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ABSTRACT 15 

 16 

Sulfur is considered as one of the main impurities in hot metal. Hot metal desulfurization is often 17 

carried out with pneumatic injection of a fine-grade desulfurization reagent using a submerged 18 

lance. The aim of this study was to develop a data-driven model for the process. The model 19 

selection algorithm carries out a simultaneous variable selection and neural network topology 20 

optimization with a combination of binary and integer coded Genetic Algorithm. The objective 21 

function applied in the search is repeated Leave-Multiple-Out cross-validation. The model 22 

considered is a multi-layer feedforward neural network. In the variable and topology selection 23 

phase, the computational load is reduced by making use of Extreme Learning Machine (ELM) 24 

architecture. The final model is trained using the Bayesian regularization. The results show that a 25 

well-generalizing data-driven model with good prediction performance can be repeatedly selected 26 

based on noisy industrial data with the help of a Genetic Algorithm, provided that the model is 27 

validated comprehensively with internal and external data sets. 28 

 29 

  30 
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1. Introduction 31 

 32 

In steel manufacturing, sulfur is considered as one of the main impurities dissolved in hot metal. 33 

The removal of sulfur from the hot metal is important due to the fact that existence of it detoriates 34 

the weldability and decreases the corrosion resistance of the final steel product.  Hot metal 35 

desulfurization is a process, in which the sulfur is removed from the metal phase and transferred to 36 

the top slag.  Hot metal desulfurization is often carried out using injection of a fine-grade 37 

desulfurization reagent with an immersed lance. The carrier-gas used in the injection is typically 38 

nitrogen or argon.  There are numerous alternatives for reagents, which can be used for hot metal 39 

desulfurization, of which this work is concerned with calcium carbide. The main desulfurization 40 

reaction with calcium carbide can be given as:
[1]

 41 

 42 

                       

 

[1] 

where < > denotes solid species, [ ] denotes species dissolved in the metal phase and ( ) denotes 43 

species dissolved in the slag phase. During the injection, a complex chemical system called the slag 44 

phase is formed on top of the metal.  The overall rate of hot metal desulfurization with powder 45 

injection is considered to be a summation of the following reaction mechanisms: 
[1-2]

  46 

 47 

i. transitory contact reaction that occurs between the injected particles and the hot metal, 48 

ii. permanent contact reaction, which is the reaction between the top slag and the hot metal, 49 

iii. the reaction between the particles trapped inside the bubbles formed in the injection and hot 50 

metal. 51 

 52 

The contribution of each of the aforementioned reaction mechanisms is difficult to formulate based 53 

on the physico-chemical properties of the system only, and major simplifications are still required 54 

to reduce the development effort and computational load. Furthermore, several operating factors 55 

induce process variance that is not captured by purely mechanistic models, thus reducing their 56 

accuracy. As pointed out in the authors’ earlier review, the existing mechanistic models for hot 57 

metal desulfurization still need at least the following clarifications to be applicable for process 58 

control purposes:
 [3] 

59 

 60 

 fraction of non-contacted particles, 61 

 residence time of individual particles and the contact time available for mass transfer, 62 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



3 

 

 heterogeneity of metal and slag phases in terms of composition and temperature, 63 

 effect of gas-forming additives on the effective contact area, and 64 

 adhesive behavior of the reagent. 65 

   66 

In light of the reasoning above, the data-driven approaches could provide a feasible alternative to 67 

the more traditional modeling approaches. As was suggested in our previous studies 
[4-5]

, a 68 

parametrized 1
st
 order reaction model is applicable in the prediction of kinetics in the case of lime-69 

based desulfurization, if the process operates far from thermodynamic equilibrium [S] > 0.008 wt-70 

%. This attribute results in the rate of desulfurization being controlled by reaction kinetics and not 71 

by the thermodynamic driving force, which is why a common simplification is to neglect the 72 

thermodynamic driving force. However, if the process operates at low sulfur contents, the role of 73 

the thermodynamic driving force increases, which makes the given assumption ill-suited. As the 74 

exact determination of the [S]eq is more or less trivial with a thermodynamic approach, the 75 

calculation of the rate constant can be considered more or less suggestive, which usually leads to 76 

only moderate accuracy. 
[4] 

In light of these, a neural network based data-driven modeling approach 77 

could provide a feasible alternative for modeling the process.  78 

 79 

The earlier data-driven approaches to modeling of carbide-based hot metal desulfurization have 80 

showed improved accuracy compared to deterministic approaches. The model proposed by Vinoo et 81 

al. 
[6]

 made use of manual data classification based on the input temperature and variable selection 82 

to predict the consumption of the carbide-based reagent with a multivariable linear regression 83 

model. However, as the hot metal desulfurization is a non-linear process, a non-linear modeling 84 

scheme should be considered. This can be deduced from the relatively large error of prediction for 85 

the external data set of 15 points (MAE = 0.0015 wt-%). 
[6] 

In the studies of Deo et al.
 [7]

 and Datta 86 

et al. 
[8]

 prediction accuracies of MAE = 0.0027-0.016 wt-% and R
2
 = 0.16-0.60 were obtained with 87 

different neural network architectures by making use of a training set including 51 
[8]

 and 146 88 

training data-points 
[7]

. The proposed input variables were the initial content of sulfur in the hot 89 

metal ([S]0), the initial mass of the hot metal (mFe), the flowrate of the carbide (     and the 90 

treatment time (t).  Despite the complex model structure, the training and validation errors are 91 

relatively large, which suggests that the proposed network architectures (20-20-1) and prediction 92 

accuracies are not likely to be entirely consistent.  This type of a behavior in neural network training 93 

can be usually associated with noisy and sparse data or a non-reliable training algorithm. 
 
The study 94 

of Rastogi et al. 
[9]

 made use of Genetic Algorithms for parameter identification to evaluate the 95 

significance of different reaction mechanisms based on a parameterized reaction model. In their 96 
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study, the genetic algorithm provided a realistic set of parameters to study the contribution of the 97 

suggested reaction mechanisms. 
[9]

 All in all, the previous authors create a baseline for prediction of 98 

the behavior of such a complex process based on solely on non-linear and noisy industrial data. 99 

 100 

Although there are some studies in the literature in which a multilayer neural network has been used 101 

to predict the state of metallurgical processes 
[10-17]

, there are no remarks in the literature of 102 

automated model selection based approach in modeling of hot metal desulfurization. In the study of 103 

Petterson et al.
 [10]

, a feed-forward neural network was used to predict the blast furnace burden 104 

distribution. The authors performed a simultaneous training and topology optimization of the 105 

network for a pre-selected variable subset by making use of a genetic algorithm. 
[10]

 Saxén and 106 

Petterson
[11]

 studied the problem of input variable selection for neural network models to predict 107 

dynamic silicon content in the blast furnace process. They showed that an intuitive pruning 108 

algorithm can be successfully applied for silicon content prediction based on sparse and noisy blast 109 

furnace data. The importance of a variable candidate was associated with the importance of its 110 

connective weight with respect to prediction error. 
[11]

 Later, Saxén and Pettersson 
[13]

 coupled their 111 

model selection algorithm with statistical reasoning, which was based on the Akaike Information 112 

Criterion (AIC). 
[13]

 In the studies of Pettersson et al. 
[12]

 and Mahanta and Chakraborti 
[17]

, an 113 

evolutionary neural network combined with a bi-objective genetic algorithm was applied for 114 

selection of pareto-optimal model structure for comprehensive modeling of the blast furnace.  
[12, 17]

 115 

 116 

In the study of Wang et al. 
[14]

, the variable selection was carried out manually by using a multiple 117 

linear regression as a model basis. The resulting network was then trained using a Genetic 118 

Algorithm and a moderate prediction accuracy was achieved. 
[14]

 In the study by Wang et al. 
[15]

, the 119 

Random Forest (RF) algorithm was used for prediction of the silicon content in a blast furnace. In 120 

their study, the measure of variable importance was related to classification accuracy of the model 121 

candidate when applied to an external data set. The algorithm selected the relevant input variables 122 

amongst 28 candidate variables. 
 [15]

 Wang et al. 
[16]

 presented a variable selection algorithm for a 123 

Support Vector Machine (SVM) model designed for the end-point prediction of the BOF blow. The 124 

importance of a predictor variable candidate was measured with mutual information and selected if 125 

a threshold value of the quantity was exceeded. 
[16]

 126 

 127 

The primary objective in a data-driven prediction model identification is to find a model that 128 

describes the changes in the selected output variable with sufficient accuracy and has a short 129 

computational time, which makes such models well-suited for real-life applications. Consequently, 130 
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the aim of this study was to develop an algorithm that performs the model identification steps for a 131 

given set of data in a sophisticated manner by making use of an automatic variable selection 132 

algorithm coupled with a multi-layer feedforward neural network. To illustrate the capability of the 133 

approach, the algorithm was applied to an industrial data set containing a high number of candidate 134 

prediction variables, and tested for predicting the sulfur content at the end of the hot metal 135 

desulfurization treatment. The effect of the hyperparameters of the algorithm on the computational 136 

results is evaluated by making use of repetitive testing and statistical reasoning. The relevance of 137 

the selected variables and their contribution to the hot metal desulfurization is also discussed.  138 

 139 

2. An algorithm for a neural network model identification 140 

 141 

Data-driven model identification can be roughly divided into the following steps: 1) data gathering, 142 

2) variable/feature extraction, 3) variable/feature selection, 4) model parameter identification and 5) 143 

model validation. In the selection of a neural network model, step 4 is often called the training of 144 

the network. As the term feature is often used in the context of signal or image processing, the 145 

columns of the data matrix X are here referred to as variables.  For this aim, a Genetic Algorithm 146 

prediction model identification algorithm is presented. The flowchart of the algorithm is presented 147 

in Figure 1. In the algorithm, the variable selection and network topology selection are carried out 148 

simultaneously by making use of a binary and integer-coded Genetic Algorithm. The Genetic 149 

Algorithm applies Leave-Multiple-Out (LMO) cross-validation as the fitness function. In LMO 150 

cross-validation, the data is repeatedly split into training and internal validation sets for N times, 151 

and the suitability of the variable set and network topology are assessed based on the average of the 152 

repeated cross-validation error. After the variable and topology selection, the model is trained and 153 

regularized, after which the final modeling error is assessed based on an external validation data set. 154 

Prior to variable selection, the training data was standardized such that µX = 0 and σX = 1. It should 155 

be noted that the standardization was carried out after the extraction of the external validation set, 156 

and the standardization of the external set was carried out by making use of the mean and standard 157 

deviation calculated based on the training data only. 158 

 159 

 160 

161 
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 162 

Figure 1. Flowchart of the model identification algorithm. 163 

 164 

 165 

 166 

  167 
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 168 

2.1. Input variable selection with Genetic Algorithm 169 

 170 

It is known that the performance of the prediction models can be drastically improved by applying 171 

the right subset of variables. The variable selection methods can be divided into model-based and 172 

model-free methods. When considering prediction model identification, the variable selection phase 173 

is crucial and computationally the most expensive step, especially when the number of candidate 174 

variables is high. Furthermore, if no expert knowledge is available, manual variable selection 175 

techniques become too time-consuming and often lead to suboptimal variable subsets. A general 176 

problem in simple search methods, such as in forward selection or backward elimination is that the 177 

methods tend to converge to a local optimum. In the context of variable selection this means for 178 

example a model, which includes all the relevant variables, but also a set of redundant or irrelevant 179 

variables. 
[18]

 The incorporation of irrelevant variables in neural network models has been reported 180 

to cause instability, low interpretability and convergence problems during training, resulting in poor 181 

model prediction performance.  
[19] 

 182 

 183 

Genetic Algorithms are a family of metaheuristic optimization methods, which apply the principles 184 

of natural selection for exploration of the search space.
 
In Genetic Algorithms, the search domain is 185 

presented in the form of a chromosome population, in which each chromosome represents an 186 

answer to the problem being studied. 
[20]

 The coding of the chromosomes can be based on binary, 187 

real or integer numbers. The ability of Genetic Algorithms to solve variable or feature selection 188 

problems 
[5, 21-22]

, as well as to perform neural network topology optimization
 [10, 23]

 and 189 

simultaneously both of the aforementioned problems 
[17]

 has been proven in various studies. In the 190 

studies of Vuolio et al. 
[5]

 and Sorsa et al.
[21]

, Genetic Algorithms were applied to Multiple Linear 191 

Regression (MLR) model identification, whereas the study of Barros and Rutledge 
[22]

 studied the 192 

selection of principal components for principal component regression. In the study of Barros and 193 

Rutledge 
[22]

, the results acquired with the Genetic Algorithm were found to be similar to the results 194 

of exhaustive search.  However, execution time of the Genetic Algorithm was significantly shorter. 195 

[22]
 In the context of neural networks, the selection of the right prediction variables with a Genetic 196 

Algorithm has proven efficient for example in improving the specificity of an Extreme Learning 197 

Machine based classifier in the study of Chyzhyk et al.. 
[24]

 In the study, the authors applied a 198 

Genetic Algorithm and LOO-cross-validation for feature selection to improve the classification 199 

results of the ELM model for classification of Alzheimer’s disease CAD based on MRI data 
[24]

. 200 

Based on the general properties of the algorithm and on the evidence given in the selected studies, 201 
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the success of the algorithm in such combinatory optimization tasks can be associated with binary 202 

encoding of the solution space and with the capability of exploring a large search space in a 203 

computationally efficient manner.  204 

 205 

The steps of the binary Genetic Algorithm can be divided roughly into 1) initialization, 2) 206 

evaluation, 3) selection, and 4) recombination. In a variable selection problem, each gene in the 207 

chromosome corresponds to a candidate variable. The value of the chromosome determines whether 208 

the variable is selected in the model; 1 being the variable is selected. The initialization step of a 209 

binary-coded chromosome population, i.e. the initialization of the model candidates, is carried out 210 

by tossing a biased or a non-biased coin 
[20]

. 211 

 212 

The evaluation of an individual in the population is carried out by making use of an appropriate 213 

fitness function, which in the case of minimization problems is formulated as an inverse of the 214 

objective function. Regardless of the variable selection algorithm applied, the objective function is 215 

the one that leads the search algorithm in the right direction. 
[25]

 A widely discussed fact is that the 216 

data-driven models whose identification is based on the training set only are optimistically biased, 217 

and thus need a comprehensive validation step in order to generalize well and to be sufficiently 218 

stable. 
[26]

 The usability of cross-validation as a selection strategy for a neural network model over 219 

other methods, such as information criteria and hypothesis testing, is apparent as it demands no 220 

statistical assumptions 
[27]

. One of the cross-validation techniques is to use a repeated Leave 221 

Multiple Out (LMO) cross-validation in the model selection, in which the data set is repeatedly split 222 

into training and validation sets, and the average of N repetitions is taken as the validation error. As 223 

was illustrated by Baumann 
[25, 28]

, the LMO-cross-validation outperforms Leave-One-Out (LOO) 224 

cross-validation as the model selection strategy.
[25,28]

 In such a case, the objective function that is 225 

based on minimizing the repeated LMO-cross-validation error for N split repetitions, can be given 226 

as:  227 

 228 

           
 

 
         

       
 

   

 

   

  

 

 

[2] 

where MSSE stands for mean of the sum of squared errors for N repetitions, N is the number of 229 

repetitions in the inner loop of the variable selection algorithm, k is the number of data points in the 230 

internal validation set, y is the dependent variable, CV is the cross-validation data-set and f(X) is a 231 

model candidate. Repeated cross-validation serves to eliminate the dependency of the modelling 232 
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error from the partitioning data. 
[28]

 In the present authors’ previous work 
[24]

 a Genetic Algorithm 233 

that makes use of a repeated cross-validation as the objective function was found to provide 234 

sufficiently accurate and robust modeling results based on small and noisy industrial data sets. The 235 

performed number of in the internal validation loop was 4N. 
[5] 

Similar findings were provided for 236 

MLR models by Sorsa and Leiviskä 
[29]

 and for PLS models by Kepplinger et al. 
[30]

. 
 
However, the 237 

reliability of results is often a compromise between computational resources. Even though the 238 

validation step is carried out several times for each of the model candidates, cross-validation in the 239 

variable selection phase only provides the internal validity of the model. For this reason, the model 240 

needs to be validated with a completely independent data set referred here to as an external 241 

validation data set.  242 

 
243 

The selection of an individual for the recombination stage is carried out to favor the selection of the 244 

fittest individuals 
[20]

, in other words the ones with the lowest MSSECV. Thus the population is 245 

expected to evolve towards better solutions. In this study, the selection is carried out with a roulette-246 

wheel selection and the number of selected individuals is npop/2. In the recombination stage, the new 247 

generation is produced from the selected individuals. The usual recombination operators are 248 

crossover and mutation. The formulation of the recombination operators depends on the coding of 249 

the chromosome. In the case of binary-coded chromosomes, the operations are carried out by 250 

modifying the bit strings.  A standard technique is to carry out the crossover by swapping some 251 

parts of the selected parent chromosomes with each other. The rate of crossover is regulated with a 252 

crossover probability 
[20]

. which is set constant in this work. Usually binary coded mutation is 253 

carried out in such a way that each of the bits has a certain probability of inverting from 0 to 1 or 254 

vice versa. The probability of the inversion is controlled with mutation probability.  This solution 255 

can sometimes lead to a non-efficient mutation operator especially with low mutation probabilities. 256 

To exclude the local optima, the algorithm follows a deterministic mutation schedule. A 257 

deterministic mutation schedule has been observed to be able to efficiently generate new 258 

information to the existing population 
[31]

. 259 

 260 

2.2. Selection of neural network topology with Genetic Algorithm 261 

 262 

Usually, the variable or feature selection for a neural network is carried out with a constant number 263 

of hidden neurons. Example of this kind of approach can be found in 
[32]

. In this study the 264 

chromosomes in the variable and the network topology selection are treated as a hybrid of binary 265 

and integer-coded chromosomes. In the population, each chromosome consists of a binary string 266 
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representing the variables and an integer value representing the number of hidden neurons. The 267 

reasoning behind integer-based coding is that if the full topology of the network were expressed as a 268 

binary coded string, the number of bits in a single chromosome would be excessively large, as the 269 

number of weight coefficients in the network is nbits = 2jk + 2k + 1, where j is the number of input 270 

variable candidates and k is the maximum number of hidden neurons. To exemplify, a network of 271 

23 input variables and 30 hidden neurons corresponds to 721 bits in an individual. A description of 272 

a binary-coded topology optimization can be found for example in 
[23]

.  Also, as the length of the 273 

chromosome determines the maximum number of hidden neurons, the complexity of the model is 274 

constrained by it. Alongside this, the large number of bits would assumedly make the binary 275 

crossover operators non-efficient, which would make the algorithm computationally very 276 

expensive, especially when keeping in mind that the variable selection is carried out 277 

simultaneously. On the other hand, the binary-coding could be based on the number of neurons, 278 

which still demands relatively large computational resources for large topologies, as the 279 

recombination operators demand a for-loop to carry out the bit modifications. In the light of the 280 

reasoning above, binary-coded topology optimization is suitable in a situation where the network 281 

topology is optimized to a pre-selected set of input variables. In view of these considerations, the 282 

computational load of network architecture selection can be drastically reduced by applying integer-283 

based coding to the topology.  284 

 285 

In the case of a fully connected single layer network architecture, the topology can be expressed as 286 

a single integer value that corresponds to number of hidden neurons. A certain downside of this 287 

approach is that the model could contain irrelevant weight connections in the selection phase. The 288 

treatment of this matter is discussed in more detail in Sections 2.3. and 2.4.. The recombination of 289 

the network architectures is based on real-coded crossover and mutation operators. For crossover, 290 

the arithmetic crossover was used, in which the offspring of two parents is given by:  291 

 292 

   
   

      
   

         
   

   

 

   
   

      
   

         
   

   

 

 

 

[3] 

where   is the network topology based chromosome, OC stands for the offspring, P stands for a 293 

parent,    is a uniformly distributed random number    = {0,1} and the brackets denote the nearest 294 
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integer rounding function.  The mutation operator for the real-coded part of the chromosome was 295 

chosen as a Mäkinen-Periaux-Toivanen-mutation 
[33]

. In their mutation operator, the mutated 296 

offspring is given by: 
[33]

 297 

 298 

     
   

                

 

[4] 

where    is the decision variable for the mutation, l is the minimum value of the number of hidden 299 

neurons in the network and u is the maximum number of hidden neurons in the network. The 300 

decision variable    is defined as: 
[33]

 301 

 302 

   

 
 
 

 
     

    
 

 
 

                                          

                                                                     

        
    

   
 
 

                                

 
 

 

 

 

[5] 

where    is a uniformly distributed random number    = {0,1}, t is a decision threshold value that is 303 

given for an offspring i  by       
             and p is the mutation exponent that defines the 304 

distribution of mutation. The crossover and mutation probabilities are equal for both the integer and 305 

binary-coded parts of the chromosomes. The encoding of the chromosomes as well as an example 306 

of the recombination operators are presented in Figure 2. The recombination that is presented in the 307 

figure yields two offspring individuals with 14 and 11 hidden neurons and 2 and 4 input variables, 308 

respectively. After the mutation, an individual with a network with 14 neurons and 5 input variables 309 

is generated. The number of candidate input variables in this example is 7, which corresponds to the 310 

length of the binary-coded chromosome. 311 
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 312 

 313 

 314 

 315 

 316 

 317 

 318 

 319 

 320 

 321 

 322 

 323 

 324 

 325 

 326 

 327 

 328 

Figure 2. Encoding of the chromosomes and the recombination operators. The crossover and 329 

mutation cut off points are randomly selected and illustrated as dashed lines. The crossover and 330 

mutation parameters that produce the presented individuals are: α = 0.2, t = 0.4483, β = 0.2607, p = 331 

1, u = 30, l = 1. 332 

 333 

 334 

 335 

  336 
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Neural networks with parsimonious architectures and non-sparse weight coefficients have been 337 

found to generalize better for sparse and noisy data than large networks. 
[34]

 This can be associated 338 

to overfitting of the network. The solutions for the aforementioned problems are presented in 339 

Section 2.4. Another problem in respect of the generalizability of a network is the problem of 340 

multicollinearity among the input variables. As demonstrated by Qin 
[35]

, the existence of collinear 341 

input variables increases the number of possible weight sets that minimize the objective function. 342 

Alongside the fact that this property complicates the training procedure that is based on a random 343 

initial guess, it may decrease the prediction performance of the network to an external data set, 344 

especially in the case of noisy data. 
[35]

 Thus, to avoid the multicollinearity problem in the selected 345 

model, the objective function for the variable selection is combined with a penalty term: 346 

 

         
 

   
 
 

         
        

   
 
   

           

 

 

[6] 

where VIFmax is the largest diagonal element of the inverse correlation matrix.  The constraining 347 

parameter λ is chosen such that the maximum penalty is a pre-defined percentage of the maximum 348 

fitness of an individual. In this study, 90% was applied. For clarification, the pseudocode for 349 

evaluating the population fitness by making use of repeated LMO cross-validation is presented in 350 

Table 1.  351 

352 
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Table 1. Evaluation of the fitness of the population by making use of repeated cross-validation. 353 

 354 

 355 

2.3. Extreme learning machine (ELM) 356 

 357 

Even though the encoding and decoding of the variable selection phase is intended to reduce the 358 

computational load of the algorithm, it is well-known that the training of a neural network is 359 

computationally very intensive, because the number of parameters to be optimized is often very 360 

large even for relatively small networks. As the cross-validation needs to be repeated several times, 361 

the number of neural network training iterations would be N∙itermax for a single inner loop of the 362 

variable selection phase. To tackle this, it is assumed the input output relations with a given variable 363 

set and network architecture can be approximated with the Extreme Learning Machine (ELM) 364 

architecture proposed in. 
[36]

 If a linear output layer is considered, the connective weights between 365 

the hidden and the output layer can be obtained with:
 [36]

 366 

 

                  

 

 

[7] 

Population fitness evaluation 

For i = 1 to i = npop 

1) Select an individual i – An ELM network based model candidate with j variables and k hidden 

neurons. 

For l = 1 to l = N 

2) Divide the training data set into a training subset and internal validation data set. 

3) Initialize the hidden layer weights randomly from a uniform distribution W
(1)

 = {-1,1}. 

4) Train the selected ELM network with the training set. 

5) Calculate the network output and the sum of squared error for the internal validation data set. 

6) Return to 2. 

End 

7) Calculate the arithmetic mean of the internal validation error over N repetitions  

8) Evaluate the fitness of the individual i with the fitness function 

End  
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where     is the weight matrix that connects the output layer and the previous hidden layer, Z is a 367 

non-linear transformation of the input data matrix obtained from the hidden layer and y is the 368 

desired output vector in the training set. As the applied activation function is the hyperbolic tangent, 369 

each column in Z is given as:  370 

 

    
          

          
  

 

[8] 

 371 

 

           

 

   

        

 

 

 

[9] 

where    is the output of a hidden neuron j,    is the weighted input for a hidden neuron j,    is an 372 

input variable,      is a weight coefficient between input variable i and hidden neuron j and    is a 373 

bias-term of a hidden neuron j.  In the study of Huang et al.
[36]

, it was proven that the ELM is a 374 

significantly faster and reasonably accurate training algorithm compared to traditional 375 

backpropagation methods, to produce complex input-output mappings by randomly initializing the 376 

hidden layer connective weights. However, as the hidden layer weights remain untrained, the usual 377 

case is that a large number of hidden neurons is needed. For this reason, the final training of the 378 

selected network is carried out by making use of Bayesian regularization. 
[34]

 The original authors 379 

found that the cross-validated error of the ELM is not sensitive to the number of hidden neurons, 380 

and thus, the emphasis in the variable and network architecture selection phase is to find an 381 

architecture that is complex enough to produce an estimate of an output vector based on the given 382 

set of inputs. 
[36]

  383 

 384 

2.4. Training and regularization of the network  385 

 386 

The training of the final network is carried out by applying the SSE as the objective function. For 387 

the training, a Levenberg-Marquardt (LM) algorithm coupled with Bayesian regularization is 388 

applied. The coupling of LM with Bayesian regularization was originally introduced by Foresee and 389 

Hagan 
[34]

. The iterative step in the LM-algorithm is given as: 
[37] 

390 

 

                  

 

 

[10] 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



16 

 

where J is the Jacobian matrix, I is the identity matrix,   is the damping parameter and e is the 391 

prediction residual. The damping parameter evolves within iterations, as presented by Hagan and 392 

Menhaj 
[37]

. The Jacobian matrix J consists of the first-order partial derivatives of the prediction 393 

residual with respect to network weights and biases. The prediction residual is given by:  394 

 

         

 

 

[11] 

where    is the network output. The partial derivatives can be calculated with the backpropagation 395 

algorithm by applying a chain-rule of derivation. 
[34]

 The derivatives of the prediction residuals in 396 

respect to hidden layer weights and biases are given by:  397 

 

  

     
   

    
   

      
        

 

[12] 

 

  

   
   

    
   

      
    

 

[13] 

The derivatives of the prediction residuals in respect to the output layer weights and bias are given 398 

by: 399 

  

   
   

      
[14] 

  

  

   
   

    

 

[15] 

A typical problem in training the neural network is overfitting, which means that the network does 400 

not generalize well to an independent data set. The usual methods of improving generalizability are 401 

pruning, regularization and early stopping, of which this study considers Bayesian regularization. 402 

Overfitting has been associated with overly large networks and with large variances and magnitudes 403 

of the network weight coefficients. 
[34]

 The Bayesian regularization algorithm attempts to minimize 404 

simultaneously the sum of squared error as well as the variance of the network parameters, which 405 

often leads to more stable predictions. For this aim, the objective function to be minimized can be 406 

written as: 
[34] 

407 
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[16] 

where    is the sum of squared errors,    is the sum of squared weights, whereas   and   408 

represent the regularization parameters that steer the optimization towards either minimizing the 409 

network error (α<<β) or minimizing the sum of the squared weight coefficients (α>>β), of which 410 

the latter often yields smoother predictions. The algorithm to minimize the objective function 411 

proceeds as follows: 
[34] 

412 

 
413 

1. Initialize the objective function parameters such that     and    . 414 

2. Compute one step of minimizing F(W).  415 

3. Compute the effective number of parameters by              . The Hessian 416 

matrix can be approximated with H ≈           .  417 

4. Compute the optimal estimates for the parameters of the objective function with 418 

   
  

      
 and    

    

      
. 419 

In the above formulation n is the number of parameters in the network and   measures the number 420 

of effective parameters in reducing the error value of the objective function. It should be noted that 421 

as the Jacobian matrix is readily available in the LM algorithm, so the implementation of the 422 

Bayesian regularization is straightforward.  For the interpretation of  , Foresee and Hagan [34]
 

423 

suggested that if   is sufficiently larger than the total number of parameters in the network, the 424 

network is large enough to map the input-output relations.  
[34]

  Consequently this means that if γ, 425 

computed for a trained network, is significantly smaller than the number of parameters in the fully 426 

connected network based on the ELM architecture, the topology that is selected in the first phase of 427 

the algorithm can be considered to be large enough to describe the changes in the sulfur content. 428 

This matter is discussed in more detail in Section 4.  429 

  430 
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3. Experimental data and model performance evaluation 431 

 432 

The experimental data was gathered from the secondary hot metal desulfurization process at SSAB 433 

Europe Oy in Raahe, Finland, and consists of 551 treatments. The considered data matrix consists 434 

of 23 candidate variables, which makes the number of model candidates very large (2
n
-1). As the 435 

number of data splits is high in the internal validation loop, an exhaustive search is practically ruled 436 

out as the variable selection strategy. The input candidate variable data consists of hot metal 437 

analyzes at the beginning of the treatment, activities of the species in hot metal, temperatures before 438 

the treatment as well as the control variables such as the reagent flowrate. The dependent variable, 439 

which is the sulfur content, is measured at the end of each of the treatments. In the plant practice, 440 

the analysis of the hot metal samples is carried out with the C-S-combustion method and X-Ray 441 

Fluorescence (XRF). The evaluation of the model performance was based on standard figures of 442 

merit which were the coefficient of determination (R
2
) and the mean absolute error (MAE). 443 

  444 
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4. Results and discussion 445 

 446 

The variable selection algorithm was employed for different combinations of computational 447 

parameters in order to evaluate their significance. It was also noticed that the selection algorithm 448 

was not sensitive to crossover probability. This property was associated with a relatively high and 449 

deterministically evolving mutation probability during the first 40 iterations, during which the 450 

mutation probability decreased from pM = 0.40 to pM = 0.1. The maximum number of iterations was 451 

not pre-defined as the homogeneity of the population was chosen as the convergence criterion. 452 

However, it was observed that the algorithm is most sensitive to the number of individuals and the 453 

number of data splits in the internal validation loop, which is why the importance of these 454 

parameters is systematically evaluated with computer model experiments.  455 

 456 

4.1. Model identification and modeling accuracy 457 

 458 

An exemplified convergence of the best individual during the iterations is presented in Figure 3. It 459 

is seen that in this case the algorithm converges to a stationary state after approximately 70 460 

iterations.  It can be observed from the figure that the high rate of mutation at the beginning of the 461 

search modifies the best individual in the population in an efficient manner, which can be deduced 462 

from the oscillation of the objective function value. 463 

 464 

 465 

Figure 3. The objective function value as a function of iterations during the variable selection 466 

phase. 467 

 468 
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The fitness values of the end population as a function of the number of hidden neurons in the ELM 469 

network is presented in Figure 4. It should be noted that the end population is homogeneous with 470 

respect to variables, which means that every single chromosome presents the same variable subset. 471 

Thus, the mean squared error for cross-validation (MSSECV) depends only on the representability of 472 

the internal validation set and the network architecture.  473 

 474 

It is apparent that if the cross-validation is carried out for a sufficient number of randomly selected 475 

validation subsets with resampling, the variance in the MSSECV obtained with different network 476 

architectures becomes small, and consequently, overfitting and chance correlation can be excluded. 477 

It should be noted that each of the models are evaluated for N    different data splits, where k is the 478 

number of similar individuals in the population, which consequently results that the fittest 479 

individuals are evaluated with N     i splits, where i is the number of iterations in which the model 480 

appears in the population. To exemplify, a model that survives the last 20 iterations goes through 481 

1000k cross-validation rounds. For this reason, the selected final model can be considered to be 482 

validated exhaustively. It can also be observed that the repeated cross-validation, complemented 483 

with the penalty factor, favors the selection of more parsimonious models with respect to network 484 

architecture, but still complex enough when it comes to capturing the non-linear interactions in the 485 

process.  486 

 487 

A notable thing is that the ELM model is not very sensitive to the number of hidden neurons, but at 488 

least 12 neurons is needed to avoid underfitting. The stability of the ELM model is in agreement 489 

with remarks of Huang et al. 
[36]

. However, as the number of neurons increases, the probability of 490 

non-stable predictions could increase, as the probability of occurrence of a non-stable weight 491 

coefficient increases. This emphasizes the need of finding the trade-off between the model 492 

complexity and the modeling error. 
[17] 

This could be the reasoning behind the exceptionally large 493 

error values for two of the worst individuals with large number of hidden neurons, regardless of the 494 

fact that a high number of cross-validation repetitions is performed.  This property, on the other 495 

hand, supports the need for regularization in the final model training, but does not significantly 496 

affect the selection result as the fittest individual in the end population is selected as the candidate 497 

for final training and the probability of chance correlation is low due to the high number of data 498 

split repetitions in the internal validation. 499 

 500 

 501 

 502 
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Figure 4. Mean sum of squared error for cross-validation (MSSECV) set as an average of 50 repetitions as a 

function of the number of hidden neurons in the Extreme Learning Machine (ELM) architecture. 

 503 

 504 

 505 

 506 

 507 

 508 

The training of the selected network was carried out as described in Section 2.4. The hypothesis 509 

testing for the normality of the distribution reveals that a random sample drawn from the training 510 

residual is from a normal distribution with a risk-level of 5%. The expected value of the residual is 511 

near zero and the standard deviation is 6.9 ppm. Consequently, the outcome for the final network 512 

can be given as:  513 

 514 

                                      

 515 

The prediction results with corresponding confidence limits for each of the treatments for the 516 

external validation data set are presented in Figure 5. It is seen from the figure that the model can 517 

predict the sulfur content at the end of the desulfurization treatment with fair accuracy (R
2 

= 0.91; 518 

MAE = 5.46 ppm). Nearly all predictions for the external validation set are within ±2 , which 519 

corresponds to a 95% confidence interval (CI). The figures of merit for the model as well as for the 520 
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other models presented in literature are presented in Table 2. It can be seen that the present model 521 

outperforms the ones proposed in earlier studies. The results of this study can thus be considered 522 

encouraging, as the identification is based on noisy real-life data. 523 

 524 

Figure 5. The measured and predicted sulfur contents for the external validation set with 525 

corresponding confidence limits (CI = 95.4%).  526 

Table 2. Comparison of existing data-driven models for carbide-based hot metal desulfurization 527 

with corresponding figures of merit.  528 

Authors Model Type Variable selection R
2
 MAE (ppm) n 

Datta et al. ANN (BP) Manual 0.60 27.0 11 

Rastogi et al. PMR (GA) Manual 0.69 19.0 12 

Deo et al. 
ANN (BP + GSS + 

LT) 
Manual 0.39 27.8 

45 

Vinoo et al. MLR Manual 0.48 15.3 15 

      

This work ELM – LM + BR GA 0.91 5.46 100 

Notes: (ANN = Artificial Neural Network; MLR = Multiple Linear Regression; GAS = Genetic 529 

Algorithm; LT = Logistic Transformation of Input Data; PMR = Parameterized Mechanistic 530 

Reaction Model; LM = Levenberg-Marquardt; BR = Bayesian Regularization; BP = 531 

Backpropagation;  GSS = Golden Section Search; n = number of points in the internal or external 532 

validation data set). 533 
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 534 

To analyze the repeatability of the model selection, the algorithm was run through 30 times with 535 

constant parameters. The parameters chosen for the repetitions were N = 50 and npop = 100. The 536 

reasoning behind the aforementioned hyperparameter values is analyzed in more detail in Section 537 

4.2. The result of these runs are presented in Table 3. It can be seen from the table that under the 538 

conditions of this study, the algorithm is able to repeatedly identify a prediction model that is able 539 

to capture the variance in the sulfur content, if the hyperparameters (the population size and number 540 

of split repetitions) are selected correctly.  541 

 542 

Table 3. Results of repetitive testing of the model selection algorithm. The values have been 543 

calculated based on 30 repetitions. The parameters chosen were N = 50 and npop = 100. 544 

 Training External validation 

  R
2
 MAE (ppm) R

2
 MAE (ppm) 

Mean 0.84 5.02 0.84 6.39 

Median 0.86 5.44 0.86 6.16 

     
Best 0.92 5.33 0.91 5.46 

Worst 0.85 6.61 0.82 6.85 

 545 

 546 

4.2. Repeatability and robustness of the algorithm 547 

 548 

To evaluate the importance of the variable candidates and the robustness of the algorithm, a 549 

repeated test was carried out. The repeated test was carried out based on a full factorial 550 

experimental design matrix. The design vectors for the number of individuals and the number of 551 

split repetitions were npop = [20 40 60 80 100]
T 

and N = [0 10 30 50]
 T

. The variable selection 552 

algorithm was repeated 100 times for each of the design levels, which consequently yields 2000 553 

runs for the algorithm. Figure 6 presents the average of the selected variables with corresponding 554 

standard deviations as a function of population size. However, an adequate number of individuals is 555 

assumed to be dependent on the number of input candidate variables, which could be confirmed in 556 

further studies with multiple different data-sets.  557 

 558 

 559 

 560 
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 561 

 562 

 563 

 564 

 565 

 566 

 567 

 568 

 569 

 570 

 571 

 572 

 573 

Figure 6. Average number of selected variables for 100 repetitions as a function of population size 574 

and for N = 50. 575 

 576 

The results of the repetitive testing were analyzed with MLR based metamodeling. For modeling, 577 

the following hypotheses were postulated:  578 

 H0,1 – The size of the population has no effect on the search result, 579 

 Hα,1 – The increase in the size of the population decreases the expected value for the 580 

number of selected variables, 581 

 H0,2 – The number of data splits does not improve the repeatability of the algorithm, 582 

 Hα,2 – The number of data splits reduces the standard deviation between the 583 

repetitions. 584 

 585 

The modeling results for both the mean and standard deviations of the number of selected variables 586 

are given in Table 4. From the table it can be seen that increasing the population size has a negative 587 

logistic effect on the expected value of the number of selected variables. It is seen from the table 588 

that the estimate of the regression coefficient related to the number of individuals is not saturated, 589 

as the standard error of the estimate is only 5.7%, which results int the p-value of the estimate being 590 

significantly smaller than the selected risk level (≪ 0.05). Thereby, the analysis also confirms the 591 

information provided in Figure 6. This result indicates that the suitable number of individuals is 592 
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dependent on the number of candidate variables, i.e. the number of possible model candidates, and 593 

consequently fulfills the postulated hypothesis Hα,1.  594 

The analysis of the standard deviations of the selected variables was carried out similarly to the 595 

analysis of the expected value. As seen in Table 4, the increase in the population size does not 596 

necessarily improve the robustness, as for a small number of data split repetitions, a relatively good 597 

model with a large number of input candidates can be selected by chance. This can be associated 598 

both to relatively stable behavior of the ELM model with respect to redundant variables and the 599 

number of neurons. However, as stated by Baumann 
[25,28]

, the increased number of repetitions 600 

decreases the probability of selecting a good model by chance. 
[25,28]

 This is clearly seen in the 601 

results; the increase in the number of splits reduces the standard deviation of the search (p-value < 602 

0.05).  603 

Table 4. MLR models for analysis of algorithm performance. 604 

y Variable Estimate Std. Error t-value p-value 

avg(numselect) bias 15.60 0.66 23.74 1.70∙10
-14

 

 

ln (npop + 1) -2.82 0.16 -17.64 2.29∙10
-12

 

 

ln (N + 1) -0.01 0.05 -0.16 0.87 

      

      std(numselect) bias 4.39 0.95 4.60 2.50∙10
-4

 

 

ln (npop + 1) -0.37 0.23 -1.59 0.13 

 

ln (N + 1) -0.30 0.09 -3.54 2.53∙10
-3

 

 605 

When the reasoning above is complemented with the selection histograms presented in Figures 7 606 

a), b), c) and d), it can be postulated that if the number of individuals is sufficiently high and the 607 

uncertainty in the internal validation is low enough, the algorithm is able to find the relevant 608 

variables, and also to minimize the number of redundant variables in the model with a very high 609 

probability. Based on the repetitive tests, the most significant variables are:  610 

1) Sulfur content in the hot metal before treatment (x3) – Hit-rate = 100%, 611 

2) The amount of reagent injected (x15) – Hit-rate = 72%, 612 

3) The injection time (x2) – Hit-rate = 35%. 613 

It should be noted that two of the most important variables are to some extent interrelated, as the 614 

injection flowrate (kg/min) determines the injection time. However, their VIF indexes are ~2.5 on 615 

average, which indicates a non-significant multicollinearity. Surprisingly, the chemical composition 616 

of the metal phase explains hardly any observable variance in the sulfur end-point, but some hot 617 
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metal components, such as Si, Mn, V and Ti appear irregularly in the search results. However, the 618 

appearance of these variables in the search may be by chance, as the effect of the variables on the 619 

modeling results was found to be small. This is supported with the fact that the selection probability 620 

of these variables was found to decrease while increasing the population size and number of internal 621 

validation repetitions.  622 

 
623 

Figure 7. Selected variables for 100 repetitions of the variable selection algorithm. a) N = 50, npop = 624 

20; b) N = 50, npop = 100; c) N = 10, npop = 20; d) N = 10, npop = 100. 625 

 
626 

4.2.1.  Selection of the number of split repetitions  627 

 628 

As the reliability of the selection algorithm depends on the representability of the cross-validation 629 

data set, and thus is often a compromise with the computational load, the number of repetitions is an 630 

important tunable hyper parameter. It was observed that realistic prediction results were obtained 631 

when the data was split so that 57% was used for training, 25% for internal validation and 18% for 632 

external validation. It should be noted that as the LMO-cross-validation is considered as a 633 

resampling method, the data used for model selection is 82% of all data. To make the selection 634 
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result independent of the data split, the cross-validated error needs to be repeatedly evaluated in the 635 

variable selection phase. 
[28]

   636 

As the exhaustive testing of all possible split combinations is not computationally feasible, the 637 

trade-off between the feasible number of splits and uncertainty of the mean error needs to be 638 

computed. In repetitive testing, the uncertainty for a 95.4% confidence limit is given as: [38] 639 

 

      
       

  
  

 

 

[17] 

The relative uncertainty is then defined as the ratio of uncertainty and the average MSSE of the 640 

repetitions: 641 

 

      
   

       

  

 

 

[18] 

In Figure 8, the relative uncertainty in the MSSE of the repeated cross-validation is presented as a 642 

function of cross-validation repetitions in the internal validation loop of the variable selection 643 

phase. The error values are computed for the best individual in the final population. The fitted curve 644 

reveals that to yield reliable results with an uncertainty of less than 5%, at least 37 repetitions in the 645 

internal validation loop must be carried out for this data. 646 

 647 

 648 

 649 

 650 

 651 

 652 

 653 

 654 

 655 

 656 

 657 

 658 

Figure 8. Relative uncertainty of cross-validation error as a function of split repetitions in the 659 

internal validation loop. 660 

 661 
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 662 

 663 

4.3. Implications on selection results 664 

 665 

In the analysis of the selected variables it seems that the flowrate of the injected reagent (kg/min) 666 

does not explain the changes in the end content of sulfur. This particular fact is contradictory to our 667 

previous studies, but can be attributed to the differences in the reagent and thus in the rate 668 

controlling mechanism. It was presented by Oeters et al. 
[39] 

that in hot metal desulfurization with 669 

calcium oxide (CaO), the reaction controlling mechanism can be divided in two parts; solid-state 670 

and boundary-layer diffusion controlled phases. The solid-state control, i.e. the control mechanism 671 

of the reaction product layer, determines the rate of reaction if the sulfur content is relatively 672 

high.
[39]

  Consequently, introducing a fresh reaction surface into the hot metal improves the rate and 673 

efficiency of the reagent with the result that the mass flowrate of the reagent explains the variance 674 

in the process. However, with low sulfur contents, the rate of reaction is increasingly controlled by 675 

the boundary-layer diffusion mechanism, which practically means that the rate is to some extent 676 

independent of the available solid reaction surface. This reasoning could explain why changes in the 677 

mass flowrate do not result in observable changes in the sulfur content in the hot metal. In the case 678 

of calcium carbide (CaC2) the solid-state diffusion controlled phase does not control the reaction, as 679 

the reaction product (CaS) is soluble in CaC2. 
[1]

 The boundary-layer diffusion controlled 680 

mechanism was confirmed in the study of Chiang et al. 
[2]

. 681 

 682 

The effect of the activity of oxygen on the rate and efficiency of hot metal desulfurization was 683 

comprehensively studied by Zhao and Irons 
[40]

. In the study, the effect of the activity of oxygen in 684 

the hot metal on the rate and equilibrium content of sulfur was observed to be relatively high. 
[40]

 685 

However, the activity of oxygen cannot be determined if the activities of the metal and slag species 686 

are not known. As no information on the slag composition is available, this attribute cannot be 687 

indirectly deduced by making use of computational thermodynamics-based feature engineering.  688 

Thus in industrial conditions, this attribute is still not easily measurable, but it may improve the 689 

modeling accuracy. Consequently, more research needs to be carried out on the determination of 690 

these attributes. 691 

 692 

 693 

 694 

 695 
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 696 

 697 

5. Conclusions  698 

 699 

In this work, an algorithm for the selection of a well-generalizing neural network model using a 700 

Genetic Algorithm was presented. The repeatability and the robustness were found to be very good, 701 

which make it well-suited for process identification and control purposes. The selection results of 702 

the algorithm suggest that the sulfur end-point can be predicted with a high degree of accuracy by 703 

making use of the initial sulfur content and amount of reagent injected as the main predictor 704 

variables. The figures of merit of the model presented, R
2
 = 0.91 and MAE = 5.46 ppm, were 705 

determined for a sufficiently representative external validation set of 100 treatments. The results 706 

also indicate that the injection rate and the activities of some of the dissolved elements in the hot 707 

metal, namely Si, Mn, Ti and V, have only a minor effect on the end content of sulfur. This study 708 

emphasizes the applicability of data-driven techniques and genetic algorithms in model selection 709 

tasks based on a noisy industrial data set. However, the selection has to be performed by making 710 

use of repeated cross-validation in order to avoid the selection of overfitted and coincidental 711 

models.  712 
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