of	problems.	Another	interesting	direction	for	future	work	is	to	apply	the

proposed	approach	to	video	classification	by	further	taking	the	time	and	space	correlation	into	consideration.
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