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Abstract

One of the main problems of using the random forests (RF) in classi�cation and
regression tasks is a lack of su¢ cient data which fall into certain leaves of trees in order
to estimate the tree predicted values. To cope with this problem, robust imprecise
classi�cation and regression RF models, called the imprecise RF, are proposed. They
are based on the following ideas. First, imprecision of the tree estimates is taken into
account by means of imprecise statistical inference models and con�dence interval
models. Secondly, we introduce weights assigned to trees or to groups of trees, which
are computed in order to correct the RF estimates under condition of imprecise tree
predicted values. In fact, the weights can be regarded as a robust meta-learner
controlling the imprecision of estimates. Special modi�cations of loss functions to
compute optimal weights for the classi�cation and regression tasks are proposed in
order to simplify maximin optimization problems. As a result, simple linear and
quadratic optimization problems are obtained, whose solution does not meet any
di¢ culties. Various numerical examples with real datasets illustrate the proposed
robust models and show outperforming results when datasets are rather small or
noisy.
Keywords: classi�cation, regression, random forest, decision tree, imprecise

Dirichlet model, linear-vacuous mixture, con�dence intervals, quadratic programming

1 Introduction

The ensemble methodology can be regarded as one of the e¢ cient machine learning ap-
proaches for classi�cation and regression. Therefore, a huge amount of ensemble-based
methods for solving machine learning problems, including classi�cation and regression,
have been developed in recent years [16, 33]. These methods are based on constructing the
so-called weak or base classi�ers from training data, and on aggregating their predictions
when classifying unknown samples in order to obtain a strong classi�er that outperforms
every single one of them. One of the best known and most e¤ective ensemble-based models
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is the Random Forest (RF) [10], which uses a large number of randomly built individual
decision trees in order to combine their predictions. RFs reduce the possible correlation
between decision trees by selecting di¤erent subsamples of the feature space. Depending
on the solved machine learning problem, outputs of decision trees may vary. In particular,
the probability distributions of classes are computed in classi�cation problems. They are
estimated by counting the percentage of di¤erent classes of examples at the leaf node where
the concerned example falls into, and then are combined in order to get the class probability
distribution of the corresponding RF. In regression problems, outputs of decision trees are
usually represented in the form of predicted values corresponding to feature vectors which
are averaged across all trees to get the RF prediction. The common combination proce-
dure is the standard averaging of all tree class probability distributions in classi�cation or
predicted values in regression.
For the classi�cation problem, the class probability distributions computed for every

decision tree and for the RF is an informative and useful measure for classi�cation because
it provides a �exible decision. Therefore, the class probability distributions are widely used
in many applications and the RF modi�cations. However, one of the main problems for
using this measure is that the class probability distributions are assumed to be precise.
This is quite restrictive, in particular if there is only a small amount of training data. It
should be noted that it is di¢ cult to expect the precise probabilities at some leaf nodes
even when there are a lot of data, but only a few examples fall into these leaf nodes.
Moreover, testing data may be noisy and di¤er from training data. This is also a reason
of incorrect classi�cation results and the reduced accuracy. This makes it interesting to
consider a generalization by using imprecise probabilities or imprecise statistical inference
models [39].
The same can be said about the regression problem. In this case, the leaf nodes are

characterized by the predicted values which can be viewed as average values of outputs
of training examples. If there is only a small number of training examples, then one
cannot have much trust in resulting average values and may wish to consider corresponding
con�dence intervals instead.
One of the ways to get more accurate prediction for the RF is to introduce weights of

trees or subsets of trees and to use the weighted average for computing the RF predictions.
The weights can be viewed as additional training parameters and assigned to every tree
according to the tree prediction accuracy (see, for example, [38, 37]). An important obstacle
of using the weighted average as well as the simple average of the tree predictions is that they
are assumed to be precise. However, the precision is not expected, especially in cases with
only a small amount of training data. In order to overcome this obstacle, robust imprecise
classi�cation and regression RF models, called the imprecise RF (IRF), are proposed in this
paper. One of the main ideas underlying the proposed model is to use the weights assigned
to decision trees as a function of imprecise decision tree predictions. It is very important
to point out that the weights are not used in order to improve the RF performance. They
are used to get a maximin or robust decision about the predicted values of the RF under
condition that the decision tree predictions are imprecise or interval-valued. In fact, the
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weights can be regarded as a robust meta-learner controlling the imprecision of estimates. It
is studied in the paper how the use of imprecise distributions in classi�cation, or con�dence
intervals of predicted values in regression, may impact on the choice of the corresponding
weights of trees.
In contrast to some works dealing with imprecise information in RFs, for example, [2, 3],

where new special splitting rules were considered under condition of the noise data, a quite
di¤erent approach is proposed, which does not change decision trees in order to take into
account the available imprecision of estimations. Weights of the trees are trained in a way
that allows us to control the imprecision and to implement the robust strategy of decision
making. In fact, the weights can be regarded as some kind of regularization which improves
imprecision accounting. At that, the proposed approach can also be applied to modi�ed
decision trees with the special splitting rules. The approach just improves the accounting
of imprecision used in the splitting rule.
It is important to emphasize that trees are not changed for taking into account the

available imprecision of estimates, but the weights are determined in the weighting aggre-
gation procedures to account for the imprecision. This is the main idea underlying the
proposed robust models. So, robust modi�cations of the classi�cation and regression RFs
taking into account imprecision of the decision tree estimates are proposed. The important
ideas underlying the methods presented in this paper are as follows:

1. Aggregation procedures for computing the RF class probability distributions (classi�-
cation task) and for computing the RF predicted values (regression task) are modi�ed
by introducing the weights of trees.

2. The imprecision of the tree estimates is de�ned by means of imprecise statistical
inference models and con�dence interval models, for example, by using the IDM for
the classi�cation task and con�dence intervals for the regression task.

3. Special modi�cations of loss functions for the classi�cation and regression tasks are
proposed in order to simplify minimax and maximin optimization problems for com-
puting optimal weights.

4. The obtained optimization problems are linear or quadratic with linear constraints.

The paper is organized as follows. The �rst part (Sections 2 and 3) is devoted to studying
classi�cation models based on the RF and the IRF. In particular, Section 2 describes a
general approach to assign weights to decision trees in the RF. Implementation of ideas
underlying the IRF for classi�cation is given in Section 3. The second part (Section 4)
considers the proposed approach for constructing the regression IRF. Various numerical
examples with well-known public real data are presented in Section 5. These illustrate
good performance of the IRF for classi�cation and regression. Concluding remarks are
provided in Section 6.
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2 Related work

Ensemble-based models. A comprehensive description of ensemble-based models is pre-
sented in Zhou�s book [45]. Analysis and comparison of many ensemble-based methods can
also be found in several review papers and books. For example, [6] provided the R imple-
mentation of many ensemble-based models. Comprehensive surveys of these models can be
found in [18, 20, 29, 30, 35, 42]. Ensemble models with convolutional neural networks are
studied in [24].
A detailed analysis of RFs is presented by Rokach [34]. A review of ensemble methods

in bioinformatics is presented by Yang et al. [44]. Due to many advantages of the RF as
an ensemble-based model, a large amount of its modi�cations have been developed, for
example, [5, 7, 14, 15, 23, 32, 41].
Imprecise probabilities in classi�cation and regression. One of the �rst ideas of

applying imprecise probability theory to classi�cation decision trees was presented in [4],
where probabilities of classes at decision tree leaves are estimated by using an imprecise
model, and the so-called Credal Decision Tree model is proposed. Following this work,
several papers devoted to applications of imprecise probabilities to decision trees and RFs
were presented [2, 3, 25, 28], where the authors developed new splitting criteria taking into
account imprecision of training data and noisy data. In particular, the authors consider
the application of Walley�s imprecise Dirichlet model (IDM) [40]. The main advantage of
the IDM in its application to the classi�cation problems is that it produces a convex set of
probability distributions, which has nice properties and depends on a number of observa-
tions. Another interesting RF called the fuzzy RF is proposed in [9]. As an alternative to
the use of the IDM, nonparametric predictive inference has also been used successfully for
imprecise probabilistic inference with decision trees [1]. Imprecise probabilities have also
been used in classi�cation problems in [13, 26, 27]. The main focus of interest in this paper
is not the decision trees or RFs, but the weighted averaging procedure which is used to
combine the class probability distributions.
Weighted RFs. Rules for assigning the weights may be di¤erent. For example, the

weights may be assigned to minimize the di¤erence between class labels of training examples
and values of class vectors which are formed by using the decision tree outputs. Optimal
weights assigned to sets of the class probability distributions which are produced by every
decision tree for all training examples, but not the weights of decision trees themselves, are
considered in [37]. It should be pointed out that the idea of weighting trees in RFs is not
new. Most weighting RF methods use weights of classes to deal with imbalanced data sets
[11]. At the same time, there are a lot of papers devoted to more complex weight assign-
ments to every tree [19, 21, 36]. These methods use some measures of the classi�cation
quality in order to assign the weights. In particular, a weighted voting classi�cation en-
semble method, called WAVE, is presented in [19], which uses two weight vectors: a weight
vector of classi�ers and a weight vector of examples. The example weight vector assigns
higher weights to observations that are hard to classify. Methods to increase the classi�-
cation accuracy of RFs through weighting trees according to their classi�cation ability are
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proposed in [21, 36]. However, the above papers consider the classi�cation performance of
every tree separately, and they do not take into account the lack of su¢ cient training data.

3 Weighted RFs for Classi�cation

3.1 Weighted Averages

In order to consider weighted averaging in RFs, the standard classi�cation prob-
lem is formally stated. Given N training data (examples, instances, patterns) S =
f(x1; y1); :::; (xN ; yN)g, in which xi may belong to an arbitrary set X and represents a
feature vector involving m features and yi 2 Y = f1; :::; Cg represents the class of the asso-
ciated examples, the task of classi�cation is to construct an accurate classi�er c : X ! Y
which can predict the unknown class label y of a new observation x, using available training
data, as accurately as possible such that it minimizes the classi�cation risk de�ned as the
following expectation of the loss function l : R�Y ! R+: E(X:Y )�p(x;y) [l(c(X); Y )], where
p(x; y) is a joint density.
RFs can be regarded as a powerful nonparametric statistical method for both regression

and classi�cation problems. Suppose that the RF consists of T trained trees. One of the
important peculiarities of decision trees is a probability distribution of classes at each leaf
node. This probability distribution is used for computing probabilities of classes for the RF
and for making decisions about a class label of a testing example. Formally, each leaf node
l 2 CL = f1; :::; Lg stores votes for the class labels denoted as nl = (nl;1; :::; nl;C). Here nl;c
is the number of feature vectors from the class c which fall into the l-th leaf node. This is
equivalent to storing a categorical probability distribution over classes c 2 f1; :::; Cg in a
vector pl = (pl;1; :::; pl;C) 2 [0; 1]C . If vector x falls into the l-th leaf node in a tree, then the
prediction of the decision tree for feature vector x to be of class c is given by pl;c = nl;c=nl.
Here nl is the number of all feature vectors which fall into the l-th leaf node.
One of the ways to improve RFs is to assign weights to decision trees. The weights

are used in order to compute the weighted average of the class probability distributions
across all trees. They are regarded as training parameters. Their values should minimize the
di¤erence between class labels of training examples and values of the RF class distributions.
This objective stems from the following reasoning. If an example xi has the label yi = c,
then it is expected that the c-th element of the forest class probability distribution should be
close to 1, and other elements of the vector are close to 0. Of course, this condition may be
violated. However, this violation could be reduced by controlling the weights for computing
the forest class distributions. So, weights of trees could be found in order to minimize the
mean di¤erence between class vectors of all examples and the corresponding forest class
probability distributions, i.e., the weights can be trained by solving the corresponding
optimization problem.
The c-th element vi;c of the class probability distribution produced by the RF for xi is
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determined as
vi;c =

1

T

XT

t=1
p
(t)
i;c ; (1)

where p(t)i;c is the probability of class c for xi produced by the t-th tree from the RF.
Denote the obtained RF class probability distribution as vi = (vi;1; :::; vi;C). It is pro-

posed to change the method for computing vi;c, namely, the averaging operator (1) is
replaced with the weighted sum with weights w = (w1; :::; wT ) of the form:

vi;c =
XT

t=1
p
(t)
i;cwt; (2)

where wt is a weight of the t-th tree.
The weights do not depend on the class c. They are identical for all classes, but di¤erent

for trees. The weights also do not depend on xi. They are restricted by the following obvious
condition: XT

t=1
wt = w � 1T = 1; wt � 0; t = 1; :::; T; (3)

where 1 is a vector having T unit elements.

3.2 Training the Weighted RF Classi�er

The RF output for xi, which is denoted by oi, would be ideal when the class probability
distribution vi is such that it contains a single unit element and C � 1 zero elements. If
the feature vector xi belongs to the class yi, then the class vector is

oi = (0; :::; 0; 1yi ; 0; :::; 0):

Of course, the ideal RF for all training elements cannot be constructed, but the trees can
be supplemented by a weighted averaging procedure that could try to approximate the
class probability distribution of the RF to oi for every example xi. Weights w are found
such that vectors vi will be as close as possible to vectors oi whose unit element has index
yi coinciding with the class label of xi. This can be done by minimizing the loss function
which is de�ned by the distance d(vi;oi) between vi and oi, i.e.,

min
w

�XN

i=1
d(vi;oi) + �R(w)

�
; (4)

where R(w) is a regularization term which aims to avoid over�tting; � is a hyper-parameter
which controls the strength of the regularization.
The regularization term is taken of the form R(w) = kwk2 in order to get a quadratic

optimization problem.
A simple way to solve the optimization problem (4) is to use the Euclidean distance

between two vectors. As a result, the loss function for every RF is rewritten as follows:

min
w

 
NX
i=1

CX
c=1

(pi;cw � Ic(yi))2 + � kwk2
!
; (5)
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subject to (3).
Here Ic(y) is the indicator function taking the value 1 if y = c, otherwise it is 0; pi;c =�

p
(1)
i;c ; :::; p

(T )
i;c

�
. This is a standard convex optimization problem with linear constraints

whose solution does not meet any di¢ culties.
It follows from (3) that weights are restricted by the unit simplex. Generally, the set

of weights can be restricted by some convex subset W(u) of the unit simplex in order to
improve the regularization. Here u is another regularization parameter which de�nes the
size of the subsetW, for example, the hyperparameter of the imprecise Dirichlet model [40]
if this model is used for producing the subsetW(u). One of the aims of regularization is to
restrict a set of solutions to the optimization problem and to smooth it in order to avoid
outliers. The introduction of the restrictionW(u) for the set of weights plays the same role
as the regularization. In summary, it will be assumed that constraints to problem (5) are
of the form w 2W(u).

4 Probabilities of Classes for Trees and Imprecise
Probability Models

It is obvious that estimates of class probabilities cannot be considered to be precise when
based on a small number of training data. Even if there are a lot of training examples, it
does not guarantee that many examples fall into a certain leaf node, i.e., nl is large for all
l 2 CL. This implies that interval-valued or imprecise probabilities pl;c should be taken in
place of the precise ones.
Suppose that training example xi produces a class probability distribution P(i; t) =

(p1(i; t); :::; pC(i; t)) at a leaf node of the t-th decision tree, and this distribution is not
precisely known, but it is known that it belongs to a set Pi:t(s). Here s is a parameter
de�ning the set Pi:t. The set Pi:t is introduced in order to take into account the imprecision
of P(i; t). It is assumed that sets Pi:t(s) are di¤erent for di¤erent i and t, and they are
independent of each other. One of the well-known ways for dealing with imprecise data is
to use the minimax or maximin (pessimistic or robust) strategy. In accordance with this
strategy, a probability distribution is selected from every set of distributions Pi:t(s) such
that the loss function achieves its largest value for �xed values of weights w. It should be
noted that the selected �optimal�probability distributions may be di¤erent for di¤erent
values of weightsw. In fact, the minimax strategy selects the �worst�distribution providing
the largest value of the loss function. Therefore, it can be interpreted as an insurance
against the worst case because it aims at minimizing the expected loss in the least favorable
case [31]. Robust models have been widely exploited in classi�cation problems due to the
opportunity to avoid some strong assumptions underlying the standard classi�cation models
[43]. Another �extreme�strategy is optimistic. It selects the �best�distribution providing
the smallest value of the loss function. It can also be viewed as a direct opposite to the
minimax strategy. However, the optimistic strategy cannot be interpreted as being robust.
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Therefore, it is not studied below.
By applying the robust strategy, the problem (5) is written as the maximin optimization

problem of the form:

max
8i;t:P(i;t)2Pi:t(s)

min
w2W(u)

 
NX
i=1

CX
c=1

(pi;cw � Ic(yi))2 + � kwk2
!
: (6)

The maximization problem in (6) for every i and t is convex. Therefore, its solution can
be found on bounds of Pi:t(s). Moreover, attempts to write a dual optimization problem
in order to get the minimization problem lead to a non-linear optimization with quadratic
constraints. This implies that the direct way for considering the imprecise relaxation of the
RF class probability calculation and for computing the optimal weights cannot be applied
in general, it can only be done for some simple cases of the classi�cation problem statement.
Let us diverge from the standard de�nition of the loss function as the Euclidean distance

between vectors vi and oi and consider an example of the weighted averaging for a RF
consisting of T = 3 trees and solving a two-class classi�cation problem (C = 2). Suppose
that yi = 2. This implies that the vector oi is (0; 1). Let us suppose that the output of
the trees for example xi are p1 = (0:1; 0:9), p2 = (0:6; 0:4), p3 = (0:3; 0:7). The weighted
sum vi;1 = 0:1w1+0:6w2+0:3w3 should be as close to 0 as possible, and the weighted sum
vi;2 = 0:9w1 + 0:4w2 + 0:7w3 should be as close to 1 as possible. It is important for us to
make the second class probability vi;2 close to 1. We concentrate only on this objective.
In other words, it is proposed to consider only the weighted sum which corresponds to yi
and should be close to 1. Other weighted sums are not considered. Generalizing the above
example, only probability pyi(i; t) is used for the t-th tree and the i-th example. In fact,
the dot product of vector oi and the class probability distribution produced by the t-th
decision tree is used. This means that the loss function given above is replaced with the
following loss function:

min
w2W(u)

NX
i=1

 
1�

TX
t=1

pyi(i; t)wt

!
: (7)

One can see from (7) that every term in the objective function contains only the weighted
sum corresponding to yi, i.e., to the unit element of the vector oi. It should be noted that
the regularization term is not used here because it is assumed that its role is taken by the
subset W(u). At the same time, a similar problem with the explicit regularization term
will be studied later.

4.1 The linear programming problem

By taking into account (7), the maximin problem (6) can be written as follows:

N � min
8i;t:P(i;t)2Pi:t(s)

max
w2W(u)

 
NX
i=1

TX
t=1

pyi(i; t)wt

!
;
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which is equivalent to

min
8i;t:P(i;t)2Pi:t(s)

max
w2W(u)

 
TX
t=1

wt

NX
i=1

pyi(i; t)

!
: (8)

Note that the sum
PN

i=1 pyi(i; t) divided by N is the mean probability that the t-th tree
correctly classi�es all examples from the training set. This implies that, by maximizing the
objective function (8), one tries to �nd weights which lead to the largest mean probability
of the correct classi�cation.
Suppose that the set W(u) is produced by the following linear constraints:

at � wt � bt; t = 1; :::; T; w � 1T = 1: (9)

These constraints correspond to most imprecise statistical models. Let us �x the variables
P(i; t) and write the dual optimization problem for the primal form (8) with w. It is of
the form:

min
f0;ft;gt

 
f0 +

TX
t=1

(ftbt � gtat)
!
; (10)

subject to ft; gt � 0, t = 1; :::; T ,

f0 + ft � gt �
NX
i=1

pyi(i; t); t = 1; :::; T: (11)

The dual problem is derived in the following standard way: each primal variable wt
becomes a dual constraint (11); every coe¢ cient of a dual variable ft or gt in the dual
constraint is the coe¢ cient (1 or �1) of its primal variable in its primal constraint, re-
spectively, that is ft corresponds to the constraint wt � bt, and gt corresponds to the
constraint �wt � �at; the right-hand side of every dual constraint is the primal objective
function coe¢ cient

PN
i=1 pyi(i; t); the optimization variable f0 corresponds to the constraint

w � 1T = 1.
Hence, there are two minimization problems (over P(i; t) and over f0; fc; gc) which can

be combined into a single problem, taking into account the problem with variables P(i; t).
It is of the form:

min
8i;t:P(i;t); f0;ft;gt

 
f0 +

TX
t=1

(ftbt � gtat)
!
; (12)

subject to ft; gt � 0, P(i; t) 2 Pi:t(s), and (11).
So, a linear optimization problem has been obtained with NTC + 2T + 1 variables,

namely 2T variables ft and gt, one variable f0 and NTC variables pk(i; t). Since subsets
Pi:t(s) are assumed to be di¤erent for all t = 1; :::; T and i = 1; :::; N , the smallest value
of pyi(i; t) for every t and i is taken in order to provide the minimum of the objective
function. This follows from the fact that the smallest values of pyi(i; t) make the set of
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Figure 1: An example of the RF with a meta-learner using the IDM for the class probability
interval-valued representation

feasible solutions to be larger. In other words, an extreme point of Pi:t(s) can be taken
such that pyi(i; t) is minimal. This implies that all extreme points of subset Pi:t(s) have
to be found. It should be noted that several extreme points may have identical values of
pyi(i; t). It does not matter because only one probability pyi(i; t) from all probabilities of
the class probability distribution P(i; t) is used for every i and t.
Let us denote the smallest values of pyi(i; t) as p

�
yi
(i; t). In summary, the smallest

probabilities p�yi(i; t) have to be found among elements of extreme points. The probabilities
do not depend on other variables f0, fc, gc. Therefore, one can return to the primal form
(8) and use the smallest values p�yi(i; t) in (8). Hence, optimal weights are computed from
the linear optimization problem (8) by using the extreme points of Pi:t(s). It should be
noted that the dual problem (10)-(11) or problem (12) is needed in order to simply show
how to �nd optimal values of P(i; t) from Pi:t(s).
An example of the RF consisting of three decision trees with a meta-learner which

computes a vector of optimal weights (w1; w2; w3) is shown in Fig. 1. Precise probabilities of
three-class examples which fall into shaded leaves are (0; 4=5; 1=5), (1; 0; 0), (2=5; 1=5; 2=5).
Examples from di¤erent classes are denoted by circles, triangles and squares. Intervals
with bounds ai and bi obtained by using the IDM with the hyperparameter s = 1 are also
shown in Fig. 1. By using these intervals, sets Pi:t(s) for every tree and every example
are constructed, and the meta-learner solves the maximin optimization problem in order
to compute optimal weights which are assigned to trees to classify test data.
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4.2 The quadratic programming problem

So far, it has been studied how to compute optimal weights of trees under the condition
that constraints for weights play a role for the regularization. Let us now consider the
explicit regularization kwk2 added to the set W(u). In this case, the following quadratic
programming problem is obtained:

max
8i;t:P(i;t)2Pi:t(s)

min
w2W(u)

 
� kwk2 �

TX
t=1

wt

NX
i=1

pyi(i; t)

!
: (13)

If one �xes the variablesP(i; t), then a standard convex quadratic programming problem
with linear constraints with respect to w is obtained. The problem (13) can be viewed as
an extension of (5). Let us again �nd the dual problem in order to prove that the optimal
solution for probability distributionP(i; t) should be found among the largest elements with
the index yi. The dual problem for the minimization problem jointly with the optimization
problem over P(i; t) can be written as

max
8i;t:P(i;t)2Pi:t(s)

max
v;f0;ft;gt

 
�� kvk2 � f0 �

TX
t=1

(ftbt � gtat)
!
;

subject to ft; gt � 0, t = 1; :::; T , and

f0 + ft � gt + 2�vt �
NX
i=1

pyi(i; t); t = 1; :::; T:

Here v = (v1; :::; vT ) is a vector of T slack variables, ft; gt are non-negative optimization
variables, t = 1; :::; T , f0 is the optimization variable.
The dual form is not considered in detail because it is obtained by means of a standard

formal procedure. It is important for us to see that the maximum of the objective func-
tion is achieved when sums

PN
i=1 pyi(i; t) are minimal. Hence, the smallest values p

�
yi
(i; t)

are substituted into (13), and the following standard quadratic optimization problem for
computing optimal weights is solved:

min
w2W(u)

 
� kwk2 �

TX
t=1

wt

NX
i=1

p�yi(i; t)

!
: (14)

Problem (14) is a result of the double regularization. First, the regularization term
kwk2 is used to restrict the set of weights. Secondly, the weights are also restricted by the
set W(u).
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4.3 A special case: the IDM for class probabilities and the linear-
vacuous mixture for weights

Let us consider the IDM [40] and the linear-vacuous mixture or imprecise "-contaminated
models [39] as special cases of models for de�ning subsets Pi:t(s) and subset W(u), respec-
tively.
The IDM is de�ned by [40] as the set of all Dirichlet distributions over � = (�1; :::; �T )

with parameters � = (�1; :::; �T ) and s such that the vector � belongs to the unit simplex
and every �i is the mean of �i under the Dirichlet prior. Here � is the probability distrib-
ution de�ned on T events, for which the Dirichlet (s; �) prior is de�ned. For the IDM, the
hyperparameter s determines how quickly upper and lower probabilities of events converge
as statistical data accumulate. Smaller values of s produce faster convergence and stronger
conclusions, whereas large values of s produce more cautious inferences. Detailed discus-
sion concerning the parameter s and the IDM can be found in [8, 40]. In the framework
of classi�cation, the hyperparameter s can be regarded as a tuning parameter. Therefore,
its optimal value can be obtained only by means of using the cross-valudation procedure
and comparison of the classi�cation or regression results. At the same time, the value of s
must not depend on the number of observations.
Let A be any non-trivial subset of a sample space f#1; :::; #Tg, and let n(A) denote the

observed number of occurrences of A in the N trials, n(A) =
P

#j2A nj. Then, according
to [40], the predictive probability P (A; s) under the Dirichlet posterior distribution is

P (A; s) =
n(A) + s�(A)

N + s
;

where �(A) =
P

#j2A �j.
By maximizing and minimizing �j under restriction � 2 S(1;m), the posterior upper

and lower probabilities of A are obtained:

P (A; s) =
n(A)

N + s
; P (A; s) =

n(A) + s

N + s
:

We return to the de�nition of the tree class probability assuming that the i-th training
example (xi; yi) falls into a leaf node with number l(t) of the t-th decision tree of a RF. If
the vector of stored votes corresponding to this leaf node is nl(t) = (nl(t);1; :::; nl(t);C), then
one can �nd bounds for probability pl(t);c in accordance with the IDM. It follows from the
de�nition of the IDM that the bounds for the probability are of the form:

al(t);c =
nl(t);c
nl(t) + s

� pl(t);c �
nl(t);c + s

nl(t) + s
= bl(t);c:

The subset of probability distributions Pi:t(s) has C extreme points (q1(t); :::; qC(t))
such that the c-th extreme point, c = 1; :::; C, is determined in a simple way as follows:

qk(t) = bl(t);c; qc(t) = al(t);c; c = 1; :::; C; c 6= k:
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It is obvious that the smallest probability p�yi(i; t) is equal to al(t);c.
Let us suppose that the set W(u) is produced by means of the linear-vacuous mix-

ture or the imprecise "-contaminated models [39] with the elicited probability distribution
(T�1; :::; T�1) and the parameter " 2 [0; 1], i.e., u = ". Generally, the elicited probability
distribution can be arbitrary in the unit simplex. If " = 0, then the set W(u) is reduced
to the point (T�1; :::; T�1). The set W(u) coincides with the unit simplex when " = 0.
According to the model, W(u) is the convex set of weights with lower bound (1 � ")T�1
and upper bound (1� ")T�1 + ", i.e.,

(1� ")T�1 � wt � (1� ")T�1 + "; t = 1; :::; T:

This model can be viewed as another form of the IDM. In particular, there is a connection
between parameters s and ", which is " = s=(T + s). It has T extreme points denoted as
E(W(")), which are all of the same form: the k-th element is given by (1� ")T�1 + " and
the other T � 1 elements are equal to (1� ")T�1, i.e.,

qk(t) =
(1� ")
T

+ "; qt(t) =
(1� ")
T

; t = 1; :::; T; t 6= k:

Let us denote

At =
NX
i=1

al(t);yi =
NX
i=1

nl(t);yi
nl(t) + s

: (15)

Then problem (8) can be rewritten by taking into account the extreme points of W(") as

max
w2E(W("))

TX
t=1

wtAt =
TX
t=1

(1� ")
T

At + " max
k=1;:::;T

Ak:

The above implies that the optimal weight vector consists of T � 1 elements (1 � ")T�1
and one element (1� ")T�1 + ". At that, the tree, which provides the largest value of At,
is assigned by the weight (1 � ")T�1 + ". This solution is trivial and does not take into
account a di¤erence between trees, except for one tree with the largest value of Ak. It is
given here as an example. The quadratic problem (14) solves this problem and provides
better results. By taking into account the introduced parameters At in (15), problem (14)
can be rewritten as follows:

min
w

 
� kwk2 �

TX
t=1

Atwt

!
;

subject to
(1� ")
T

� wt �
(1� ")
T

+ "; t = 1; :::; T; w � 1T = 1: (16)
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5 Weighted RFs for Regression

5.1 Weighted Averages

Let us formally state the standard regression problem. Given N training data (examples,
instances, patterns) S = f(x1; y1); :::; (xN ; yN)g, in which xi may belong to an arbitrary set
X � Rm and represents a feature vector involving m features, and yi 2 R represents the
observed output such that yi = f(xi) + ". Here " is the random noise with expectation
0 and �nite variance. Machine learning aims to construct a regression model f(x) that
minimizes the expected risk which, for example, can be represented by the least squares
error criterion

J =
1

N

NX
i=1

(yi � f(xi))2 : (17)

A powerful nonparametric statistical method for the regression problems is the regres-
sion RF. Before considering the whole RF, it can be de�ned how predicted values can be
computed by a single decision tree. Suppose that nl training examples (xi; yi) with indices
from a set Dl, i.e., i 2 Dl, fall into the l-th leaf node. Then an output z = f(x) of a new
example which falls into the l-th leaf node can be computed as follows:

z = f(x) =
1

nl

X
i2Dl

yi:

In other words, the predicted value z assigned to the l-th leaf is the average of outputs of
all examples with indices from Dl. This implies that the predicted value strongly depends
on the number of examples whose indices belong to Dl. If this number is small, then it is
quite unreasonable to expect that the value z will be correct.
Let us return to the RF and suppose that it consists of T trained trees. The RF output

zRF is computed by averaging all predicted values z(t) across all trees, i.e., there holds

zRF =
1

T

TX
t=1

z(t):

In order to improve RFs, weights wt can be assigned to decision trees and the weighted
average of the tree predictions is computed as

zRF =

TX
t=1

z(t)wt = wz:

Here w = (w1; :::; wT ) is the weight vector, z = (z(1); :::; z(T ))T is the vector of T tree
outputs corresponding to example x. The weights are also restricted by condition (3).
By using the weights, the least squares error criterion (17) can be rewritten as follows:

J(w) =
1

N

NX
i=1

(yi �wzi)2 ;
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where zi is the vector of T tree outputs corresponding to training example xi.
It is obvious that estimates of z for every leaf cannot be considered to be precise when

based on a small number of training data. This implies that interval-valued predicted values
should be taken in place of precise ones. Using standard statistical estimation techniques,
a con�dence interval is obtained as:

z � t(1�a=2)sz=
p
nl; (18)

where t(1�a=2) is the percentile from the t-distribution corresponding to a 100(1��) percent
con�dence interval for the mean z value or the t-values;

s2z =
1

nl � 1
X
i2Dl

(yi � z)2:

Hence, the value z(t) for the t-th tree has lower and upper bounds, z(t)L and z(t)U , respec-
tively, which have to be taken into account in the problem of computing the weights. Let
Z(t) be a set of z(t) obtained from interval [z(t)L ; z

(t)
U ]. Since every z

(t) depends on the speci�c
example as well as on the tree, the t-th output of the i-th example will be denoted as z(t)i
and the corresponding interval as Z(t)i .
The pessimistic or robust strategy [31] is again used. In accordance with this strategy,

the �worst�values of z(t) are selected from intervals Z(t), t = 1; :::; T , providing the largest
value of the loss function J(w).

5.2 Training the Weighted Regression RF

In order to �nd optimal weights w by known precise values of z(t)i , an optimization problem
has to be solved taking into account that vectors vi will be as close as possible to vectors
oi whose unit element has the index yi coinciding with the class label of xi. It can be done
by minimizing the loss function which is de�ned by the distance d(vi;oi) between vi and
oi, i.e.,

min
w

 
NX
i=1

(yi �wzi)2 + � kwk2
!
:

Here kwk2 is a regularization term and � is a hyper-parameter which controls the strength
of the regularization.
The set of weights is also restricted by some convex subset W(u) of the unit simplex

in order to improve the regularization. Here u is another regularization parameter which
de�nes the size of the subset W (see the description of the same parameter and the set
W(u) for the classi�cation problem).
In order to take into account that z(t)i is interval-valued and to apply the robust strategy,

the maximin optimization problem is written as

max
z
(t)
i 2Z(t)i

min
w2W(u)

 
NX
i=1

(yi �wzi)2 + � kwk2
!
:
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Unfortunately, the above representation cannot be applied because it leads to a quadrat-
ic optimization problem with quadratic constraints. Therefore, the �rst term of the objec-
tive function is replaced with

NX
i=1

�����yi �
TX
t=1

z
(t)
i wt

����� =
NX
i=1

�����
TX
t=1

wt

�
yi � z(t)i

������ ;
and then

TX
t=1

wt

NX
i=1

���yi � z(t)i ��� :
The last transformation, of course, is not equivalent. However, in fact, it is proposed to

replace the �rst loss function by another loss function which is stronger because it restricts
the classi�cation error for every tree, but not for the whole RF. This leads to the following
quadratic optimization problem is obtained:

max
z
(t)
i 2Z(t)i

min
w2W(u)

 
TX
t=1

wt

NX
i=1

����yi � z(t)i ����+ � kwk2
!
: (19)

This is the primal form of the optimization problem. Let us �x the value z(t)i and write
the dual optimization problem for w. Suppose again that the set W(u) is produced by
constraints (9) which correspond to most imprecise statistical models. The dual problem is
written without the regularization term for simplicity. Jointly with optimization over z(t)i ,
it is of the form:

max
z
(t)
i 2Z(t)i

max
h0;ht;gt

 
h0 +

TX
t=1

(htbt � gtat)
!
; (20)

subject to ht; gt � 0, t = 1; :::; T ,

h0 + ht � gt �
NX
i=1

����yi � z(t)i ���� ; t = 1; :::; T: (21)

Here ht; gt are non-negative optimization variables, t = 1; :::; T , h0 is the optimization
variable.
It can be seen from the above optimization problem that the right sides of the constraints

have to be maximized to get the maximum over z(t)i , which is achieved when the following
rule holds: if yi < (z

(t)
i;L + z

(t)
i;U)=2, then z

(t)�
i = z

(t)
i;U , otherwise z

(t)�
i = z

(t)
i;L. Here z

(t)�
i is an

optimal value of the z(t)i from the interval Z(t)i maximizing the objective functions (19) or
(20).
The same results can be obtained for the quadratic optimization problem (19) which

takes into account the regularization term � kwk2. The dual problem is of the form:

max
z
(t)
i 2Z(t)i

max
v;h0;ht;gt

 
�� kvk2 � h0 +

TX
t=1

(htbt � gtat)
!
; (22)
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subject to ht; gt � 0, t = 1; :::; T ,

h0 + (ht � gt) + 2�vt � �
NX
i=1

����yi � z(t)i ���� ; t = 1; :::; T: (23)

Hence, the corresponding optimal values of z(t)�i depending on yi, z
(t)
i;L, z

(t)
i;U are substitut-

ed into the primal form (19), and the following standard quadratic optimization problem
for computing optimal weights is solved:

min
w2W(u)

 
TX
t=1

wt

NX
i=1

����yi � z(t)�i

����+ � kwk2! : (24)

Let us suppose that the setW(u) is produced by means of the imprecise "-contaminated
model [39] with the elicited probability distribution (T�1; :::; T�1) and the parameter " 2
[0; 1], i.e., u = ". According to this model, the setW(") is produced by T constraints (16).
Then the quadratic optimization problem has linear constraints and can be solved using
standard procedures.

6 Numerical experiments

6.1 Classi�cation

In order to illustrate the robust classi�cation RF model, it is compared to the original RF
by using datasets from UCI Machine Learning Repository [22]. Table 1 shows the number
of features m for the corresponding data set, the number of examples N and the number
of classes C. More detailed information can be found from the data resources.
The accuracy measure A used in the classi�cation experiments is the proportion of

correctly classi�ed cases on a sample of data. To evaluate the average accuracy, a cross-
validation with 100 repetitions is performed, where in each run, Ntr training data and
Ntest = N � Ntr testing data are randomly selected. Every RF consists of 100 decision
trees.
The preliminary numerical experiments have shown that a large number of weights

may lead to over�tting. In order to overcome this di¢ culty and to reduce the complex
optimization problems, it is proposed to unite all trees into G groups. The class probability
distribution for every group is determined by averaging all class probability distributions
in the group. The number of groups is a tuning parameter of the machine learning task. It
is impossible to de�ne an optimal number before numerical experiments. Therefore, it is
done empirically by taking di¤erent numbers from the set G and comparing the validation
results.
For experiments, the following values of Ntr are considered: 10, 20, 30, 40. Di¤erent

values for the model hyper-parameters have been tested, choosing those leading to the best
results. They are selected from the following sets of the hyper-parameters:
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Table 1: A brief introduction about data sets for classi�cation
Data set Abbreviation m N C

QSAR Biodegradation Biodeg 41 1055 2
Cardiotocography Cardio3 21 2126 3

Diabetic Retinopathy Diabet 19 1151 2
Haberman�s Breast Cancer Survival HS 3 306 2

Ionosphere Ion 34 351 2
Parkinsons Parkinsons 22 195 2

Website Phishing Phishing_1 9 1353 3
Seeds Seeds 7 210 3

Seismic-Bumps Seismic 24 2584 2
Connectionist Bench Sonar 60 208 2
SPECT Heart SPECT 22 267 2
SPECTF Heart SPECTF 44 267 2

Teaching Assistant Evaluation TAE 54 151 3
Tic-Tac-Toe Endgame TTTE 27 958 2
Wholesale Customer WC3 6 440 3

Breast Cancer Wisconsin (Diagnostic) WDBC 30 569 2

� The regularization hyper-parameter � 2 f0:5; 1; 1:5; :::; 10; 10:5g.

� The contamination parameter " 2 f0:25; 0:5; 0:75g.

� The parameter of the number of the tree groups G 2 f5; 10; 20; 25; 100g.

� The hyper-parameter of the IDM s 2 f1; 3; 5g.

It should be noted that all results are obtained for three values of s.
The numerical results for cases using 10, 20, 30, 40 training examples are shown in

Tables 2-5, respectively. The best performance for each dataset is shown in bold. It
can be seen from Tables 2-5 that the IRF outperforms the original RF for all datasets.
Table 6 illustrates the mean values of the accuracy measures across all datasets for
cases using 10, 20, 30, 40 training examples. It follows from Table 6 that the mean
accuracy measures of the IRF are larger than the same measures of the original RF.

In order to formally show when the proposed IRF outperforms the original RF, the t-test
is applied, which has been proposed and described by Demsar [12] for testing whether the
average di¤erence in the performance of two classi�ers, the IRF and the RF, is signi�cantly
di¤erent from zero. The largest value of the IRF accuracy measures for s = 1; 3; 5 are
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Table 2: Comparison of the RF with the IRF by s = 1; 3; 5 when 10 examples are used for
training

Data set RF IRF, s = 1 IRF, s = 3 IRF, s = 5
Biodeg 71.34 74.48 74.13 74.04
Cardio3 78.64 80.47 80.12 79.86
Diabet 54.22 58.53 58.34 58.12
HS 72.69 75.03 75.07 74.92
Ion 72.80 77.55 77.61 77.49

Parkinsons 79.20 82.43 82.07 81.72
Phishing_1 76.76 79.89 79.50 79.41
Seeds 84.31 87.19 86.86 86.43
Seismic 92.93 93.07 93.06 93.05
Sonar 65.28 70.18 69.85 69.50
SPECT 79.08 79.40 79.22 79.16
SPECTF 78.78 80.47 80.04 79.99
TAE 35.81 40.77 39.96 39.55
TTTE 64.70 67.59 67.36 67.32
WC3 70.39 71.70 71.74 71.85
WDBC 90.45 92.80 92.70 92.36

Table 3: Comparison of the RF with the IRF by s = 1; 3; 5 when 20 examples are used for
training

Data set RF IRF, s = 1 IRF, s = 3 IRF, s = 5
Biodeg 73.54 76.83 76.64 76.37
Cardio3 79.16 82.20 82.07 81.78
Diabet 56.10 59.77 59.6 59.57
HS 73.85 75.33 75.49 75.48
Ion 75.18 80.39 80.36 80.39

Parkinsons 81.63 84.43 84.45 84.37
Phishing_1 80.40 83.14 83.04 83.05
Seeds 86.67 89.56 89.35 89.02
Seismic 93.00 93.10 93.05 93.04
Sonar 69.82 73.61 73.48 73.27
SPECT 79.00 79.18 79.10 79.14
SPECTF 79.01 80.49 80.38 80.29
TAE 38.47 43.74 43.50 43.21
TTTE 65.67 69.61 69.35 69.08
WC3 71.02 71.76 71.66 71.65
WDBC 91.51 93.37 93.26 93.24
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Table 4: Comparison of the RF with the IRF by s = 1; 3; 5 when 30 examples are used for
training

Data set RF IRF, s = 1 IRF, s = 3 IRF, s = 5
Biodeg 74.08 77.31 77.19 76.97
Cardio3 79.11 82.06 81.97 81.72
Diabet 57.55 61.47 61.37 61.30
HS 73.84 75.44 75.36 75.40
Ion 79.28 83.06 82.96 83.03

Parkinsons 82.26 85.03 85.09 85.08
Phishing_1 80.92 82.84 82.85 82.82
Seeds 87.46 89.79 89.71 89.58
Seismic 92.99 93.10 93.08 93.08
Sonar 72.73 76.38 76.30 76.16
SPECT 79.00 79.16 79.09 79.13
SPECTF 79.09 80.34 80.39 80.28
TAE 38.27 44.16 44.06 43.50
TTTE 65.60 69.47 69.45 69.35
WC3 71.62 71.93 71.94 71.94
WDBC 91.69 93.43 93.42 93.24

Table 5: Comparison of the RF with the IRF by s = 1; 3; 5 when 40 examples are used for
training

Data set RF IRF, s = 1 IRF, s = 3 IRF, s = 5
Biodeg 73.22 77.16 76.86 76.54
Cardio3 79.25 82.71 82.59 82.45
Diabet 58.22 61.74 61.84 61.82
HS 73.85 75.55 75.44 75.37
Ion 79.37 84.31 83.86 83.88

Parkinsons 82.24 84.67 84.77 84.86
Phishing_1 81.68 83.42 83.36 83.31
Seeds 87.44 89.60 89.53 89.35
Seismic 92.99 93.15 93.13 93.11
Sonar 73.28 76.79 76.67 76.76
SPECT 79.00 79.03 79.04 79.03
SPECTF 79.01 80.61 80.41 80.29
TAE 40.64 46.30 46.23 46.03
TTTE 65.44 70.16 70.32 70.33
WC3 71.88 72.09 72.10 72.11
WDBC 92.32 93.91 93.90 93.83
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Table 6: Average accuracy measures for the RF with the IRF by s = 1; 3; 5 across all
datasets

RF IRF, s = 1 IRF, s = 3 IRF, s = 5
10 72.96 75.72 75.48 75.30
20 74.63 77.28 77.17 77.06
30 75.34 77.81 77.76 77.66
40 75.61 78.20 78.13 78.07

Figure 2: Illustration of the proposed model outperformance for datasets: Seeds, Seismic,
Spectf, WC3

compared with the corresponding RF accuracy measure. The t statistic in this case is
distributed according to the Student�s t-distribution with 16� 1 degrees of freedom. The t
statistics for the di¤erences lead to the p-values. They are 2:1�10�6, 6:4�10�6, 1:7�10�5,
2:7� 10�5 for cases with 10, 20, 30, 40 training examples, respectively. It can be seen from
the results that the proposed model outperforms the original RF for all cases, but its relative
level of improved performance compared to the original RF is reduced with increase of the
number of training examples.
Fig. 2 illustrates how the accuracy measures depend on the training size for datasets:

Seeds, Seismic, Spectf, WC3. The lines with diamond markers, circle markers, and triangle
markers correspond to the original RF, the IRF by s = 1, and the IRF by s = 3, respec-
tively. Such pictures are not provided for all datasets because they are very similar, the
corresponding accuracy measures are given in Tables 2-5.
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Table 7: Comparison of the SVM and the RotForest with the IRF when 40 examples are
used for training

Data set SVM RotForest IRF
Biodeg 72.09 74.18 77.16
Cardio3 76.88 79.32 82.71
Diabet 58.22 58.22 61.84
HS 74.38 73.06 75.55
Ion 83.20 80.65 84.31

Parkinsons 84.04 83.72 84.86

Table 8: Comparison of the RF with the IRF by s = 1; 3; 5 when 10 examples are used for
training by noisy testing data

Data set RF IRF, s = 1 IRF, s = 3 IRF, s = 5
Cardio3 78.22 79.69 79.14 78.96
HS 71.94 74.11 74.30 74.45
Ion 69.49 74.12 73.82 73.62
Seeds 77.84 81.01 80.36 80.02
Sonar 64.53 68.71 68.71 68.53
SPECTF 78.78 80.33 80.30 80.19
TTTE 64.99 67.89 67.49 67.21
WC3 69.25 71.36 71.62 71.79

To compare the proposed IRF with other classi�cation models, we used
the well-known support vector machine (SVM) and the Rotation Forest (Rot-
Forest) [32]. An implementation of RotForest in Phyton can be found at
https://github.com/antongoy/RotationAlgorithms. The SVM uses a standard Gaussian
radial basis function (RBF) kernel in all experiments. Di¤erent values for the kernel para-
meter and the �cost�parameter of the SVM have been tested, choosing those leading to
the best results. The largest values of A obtained in the previous experiments are taken
for the IRF. Results of experiments on some datasets are shown in Table 7. It can be seen
from Table 7 that the SVM and the RotForest provide worse results in comparison with
the IRF for the small datasets of size 40.
In order to study the robustness of the IRF, noise is added to the testing data in the

following way. For every feature j, its standard deviation �j using the whole dataset is
computed. If xij is the j-th feature of the i-th example from the testing set, then the
corresponding feature with the noise becomes xij + zij, where zij is a normally distributed
random number with zero expectation and standard deviation ��j. Here � is a parameter
which is set as 0:5 in experiments. The corresponding results for cases with 10, 20, 30, 40
training examples are shown in Tables 8-11, respectively. One can again observe that the
IRF outperforms the original RF for all datasets.
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Table 9: Comparison of the RF with the IRF by s = 1; 3; 5 when 20 examples are used for
training by noisy testing data

Data set RF IRF, s = 1 IRF, s = 3 IRF, s = 5
Cardio3 78.60 81.01 80.99 80.91
HS 73.60 75.08 74.95 74.97
Ion 70.94 76.78 76.82 76.79
Seeds 81.24 83.36 83.36 83.17
Sonar 67.94 71.59 71.63 71.58
SPECTF 78.87 80.43 80.42 80.40
TTTE 65.86 68.70 68.82 68.74
WC3 70.67 71.78 71.76 71.72

Table 10: Comparison of the RF with the IRF by s = 1; 3; 5 when 30 examples are used
for training by noisy testing data

Data set RF IRF, s = 1 IRF, s = 3 IRF, s = 5
Cardio3 78.30 80.58 80.51 80.49
HS 73.46 75.07 75.27 75.22
Ion 73.78 79.46 79.33 79.33
Seeds 81.09 83.86 83.78 83.71
Sonar 69.47 72.96 72.88 72.91
SPECTF 78.91 80.50 80.50 80.52
TTTE 65.21 68.49 68.42 68.32
WC3 71.32 71.97 71.91 71.90

Fig. 3 illustrates how the accuracy measures depend on the size of the training set by
adding the noise to the testing data for datasets: Cardio3, Seeds, Spectf, WC3. The lines
with diamond markers, circle markers, and triangle markers correspond to the original RF,
the IRF by s = 1, and the IRF by s = 3, respectively.
Deriving the proposed IRF di¤ers from deriving the original RF classi�er by additional

computation of the extreme points and solving the quadratic optimization problem in
the training phase. The extreme points are known in explicit form. Therefore, their
computation practically does not require additional time. The quadratic optimization
problem is also simple because the number of training examples is small. When a PC with
Intel Core i7-7700HQ 2.80GHz is used, the IRF solution, compared to the RF solution,
requires the additional time for training, which is less than one second. The computation
times for the predictions for both methods do not show any di¤erence, because the standard
averaging operation for RF is just replaced by weighted averaging for IRF.
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Table 11: Comparison of the RF with the IRF by s = 1; 3; 5 when 40 examples are used
for training by noisy testing data

Data set RF IRF, s = 1 IRF, s = 3 IRF, s = 5
Cardio3 78.39 81.14 81.10 81.04
HS 74.00 75.49 75.39 75.38
Ion 73.43 79.28 79.26 79.30
Seeds 80.70 83.21 83.33 83.22
Sonar 70.76 74.02 73.99 74.09
SPECTF 79.00 80.69 80.77 80.70
TTTE 65.51 69.53 69.54 69.44
WC3 71.53 71.96 71.92 71.88

Figure 3: Illustration of the proposed model outperformance for datasets: Cardio3, Seeds,
Spectf, WC3
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Table 12: A brief introduction about data sets for regression
Data set Abbreviation m N

Airfoil Self-Noise Airfoil 6 1503
Concrete Compressive Strength Concrete 9 1030
Energy E¢ ciency: Cooling Load Energy_c 8 768
Energy E¢ ciency: Heating Load Energy_h 8 768
Real Estate Valuation Data Estate 7 414

Physicochemical Properties of Protein Tertiary Structure Proteins 9 1000
Yacht Hydrodynamics Yacht 7 308

6.2 Regression

In order to illustrate the robust regression IRF model, it is compared with the original
RF by using datasets from the UCI Machine Learning Repository [22]. Table 12 shows
the number of features m for the corresponding data set and the number of examples N .
For every experiment, the same rules as for the numerical classi�cation experiments are
used, for example, Ntr = 10, 20, 30, 40 training examples are randomly selected from
every dataset. The mean square prediction error measure (RMSE) used in experiments is
computed as

RMSE =

q
N�1
test

PNtest
i=1 (yi � f(xi))

2:

To evaluate the RMSE, a cross-validation with 100 repetitions is performed, where
Ntr = 10, 20, 30, 40 training examples are randomly selected in each run. The quadratic
optimization problem is solved using the parameter " of the set W(") selected to get the
best accuracy. Di¤erent values for the regularization hyper-parameter � have been tested,
choosing those leading to the best results. The RF consists of 100 decision trees.
First, the regression models by using the con�dence interval (18) for � = 0:1 and

� = 0:01 and the Kolmogorov-Smirnov bounds for the expectation (KS-interval in Tables
13-16) for  = 0:1 and  = 0:01 are studied. Let F denote the cumulative distribution
function associated with the unknown probability measure P of some univariate predicted
data z(t)1 ; : : : ; z

(t)
N on leaves of the t-th tree, and let F̂N be the associated empirical cumulative

distribution function. The Kolmogorov�Smirnov bounds FN and FN for F̂N are de�ned as
follows [17]:

FN(z) = max(FN(z)� dN;1�); 0);
FN(z) = min(FN(z) + dN;1�; 1):

Here dN;1� is a quantile of the test distribution with the test level  2 (0; 1). The
ways for computing dN;1� for given N and  can be found in the book [17]. In order to
compute bounds, lower and upper expectations corresponding to the functions FN and FN ,
respectively, a = z

(t)
1 and b = z

(t)
N are introduced such that FN(z) = 1 for all z � b and

FN(z) = 0 for all z � a.
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Table 13: Comparison of the RF with the IRF by � = 0:1, � = 0:01 and  = 0:1,  = 0:01
when 10 examples are used for training

Con�dence interval KS-interval
Data set RF IRF, � = 0:1 IRF, � = 0:01 IRF,  = 0:1 IRF,  = 0:01
Airfoil 6.89 6.65 6.67 6.68 6.70
Concrete 15.61 14.96 14.91 15.41 15.43
Energy_c 7.09 7.22 7.11 6.98 6.99
Energy_h 7.62 7.48 7.34 7.74 7.77
Estate 11.13 10.89 10.68 10.86 10.90
Proteins 6.34 6.08 6.09 6.08 6.09
Yacht 11.90 12.04 11.73 11.66 11.67

Table 14: Comparison of the RF with the IRF by � = 0:1, � = 0:01 and  = 0:1,  = 0:01
when 20 examples are used for training

Con�dence interval KS-interval
Data set RF IRF, � = 0:1 IRF, � = 0:01 IRF,  = 0:1 IRF,  = 0:01
Airfoil 6.26 6.07 6.08 6.02 6.02
Concrete 13.52 12.87 12.89 13.46 13.46
Energy_c 4.34 4.29 4.28 4.25 4.25
Energy_h 4.66 4.46 4.40 4.66 4.66
Estate 9.46 9.17 9.08 9.17 9.18
Proteins 6.02 5.86 5.88 5.78 5.79
Yacht 7.10 7.19 6.83 7.02 7.03

The numerical results for cases with 10, 20, 30, 40 training examples are shown in Tables
13-16, respectively. The best performance for each dataset is shown in bold. It can be seen
from Tables 13-16 that the IRF outperforms the original RF for all datasets.

In order to formally show when the proposed IRF outperforms the original RF, the
t-test is again applied. The largest values of the IRF accuracy measures for � = 0:1 and
� = 0:01 are compared with the corresponding RF accuracy measure. The t statistic in this
case is distributed according to the Student�s t-distribution with 7� 1 degrees of freedom.
The corresponding p-values for cases with 10, 20, 30, 40 training examples are 0:0042,
0:0036, 0:0013, 0:002, respectively. It can be seen from the results that the proposed model
outperforms the original RF for all considered datasets. It is interesting to consider the
results corresponding to the use of the con�dence intervals and the KS-intervals separately.
The p-values for cases with 10, 20, 30, 40 training examples using con�dence intervals are
0:013, 0:008, 0:008, 0:005, respectively. The same p-values using the KS-intervals are 0:018,
0:014, 0:017, 0:008.
Fig. 4 illustrates how the accuracy measures depend on the training size for datasets:
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Table 15: Comparison of the RF with the IRF by � = 0:1, � = 0:01 and  = 0:1,  = 0:01
when 30 examples are used for training

Con�dence interval KS-interval
Data set RF IRF, � = 0:1 IRF, � = 0:01 IRF,  = 0:1 IRF,  = 0:01
Airfoil 5.78 5.73 5.77 5.61 5.61
Concrete 12.21 11.79 11.80 12.01 12.00
Energy_c 3.75 3.66 3.63 3.69 3.69
Energy_h 3.78 3.64 3.60 3.73 3.73
Estate 8.97 8.60 8.59 8.79 8.80
Proteins 5.90 5.81 5.86 5.70 5.71
Yacht 5.10 4.85 4.72 5.15 5.14

Table 16: Comparison of the RF with the IRF by � = 0:1, � = 0:01 and  = 0:1,  = 0:01
when 40 examples are used for training

Con�dence interval KS-interval
Data set RF IRF, � = 0:1 IRF, � = 0:01 IRF,  = 0:1 IRF,  = 0:01
Airfoil 5.48 5.38 5.37 5.38 5.38
Concrete 11.16 10.91 10.88 11.07 11.05
Energy_c 3.36 3.24 3.24 3.36 3.36
Energy_h 3.22 3.15 3.15 3.20 3.21
Estate 8.62 8.37 8.39 8.48 8.47
Proteins 5.82 5.70 5.74 5.67 5.65
Yacht 4.14 4.17 4.10 4.04 4.06
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Figure 4: Illustration of the proposed model outperformance for datasets: Proteins, Estate,
Concrete, Airfoil

Proteins, Estate, Concrete, Airfoil. The results are taken for cases of the con�dence interval
usage. The lines with diamond markers, circle markers, and triangle markers correspond
to the original RF, the IRF by � = 0:1, and the IRF by � = 0:01, respectively.
Fig. 6.2 illustrates the same accuracy measures for Proteins and Estate datasets under

condition that the testing data are added by the noise.

Illustration of the proposed regression model outperformance by adding the noise to
testing data for datasets: Proteins, Estate
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7 Conclusion

This paper has presented a novel approach for classi�cation and regression using RFs,
taking into account a lack of su¢ cient data to warrant resulting predictions to be precise.
It di¤ers from many available approaches to classi�cation and regression because it does not
change trees as week learners, but impacts on their weights which are used for combining
the tree outputs. Simple linear and quadratic optimization problems have been obtained
for computing weights optimal to some extent. Only two types of models have been studied:
the classi�cation RF model and the regression RF model. However, the idea underlying
the considered models can be extended to other ensemble-based models. This is a direction
for further research.
The introduction of new loss functions tried to separate optimization problems in order

to simplify the solution and to avoid extremely complex non-linear optimization problems
which are unsolvable and not really necessary. Of course, it is necessary to pay for this
simpli�cation by the decision being pessimistic, which is logically related to robustness.
Perhaps, better results could be obtained by using the original loss functions and solving
the corresponding complex non-linear optimization problems. However, our numerical ex-
periments have illustrated that the proposed replacements lead to outperforming results
compared to standard RF. It follows from the numerical experiments on the basis of real
datasets that the proposed IRF is very e¢ cient when only a few training examples are avail-
able and testing examples are noisy. It is also important to note that the proposed model
successfully deals with large datasets due to restrictions introduced for weights and due to
�exibility of the used imprecise models when intervals of class probabilities or con�dence
intervals of predicted values strongly depend on the number of training examples.
A disadvantage of the proposed approach is that many additional tuning parameters

appear, including parameters of the imprecise models (the contamination parameter, the
hyper-parameter of the IDM), the regularization hyper-parameter, and the parameter rep-
resenting the number of tree groups. As a result, the tuning procedure for selecting the best
parameters is hard for training and requires quite substantial additional time. Moreover,
a quadratic optimization problem with a large number of variables has to be solved for
implementing the meta-model. Its solution also requires additional time.
The proposed approach can be extended to various imprecise statistical models, for

example, the imprecise pari-mutuel model, the constant odds-ratio model. In particular,
the numerical results have been provided for the Kolmogorov-Smirnov bounds, which can
be regarded as a special form of the imprecise pari-mutuel model. These imprecise models
have a �nal set of extreme points of the set of probability distributions and bounds for
probabilities of events. This implies that the corresponding minimax optimization problems
can be solved in the same way.
It should be noted that only two speci�c loss functions have been applied to computing

the optimal weights. However, functions di¤erent from the given ones can be also applied
to simplifying the obtained optimization problems and to getting better results. This is a
direction for further research. Moreover, it is very interesting to consider distances, which
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belong to information-theoretic metrics, for example, the Kullback�Leibler divergence for
comparing two class probability distributions.
One of the important and challenging problems of machine learning is the imbalance

class problem. It can be considered from two points of view. On the one hand, this
problem may occur when examples of one class outnumber the examples of other classes.
As a result, one of the classes has a small number of training data. This fact may lead
to the problem which has been solved in the paper. On the other hand, the imbalanced
data may signi�cantly bias the probabilities of classes, which are used for constructing and
for training the meta-model. Therefore, new imprecise statistical model (biased models)
should be studied in place of the IDM. The above separate views of the problems as well
as their joint consideration are also interesting directions for further research.
Finally, it should be pointed out that the idea of introducing the weights for taking

into account imprecision can be extended to di¤erent functions than weighted averaging,
for example, some non-linear functions of a special form or neural networks which can be
also viewed as complex functions of weights.
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