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Abstract. 

In this research, we propose Particle Swarm Optimization (PSO)-enhanced ensemble deep neural networks for 

optic disc (OD) segmentation using retinal images. An improved PSO algorithm with six search mechanisms to 

diversify the search process is introduced. It consists of an accelerated super-ellipse action, a refined super-

ellipse operation, a modified PSO operation, a random leader-based search operation, an average leader-based 

search operation and a spherical random walk mechanism for swarm leader enhancement. Owing to the superior 

segmentation capabilities of Mask R-CNN, transfer learning with a PSO-based hyper-parameter identification 

method is employed to generate the fine-tuned segmenters for OD segmentation. Specifically, we optimize the 

learning parameters, which include the learning rate and momentum of the transfer learning process, using the 

proposed PSO algorithm. To overcome the bias of single networks, an ensemble segmentation model is 

constructed. It incorporates the results of distinctive base segmenters using a pixel-level majority voting 

mechanism to generate the final segmentation outcome. The proposed ensemble network is evaluated using the 

Messidor and Drions data sets and is found to significantly outperform other deep ensemble networks and 

hybrid ensemble clustering models that are incorporated with both the original and state-of-the-art PSO variants. 

Additionally, the proposed method statistically outperforms existing studies on OD segmentation and other 

search methods for solving diverse unimodal and multimodal benchmark optimization functions and the 

detection of Diabetic Macular Edema. 
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1. INTRODUCTION 

Diabetic retinopathy (DR) and glaucoma are two common ocular diseases that affect millions of people 

worldwide. DR, which is the most common diabetic eye disorder, is caused by the damage to the blood vessels 

of light-sensitive tissue in the retina. Glaucoma, which is another complicated ocular disorder, affects people of 

all ages. It is caused by the damage to the optic nerve connecting the eye to the brain. Both DR and glaucoma 

are silent diseases, and are the leading causes of irreversible blindness worldwide [1]. Therefore, early and 

instant detection of their onset is vital. The optic disc (OD) is a bright yellow, approximately circular object in 

the retina where the major blood vessels emerge. Serving as a reference location for other features in fundus 

images, it provides important information for the estimation of fovea locations, blood vessel segmentation, and 

cup-to-disc ratio calculation. These characteristics, especially the cup-to-disc ratio, play a significant role in 

glaucoma diagnosis. Since the disc is also similar to bright lesions that occur in retinal diseases such as DR, it is 

important to segment the OD regions in the fundus images before performing disease grading.  
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Owing to the low-contrast blurry disc boundaries, vasculature occlusion, retinal atrophy, and bright lesion 

distractors, determining the disc boundaries is a challenging task. Many segmentation methods have been 

proposed, which can be classified into two categories, i.e. shape and texture-based approaches. Shape-based 

approaches include template-based, morphological, and deformable methods. Cheng et al. [2] conducted OD 

segmentation by eliminating peripapillary atrophy using edge detection, constraint elliptical Hough transform, 

peripapillary atrophy detection, and ellipse fitting correction. Morales et al. [3] employed the Principal 

Component Analysis (PCA) and mathematical morphological operations for determining OD contours. Sarathi 

et al. [4] utilized adaptive threshold based region growing techniques to identify the disc boundaries. 

Deformable models such as the Active Shape Model were adopted by Yin et al. [5] for segmenting the disc 

regions. Since these methods rely heavily on the brightness and the circular or elliptical characteristics of the 

disc regions, they either depict limited capabilities in tackling shape variations of the disc boundaries, or could 

be easily distracted by bright lesions in abnormal images or the optic cup (OC), a brighter circular region in the 

centre of the disc [6, 7]. They also depend strongly on pre-processing procedures such as OD localization, blood 

vessel removal, and contrast enhancement to enable OD segmentation. 

 

On the other hand, texture-based approaches perform pixel-wise classification of OD and non-OD regions, 

including filter-based and clustering-based techniques. Dashtbozorg et al. [8] employed a multiresolution sliding 

band filter (SBF), including both a low-resolution SBF and a high-resolution SBF, to determine the OD 

boundaries. Xue et al. [9] extracted OD regions using K-Means (KM) clustering and subsequently applied 

ellipse fitting and active contour to retrieve refined OD contours. KM clustering and Connected Component 

Analysis were employed by Sharma and Verma [10] to segment the disc regions, after eliminating noise and 

enhancing image contrast using colour band selection and spatial average filtering. Hamednejad and 

Pourghassem [11] employed the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 

algorithm for OD segmentation. They first employed a masking procedure and combinational filtering to 

retrieve the initial region of interest (ROI) sub-images, which were subsequently converted to the LAB colour 

space before passing on to the DBSCAN model for OD segmentation. Post-processing operations such as 

median filter and morphological operations were also used to further refine the segmented regions. Thakur and 

Juneja [12] proposed a hybrid model, i.e. the Level Set Based Adaptively Regularized Kernel-Based 

Intuitionistic Fuzzy C-Means (LARKIFCM) clustering model, for OD segmentation. A comparison between 

LARKIFCM and KM clustering, Fuzzy C-Means (FCM) Clustering, Intuitionistic FCM clustering, Spatial FCM 

clustering, as well as Adaptively Regularized Kernel-Based FCM (ARKFCM) clustering was conducted, in 

order to validate the model efficiency. Although the abovementioned filter-based and clustering-based 

approaches show enhanced performance, such techniques require pre-processing procedures, such as region 

cropping and contrast enhancement, to eliminate noise and non-OD structures, as well as post-processing 

operations such as active contour, level set, and morphological operations, to tackle the over and/or under 

segmentation problems. Besides that, the abovementioned clustering-based methods are constrained by the 

selected clustering models such as KM and FCM, which are likely to be trapped in local optima [13, 14, 15]. 

Similar to shape-based approaches, the abovementioned texture-based methods are also sensitive to distractors, 

such as blood vessels, the occurrence of bright lesions, as well as fuzzy and blurry OD boundaries.  

 

Deep learning and transfer learning techniques have shown superior performances in addressing computer 

vision and medical imaging problems [16, 17, 18, 19, 20]. In comparison with the traditional shape and texture-

based methods for OD segmentation, they do not require multi-stage pre- and post-processing operations. They 

perform the segmentation task in an end-to-end fashion. In addition, transfer learning is able to overcome data 

scarcity issues and yield efficient learners with a small data set from an alternative target domain. It transfers the 

learned features to a new task through training with a set of pre-trained weights, instead of randomly assigned 

ones. In this regard, Mask R-CNN [16, 17] is one of the state-of-the-art segmentation methods with superior 

performance in instance segmentation for the 2017 COCO suite of challenges. We adopt transfer learning based 

on Mask R-CNN for OD segmentation in this research, which employs a one-stage, end-to-end deep architecture 

with image-level inputs to overcome the constraints of multi-stage pipeline processing employed in the existing 

methods. Since the hyper-parameters of transfer learning, such as the learning rate and momentum, have a 

significant impact on the network performance, which is a bottleneck for deploying deep learning models to a 

new domain, we propose a variant of the Particle Swarm Optimization (PSO) algorithm to automate the 

selection of optimal hyper-parameters. This PSO-based hyper-parameter selection process also enables the 

generation of multiple distinctive fine-tuned segmenters with different optimal training hyper-parameters. To 

overcome bias of single segmentation models, we combine the individual segmenters to form a deep ensemble 

model for performance enhancement. Figure 1 depicts the overall system architecture. 

 

The contributions of this research are highlighted, as follows. 



1. Transfer learning based on the state-of-the-art object detector and segmenter, Mask-RCNN [16, 17], is 

used to generate the base segmenters. It is able to overcome the data scarcity issue by transferring the 

learned features to a new task using a smaller number of training images, in comparison with the 

process of training from scratch.  

2. Identification of the optimal training configuration is a bottleneck in deploying deep learning models 

for a new domain, owing to the fact that hyper-parameters such as the learning rate and momentum 

have a significant impact on the network performance [15, 21]. Manual trial-and-error and exhaustive 

grid search procedures have been adopted in the existing methods for the selection of optimal training 

settings. In this research, we automate the optimal hyper-parameter identification process using a PSO 

variant, leading to performance enhancement.  

3. Since the original PSO algorithm employs a monotonous search process guided by one leader, it is 

likely to converge prematurely. The proposed PSO model overcomes this shortcoming by employing a 

versatile search procedure guided by multiple elite solutions. Specifically, it encompasses super-ellipse 

search operations, a new velocity updating action with elliptical coefficients, mean and random best 

leader-enhanced search operations, and a circular movement for global best enhancement. The model is 

used to optimize the training hyper-parameters, e.g. learning rate and momentum, of the transfer 

learning procedure based on Mask R-CNN, in order to generate fine-tuned segmenters. 

4. To overcome the bias issue of single segmenters, an ensemble model is constructed. It incorporates the 

results of a number of distinctive base models using a pixel-level majority voting strategy to yield the 

final segmentation outcome. Since the base models are trained with distinctive optimized learning 

parameters, they possess great diversity to enhance the performance of the ensemble model.  

5. Evaluated using two public retinal image data sets, i.e. Drions and Messidor, the proposed ensemble 

model outperforms other deep ensemble networks and hybrid ensemble clustering models integrated 

with the original and advanced PSO variants, as well as other state-of-the-art studies on OD 

segmentation, significantly. The proposed PSO algorithm also depicts great superiority over other 

search methods in solving diverse benchmark optimization functions, and the detection of Diabetic 

Macular Edema (DME). 

 

 

 

                                                                                                                                                                                               

                                                                                                                                   

                                                                                                                                                           
                                                                                                                      

                                                                                                                                                         
                                     

Figure 1 The overall system architecture 

 

The paper is organized as follows. The related studies on image segmentation using fundus images and state-of-

the-art PSO variants are described in Section 2. We present the proposed PSO model and the ensemble transfer 

learning network with automatic hyper-parameter identification in Sections 3 and 4, respectively. A 

comprehensive evaluation of the proposed ensemble segmenter is presented in Section 5. Conclusions and 

suggestions for further research are given in Section 6. 

2. RELATED WORK 

In this section, we discuss the state-of-the-art related studies on OD segmentation and other medical imaging 

problems using retinal fundus images. We also review recently proposed diverse PSO variants in the literature. 

 

2.1 Image Segmentation Using Retinal Fundus Images 

Zhang et al. [22] conducted automatic OD localization and segmentation using Faster R-CNN and a shape 

constrained level set algorithm. Their method firstly performed OD localization using Faster R-CNN integrated 

with a ZF net. The Hessian matrix method was used to remove the blood vessels in the detected bounding boxes. 

OD segmentation was subsequently carried out by using a shape constrained level set mechanism. Based on a 

total of 120 images from the Messidor data set, their model achieved an average precision score of 99.9% for 

OD localization and an average Intersection over Union (IoU) score of 85.4% for OD segmentation. Dai et al. 
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[7] proposed a variational model incorporated with different energy measures for determining the OD boundary. 

Disc localization was firstly conducted using sparse coding and a circular Hough transform. Based on the 

detected disc centre, the ROI-based sub-image was extracted. Morphological closing and opening operations 

were subsequently applied to remove the blood vessels from the sub-image. Then, multiple types of energy, 

including the phase-based boundary energy, the PCA-based shape energy, and the region energy, were jointly 

minimized to yield the disc contours. Their model yielded an impressive performance in comparison with those 

of existing studies when evaluated using the Messidor, ONHSD, and Drions data sets. 

 

Rehman et al. [23] proposed statistical and textural feature classification for OD segmentation, in an attempt to 

tackle the challenges of deformable and irregular shapes of the disc regions. A number of pre-processing 

operations, such as bilateral filtering, image localization and cropping, colour channel selection and histogram 

matching, were applied to highlight the disc regions and eliminate the vascular structures. A Simple Linear 

Iterative Clustering algorithm was then used to segment the ROI into super-pixels. Subsequently, a set of 17 

statistical and textural attributes, i.e. 5 intensity, 6 texton-map histogram, and 6 fractal features, pertaining to 

each super-pixel, was extracted. Minimum redundancy-based feature selection was also performed. Super-pixel-

based OD segmentation was implemented using several classification algorithms, such as Random Forest, 

Support Vector Machine (SVM), AdaBoost, and RusBoost. Evaluated with several fundus image data sets, 

Random Forest depicted an improved disc boundary classification performance in comparison with those of 

related studies. Sarathi et al. [4] developed a pipeline processing method for OD localization and segmentation. 

A double windowing-based method was firstly used to locate the disc as well as the disc centre. Then, an 

inpainting algorithm was proposed to eliminate the blood vessel structures. The detected disc centre was used as 

the initial seed of an adaptive threshold-based region growing method for segmentation of disc boundaries. Post-

processing operations such as ellipse fitting and spline interpolation were also performed. Their method 

achieved a superior performance when evaluated with the Messidor, Drive and private databases. Abed et al. 

[24] employed multi-stage pre-processing operations and meta-heuristic search algorithms for OD detection. 

Several operations, such as rescaling and conversion to grayscale, median filtering, adaptive histogram 

equalization, background subtraction, multiple filters and masking processes, were adopted as the pre-

processing procedures to remove false peaks and smooth the images. Search methods such as PSO, Cuckoo 

Search (CS), Firefly Algorithm (FA), Artificial Bee Colony (ABC), and Bat Algorithm (BA) were used to 

identify the maximum grayscale value in the image where the OD resides. The FA model with optimal 

parameter settings integrated with the above pre-processing procedures yielded the best OD detection 

performance for several fundus image data sets. 

 

Thakur and Juneja [12] conducted OD segmentation by using a hybrid model, i.e. the LARKIFCM clustering 

model. It integrated a level set algorithm with Adaptively Regularized Kernel-Based Intuitionistic FCM 

(ARKIFCM) clustering. The ARKIFCM clustering model was firstly used to obtain the initial OD boundaries, 

where a new objective function was developed based on those of ARKFCM and Intuitionistic FCM. The level 

set algorithm was then used to tackle both the under- or over-segmentation problems of ARKIFCM clustering. 

Evaluated using several publicly available data sets, their model achieved an enhanced performance as 

compared with those of other clustering techniques. Wang et al. [25] proposed a deep learning architecture on 

top of a U-Net for OD segmentation. Their model conducted OD segmentation using not only the fundus images 

but also the vessel density map derived from the retinal images, respectively. An overlapping mechanism was 

used to identify the most likely OD region from the output candidate regions from the above two segmentation 

processes. The U-Net model with the recommended OD regions as the inputs was used to generate the final 

segmentation outputs. The model achieved an improved performance as compared with those of U-Net and 

other related studies, pertaining to the evaluation of a private database and six publicly available data sets. Tan 

et al. [26] proposed a 7-layer Convolutional Neural Network (CNN) model for segmentation of OD as well as 

fovea and blood vessels, simultaneously. After background normalization, their model categorized each pixel 

into any of the four classes, i.e. OD, fovea, retinal vasculature, and background. The network achieved an 

impressive segmentation performance for the DRIVE database. 

 

Li et al. [6] performed OD segmentation based on learning of a sequence of supervised descent directions 

between OD landmarks and their appearance. They firstly conducted OD localization and detection using a 

brightness based method. Landmarks were derived and used as the OD shape, while histograms of the oriented 

gradients (HOG) features were subsequently extracted as the OD region. Segmentation was conducted by 

learning a function to establish the connection between the OD landmarks and their appearance, i.e. by moving 

the initial OD landmarks to the optimal positions. Evaluated using Origa, MESSIDOR, three releases of RIM-

ONE, and Drions data sets, their model achieved a superior performance in OD segmentation. Zahoor and Fraz 

[27] utilized a polar transform-based adaptive thresholding algorithm to segment OD boundaries. They initially 

employed circular Hough transform and morphological operations to locate the disc and eliminate blood vessels, 



respectively. After cropping the ROI sub-image, the polar transform operation was applied to the ROI to convert 

it into distinct rectangular tiles, which were subsequently thresholded to retrieve the disc contour. The model 

was evaluated using the Messidor, Drions, DIRETDB1, HRF, Drive and RIM-ONE databases, and achieved a 

promising performance. 

 

An enhanced U-Net model incorporated with adversarial training was proposed by Liu et al. [28] for OD 

segmentation. The enhanced U-Net was the main segmentation network. The training process was conducted by 

integrating an adversarial network with the enhanced U-Net to improve the higher-order consistencies between 

the ground truth and the segmented masks yielded by U-Net. Moreover, the enhanced U-Net used strided 

convolutions, instead of max-pooling layers, as well as inserted a batch normalization layer after each 

convolution layer to accelerate convergence. The method improved the performance on the DRISHTI-GS and 

RIM-ONEv3 databases. Guo et al. [29] employed a fractional-order Darwinian PSO (FODPSO) algorithm for 

OD segmentation. Morphological operation and median filtering were initially applied to eliminate the vascular 

structures. Disc segmentation was conducted using FODPSO by extracting comparatively brighter regions from 

the fundus images. Canny edge detection and Least-squares ellipse fitting were subsequently applied to 

determine the OD regions. The FODPSO-based segmentation and post-localization processes were conducted 

for a number of iterations to refine the segmented disc contours. Several fundus image databases, such as Drion, 

Messidor, and ORIGA, were employed to evaluate the model efficiency. Lim et al. [30] implemented a 9-layer 

CNN model with exaggerated feature inputs for OD and OC segmentation. The segmentation results were then 

used to calculate the cup-to-disc ratio, in order to facilitate early diagnosis of glaucoma. Firstly, the Daubechies 

wavelet transform method was employed to detect the region containing the disc. The most visually-relevant 

features were subsequently extracted by removing blood vessels and recovering the locations of vessel kinks. 

Next, the CNN model was used to classify each pixel into three classes, i.e. the background, rim, and cup 

classes, in order to produce a pixel-level probability map. The final disc and cup boundaries were obtained by 

segmenting this probability map. The method achieved mean error rates of 0.112 and 0.0843 for the Messidor 

and Seed-DB data sets, respectively, for OD segmentation. 

 

2.2 PSO Variants 

As one of the popular swarm intelligence (SI) algorithms, PSO [31] has been used in solving diverse 

mathematical, engineering, design, network, robotic, and image processing optimization problems. In PSO, the 

particles explore the search space by following the personal and global best experiences, as defined in Equations 

(1)-(2). 

 

𝑥𝑖𝑑
𝑡+1 = 𝑥𝑖𝑑

𝑡 + 𝑣𝑖𝑑
𝑡+1     (1) 

𝑣𝑖𝑑
𝑡+1 = 𝑤 × 𝑣𝑖𝑑

𝑡 + 𝑐1 × 𝑟1 × (𝑝𝑖𝑑 − 𝑥𝑖𝑑
𝑡 ) + 𝑐2 × 𝑟2 × (𝑝𝑔𝑑 − 𝑥𝑖𝑑

𝑡 )    (2) 

 

where 𝑥𝑖𝑑
𝑡+1 and 𝑣𝑖𝑑

𝑡+1 denote the position and velocity of particle 𝑥𝑖  in the 𝑑𝑡ℎ dimension of the (𝑡 + 1)𝑡ℎ 

iteration, respectively. The acceleration coefficients, 𝑐1 and 𝑐2, play a significant role in balancing the search 

between social and cognitive components, while 𝑟1 and 𝑟2 are random vectors with each element having a value 

between 0 and 1. The personal and global best experiences are denoted as 𝑝𝑖  and 𝑝𝑔, respectively. The inertial 

weight, 𝑤, determines the impact of the previous velocity on the current one. Since the search process is led by 

only one leader, the PSO operation is more likely to be trapped in local optima. 

 

Diverse state-of-the-art PSO variants have been proposed to overcome the limitations of the original model. 

They are used to solve a variety of single-, multi-, and many-objective optimization problems. Tan et al. [15] 

proposed a hybrid learning PSO model, namely HLPSO, for skin lesion segmentation and classification. It 

incorporated local exploitation based on Gaussian, Cauchy, and Levy distributions, and global exploration based 

on variants of the FA model and a spiral search action to guide the search process. Crossover and mutation 

operations were also used to enhance search diversification. The HLPSO model integrated with KM clustering 

was used for skin lesion segmentation, where the intra- and inter-cluster variances were embedded into the 

objective function. Subsequently, two models were devised for melanoma classification. The first lesion 

classification strategy employed the HLPSO-based feature selection and ensemble models while the second 

classification mechanism adopted the evolving CNN architectures with optimized topologies and hyper-

parameters devised by HLPSO. The hybrid clustering model and deep networks showed superior capabilities in 

lesion segmentation and classification, and outperformed a number of state-of-the-art models based on the ISIC 

2017 data set and a mixed data set. He et al. [32] proposed a modified PSO model with a cooperative strategy 

and a damping factor to accelerate convergence and avoid stagnation. The damping factor was used to determine 

the impact of each particle’s previous position with respect to its new position in the next iteration. Besides the 

global best solution, a neighbourhood best solution was identified with the search neighbourhood established by 

FCM clustering. Both such local and global best solutions were then used for updating the position of the 



current particle. A fitter offspring solution from the above processes was inherited to the next generation. To 

accelerate convergence, the weakest particle in the swarm was identified and re-initialized in each iteration. The 

PSO model showed an enhanced performance as compared with those from other PSO variants when evaluated 

using 24 benchmark functions. An adaptive learning PSO algorithm, namely ALPSO, was proposed by Tan et 

al. [21]. ALPSO was incorporated with ensemble clustering and deep CNN models for skin lesion segmentation. 

It included several search mechanisms, such as a helix search action and modified Differential Evolution (DE) 

and PSO with random coefficients, to diversify the search process. The model operated in a cascade manner by 

assigning a different search operation to each swarm particle in any single iteration. It was used to optimize the 

hyper-parameters of the base CNN segmenters and the centroids of the base FCM models for lesion 

segmentation. Evaluated with several dermoscopic skin lesion data sets and a microscopic blood cancer 

database, the model outperformed the U-Net, Dilated-Net and other hybrid ensemble clustering models, 

significantly. 

 

Xu et al. [33] proposed a PSO model, namely two-swarm learning PSO (TSLPSO), for solving diverse 

challenging benchmark functions. A dimensional learning mechanism was firstly proposed. A dimension-by-

dimension learning mechanism using the personal best solution and the swarm leader was devised to yield a new 

offspring particle to lead the search process. Two sub-swarms were subsequently generated, in which the search 

process of one sub-swarm was led by the above dimensional learning mechanism while the other was guided by 

an existing comprehensive learning strategy, in order to balance between intensification and diversification. The 

model showed impressive capabilities in solving diverse shifted and rotated numerical optimization problems. 

Chen et al. [34] proposed a hybrid PSO model integrating DE-based global exploration and Quasi-Newton-

based local exploitation. Dynamic sub-swarms were employed to diversify the search processes. The model also 

adopted a new velocity updating strategy. Instead of using the personal and global best solutions, it employed 

purely the neighbourhood best experience of each particle for exploration of the search space. The 

neighbourhood leader was further enhanced by the DE operation to overcome stagnation. Local exploitation 

using the quasi-Newton method was subsequently conducted for the top 25% of the neighbourhood best leaders. 

Tested with 13 basic and 28 CEC2013 benchmark functions, the PSO model depicted great efficiency in solving 

diverse challenging numerical optimization problems.  

 

A PSO variant with self-adapt control parameters was proposed by Isiet and Gadala [35]. An evolutionary state 

factor was firstly calculated for each particle by taking into account the fitness difference between the swarm 

leader and the personal best experience as well as the fitness of the current particle. This parameter was then 

employed to influence the generation of the linear adaptive acceleration coefficients, in order to achieve a better 

trade-off between local exploitation and global exploration. The velocity updating operation was modified by 

inserting a repulsion component to increase diversity and robustness. Sub-dimensions of the particle velocity 

were then re-initialized to diversify the search when these elements reached zero velocity scores. Tested with 

benchmark constrained optimization problems and a real-world design problem, the PSO model showed great 

superiority over other state-of-the-art PSO variants. Fielding et al. [36] proposed another PSO variant with 

adaptive cosine coefficients, namely CPSO, for evolving deep architecture generation. Cosine annealing 

operations were proposed to produce ascending and descending acceleration coefficients. Such characteristics 

enabled the search process to focus on global exploration during the early iterations and local exploitation 

during the final iterations. The model was then used to optimize the quantities of different types of block 

architectures for deep network generation. They subsequently employed two different strategies for deep 

ensemble model generation. The first was built by combining the networks recommended by all the personal 

best experiences, while the second was constructed by integrating distinctive best-performed individual block 

architectures recommended by a historical weight sharing look-up table. Evaluated using the CIFAR-10 data set, 

the best single deep network recommended by the global best solution using the adaptive PSO model achieved 

an error rate of 4.78%. The ensemble deep networks constructed by the local best experiences and look-up table 

nominations achieved better error rates of 4.39% and 4.27%, respectively. Other state-of-the-art SI algorithms 

[13-15, 20, 37-45] were also proposed, which showed impressive performances in solving diverse other 

classification and clustering optimization problems, such as discriminative feature selection, evolving deep 

architecture generation, clustering centroid enhancement, and classifier ensemble reduction. 

 

3. THE PROPOSED PSO ALGORITHM 
In this research, we automate hyper-parameter selection using an enhanced PSO model in the transfer learning 

process for OD segmentation. The enhanced PSO model comprises super-ellipse search actions, a new operation 

with elliptical acceleration coefficients, search operations driven by random and mean best individuals, and a 

spherical random walk mechanism for swarm leader enhancement. Specifically, it employs accelerated and 

refined super-ellipse search operations to balance between local exploitation and global exploration. Multiple 

global optimal solutions are used to diversify the search process. Spiral coefficients and two randomly recruited 



particles are used to improve the swarm leader and overcome stagnation. The model is capable of assigning 

distinctive search actions to different particles in any single iteration. We introduce each key search operation in 

the following sub-sections.  

 

Algorithm 1 – The Proposed PSO Algorithm 

1 Start 

2 Initialize a particle swarm randomly; 

3 Evaluate all the particles in the swarm; 

4 For (each iteration do) { 

5         Find the global best solution, 𝑔𝑏𝑒𝑠𝑡;  

6         For (each particle do) { 

7               //Assign distinctive actions to different particles in each iteration 

8              Generate a random value, 𝑝; 

9              If (𝑝 < 0.2) 

10 Randomly select one search parameter among those generated by Equations (3)-(7); 

11 
                    Conduct the accelerated search operation as defined in Equation (8) with the selected 

elliptical coefficient;  

12   Else If (𝑝 < 0.4) 

13 
                    Randomly select one search parameter among those generated by Equations (3)-(6) & 

(9); 

14 
Conduct the refined search operation as defined in Equation (10) with the selected 

elliptical coefficient; 

15   Else If (𝑝 < 0.6) 

16 
Randomly select two search parameters among those generated by Equations (3)-(6) & 

(9); 

17 
                    Conduct the modified PSO operation as defined in Equations (11) & (2) with the 

selected elliptical coefficients; 

18                 Else If (𝑝 < 0.8) 

19 
Randomly select one search parameter among those generated by Equations (3)-(6) & 

(9); 

20 
Conduct the search operation using the average best leader as defined in Equation (12) 

with the selected elliptical coefficient; 

21              Else 

22 
Randomly select one search parameter among those generated by Equations (3)-(6) & 

(9); 

23 
Conduct the search operation using a random leader as defined in Equation (13) with 

the selected elliptical coefficient; 

24             End IF 

25          } End For 

26          Conduct the fitness evaluation; 

27          Update the personal best 𝑝𝑏𝑒𝑠𝑡 and global best 𝑔𝑏𝑒𝑠𝑡; 

28          Randomly select one search parameter among those generated by Equations (3)-(6) & (14); 

29 
         Generate an offspring solution 𝑔𝑏𝑒𝑠𝑡

′  of the global best solution 𝑔𝑏𝑒𝑠𝑡  using the search 

operation defined in Equation (15) and the selected elliptical coefficient;  

30 
         Replace 𝑔𝑏𝑒𝑠𝑡  with the new offspring solution 𝑔𝑏𝑒𝑠𝑡

′  if the new solution has a better fitness 

score; 

31 } End For 

32 Output 𝑔𝑏𝑒𝑠𝑡; 

33 End 

 

A number of search mechanisms are introduced to diversify the search process, i.e. an accelerated super-ellipse 

action, a refined super-ellipse operation, a modified PSO strategy, random leader as well as average leader 

enhanced search operations. After initializing a particle swarm, we randomly select any of the above search 

operations for position updating. These search actions adopt elliptical search coefficients generated by two 

instantiations of a super-ellipse formula to balance between intensification and diversification. The elliptical 

shapes generated by these two instantiations simulate spider networks with irregular boundary patterns. 

Randomly selected values from the generated shapes are assigned as the search coefficients in the above 

operations, leading the particles to move towards the local and global best experiences in an irregular spiral 

manner. Specifically, one instantiation of the employed formula produces comparatively larger search 

parameters to accelerate convergence, while the other yields comparatively smaller but more irregular search 

coefficients to enhance search diversification. After a number of iterations, the swarm leader, 𝑔𝑏𝑒𝑠𝑡 , is identified. 

An offspring solution, 𝑔𝑏𝑒𝑠𝑡
′ , of the global best solution is subsequently produced using a local search 

mechanism, which incorporates two randomly recruited particles and the circular search parameters. The 



offspring solution, 𝑔𝑏𝑒𝑠𝑡
′ , is used to replace 𝑔𝑏𝑒𝑠𝑡  

if it has a better fitness score. Overall, the proposed model is 

able to equip each swarm particle with a distinctive search action in any single iteration to increase search 

diversity. The pseudo-codes of the proposed PSO model are illustrated in Algorithm 1. 

 

3.1 The Accelerated Elliptical Search Operation 

Before explaining the proposed search operations, we introduce a super-ellipse formula which lays the 

foundation of the proposed mechanisms. Proposed by Gielis [46], Equations (3)-(4) define the super-ellipse 

formula, which is a generalization of the super-ellipse. This super-ellipse formula offers significant capabilities 

in simulating many complex shapes and curves found in nature. As an example, different settings of parameters, 

𝑚, 𝑘, 𝑛1, 𝑛2, 𝑛3 and 𝑛4, in Equations (3)-(4) produce different curves with distinctive shapes. This super-ellipse 

formula is employed to simulate irregular reticulated networks with different sizes and boundary patterns and to 

drive distinctive local and global search operations.  

 

Motivated by the super-ellipse formula, we propose an accelerated super-ellipse search action. The search 

coefficient of this operation is produced by an instantiation of the super-ellipse formula defined in Equations 

(3)-(7). The super-ellipse formula defined in Equations (3)-(7) simulates a simplified, and comparatively wider, 

spider network, as illustrated in Figure 2. This search action leads the particles to move towards the swarm 

leader in an irregular accelerated reticulated manner.   

 

 
Figure 2 A comparatively wider spider network generated by Equations (3)-(7) 

 

Firstly, Equations (3)-(6) are used to generate a set of 3,142 unique points to represent the overall elliptical 

contour, as illustrated in Figure 2. Specifically, there are 3,142 positive and negative values in the range of [-

2.3784, 2.055] to form the curve in the 𝑥 axis. We randomly select one of the generated 3,142 unique values in 

the 𝑥 axis as the search coefficient. Owing to the wider span of the yielded scores in the 𝑥 axis, i.e. [-2.3784, 

2.055], this instantiation of the super-ellipse formula provides better chances of employing a comparatively 

larger and accelerated search coefficient, in comparison with that produced by a uniform distribution within the 

range of [0, 1], to accelerate convergence.  

 

𝜏(𝜗) = (|
𝑐𝑜𝑠 (

𝑛1𝜗

4
)

𝑚
|𝑛3 + |

𝑠𝑖𝑛 (
𝑛1𝜗

4
)

𝑘
|𝑛4)     𝜗 = [0: 0.002: 2𝜋]                                    (3)                                                                                     

𝛼 = 𝜏
−

1

𝑛2                                                                              (4) 

𝑥 = 𝛼 × 𝑐𝑜𝑠 (𝜗)                                                                       (5) 

𝑦 = 𝛼 × 𝑠𝑖𝑛 (𝜗)                                                                       (6) 

𝑚 = 𝑘 = 2, 𝑛1 = 5,  𝑎𝑛𝑑 𝑛2 = 𝑛3 = 𝑛4 = 4                                                  (7) 

 

In Equation (3), 𝜏 and 𝜗 represent the radius and angle, respectively, with 𝑥 and 𝑦 denoting the generated points 

in the 𝑥 and 𝑦 coordinates using Equations (5) and (6), respectively. The starting and ending angles of 𝜗 are 0 

and 2𝜋, with an updating angle of 0.002.  

 

The selected search parameter is subsequently used to guide the current particle to move towards the global best 

solution, as defined in Equation (8). 

 

𝑥𝑖𝑑
𝑡+1 =  𝑥𝑖𝑑

𝑡
 
+ 𝑠1 × (𝑔𝑏𝑒𝑠𝑡 −  𝑥𝑖𝑑

𝑡 )                                                      (8) 

 



where 𝑠1 is a randomly selected score among the generated 3,142 values using Equations (3)-(5). This search 

action enables the particles to follow the best leader with an accelerated search step. It also assigns both positive 

and negative coefficients to increase search exploration. 

 
3.2 The Refined Elliptical Search Operation  

Next, a refined super-ellipse search action is proposed, which employs a comparatively smaller but more 

irregular search coefficient. Another instantiation of the super-ellipse formula as defined in Equations (3)-(6) 

with the parameters provided in Equation (9) is used to generate a new elliptical curve with comparatively more 

irregular borders as the source for coefficient generation. 

  

𝑚 = 𝑘 = 1, 𝑛1 = 16, 𝑛2 = 𝑛3 = 0.5, 𝑎𝑛𝑑 𝑛4 = 16                                            (9) 

 

 
Figure 3 A comparatively more irregular border pattern generated by Equations (3)-(6) and (9) 

 

Figure 3 illustrates the generated elliptical flight using Equations (3)-(6) and (9), which is composed of a total of 

3,142 unique points. A new set of 3,142 positive and negative values in the 𝑥 axis in the range of [-1.5253, 

1.5253] is used as the source for coefficient generation. We randomly select one of these 3,142 values, and 

assign it as the search coefficient in Equation (10) to perform position updating in the search space. 

  
𝑥𝑖𝑑

𝑡+1 =  𝑥𝑖𝑑
𝑡

 
+ 𝑠2 × (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖𝑑

𝑡 )                                               (10) 

 

where 𝑠2 is a randomly selected score from the 3,142 values in the 𝑥 axis. This operation enhances the search 

diversity through the assignments of both positive and negative search coefficients. As indicated in Figure 3, 

this search action empowers the particles to follow the best leader using a refined step along a more irregular 

ellipse shape.  

 

3.3 The Modified PSO Operation Using Super-Ellipse Coefficients 

A modified PSO operation is also proposed by assigning the super-ellipse acceleration coefficients produced by 

Equations (3)-(6) and (9). Specifically, two randomly selected scores among the generated 3,142 elements 

within [-1.5253, 1.5253] in the 𝑥 axis in Figure 3, as discussed in Section 3.2, are used as the acceleration 

coefficients. This modified velocity updating operation is defined in Equation (11). 

 

𝑣𝑖𝑑
𝑡+1 = 𝑤 × 𝑣𝑖𝑑

𝑡 + |𝑠3| × 𝑟1 × (𝑝𝑖𝑑 − 𝑥𝑖𝑑
𝑡 ) + |𝑠4| × 𝑟2 × (𝑝𝑔𝑑 − 𝑥𝑖𝑑

𝑡 )                               (11) 

 
where 𝑠3 and 𝑠4 are two randomly selected scores from the generated values in the 𝑥 axis, as illustrated in 

Figure 3. In comparison with other proposed search operations, the absolute values of these selected scores 

among the 3,142 elements are used as the search coefficients to accelerate convergence. This mechanism 

increases search diversification by enabling the particles to orbit around the personal and global best experiences 

in a comparatively more chaotic and irregular manner, in order to search for global optimality. 

 

3.4 The Average Best Leader-enhanced Search Operation 

To increase search diversity and avoid stagnation, we propose another search operation driven by an average 

best leader. This operation adopts the average position of all the neighbouring fitter solutions of the current 

particle to lead the search process. Specifically, we identify all the particles with better fitness scores than that of 

the current individual in the swarm. The mean position of these fitter solutions is calculated and used to lead the 

search process. Equation (12) defines this search operation. 

 



𝑥𝑖𝑑
𝑡+1 =  𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑏𝑒𝑠𝑡𝑑

𝑡
 
+ 𝑠5 × (𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑏𝑒𝑠𝑡𝑑

𝑡 −  𝑥𝑖𝑑
𝑡 )                               (12) 

 

where 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑏𝑒𝑠𝑡𝑑
𝑡  denotes the mean position of all fitter solutions in the 𝑑𝑡ℎ dimension during the 𝑡𝑡ℎ 

iteration. The search parameter, 𝑠5, is a randomly selected score among the 3,142 elements within [-1.5253, 

1.5253] in the 𝑥 axis produced by Equations (3)-(6) and (9). This search mechanism enables the current particle 

to conduct local exploitation of the mean best position along a reticulated flight. 

 

3.5 The Random Best Leader-enhanced Search Operation 

To reduce the probabilities of premature convergence, another search operation driven by a random best leader 

is also proposed. This operation randomly selects one of the fitter neighbouring solutions of the current particle 

to explore the search space. Specifically, all the particles with better fitness scores than that of the current 

individual are retrieved. Then, we randomly select one of these fitter solutions to lead the search process. 

Equation (13) defines this new search operation. 

 

𝑥𝑖𝑑
𝑡+1 =  𝑟𝑎𝑛𝑑𝑜𝑚_𝑏𝑒𝑠𝑡𝑑

𝑡
 
+ 𝑠6 × (𝑟𝑎𝑛𝑑𝑜𝑚_𝑏𝑒𝑠𝑡𝑑

𝑡 −  𝑥𝑖𝑑
𝑡 )                                 (13) 

 

where 𝑟𝑎𝑛𝑑𝑜𝑚_𝑏𝑒𝑠𝑡𝑑
𝑡

 
indicates a randomly selected fitter individual than the current particle in the swarm in 

the 𝑑𝑡ℎ dimension during the 𝑡𝑡ℎ iteration. The search parameter, 𝑠6, is a randomly selected coefficient among 

the 3,142 values within [-1.5253, 1.5253] in the 𝑥 axis produced by Equations (3)-(6) and (9). This search action 

increases diversification by following multiple distinctive leaders for exploration of the search space. 

 

3.6 Swarm Leader Enhancement 

After identifying the global best solution, a search operation, which adopts two randomly selected particles and 

a super-ellipse coefficient generated using Equations (3)-(6) and Equation (14), is employed to further enhance 

the best particle, 𝑔𝑏𝑒𝑠𝑡 . Equation (15) defines this search action for the global best enhancement. 

 

𝑚 = 𝑘 = 1, 𝑛1 = 5, 𝑎𝑛𝑑 𝑛2 = 𝑛3 = 𝑛4 = 4                                                (14) 

 

𝑔𝑏𝑒𝑠𝑡
′ =  𝑔𝑏𝑒𝑠𝑡 + 𝑠7 × (𝑥ℎ − 𝑥𝑙)                                                        (15) 

 

where 𝑥ℎ and 𝑥𝑙  denote two randomly selected particles in the swarm, while 𝑠7 denotes the randomly selected 

super-ellipse coefficient.  

 

Moreover, another instantiation of the super-ellipse formula defined in Equations (3)-(6) with the parameter 

settings provided in Equation (14) is employed to generate a comparatively constrained elliptical curve, as 

compared with the one produced in Section 3.1. Figure 4 illustrates the corresponding flight with 3,142 

generated unique points and with the value range of [-1.1892, 1.0275] for the 𝑥 axis using the equations. The 

search coefficient, 𝑠7, in Equation (15) is assigned with a randomly selected value among the 3,142 elements in 

the range of [-1.1892, 1.0275] along the 𝑥 axis. A new offspring solution, 𝑔𝑏𝑒𝑠𝑡
′ , is subsequently generated using 

Equation (15). It is used to replace 𝑔𝑏𝑒𝑠𝑡  if it has a better fitness score. This search operation implements local 

exploitation with both positive and negative coefficients to overcome local optima traps.  

 

Overall, the above proposed search mechanisms empower the swarm particles with distinctive search actions in 

any single iteration to increase diversification. 

 

 
 

Figure 4 A comparatively constrained reticulated network generated by Equations (3)-(6) and (14) 

 



4. THE PROPOSED ENSEMBLE IMAGE SEGMENTATION MODEL 
We employ transfer learning to fine-tune Mask R-CNN for OD segmentation using the fundus image data sets. 

The proposed PSO model is used to optimize the hyper-parameters, i.e. learning rate and momentum, of the 

transfer learning process. Optimal distinctive base segmenters are subsequently generated using different 

identified optimized settings. An ensemble model with a pixel-level majority voting strategy is constructed to 

combine the results of the base segmenters and derive the final segmented OD boundaries. We discuss the 

proposed ensemble transfer learning model for OD segmentation in detail, as follows.   

 
4.1 Optimized Base Segmenter Generation Using the Proposed PSO Model 

Before we explain the generation of the base segmenter using Mask R-CNN integrated with the proposed PSO 

model, we introduce state-of-the-art studies on deep learning-based object detectors. Proposed by Girshick et al. 

[47], the region-based CNN (R-CNN) model acts as a CNN-based object detector. R-CNN employs a multi-

stage process for object detection, which includes region proposal generation, CNN-based deep feature 

extraction, classification of each region using class-specific SVM models, and regression-based bounding-box 

prediction. R-CNN is the earliest model employing a multi-stage pipeline training process for demonstrating the 

superiority of a CNN model in object detection against existing methods based on simpler HOG-like features on 

the PASCAL VOC 2012 data set.  

 

Fast R-CNN [48] improves the training drawbacks of R-CNN. It conducts training with a single-stage end-to-

end deep architecture with a multi-task loss. Fast R-CNN employs a fully convolutional network to extract a 

feature map for the input image. An ROI pooling layer is then used to extract a fixed-length feature vector for 

each region proposal from the feature map for the subsequent classification and bounding-box regression 

operations. 

 

Faster R-CNN [49] replaces selective search in Fast R-CNN with a Region Proposal Network (RPN) for more 

efficient and accurate region proposal generation. Specifically, Faster R-CNN comprises a unified network by 

merging RPN and Fast R-CNN, where the convolutional features are shared between these two components to 

enable nearly cost-free region proposal generation. It conducts object detection using a two-step process, i.e. 

RPN-based bounding-box generation as well as object detection and classification based on the generated region 

proposals using Fast R-CNN.  

 

Mask R-CNN [16, 17] is an extension of Faster R-CNN with additional instance segmentation on top of object 

localization and recognition. It achieves this by adding a mask branch for binary segmentation mask generation 

of each ROI. Mask R-CNN [16, 17] achieved a superior performance on the 2017 COCO suite of challenges in   

all the three tracks, i.e. instance segmentation, bounding-box object detection, and person keypoint detection. 

Similar to Faster R-CNN, it employs a two-stage process consisting of RPN-based region proposal prediction 

and object mask generation as well as object detection and classification using Fast R-CNN. 

 

Mask R-CNN with the ResNet-101 and Feature Pyramid Network (FPN) backbone achieved significantly better 

performances in instance segmentation than those of other state-of-the-art methods, such as the Multi-task 

Network Cascade model (MNC) [50], and Fully Convolutional Instance-aware Semantic segmentation (FCIS) 

[51], i.e. the winners of the COCO 2015 and 2016 segmentation challenges, respectively. Therefore, we employ 

Mask R-CNN with the ResNet-101+FPN backbone for OD segmentation in this research. Comprehensive 

reviews of Mask R-CNN and other object detectors are provided in [18, 19]. 

 

We perform transfer learning on top of the pre-trained Mask R-CNN model using two retinal image data sets. 

The proposed PSO model is used to optimize the learning rate and momentum of the transfer learning process 

owing to the significant impact of both hyper-parameters toward the network performance. As an example, a 

large learning rate is more likely to produce sub-optimal solutions, while a small learning rate is more inclined 

to result in a longer training process. Moreover, the momentum setting plays a significant role in avoiding local 

optima. It determines the contribution of the previous gradient step to the current iteration. The settings of ‘0’ 
and ‘1’ indicate no contribution and maximum contribution from the previous step, respectively. It increases the 

step size of moving toward the global optimum if the gradient keeps pointing to the same direction, whereas it 

smooths out the random variations if the gradient direction is constantly changing. A large momentum 

combined with a large learning rate is more likely to go over the global optimum, while a small momentum may 

not be sufficient enough to escape from the sub-optimal solutions. The optimal setting of the learning rate and 

momentum is dependent on the problem domains, such as the number of local optima, deepness of each local 

optimum, and smoothness of the problem functions. As such, we provide an automatic process of identifying the 

optimal setting of both hyper-parameters using the proposed PSO model in this research. 

 



In our transfer learning process, the training stage starts with the pre-trained weights based on the COCO data 

set. Owing to the pre-training stage using diverse real-life images from the COCO data set, the pre-trained 

weights possess rich feature representations of generic images. The transfer learning process re-trains the last 

few layers of the Mask R-CNN model, and generates weights that are embedded with the features learned from 

the retinal image domain.  

 

For each data set, an aspect ratio of 60-20-20 is employed to form the training, validation, and test data sets. The 

fitness function illustrated in Equation (16), which employs the IoU score as the performance indicator, is used 

to guide the search process.  

 

𝑠𝑐𝑜𝑟𝑒 =
𝐴𝑟𝑒𝑎 (𝑅𝑠∩𝑅𝑔)

𝐴𝑟𝑒𝑎 (𝑅𝑠∪𝑅𝑔)
                                                                  (16) 

 

where 𝑅𝑠 and 𝑅𝑔 denote the segmented OD region and the ground truth (GT), respectively. The IoU score is 

calculated using the intersection divided by the union of the segmented region and the GT mask. Many related 

studies [3, 6, 7, 22, 30] employ this IoU score to evaluate the segmentation results against the ground truth. As 

such, it is adopted in this research, in order to facilitate a valid comparison with other related studies. Equipped 

with elliptical accelerated and refined search actions, random and mean leader enhanced operations and swarm 

leader enhancement, the proposed PSO model is able to yield impressive capabilities in identifying effective 

learning hyper-parameters for deep CNN models. The details are as follows. 

 

The search process of optimal hyper-parameter selection is conducted. A particle swarm is initialized randomly. 

Each particle is used to represent the possible assignments of the two hyper-parameters. The proposed search 

operations guide the particles to move towards the promising search regions. The global best solution denotes 

the identified best hyper-parameters. The training and validation sets of each image data set are used for the 

optimal hyper-parameter identification using the proposed model. 

 

The transfer learning process with the identified optimal training configurations is subsequently used to train 

Mask R-CNN on top of the pre-trained weights. To maximize the performance, we combine the training and 

validation sets into a larger training set for this fine-tuning process of transfer learning. Significant larger 

numbers of training steps (e.g. 100) and epochs (e.g. 50) are also used for this final operation of transfer 

learning. The generated new segmenters with different training epochs (e.g. 20, 30, 40, and 50 epochs) are then 

used for OD segmentation using the test data set. We repeat the process to generate a number of optimized base 

segmenters with different optimal hyper-parameters and different numbers of epochs. 

 

4.2 Ensemble Segmentation Model Generation 

Individual segmenters are produced using the abovementioned transfer learning process incorporated with the 

proposed PSO-based parameter identification. The generated optimized base segmenters are subsequently used 

to construct an ensemble network.  
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Figure 5 Two example segmentation processes for the proposed deep ensemble transfer learning network 

(yellow line: predicted boundaries, green lines: GT annotations). In each example, the top row presents the 

segmentation outputs of four base segmenters while the bottom row illustrates the output of the ensemble 

network. 

 

To increase the base model diversity, we employ the newly generated weights trained using different hyper-

parameters and different numbers of epochs (e.g. 20, 30, 40, and 50 epochs) as the base evaluators. In this 

research, we employ a set of four individual segmenters as the base models. As an example, we incorporate two 

individual segmenters trained with one set of identified hyper-parameters and learning epochs of 20 and 30 with 

another two segmenters trained with another set of identified hyper-parameters and learning epochs of 40 and 50 

to construct one ensemble model, and vice versa. A pixel-level majority voting method is conducted based on 

the outputs of the base models to determine the final segmentation outcome for each retinal image. A total of 30 

runs have been performed for hyper-parameter identification to construct 30 ensemble models. The mean result 

of 30 ensemble models is used as the main criterion for comparison. Two example ensemble segmentation 

processes are illustrated in Figure 5. As indicated in Figure 5, the ensemble models overcome the bias and 

variance of their corresponding base evaluators to obtain improved segmentation performances. 

 

In short, the transfer learning process incorporating the proposed PSO-based hyper-parameter identification 

method is able to produce a variety of optimal base evaluators to increase ensemble diversity and enhance 

performance. We discuss the detailed evaluation results in Section 5. 

 

5. EVALUATION 
We employ two retinal image data sets, i.e. Drions [52] and Messidor [53], to evaluate the proposed ensemble 

model in OD segmentation. The Drions data set contains a total of 110 fundus images. For each image, there are 

two GT annotations for the OD boundaries provided by two medical experts. The image resolutions are 

600×400, and there are various challenging characteristics such as strong pallor distractors, low-contrast blurry 

boundaries, and blood vessel interference. To enable a valid comparison with other related studies [6, 7], we 

employ the annotations of the first annotator as the GT and calculate the IoU scores against these GT disc 

boundaries. 

 

Another public data set employed for evaluation is the Messidor data set, which consists of 1,200 retina images 

in three resolutions, i.e. 2240×1488, 2304×1536 and 1440×960. The GT annotations of the OD boundaries are 

also provided by medical experts [54]. We resize the images of this data set to 600×400 resolutions, in order to 

achieve a reasonable trade-off between performance and computational efficiency. There are two types of 

annotations provided for each image, i.e. diabetic retinopathy (DR) grading and the risk of DME. We employ 

the ratio of 60-20-20 as the training, validation, and test sets for both Drions and Messidor databases in hyper-

parameter optimization. 

 

5.1 Evaluation Using the Drions Data Set for OD Segmentation 

For a comprehensive evaluation, we have implemented the baseline ensemble models with the default settings 

as well as those with optimal hyper-parameters identified by the original and other PSO methods. As an 

example, CPSO [20] is implemented, where the search coefficients are generated by the cosine annealing 

process. Motivated by CPSO, another adaptive baseline PSO variant, EPSO, with search parameters generated 
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by exponential functions is implemented for comparison. Equations (17)-(18) define the descending and 

ascending coefficient generation by the exponential functions in EPSO.  

 

 𝑐1 = 0.5 +
𝑒𝑥𝑝(4.8−𝑘)

6× 𝑚𝑎𝑥 _𝑖𝑡𝑒𝑟
                                                               (17) 

 

𝑐2 = 0.5 +
𝑒𝑥𝑝 (𝑘−5.2) 

6× 𝑚𝑎𝑥 _𝑖𝑡𝑒𝑟
                                                               (18) 

 

where 𝑘 and 𝑚𝑎𝑥 _𝑖𝑡𝑒𝑟 represent the current and maximum numbers of iterations, respectively. Both CPSO and 

EPSO models are selected for comparison because they employ ascending and decreasing search parameters, as 

compared with the random search coefficients in the proposed model, to balance between intensification and 

diversification. They are subsequently employed for optimal hyper-parameter identification during the transfer 

learning process. 

 

We employ the following experimental settings for optimal hyper-parameter identification using the transfer 

learning process, i.e. the maximum number of function evaluations=15 (population) × 10 (maximum number of 

iterations), dimension=2, and trial=30. In other words, all the search methods terminate when the maximum 

number of function evaluations is reached for optimal hyper-parameter selection, in order to ensure a fair 

comparison. After identifying the optimal network configurations, we train Mask R-CNN using a total of 50 

epochs and 100 learning steps per epoch with a larger training set by combining the training and validation sets. 

We generate four distinctive optimized base models as the base segmenters. The segmentation results of the 

base models are combined using a pixel-level majority voting strategy to obtain the final segmentation mask of 

each test image. We employ all the 110 images from the Drions data set for OD segmentation, with an aspect 

ratio of 60-20-20 for forming the training, validation, and test data sets. A total of 30 trials are conducted, and 

the average IoU scores over 30 runs for the ensemble networks constructed by all the search methods are 

employed for comparison.  

 

Besides the adoption of transfer learning incorporating the above PSO variants, hybrid clustering methods are 

implemented for comparison, i.e. PSO+FCM, Genetic Algorithm (GA)+FCM [14], and  Adaptive Learning PSO  

(ALPSO)+FCM [21]. Specifically, in GA+FCM hybrid clustering [14], the GA is used to improve the centroids 

identified by FCM clustering in conjunction with the intra- and inter-clustering measurement in the objective 

function. Similarly, in ALPSO+FCM [21], ALPSO, which comprises a helix search action, Simulated 

Annealing (SA), and modified DE and PSO with spiral coefficients, is used to  enhance the centroids of FCM 

clustering in skin lesion segmentation, where the between- and within-cluster variances are considered in the 

fitness function. Finally, PSO in conjunction with FCM clustering is implemented for comparison, namely a 

PSO+FCM hybrid model. We employ the following comparatively larger experimental settings for clustering-

based OD segmentation using the recommendations in their original studies, i.e. the maximum number of 

function evaluations=20 (population) × 20 (maximum number of iterations), number of clusters=2, and runs=30. 

The three hybrid clustering methods terminate when the maximum number of function evaluations is reached. 

Ensemble hybrid clustering models are subsequently constructed with the above three types of clustering models 

as the base segmenters, respectively. Specifically, four instantiations of the GA+FCM model are used to 

construct one ensemble clustering model. Similar conditions are applied to the ensemble models built by 

ALPSO+FCM and PSO+FCM, respectively. A majority voting mechanism is used to combine the results from 

the base segmenters and to yield the final segmentation outcome of each ensemble clustering method. The 

parameter settings of all the search methods are shown in Table 1, which are consistent with the 

recommendations in their original studies.  

 

Table 1 Parameter settings of different search methods 
 

Models 
 

Parameter settings 

Prop. PSO maximum velocity=0.6, inertia weight=0.6, using 

super-ellipse search coefficients as search parameters 

CPSO [20] ascending and descending coefficients generated by 
cosine annealing functions 

EPSO ascending and descending coefficients generated by 

exponential annealing functions 
ALPSO [21] maximum velocity=0.6, inertia weight=0.6, using 

random helix coefficients as the search parameters 

GA crossover probability=0.7, mutation probability=0.3 
PSO maximum velocity=0.6, inertia weight=0.5, acceleration 

constants 𝑐1= 𝑐2= 1.5 

 



Table 2 illustrates the average IoU scores of the ensemble models with the hyper-parameters identified by the 

proposed, the original, and other PSO methods, respectively, as well as those with default hyper-parameter 

settings, over a set of 30 runs. The mean results of three ensemble hybrid FCM clustering methods incorporating 

PSO, GA and ALPSO, respectively, over a set of 30 runs are also provided for comparison.  

 

Table 2 Evaluation results for the Drions data set over a set of 30 runs 
 

Models 
 

Methodologies 
 

IoU scores 

Prop. PSO-based Ensemble Prop. PSO + ensemble Mask R-
CNN transfer learning model 

0.916 

CPSO-based Ensemble [20] CPSO +  ensemble Mask R-CNN 

transfer learning model 

0.9088 

EPSO-based Ensemble EPSO + ensemble Mask R-CNN 

transfer learning model 

0.9001 

PSO-based Ensemble PSO + ensemble Mask R-CNN 
transfer learning model 

0.9052 

Ensemble Model with Default Settings Ensemble Mask R-CNN transfer 

learning model with default 
parameter settings 

0.8847 

Ensemble Clustering Using ALPSO+FCM [21] Ensemble clustering with 

ALPSO+FCM as the base 

0.564 

Ensemble Clustering Using GA+FCM [14] Ensemble clustering with GA+FCM 

as the base 

0.5206 

Ensemble Clustering Using PSO+FCM Ensemble clustering with 
PSO+FCM as the base 

0.511 

 

 

Table 3 Comparison with related studies for the Drions data set 
 
Relate studies 

 
Methodologies 

 
IoU scores 

Prop. PSO-based Ensemble Prop. PSO + ensemble Mask R-CNN 
transfer learning model 

0.916 

Dai et al. [7] Variational model with multiple energies 0.9081 

Zahoor and Fraz [27]  A polar transform-based adaptive 
thresholding 

0.886 

Li et al. [6] A brightness based method for OD 

localization + OD segmentation based on 
learning the supervised descent directions 

0.8532 

Morales et al. [3] PCA and mathematical morphology 0.8424 

Rehman et al. [23] Superpixel based feature classification 0.821 

2nd observer 2nd human expert annotation  0.9202 

 

As illustrated in Table 2, the optimal ensemble segmenter built by the proposed PSO model achieves the best  

IoU score of 0.916 over a set of 30 runs, in comparison with those using the default parameter settings and the 

optimal hyper-parameters identified by CPSO, EPSO, and PSO, respectively. The proposed PSO model with the 

accelerated and refined search coefficients for simulating diverse elliptical shapes is able to balance well 

between intensification and diversification, and depict great efficiency in overcoming premature convergence. 

Among the baseline methods, CPSO with adaptive cosine coefficients and the original PSO model produce 

more effective training hyper-parameters than those identified by EPSO with the exponential functions. This is 

likely to be caused by the constrained search exploration capabilities of EPSO with drastically descending 𝑐1 

and slowly ascending 𝑐2 produced by the exponential formula. The optimised ensemble segmenters produced by 

all the search methods yield better IoU scores than those of the ensemble models formulated based on the 

default training configurations [16, 17], where learning rate=0.001 and momentum=0.9.  

 

With respect to the three hybrid ensemble clustering methods with a set of GA+FCM, ALPSO+FCM, 

PSO+FCM, as the base segmenters, respectively, without blood vessel and false peak removal, the segmentation 

tasks pose great challenges to these ensemble clustering methods. They only segment partial OD regions in most 

of the test cases, owing to various interferences that severely affect their IoU scores.  

 

Table 3 shows a comparison with related studies pertaining to OD segmentation for the Drions data set. The 

proposed ensemble model is among the top performers, and shows comparable performance with those from 

other state-of-the-art studies. Moreover, the proposed ensemble model shows great efficiency in OD 

segmentation, and yields a comparable IoU score (i.e. 0.916) to that (i.e. 0.9202) with respect to the overlapping 

comparison between the two human annotators. Some examples of the segmentation results from the proposed 

ensemble model are provided in Figure 6. 

 



 

 
 

Figure 6 Example segmentation results of the proposed ensemble model (yellow lines: predicted boundaries, 

green lines: GT annotations) 

 

5.2 Evaluation Using the Messidor Data Set for OD Segmentation 

To further ascertain the model efficiency, the Messidor data set is employed. The data set has 1,200 images. We 

employ the ratio of 60-20-20 for forming the training, validation, and test sets. The aforementioned 

experimental settings for both types of ensemble model construction are also employed for the optimal hyper-

parameter identification. Transfer learning with 50 epochs and 100 steps per epoch is performed using the 

optimized training configuration identified by the proposed PSO model and other search methods. Table 4 

shows the detailed evaluation results of the Messidor data set over a set of 30 runs. 

 

Table 4 Evaluation results of the Messidor data set over a set of 30 runs 
 

Models 
 

Methodologies 
 

IoU scores 

Prop. PSO-based Ensemble Prop. PSO + ensemble Mask R-

CNN transfer learning model 

0.915 

CPSO-based Ensemble [20] CPSO + ensemble Mask R-CNN 

transfer learning model 

0.9049 

EPSO-based Ensemble EPSO + ensemble Mask R-CNN 
transfer learning model 

0.8984 

PSO-based Ensemble PSO + ensemble Mask R-CNN 

transfer learning model 

0.9020  

Ensemble Model with Default Settings Ensemble Mask R-CNN transfer 

learning model with default 
parameter settings 

0.8823 

Ensemble Clustering Using ALPSO+FCM [21] Ensemble clustering with 

ALPSO+FCM as the base 

0.4719 

Ensemble Clustering Using GA+FCM [14] Ensemble clustering with 

GA+FCM as the base 

0.5120 

Ensemble Clustering Using PSO+FCM Ensemble clustering with 
PSO+FCM as the base 

0.4582 

 

 

Table 5 Comparison with related studies for the Messidor data set 
 

Relate studies 
 

Methodologies 
 

IoU scores 

Prop. PSO-based Ensemble Prop. PSO + ensemble Mask R-CNN transfer 
learning model 

0.915 

Li et al. [6]  A brightness based method for OD localization + OD 

segmentation based on learning the supervised 
descent directions 

0.9128 

Dai et al. [7] Variational model with multiple energies 0.91 

Dashtbozorg et al. [8]  A multiresolution sliding band filter 0.89  



Sarathi et al. [4]  Adaptive threshold based region growing technique 

followed by strategic blood vessel inpainting 

0.89 

Lim et al. [30] A 9-layer CNN model with exaggerated feature 

inputs 

0.888 

Giachetti et al. [55] Symmetry-based OD localization + a coarse-to-fine 
scheme for OD segmentation based on information 

related to inpainted images and vessel masks 

0.88 

Cheng et al. [56]  Superpixel classification based OD and OC 
segmentation 

0.88 

Marin et al. [57]  Opening-closing morphological operations + a 2-step 

automatic thresholding procedure based on Circular 
Hough Transform and the Prewitt edge detector 

0.87 

Aquino et al. [58]  Morphological and edge detection techniques 

followed by the Circular Hough Transform + a 
voting-type algorithm 

0.86 

Zhang et al. [22] Faster R-CNN and a shape constrained level set 

algorithm 

0.854 

Yu et al. [59]  Directional matched filtering and a hybrid level-set 

model 

0.844  

Zahoor and Fraz [27]  A polar transform-based adaptive thresholding 0.844 
Roychowdhury et al. [60]  A Gaussian mixture model classifier with region-

based features 

0.84 

Morales et al. [3]  PCA and mathematical morphology 0.8228 

Rehman et al. [23] Superpixel based feature classification 0.747 

 

As illustrated in Table 4, the proposed PSO model is able to identify more efficient hyper-parameters than those 

produced by CPSO, EPSO and PSO, respectively. Therefore, our resulting ensemble segmentation model 

achieves a superior average IoU score of 0.915, as compared with those of the baseline ensemble methods, over 

a set of 30 runs. In addition, the optimized ensemble segmenters produced by all the PSO models show better 

performances than those of ensemble models with the default hyper-parameter settings. This is owing to the less 

effective training configurations and limited diversity of the ensemble segmenters with the default settings. 

CPSO produces more effective learning hyper-parameters than those from EPSO and PSO, respectively. This 

Messidor data set also poses great challenges to the three hybrid ensemble clustering methods, owing to the 

presence of certain characteristics such as low-contrast boundaries, vasculature occlusion, and bright lesion 

distractors, which severely affect the clustering segmentation performance. 

 

Table 5 depicts a comparison with state-of-the-art studies for the Messidor data set. The existing methods adopt 

diverse deep networks, morphological operations, edge detectors, and filtering techniques for OD segmentation. 

Our ensemble transfer learning segmenter based on Mask R-CNN and the proposed PSO-based hyper-parameter 

identification depicts superior capabilities and flexibilities in OD segmentation without any pre- and post-

processing procedures. By using only the image-level inputs, the proposed model is among the top performers, 

as compared with other existing studies. The empirical results also indicate that the deep features learned offer 

great superiority over hand-crafted features [4, 23, 27, 55, 57, 58] in OD segmentation. 

 

To further indicate the significance of the proposed PSO-based ensemble segmenter, the Wilcoxon rank sum test 

is conducted for both Drions and Messidor data sets for OD segmentation over 30 runs. As shown in Table 6, all 

the statistical test results are lower than 0.05, which indicate that the proposed PSO-based ensemble model 

outperforms all hybrid ensemble clustering methods and the baseline deep ensemble models with the default and 

optimal hyper-parameters identified by all other PSO variants, statistically.  

 

Table 6 The Wilcoxon rank sum test results for OD segmentation for Drions and Messidor data sets 

 
 CPSO-based 

Ensem 

EPSO-based 

Ensem 

PSO-based 

Ensem 

Default 

Ensem 

ALPSO+FCM-

based Ensem 

GA+FCM-

based Ensem 

PSO+FCM-

based Ensem 

Drions 2.74E-11 2.32E-11 2.53E-11 1.34E-11 1.08E-12 1.08E-12 1.08E-12 
Messidor 4.24E-06 2.94E-11 2.97E-11 1.45E-11 1.20E-12 1.20E-12 1.20E-12 

 

 

5.3 Evaluation Using the Messidor Data Set for Diagnostic Problems 

Besides the OD segmentation tasks, we also evaluate the efficiency of the proposed PSO model for hyper-

parameter fine-tuning in another transfer learning process for the grading of a type of retinal diseases, i.e. the 

risk of DME. Specifically, we construct ensemble classification models with hyper-parameters fine-tuned by the 

proposed PSO and other search methods, respectively, for DME grading. As mentioned earlier, the Messidor 

data set [53] has two types of diagnoses, i.e. DR grading and DME. With respect to DME, each image is 

classified into one of the three categories, i.e. ‘0 (no risk)’, ‘1 (mild risk)’, and ‘2 (severe risk)’. There are 971, 

75, and 154 samples for grades 0, 1, and 2, respectively, in the Messidor data set. The ‘no risk’ category 



represents the normal cases, while the ‘mild’ and ‘severe’ categories indicate that the shortest distance between 

macula and hard exudates is more than or less than one papilla diameter, respectively. Owing to the severe 

imbalanced sample sizes for the three cases, a total of 420 images are employed for DME detection with 191, 

75, and 154 samples for ‘0 (no risk)’, ‘1 (mild)’ and ‘2 (severe)’ cases, respectively. 

 

Since VGG16 [61], a deep learning model, achieves comparatively better performances in a trial-and-error 

process for DME grading among a number of other deep networks including GoogLeNet, Inception-V3, 

ResNet101, AlexNet, and VGG19, it is selected in this research. We employ the VGG16 model as the base 

classifier, which is fine-tuned using the Messidor data set to perform classification of the three DME cases. The 

proposed PSO model is used to optimize the learning rate and momentum for this transfer learning process 

based on VGG16, owing to the impact of these hyper-parameters to the model performance. As discussed 

earlier, a large learning rate is more likely to produce sub-optimal solutions, while a small learning rate is more 

inclined to require a longer training time. The momentum parameter has a significant impact on avoiding the 

local optima traps. The default parameter settings of the transfer learning process are also used for comparison, 

where learning rate=0.01 and momentum=0.9 (recommended in MATLAB) with the stochastic gradient descent 

with momentum as the optimizer. We employ a ratio of 70-10-20 for model training, validation, and test, for 

DME detection using the Messidor data set. 

 

Besides PSO, CPSO [20] and ALPSO [21], we employ other classical methods and PSO and FA variants for 

performance comparison, i.e. Moth-Flame Optimization (MFO) [62], Genetic PSO (GPSO) [63], dynamic 

neighbourhood learning PSO (DNLPSO) [64], ELPSO [65], CFA1 with Logistic map as random search 

parameters [66], CFA2 with Gauss map as the attractiveness coefficients [67], and variable step size FA 

(VSSFA) [68]. These classical and advanced search methods show competitive capabilities in solving diverse 

challenging optimization problems. The parameter settings of these additional baseline methods are shown in 

Table 7, which are consistent with the recommendations in their original studies. The following experimental 

settings are employed for hyper-parameter selection, i.e. the maximum number of function evaluations=150, 

dimension=2, and trial=30. All the search methods terminate when the maximum number of function 

evaluations is reached. After identifying the optimized training configurations of the base VGG16 models using 

the proposed PSO and other search methods, we further improve DME classification by constructing ensemble 

VGG16 models. In other words, we construct ensemble VGG16 models with hyper-parameters fine-tuned by 

each search method for DME grading. 

 

Table 7 Parameter settings of additional baseline methods 
Methods Parameter settings 

MFO [62] Use adaptive parameter settings 

GPSO [63] maximum velocity=0.6, inertia weight=0.9, acceleration constants 𝑐1 = 2.6, 𝑐2 = 1.5 

DNLPSO [64] 𝑐1=𝑐2=1.49445, refreshing gap=3, regrouping period=5, inertia weight=0.9−(0.9−

0.4)×(k−1)/(MaxGeneration−1), where k and MaxGeneration represent the current 

and maximum iteration numbers, respectively. 

ELPSO [65] 𝑐1=𝑐2=2, standard deviation of Gaussian mutation=1, scale parameter of Cauchy 

mutation=2, scale factor of DE-based mutation=1.2, inertia weight=0.9−(0.9−0.4)×(k

−1)/(MaxGeneration−1). 

CFA1 [66] initial attractiveness=1.0, absorption coefficient=1.0, Levy’s index=1.5, 

randomization parameter=Logistic map  

CFA2 [67] attractiveness=Gauss map, absorption coefficient=1.0, Levy’s index=1.5, 
randomization parameter=0.5 

VSSFA [68] initial attractiveness=1.0, absorption coefficient=1.0, Levy’s index=1.5, 

randomization parameter=0.4/(1+exp(0.015*(k-MaxGeneration)/3)). 

 

For each base classifier generation, data augmentation and a fine-tuning process with a larger training sample 

size are used to enhance the performance. Data augmentation operations are firstly employed to diversify the 

training samples and avoid overfitting. Augmentation operations such as scaling (horizontal and vertical scaling 

of the input images by 10%), reflection (randomly flipping the images in the left-right direction with 50% 

probability), and translation (random horizontal and vertical translations of the images up to 30 pixels), are 

performed. The augmentation pre-processing operation also resizes the original images to 224×224, which is 

required by the adopted VGG16 model. Such data augmentation procedures are able to prevent the networks 

from learning the training images too tightly, in order to avoid overfitting [69]. After identifying the optimal 

hyper-parameters using the training (70%) and validation (10%) sets, we combine the training and validation 

sets into a larger training set (80%). We use this larger training set as well as the identified optimal training 

configurations to fine-tune the VGG16 model to avoid overfitting. The mini-batch size is increased to 10 in this 

model fine-tuning process, in comparison with 6 used in the hyper-parameter selection process using each 

search method. To further enhance the performance, for each search method, we subsequently construct an 



ensemble classifier with three fine-tuned base VGG models yielded using the abovementioned base model 

generation process. The results obtained by the three base VGG16 models are combined using a majority voting 

mechanism to determine the final classification outcome. Since the three base classifiers employ different 

optimized training configurations, they possess great diversity for performance enhancement. 

 

The mean diagonal classification accuracy rate of the confusion matrix of the three classes obtained for the test 

set is used for comparison. Such an evaluation strategy is also able to avoid any biases contributed by the 

dominating classes with comparatively larger sample sizes. Table 8 shows the mean result over a set of 30 runs 

of each search method. 

 

Table 8 Evaluation results for DME grading over a set of 30 runs 

 
  Prop. PSO PSO MFO CPSO ALPSO GPSO DNLPSO ELPSO CFA1 CFA2 VSSFA default 

mean 0.9593 0.8889 0.8151 0.9074 0.8703 0.8574 0.8148 0.9111 0.8778 0.8333 0.8555 0.7999 

 

As indicated in Table 8, the ensemble VGG16 model with the hyper-parameters identified by the proposed PSO 

model outperforms those with the default and optimal hyper-parameters identified by other search methods for 

DME grading, significantly. The superiority of the proposed PSO model is further ascertained by the Wilcoxon 

rank sum test results. As presented in Table 9, the proposed ensemble VGG16 model outperforms the default 

ensemble model and those with training options yielded by all other baseline search methods, statistically. 

 

Table 9 The Wilcoxon rank sum test results for DME grading 

 
 PSO MFO CPSO ALPSO GPSO DNLPSO ELPSO CFA1 CFA2 VSSFA default 

RS 7.83E-08 3.87E-09 5.36E-06 5.36E-06 6.13E-07 2.83E-09 2.91E-04 4.87E-06 2.48E-07 4.65E-08 5.51E-09 

 

Table 10 Comparison with related studies for DME detection for the Messidor data set 
 

Relate studies 

 

Methodologies 

 

Classes 

 

Data sets 

used  

 

Image size 

 

Evaluation 

strategy 

 

Accuracy on 

Messidor 

Giancardo et al. [70] The exudate 

probability map 

obtained using 
background subtraction, 

colour and wavelet 

analysis + supervised 
classifiers 

 

2 Messidor Resize the 

images to a 

height of 752 
pixels 

maintaining 

the original 
height/width 

ratio. 

Hold-one-out 0.91 

Lim et al. [71] Watershed 
transformation 

3 Messidor - Hold-out 0.852 

Akram et al. [72] Filter bank + SVM 3 Messidor 2240×1488 

2304×1536 
1440×960 

- 0.973 

Sreejini and 

Govindan [73] 

PSO and FCM for 

exudates segmentation 
and optic disc 

elimination etc. + Bayes 

classifier 

3 Messidor - - 0.945 

Mookiah et al. [74] Higher-order spectra + 

feature selection & 
ranking + supervised 

classifiers 

 

3 Messidor 1440×960 10-fold 0.9556 

Ren et al. [75] Vector quantization and 

semi-supervised 

learning 

3 Messidor + 

E-ophtha EX 

(20%)  

- Hold-out 0.889 

Ren et al. [75] Vector quantization and 

semi-supervised 

learning 

3 Messidor + 

E-ophtha EX 

(80%)  

- Hold-out 0.975 

Al-Bander et al. [76] CNN model with 3 

Conv. Blocks and one 

FC block 

3 Messidor 128×128  

256×256 

512×512 

Hold-out 0.888 

Sahlsten et al. [77] Ensemble of Inception-

v3 

3 A private 

training set 

with 28,512 
images + 

Messidor 

512×512 Hold-out 0.953 



Li et al. [78] Cross-disease attention 

network (CANet) with 

the disease-specific and 
disease-dependent 

attention modules 

3 Messidor 350×350 10-fold 0.912 

Chen et al. [79] A multi-task deep 
learning model 

3 Messidor 350×350 10-fold 0.905 

Prop. PSO + 

Ensemble VGG16 

Prop. PSO + ensemble 

VGG16 transfer learning 
model 

3 Messidor 224×224 Hold-out 0.9593 

 

Table 10 shows the comparison with related research studies. Since different training databases, sample sizes, 

evaluation strategies, and input image resolutions have been used in the related studies, the results in Table 10 

serve as a rough performance comparison between the proposed research and the existing methods for DME 

grading. As indicated in Table 10, many related studies employ hand-crafted features and rely largely on pre-

processing and morphological operations to detect both the exudate and macula regions, while eliminating 

distractors such as blood vessels and OD regions, in order to assist DME detection. As an example, Lim et al. 

[71] conducted DME grading by employing pre-processing operations such as exudate extraction and fovea 

localization using contrast-limited adaptive histogram equalization, morphological opening and dilation, and 

watershed transformation. Akram et al. [72] conducted exudate and macula detection using a filter bank before 

performing feature extraction for SVM-based DME classification. Sreejini and Govindan [73] employed hybrid 

FCM clustering integrated with PSO for exudate segmentation, fovea and macular region localization, and OD 

detection, in combination with Bayes classifier-based DME identification. A multi-step pre-processing operation 

was adopted by Ren et al. [75], including vessel, OD and macula localization, exudate segmentation using 

vector quantization and semi-supervised learning based DME grading. Besides the abovementioned pre-

processing procedures, Mookiah et al. [74] employed Higher Order Spectra for feature extraction, Spectral 

Regression Discriminant Analysis (SRDA) and minimum Redundancy Maximum Relevance (mRMR) for 

feature selection and discrimination of different DME stages. These related studies also employed significantly 

larger image input resolutions. 

 

As mentioned above, they all require additional location information pertaining to macular and exudate from the 

pre-processing steps to perform the grading tasks. In addition, it is difficult to obtain the annotations of the 

location information of exudates and macula. Ren et al. [75] obtained such additional knowledge, i.e. the 

location information of exudate, by utilizing an additional data set, i.e. the E-ophtha EX data set, which was 

combined with the Messidor data set for model training and performance enhancement. Their best performance 

was achieved when 80% of a labelled data set with such additional information extracted from E-ophtha EX was 

used together with Messidor in the training process.  

 

In comparison with the above morphological and texture-based methods, in this research, we conduct the DME 

grading task without using any pre-processing procedures, such as exudate segmentation, fovea and macular 

region localization, and blood vessel removal. In other words, we do not utilize any features related to the 

macular and exudate location information, but purely rely on the image-level inputs for discrimination of 

different DME stages. Besides that, the above related studies mainly employ hand-crafted features, which may 

show limited discriminative capabilities as compared with those in the proposed approach.  

 

Moreover, deep CNN models were also employed for DME grading, such as Al-Bander et al. [76], Sahlsten et 

al. [77], Li et al. [78] and Chen et al. [79]. Sahlsten et al. [77] employed an ensemble deep network and achieved 

a comparatively better performance among the baseline results. Their method, however, employed a 

significantly larger additional private retinal image data set (28,512 images) for model training with a variety of 

larger image resolutions. Their base learners in the deep ensemble model were yielded by using similar training 

settings, therefore the lack of diversity. In this research, we employ the proposed PSO-based hyper-parameter 

identification incorporating the VGG16 model to generate the optimal base learners that fit the tasks at hand. 

The proposed search mechanisms are capable of driving the hyper-parameter search out of local optima traps to 

attain global optimality. Data augmentation and a final model fine-tuning process are also adopted to improve 

the performance of base models. The base models with distinctive training hyper-parameters embedded in the 

ensemble classifier show great diversity to enhance the final ensemble performance. Importantly, we do not use 

any additional large data sets for training, and we achieve a reasonable trade-off between the performance and 

computational cost with a comparatively smaller input resolution. In short, our approach offers an effective 

alternative to DME grading. For future work, we will embed additional lesion (exudate) segmentation masks to 

locate the abnormal signs so that we can further improve the performance. 

 

5.4 Evaluation Using Test Functions  



In addition to the evaluation on OD segmentation and DME detection, a set of nine mathematical benchmark 

functions is employed to evaluate the model efficiency. They include Ackley, Dixon-Price, Griewank, Rotated 

Hyper-Ellipsoid, Rosenbrock, Sphere, Sum of Different Powers, Sum Squares, and Powell numerical problems. 

These artificial landscapes represent a variety of challenging unimodal and multimodal optimization problems. 

Specifically, Ackley, Griewank, and Powell are multimodal numerical problems with multiple local minima, 

while the rest are unimodal benchmark functions with single global minimum [65, 80, 81]. The definitions of 

these test functions are provided in [15, 80]. 

 

The following experimental settings are applied, i.e. the maximum number of function evaluations=25,000, 

dimension=30, and trial=30. The mean, standard deviation, minimum and maximum results are computed for 

each method over 30 runs, where the mean results are used as the main criterion for comparison. All the 

methods terminate when the maximum number of function evaluations is reached. Table 11 illustrates the 

detailed evaluation results. The proposed PSO model with super-ellipse coefficients shows superior capabilities 

in solving these unimodal and multimodal mathematical landscapes. It is able to yield the most optimal (i.e. the 

minimum) mean results over a set of 30 runs for nearly all the test functions, except for Griewank where  

ALPSO obtains the best mean result. 

 

Table 11 Evaluation results of the unimodal and multimodal benchmark functions over a set of 30 runs 

 
 Prop. PSO PSO MFO CPSO ALPSO GPSO DNLPSO ELPSO CFA1 CFA2 VSSFA 

Ackley mean 4.73E+00 6.28E+00 9.98E+00 6.15E+00 5.76E+00 1.78E+01 5.16E+00 1.50E+01 1.57E+01 1.48E+01 1.04E+01 

 Min 2.41E+00 2.20E+00 3.87E-01 4.22E+00 3.84E+00 1.63E+01 2.58E+00 1.32E+01 1.48E+01 1.36E+01 9.64E+00 

 Max 8.48E+00 9.46E+00 1.63E+01 7.99E+00 8.03E+00 1.85E+01 8.59E+00 1.61E+01 1.65E+01 1.54E+01 1.09E+01 

 Std 1.43E+00 1.61E+00 4.12E+00 9.33E-01 1.23E+00 4.86E-01 1.48E+00 5.97E-01 4.24E-01 4.40E-01 3.63E-01 

Dixon mean 6.72E-01 4.28E+00 1.56E+04 1.34E+00 1.03E+04 4.66E+05 3.68E+01 1.51E+05 1.49E+05 1.41E+05 1.14E+04 

 Min 6.67E-01 6.83E-01 3.04E+00 6.82E-01 3.09E+03 1.78E+05 6.67E-01 6.43E+04 8.87E+04 9.74E+04 5.64E+03 

 Max 6.93E-01 8.52E+01 1.17E+05 9.12E+00 2.01E+04 7.32E+05 4.98E+02 3.19E+05 2.34E+05 1.90E+05 1.58E+04 

 Std 5.77E-03 1.53E+01 4.02E+04 1.59E+00 4.11E+03 1.43E+05 1.01E+02 6.53E+04 3.88E+04 2.52E+04 2.85E+03 

Griewank mean 4.64E-07 3.00E-01 6.82E+00 3.66E-01 0.00E+00 2.93E+02 2.14E+00 1.34E+02 1.68E+02 1.57E+02 4.52E+01 

 Min 6.21E-11 4.60E-02 2.98E-01 2.38E-02 0.00E+00 2.11E+02 1.01E-07 9.06E+01 1.30E+02 1.15E+02 3.53E+01 

 Max 3.62E-06 1.14E+00 9.09E+01 1.18E+00 0.00E+00 3.88E+02 1.28E+01 1.77E+02 1.96E+02 1.89E+02 5.36E+01 

 Std 7.95E-07 3.31E-01 2.28E+01 3.99E-01 0.00E+00 3.90E+01 3.65E+00 2.03E+01 1.74E+01 1.58E+01 4.75E+00 

Rothyp mean 3.66E-03 1.88E-01 1.87E+04 2.40E-02 2.86E+05 1.98E+05 1.45E+03 8.97E+04 1.11E+05 1.00E+05 2.92E+04 

 Min 1.28E-03 1.96E-02 2.00E+00 5.35E-04 1.95E+05 1.45E+05 2.94E-07 5.78E+04 8.07E+04 7.56E+04 2.13E+04 

 Max 1.28E-02 2.41E+00 1.69E+05 2.45E-01 3.38E+05 2.45E+05 1.75E+04 1.24E+05 1.38E+05 1.18E+05 3.46E+04 

 Std 2.20E-03 4.31E-01 3.34E+04 5.56E-02 3.63E+04 2.81E+04 3.54E+03 1.76E+04 1.31E+04 1.26E+04 3.92E+03 

Rosenbrock mean 3.03E+01 5.81E+01 4.62E+04 4.69E+01 4.21E+03 3.92E+05 8.01E+02 1.13E+05 1.28E+05 7.73E+04 8.21E+03 

 Min 2.09E-02 9.46E+00 4.28E+01 4.87E-01 1.73E+02 2.26E+05 2.17E+01 3.01E+04 6.14E+04 4.48E+04 5.24E+03 

 Max 8.05E+01 1.84E+02 2.00E+05 1.36E+02 1.62E+04 5.68E+05 2.01E+04 2.19E+05 1.86E+05 1.04E+05 1.08E+04 

 Std 2.79E+01 4.48E+01 5.51E+04 3.87E+01 3.57E+03 1.03E+05 3.65E+03 4.30E+04 2.88E+04 1.42E+04 1.36E+03 

Sphere mean 2.45E-03 4.41E-02 1.75E+00 1.17E-01 5.60E-02 8.69E+01 2.60E-01 3.98E+01 4.92E+01 4.72E+01 1.25E+01 

 Min 9.38E-04 7.94E-03 1.43E-03 7.91E-03 0.00E+00 6.09E+01 1.35E-09 2.12E+01 3.57E+01 3.68E+01 9.40E+00 

 Max 4.37E-03 4.55E-01 2.62E+01 4.24E-01 4.09E-01 1.11E+02 4.05E+00 5.08E+01 6.07E+01 5.37E+01 1.66E+01 

 Std 9.45E-04 8.00E-02 6.65E+00 1.04E-01 1.31E-01 1.28E+01 7.53E-01 6.20E+00 6.27E+00 4.52E+00 1.74E+00 

Sumpow mean 2.08E-06 1.77E-05 3.17E-06 5.04E-05 8.27E-04 1.23E-01 2.34E-05 1.46E-02 1.01E-02 7.02E-03 2.07E-04 

 Min 1.57E-07 1.37E-06 3.14E-07 4.70E-06 0.00E+00 9.89E-03 1.67E-36 1.34E-03 5.80E-04 1.75E-03 6.69E-05 

 Max 1.02E-05 7.71E-05 1.14E-05 1.36E-04 1.68E-02 4.68E-01 5.74E-04 3.67E-02 3.25E-02 2.32E-02 6.77E-04 

 Std 2.40E-06 1.99E-05 2.84E-06 5.31E-05 3.18E-03 9.95E-02 1.06E-04 8.67E-03 6.32E-03 4.09E-03 1.25E-04 

Sumsqu mean 2.36E-03 6.72E-02 1.23E+02 1.50E-01 1.26E-01 1.16E+03 8.30E-01 5.61E+02 6.77E+02 6.29E+02 1.88E+02 

 Min 7.95E-04 7.16E-03 3.16E-02 1.14E-03 0.00E+00 8.22E+02 2.14E-09 2.90E+02 4.89E+02 4.63E+02 1.47E+02 

 Max 4.66E-03 2.41E-01 8.65E+02 1.17E+00 6.40E-01 1.57E+03 7.94E+00 8.01E+02 8.45E+02 7.66E+02 2.29E+02 

 Std 1.15E-03 5.78E-02 1.74E+02 2.73E-01 1.37E-01 2.07E+02 1.76E+00 1.13E+02 8.62E+01 7.61E+01 2.03E+01 

Powell mean 1.21E-02 2.59E+00 7.77E+02 8.77E-02 8.56E-01 4.60E+03 6.26E+00 1.71E+03 1.75E+03 1.42E+03 2.89E+02 

 Min 3.18E-03 1.15E-02 3.28E+00 1.30E-02 1.83E-01 2.59E+03 2.93E-03 6.31E+02 8.10E+02 1.00E+03 1.67E+02 

 Max 8.52E-02 7.52E+01 4.70E+03 5.07E-01 2.27E+00 7.27E+03 4.11E+01 3.10E+03 2.25E+03 1.98E+03 4.19E+02 

 Std 1.48E-02 1.37E+01 1.25E+03 1.12E-01 5.23E-01 1.24E+03 1.02E+01 6.06E+02 3.40E+02 2.84E+02 5.49E+01 

 

Table 12 The Wilcoxon rank sum test results of the benchmark functions 

 
 PSO MFO CPSO ALPSO GPSO DNLPSO ELPSO CFA1 CFA2 VSSFA 

Ackley 1.41E-04 1.11E-06 2.60E-08 5.86E-06 3.02E-11 3.77E-04 3.02E-11 3.02E-11 3.02E-11 3.02E-11 

Dixon 1.56E-08 3.02E-11 2.15E-10 3.02E-11 3.02E-11 1.36E-07 3.02E-11 3.02E-11 3.02E-11 3.02E-11 

Griewank 3.02E-11 3.02E-11 3.02E-11 1.21E-12 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 

Rothyp 3.02E-11 3.02E-11 1.54E-01 3.02E-11 3.02E-11 5.27E-05 3.02E-11 3.02E-11 3.02E-11 3.02E-11 

Rosenbrock 4.86E-03 1.21E-10 1.12E-02 3.02E-11 3.02E-11 2.78E-07 3.02E-11 3.02E-11 3.02E-11 3.02E-11 

Sphere 3.02E-11 2.61E-02 3.02E-11 4.28E-06 3.02E-11 1.02E-01 3.02E-11 3.02E-11 3.02E-11 3.02E-11 

Sumpow 1.11E-06 3.02E-11 6.12E-10 2.48E-08 3.02E-11 5.53E-08 3.02E-11 3.02E-11 3.02E-11 3.02E-11 

Sumsqu 3.34E-11 3.02E-11 9.53E-07 6.71E-05 3.02E-11 3.99E-04 3.02E-11 3.02E-11 3.02E-11 3.02E-11 

Powell 4.62E-10 3.02E-11 9.92E-11 3.02E-11 3.02E-11 4.44E-07 3.02E-11 3.02E-11 3.02E-11 3.02E-11 

 

We conduct the Wilcoxon rank sum test to further indicate the model efficiency. Table 12 shows the statistical 

test results. The proposed PSO model depicts statistically significant superiority over all the baseline methods in 

nearly all the test cases. The exceptions are the Rotated Hyper-Ellipsoid and Sphere functions, where CPSO and 



DNLPSO show similar distributions to those of the proposed model, respectively, over a set of 30 runs. ALPSO 

also shows a statistically better performance than the proposed model for the Griewank landscape. 

 

Overall, the empirical and statistical test results of OD segmentation, DME classification, and numerical 

optimization ascertain the superiority of the proposed PSO model over other classical and advanced search 

methods in solving diverse optimization problems. The proposed accelerated and refined super-ellipse search 

operations, random and mean leader enhanced actions, and spherical local exploitation for swarm leader 

enhancement, account for the robustness and efficiency of the proposed PSO model. 

 

6. CONCLUSION 
In this research, we have proposed an ensemble transfer learning model with a PSO-based hyper-parameter 

selection method based on Mask R-CNN for OD segmentation. The proposed PSO model employs diverse 

elliptical search operations, a modified PSO mechanism, random and mean leader enhanced actions, and a 

spherical random walk mechanism for swarm leader enhancement. It enables the particles to follow the personal 

and global best experiences using either the accelerated or refined search steps along the irregular elliptical 

flights to diversify the search process. Moreover, it is capable of further increasing search diversification by 

assigning a distinctive search action to each particle in any iteration. The proposed PSO model is evaluated 

using the Drions and Messidor public fundus image data sets and demonstrates statistically superior capabilities 

in optimal hyper-parameter identification with respect to deep networks. The resulting ensemble segmenters 

achieve better average IoU scores in OD segmentation than those from three hybrid ensemble clustering 

methods as well as the deep ensemble networks formulated with default and optimal settings identified by the 

original and other PSO variants. The improved performances are shown through statistical test results. 

Furthermore, the proposed model also shows statistical superiority over other state-of-the-art search methods in 

solving diverse unimodal and multimodal benchmark optimization functions and the detection of DME. 

 

In future studies, we aim to conduct hyper-parameter tuning and evolving clustering and deep network 

generation using the proposed model for solving other medical imaging problems, e.g. dermoscopic lesion 

localization and segmentation, nuclei counting and segmentation, MRI brain tumour segmentation, and stroke 

lesion segmentation based on acute CT perfusion images. We will also study the application of the proposed 

PSO model to other complex computer vision tasks, such as evolving deep architecture generation for image 

description and visual question generation [82-85] for resource-constrained deployments. 
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