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Abstract

The definition of linguistic terms is a critical part of the construction of any fuzzy classifier. Fuzzy parti-

tioning methods (FPMs) range from simple uniform partitioning to sophisticated optimization algorithms.

In this paper we present FUZZ-EQ, a preprocessing algorithm that facilitates the construction of mean-

ingful fuzzy partitions regardless of the FPM used. The proposed approach is radically different from any

existing FPM: instead of adjusting the fuzzy sets to the training data, FUZZ-EQ adjusts the training data

to a hypothetical uniform partition before applying any FPM. To do so, the original data distribution is

transformed into a uniform distribution by applying the probability integral transform. FUZZ-EQ allows

FPMs to provide classifiers with more granularity on high density regions, increasing the overall discrim-

ination capability. Additionally, we describe the procedure to reverse this transformation and recover the

interpretability of linguistic terms. To assess the effectiveness of our proposal, we conducted an extensive

empirical study consisting of 41 classification tasks and 9 fuzzy classifiers with different FPMs, rule induc-

tion algorithms, and rule structures. We also tested the scalability of FUZZ-EQ in Big Data classification

problems such as HIGGS, with 11 million examples. Experimental results reveal that FUZZ-EQ signifi-

cantly boosted the classification performance of those classifiers using the same linguistic terms for all rules,

including state-of-the-art classifiers such as FARC-HD or IVTURS.

Keywords: Fuzzy Partitioning, Preprocessing, Fuzzy Rule-Based Classification Systems, Fuzzy Decision

Trees, Probability Integral Transform, Quantile Function

1. Introduction

Fuzzy logic has provided machine learning algorithms with the ability to deal with uncertainty and

create soft boundaries that enhance classification performance. The usage of linguistic terms also makes

fuzzy classifiers a powerful tool for building human-readable models composed of IF-THEN rules. These

models allow the system to explain the reasoning behind its predictions and describe how outputs are
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inferred from inputs. In this work, we focus on two well-known types of fuzzy classifiers, i.e., Fuzzy Rule-

Based Classification Systems (FRBCSs) and Fuzzy Decision Trees (FDTs), which have been used in several

applications [5, 36].

Selecting a suitable strategy for defining linguistic terms is a fundamental aspect for any fuzzy classifier.

Every term is defined by a membership function that determines the membership degree of an input value

to the fuzzy set associated with the term. In many applications, this function is given by an expert in the

field. However, there are situations where no experts are involved and the system has to automatically define

the membership functions. In classification tasks, the discrimination capability of classifiers is to a great

extent limited by the ability of linguistic terms to represent the data in a meaningful way. For example,

if we consider the terms “Low”, “Medium”, and “High” to represent the variable “Temperature” ranging

from -10◦C to 40◦C and 99% of the observed values range from 13◦C to 26◦C, there would be no point

in uniformly distributing the three terms across the domain. In such a context, an expert would probably

consider 13◦C and 26◦C as “Low” and “High”, respectively, instead of assigning the term “Medium” to both

values.

To assess the ability of linguistic terms to represent the data, Pedrycz formalized the concept of data

meaningfulness of fuzzy sets [23]. The author claims that linguistic terms emerge only if there is enough

experimental evidence (observed values) to justify their existence. According to this statement, the definition

of membership functions should depend on the empirical data distribution. To adjust the position and/or

shape of the fuzzy sets, different fuzzy partitioning methods (FPMs) have been proposed [1, 6, 7, 11, 12, 15,

27, 28, 10, 21, 26, 32, 31, 37]. In the context of classification, some FPMs focus on maximizing accuracy by

optimizing partition parameters with respect to some criteria [6, 12, 27, 28, 10, 21, 26, 32, 31, 37]. Others

prioritize interpretability over accuracy and build fixed uniform partitions with predefined parameters [7, 11,

15]. The combination of both approaches is also rather common among classifiers that focus on the tradeoff

between accuracy and interpretability [1, 27, 28]. Besides, FPMs might differ in the stage they are applied.

Some of them create the fuzzy partitions before the learning process [7, 11, 15, 10, 21, 26, 32, 31, 37], while

others are part of the learning algorithm itself [1, 12, 27, 28, 6].

In this paper, we look at the problem from a different perspective. Instead of adjusting the fuzzy sets to

the training data, we attempt to facilitate the work of FPMs by previously adjusting the training data to

a hypothetical uniform partition. The proposed FUZZ-EQ algorithm consists in transforming the original

data distribution into a uniform distribution by means of the probability integral transform theorem [3, 24].

More specifically, FUZZ-EQ equalizes the histogram of each variable so that the fuzzy sets contained in

a trivial uniform partition would have the same experimental evidence. This transformation allows FPMs

to provide the classifier with more granularity on high density regions, boosting discrimination capability.

To the best of our knowledge, this is the first data preprocessing algorithm designed for improving the

discrimination capability of fuzzy partitions.
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The main contributions of our proposal are the following.

• Versatility and flexibility. FUZZ-EQ supports any type of classifier regardless of the FPM used, since

the transformation takes place beforehand.

• No need for any optimization process. The FPMs that obtain the greatest performance gain are those

based on uniform partitions, since FUZZ-EQ implicitly adapts the uniformly distributed fuzzy sets to

the training data.

• Interpretability. Any data point in the transformed space can be mapped back to the original space,

allowing the user to recover the interpretability of fuzzy sets on the original dataset. Furthermore,

when the transformation is reversed, we can clearly observe how the shape and position of fuzzy sets

are adjusted to the data distribution. This adaptability usually cause membership functions to present

nonlinearities that might help partitions better represent the experimental evidence.

To assess the effectiveness of our proposal, we conducted an extensive empirical study consisting of 41

classification tasks available at UCI [18] and KEEL [2] repositories. We included 9 fuzzy classifiers with dif-

ferent FPMs, rule induction algorithms, and rule structures, namely CHI [7], FARC-HD [1], FHGBML [15],

FURIA [12], FuzzyID3 [29], GFS-GP [27], IVTURS [28], PDFC [6], and SLAVE [11]. The results revealed

that FUZZ-EQ was able to boost classification performance in all cases where fuzzy partitions were common

to all rules. Furthermore, in those classifiers where no performance gain was observed (FHGBML, FURIA,

and PDFC), the average classification performance was maintained. The scalability of FUZZ-EQ was also

tested in 6 Big Data classification problems using CHI-BD [9] as the classifier. The source code of FUZZ-EQ

is publicly available at GitHub1 under the MIT License.

This paper is organized as follows. Section 2 includes the basics of FRBCSs and FDTs and recalls

the concept of data meaningfulness of fuzzy sets. In Section 3, we introduce the proposed preprocessing

algorithm (FUZZ-EQ). Sections 4 and 5 show the experimental framework and the analysis of the empirical

results, respectively. Finally, Section 6 presents concluding remarks.

2. Preliminaries

In this section we briefly describe the basics of fuzzy classifiers and more specifically of Fuzzy Rule-

Based Classification Systems (Section 2.1) and Fuzzy Decision Trees (Section 2.2). Additionally, we stress

the importance of building meaningful fuzzy partitions for classification tasks (Section 2.3).

A classification problem consists in building a model which predicts the class (category) that a new

example (observation) belongs to, based on a training set X composed of N labeled examples whose class is

1https://github.com/melkano/fuzz-eq
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known. Each example x = (x1, . . . , xF ) belongs to a class y ∈ C = {c1, c2, ..., cM} (M being the number of

classes in the problem) and is characterized by a set of F variables (also known as features) where xi can

take any value contained in the set Fi. Thus, the construction of a classifier consists in finding a decision

function (boundary) h : F1 × . . .×FF → C that outputs the class of the examples.

2.1. Fuzzy Rule-Based Classification Systems

Fuzzy Rule-Based Classification Systems (FRBCSs) are popular machine learning algorithms that achieve

good trade-offs between classification performance and interpretability by means of a set of IF-THEN fuzzy

rules [13]. These rules are used by the fuzzy reasoning method to classify new examples based on the

activation strength of the antecedent parts. The antecedent of a rule is given by fuzzy sets representing

linguistic terms which are constructed by the fuzzy partitioning method (FPM). In general, the structure

of fuzzy rules is the following:

Rule Rj : If x1 is Aj1 and . . . and xF is AjF Then Class = cj with RWj (1)

where Rj is the label of the j-th rule, x = (x1, . . . , xF ) is an F -dimensional pattern vector that represents

the example, Ajf is a linguistic label modeled by a membership function, cj is the class label, and RWj is

the rule weight. In some cases rules might contain don’t care linguistic labels making the classifier to ignore

the corresponding attribute value. These labels can simply be removed from the RB, leading to variable

rule lengths. Regarding the rule weight, it represents the confidence that the classifier has in the rule and

the importance of the rule in the prediction. There exist different methods to compute rule weights, such

as the Certainty Factor (CF) or the Penalized Certainty Factor (PCF) [14].

2.2. Fuzzy Decision Trees

A Decision Tree (DT) [25] is a directed acyclic graph where each internal node is a test on an attribute,

each branch represents the outcome of the test, and each terminal node (or leaf) contains the final decision

(class label). The construction of a DT consists in recursively partitioning the attribute space and selecting

the attribute that maximizes the level of homogeneity of the class labels contained in the child nodes with

respect to the parent node. For continuous attributes, either brute-force solutions or discretization strategies

can be applied. The former test all the possible cut points in the training set, while the latter divide the

attribute domain into a discrete set of intervals (also called bins).

Fuzzy decision trees (FDTs) [33, 16] make use of fuzzy partitions to characterize continuous attributes

instead of considering a discrete set of intervals. As a consequence, a given input value might belong to one or

more fuzzy sets with a certain membership degree and activate multiple branches at the same time. Fuzzy

partitions allow FDTs to handle smooth transitions between adjacent intervals in continuous attributes,

which might lead to more accurate predictions when handling numeric data.
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In the experimental study, we interchangeably refer to antecedents/internal nodes and rules/leaves be-

cause a leaf can be represented by a set of IF-THEN rules whose antecedents correspond to all the internal

nodes forming each of the paths to the leaf. In fact, the procedure used by FDTs to classify examples is

usually the same as that of FRBCSs.

2.3. Data meaningfulness of fuzzy sets

The construction of membership functions is essential for the discrimination capability of fuzzy classifiers.

To illustrate their role, Fig. 1 shows a fuzzy partition A = {A1, A2, A3, A4, A5} composed of 5 fuzzy sets

defined for the variable FAsym of the MAGIC Gamma Telescope dataset2. If we consider a trivial uniform

partition without applying any optimization process, it is clear that in this case the majority of data points

lie on the support of the middle fuzzy set. As a result, some linguistic labels are not represented by any

data point at all and their contribution to decision making will be negligible or nonexistent.

The idea of data meaningfulness of fuzzy sets was formalized by Pedrycz in [23]. The author used the

concept of probability of fuzzy events introduced by Zadeh [34] to construct data-justifiable fuzzy partitions.

The proposed algorithm assumes that linguistic terms emerge only if there is experimental evidence (data)

that justifies their existence. To assess whether a fuzzy set Ai is experimentally meaningful for a set of

observed values X = {x1, x2, . . . , xN}, the cumulative probability of Ai is computed as:

P (Ai) =
1

N

N∑
j=1

µAi(xj) =
∑

x∈supp(Ai)

µAi(x)p(x), (2)

where p(x) is the probability mass function (PMF) of X and supp(Ai) is the support of Ai defined as

supp(Ai) = {x ∈ X | µAi(x) > 0}. For a continuous random variable X, this probability is also determined

by integrating over the support of the fuzzy set, but in this case replacing the PMF with the corresponding

probability density function (PDF):

P (Ai) =

∫
x

µAi(x)p(x)dx. (3)

In order for fuzzy sets to be equally meaningful and carry the same amount of experimental evidence, all of

them must have the same cumulative probability:

P (A1) = P (A2) = . . . = P (AL) =
1

L
. (4)

The algorithm proposed by Pedrycz [23] iteratively optimizes the arguments of membership functions to

fulfill Eq. (4). Besides Pedrycz, a few other authors proposed considering the histogram or the PMF/PDF

of the data to construct data-meaningful fuzzy partitions [21, 26, 32, 31]. All of them attempt to optimize the

arguments of either trapezoidal or triangular membership functions to adjust fuzzy sets to the PMF/PDF

2https://archive.ics.uci.edu/ml/datasets/magic+gamma+telescope
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of the data. In this paper, we propose a different approach to avoid any optimization process: instead

of adjusting the fuzzy sets to the data distribution, we transform the original data distribution to obtain

meaningful partitions without the need for adjusting the fuzzy sets.
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Figure 1: Uniform fuzzy partition for FAsym on mag.

3. FUZZ-EQ: equalizing data to construct data-meaningful fuzzy partitions that boost classi-

fication performance

In this work, we present a preprocessing algorithm for boosting the discrimination capability of fuzzy clas-

sifiers. The core idea of the proposed algorithm (called FUZZ-EQ) is to maximize the data meaningfulness

of a hypothetical uniform partition, which would be built by simply distributing a number of equally-shaped

triangles across the domain. We focus on improving naive uniform partitions because we aim to design

a preprocessing algorithm that implicitly adjusts the position and shape of the fuzzy sets even when the

subsequent FPM does not involve any optimization process [7, 11] or start from a uniform partition [1, 28].

For this reason, assuming the uniform distribution is the ideal case for a uniform partitioning in terms of

data meaningfulness, FUZZ-EQ converts the original data distribution into a uniform distribution by means

of the probability integral transform theorem [3, 24]. After this transformation, all the fuzzy sets are equally

meaningful and have the same experimental evidence, providing the classifier with more granularity on high

density regions.

The main differences between the existing FPMs mentioned in Section 2.3 and our method are the

following.

• The contribution of this work is not a new FPM, but a preprocessing algorithm that boosts the data

meaningfulness of fuzzy partitions built by existing FPMs. The proposed algorithm runs right before

the corresponding fuzzy classifier (either for training or test) and does not modify any of its components

at all (including the FPM). This means that FUZZ-EQ automatically improves fuzzy partitions in a

transparent way without the need for any adaptation, which is clearly one of its main benefits.
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• The final shape of the fuzzy sets not only depends on the parameters of the membership functions,

but also on the data distribution. In this way, even if the FPM optimizes only linear functions, the

resulting fuzzy sets in the original feature space might present nonlinearities that allow the partition

to create a more accurate representation of the data.
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Figure 2: Illustrative example of the difference between applying and not applying FUZZ-EQ.

FUZZ-EQ comprises two stages:

1. Transformation stage. Converts the original distribution of the training data into a uniform distri-

bution that help FPMs construct data-meaningful fuzzy partitions. The FPM and the corresponding

classifier can run directly on the transformed dataset without any modification.

2. Translation stage (optional). If the interpretability of the constructed fuzzy partitions and models

needs to be recovered, FUZZ-EQ provides an optional translator that brings any fuzzy set or data

point back to the original space.

Fig. 2 illustrates the whole pipeline with and without FUZZ-EQ. The source code is publicly available

at GitHub3 under the MIT License.

3.1. Transformation stage

The purpose of this transformation is to equalize the histogram of each variable so that a trivial uniform

partitioning would yield a partition composed of equally meaningful fuzzy sets (Fig. 3), according to Eq. (4).

To this end, FUZZ-EQ applies the probability integral transform theorem [3, 24]. This theorem implies that

any dataset can be transformed into a new dataset where all the variables follow a uniform distribution,

3https://github.com/melkano/fuzz-eq
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regardless of the original distribution. Since this transformation cannot be applied directly when the original

distribution (and consequently the exact CDF) is unknown, we propose computing the q-quantiles of the

training set to obtain an approximate CDF for each variable. To this end, all the values are sorted to

compute all the quantiles. High values of q lead to a more accurate approximation of the CDF but it might

be too computationally expensive in large datasets. For this reason, we set a maximum number of quantiles

qmax to be computed (in this paper qmax = 1000). When the number of examples (N) is greater than qmax,

the CDF of a certain value is linearly interpolated on the interval [Qi−1, Qi], Qi being the first quantile

greater than the value. If the value is smaller than the first quantile (Q1) or greater than the last quantile

(Qq), the CDF is 0 or 1, respectively. Of course, the transformation of the testing set is performed by

interpolating the CDF using the quantiles extracted from the training set.
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Figure 3: A trivial uniform fuzzy partitioning for a uniformly distributed variable. In this case, all fuzzy sets have the same

cumulative probability (they are equally meaningful).

Besides approximating the original CDF, FUZZ-EQ must deal with another issue: the probability integral

transform theorem only applies to continuous random variables. The discrete nature of digital data might

cause a concentrated mass distribution of the training data, which would result in a transformed distribution

that moves away from the uniform distribution [20]. In other words, when there is a high proportion of

duplicates, the uniformity of quantiles might not be hold. This will negatively affect the data meaningfulness

of the fuzzy sets and will reduce the discrimination capability of the partition.

To deal with this situation, we could assess whether the transformed distribution is sufficiently uniform

based on a given statistical distance. If the distance was greater than a certain threshold, we would omit

the transformation and work directly on the original space. Since we attempt to boost classification perfor-

mance, we can get rid of thresholds by introducing entropy-based measures. In the context of classification

tasks, entropy measures the homogeneity of class labels in a set of examples. We say that a given set has

maximum entropy when all classes are equally likely to be represented in the set. On the other hand, the

minimum entropy is reached when the examples of a set always belong to the same class. Therefore, if

the transformation results in the examples of different classes being divided into different fuzzy sets, the
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discrimination capability of the partition will be probably increased. Based on this assumption, FUZZ-EQ

will finally transform the variable only if the entropy decreases after transforming it. To implement this

procedure, we use the following concepts:

• Probability of the α-cut of a fuzzy set Ai: instead of considering the probability of the fuzzy set (Eq.

(2)), we compute the probability of the α-cut of Ai as follows:

P (Aαi ) =
∑
x∈Aαi

p(x), (5)

where Aαi = {x ∈ X | µAi(x) ≥ α} and p(x) is the probability mass function of X. This probability

determines the weight or importance of the fuzzy set in the computation of the partition entropy.

• Frequency of a class cm in the α-cut of a fuzzy set Ai: represents the probability that an example of

the class cm belongs to the α-cut of Ai.

f (cm, A
α
i ) =

| {xα ∈ Aαi | class(xα) = cm} |
| Aαi |

, (6)

where class(xα) is the class label of the example xα.

• Entropy of the α-cut of a fuzzy set Ai: although the entropy of fuzzy sets is usually measured consid-

ering the sum of membership degrees, we use crisp cardinalities to be more restrictive when assessing

the improvement obtained after transforming the data.

Hα(Aαi ) =

M∑
m=1

−f (cm, A
α
i ) · log2 (f (cm, A

α
i )) . (7)

• Entropy of a fuzzy partition A: corresponds to the weighted average of the entropy of the α-cut of all

the fuzzy sets belonging to the partition.

H(A) =

L∑
i=1

P (Aαi ) ·Hα(Aαi ). (8)

This procedure allows FUZZ-EQ to selectively transform each of the variables depending on the decrease

of entropy observed when building a trivial uniform partition in the transformed space. For the experimental

study the number of fuzzy sets was set to 3 with α = 0.5. Fig. 4 shows the pseudo-code of this stage.

3.2. Translation stage

Although any classifier can directly work with the data transformed by FUZZ-EQ and automatically

obtain enhanced classification performance, fuzzy sets need to be brought back to the original space to

recover their interpretability. To this end, FUZZ-EQ provides an optional translator tool that applies the

inverse cumulative distribution function or quantile function [22] to reverse the transformation performed

9



Function transform training set (X)

Input: Original training set X.

Output: Transformed training set Xtran.

Begin

1: # Set the number of quantiles (q) based on the number of training examples (N)

2: if N > qmax then

3: q ← qmax

4: else

5: q ← N

6: end if

7: # Transform each variable separately (Xf contains the value of the variable f for each example)

8: Xtran ← {}

9: for each f ∈ F do

10: # Compute the q-quantiles

11: Xsortedf ← sort (Xf )

12: quantiles← get quantiles (Xsortedf )

13: # Transform the value of the variable f for each example

14: Xtranf ← {}

15: for each xf ∈ Xf do

16: quantileIdx← get quantile index (xf )

17: if quantileIdx = 1 then

18: y ← 1/q

19: else if quantileIdx = q then

20: y ← 1

21: else

22: x1← quantiles (quantileIdx− 1)

23: y1← quantileIdx / q

24: x2← quantiles (quantileIdx)

25: y2← (quantileIdx + 1) / q

26: m← (y2− y1) / (x2− x1)

27: y ← m (xf − x1) + y1

28: end if

29: Xtranf ← Xtranf ∪ y

30: end for

31: # Compute the entropy of a uniform partition in the original (A) and the transformed (A′) spaces

32: H(A)←
L∑
i=1

(
P (Aαi ) ·

M∑
m=1

−f (cm, Aαi ) · log2 (f (cm, Aαi ))

)

33: H(A′)←
L∑
i=1

(
P (A′α

i ) ·
M∑
m=1

−f
(
cm, A′α

i

)
· log2

(
f
(
cm, A′α

i

)))
34: # If the entropy has not decreased, do not transform the values of the variable f

35: if H(A′) >= H(A) then

36: Xtranf ← Xf
37: end if

38: Xtran ← concatenate (Xtran, Xtranf )

39: end for

40: RETURN Xtran

End

Figure 4: Pseudo-code of the proposed FUZZ-EQ preprocessing algorithm (transformation stage).
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in the previous stage. To bring a given point back from the transformed space, the corresponding value is

linearly interpolated between the two closest quantiles by computing the inverse of the linear function used

to compute the CDF. It is worth noting that FUZZ-EQ supports any family of membership functions.

Fig. 5 shows an illustrative example of how fuzzy sets are distributed when applying a trivial uniform

partitioning with and without FUZZ-EQ. Solid lines and bar plots represent the membership functions of

the fuzzy sets and the original distribution of the variables, respectively.
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(a) Uniform partition for the variable FM3Trans (without

FUZZ-EQ)
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(b) Uniform partition for the variable FM3Trans (with FUZZ-

EQ)
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(c) Uniform partition for the variable FSize (without FUZZ-

EQ)
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(d) Uniform partition for the variable FSize (with FUZZ-EQ)
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(e) Uniform partition for the variable FAsym (without FUZZ-

EQ)
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(f) Uniform partition for the variable FAsym (with FUZZ-EQ)

Figure 5: Fuzzy partitions built for FM3Trans, FSize, and FAsym on the mag dataset with and without FUZZ-EQ.

3.3. Computational complexity

Based on Fig. 4, one can estimate the computational complexity of FUZZ-EQ:
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• Iterate over the features: O(F )

– Sort the values of the corresponding feature: O(N · log(N))

– Get the quantiles: O(N)

– Transform the values: O(N)

– Compute the entropy of each fuzzy set: O(L ·M)

This results in O(F · (N · log(N) + 2N + L ·M)), which can be simplified to O(F · N · log(N)), assuming

that L (number of fuzzy sets) and M (number of classes) are much smaller than F (number of features) or

N (number of examples). Therefore, the complexity of FUZZ-EQ will be given by the corresponding sorting

algorithm (O(N ·log(N))) when N >> F and by the number of iterations (O(F )) when F >> N . It is worth

noting that both complexity factors can be reduced by parallelizing either the feature transformation or the

sorting process. In fact, in Section 5.2 we propose a distributed version of FUZZ-EQ callled FUZZ-EQ-Spark

which is able to deal with Big Data problems.

4. Experimental framework

This section introduces the framework used to conduct the experimental study presented in Section 5.

In particular, we show a brief description of the datasets (Section 4.1) and methods (Section 4.2) considered

in the study and describe the performance measures and statistical tests used to assess the effectiveness of

our proposal.

4.1. Datasets

The experimental study consists of 41 classification tasks available at UCI [18] and KEEL [2] reposito-

ries. Table 1 provides the description of the datasets showing the number of examples (#Examples), real

(R)/integer(I)/categorical(C)/total(T) features (#Features), and classes (#Classes). The performance of

all methods was assessed with a 5-fold stratified cross-validation scheme, where each dataset is randomly

split into five equal-sized partitions of data and the model is trained with a combination of four of them

(80%) and tested with the remaining partition. Therefore, the result of each dataset was computed as the

average of the five partitions.

4.2. Methods, performance metrics, and statistical tests

We included 9 fuzzy classifiers from the KEEL repository with different FPMs, rule induction algorithms,

and rule structures. As for the parameters used in the experiments, we set their values based on the

recommendations from the authors. Next, we include a brief description of each algorithm, with special

attention to the FPM used.
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Table 1: Description of the datasets.

ID Dataset #Examples #Features #Classes

(R/I/C)/T

app appendicitis 106 (7/0/0)/7 2

bal balance 625 (4/0/0)/4 3

ban banana 5300 (2/0/0)/2 2

bup bupa 345 (1/5/0)/6 2

con contraceptive 1473 (0/9/0)/9 3

eco ecoli 336 (7/0/0)/7 8

gla glass 214 (9/0/0)/9 7

hab haberman 306 (0/3/0)/3 2

hay hayes-roth 160 (0/4/0)/4 3

hea heart 270 (1/12/0)/13 2

ion ionosphere 351 (32/1/0)/33 2

iri iris 150 (4/0/0)/4 3

led led7digit 500 (7/0/0)/7 10

let letter 20000 (0/16/0)/16 26

mag magic 19020 (10/0/0)/10 2

mon monk-2 432 (0/6/0)/6 2

new newthyroid 215 (4/1/0)/5 3

opt optdigits 5620 (0/64/0)/64 10

pag page-blocks 5472 (4/6/0)/10 5

pen penbased 10992 (0/16/0)/16 10

pho phoneme 5404 (5/0/0)/5 2

pim pima 768 (8/0/0)/8 2

rin ring 7400 (20/0/0)/20 2

sah saheart 462 (5/3/1)/9 2

sat satimage 6435 (0/36/0)/36 7

seg segment 2310 (19/0/0)/19 7

son sonar 208 (60/0/0)/60 2

spa spambase 4597 (57/0/0)/57 2

spe spectfheart 267 (0/44/0)/44 2

tae tae 151 (0/5/0)/5 3

tex texture 5500 (40/0/0)/40 11

thy thyroid 7200 (6/15/0)/21 3

tit titanic 2201 (3/0/0)/3 2

two twonorm 7400 (20/0/0)/20 2

veh vehicle 846 (0/18/0)/18 4

vow vowel 990 (10/3/0)/13 11

wdb wdbc 569 (30/0/0)/30 2

win wine 178 (13/0/0)/13 3

wew winequality-red 1599 (11/0/0)/11 11

wwh winequality-white 4898 (11/0/0)/11 11

yea yeast 1484 (8/0/0)/8 10
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• CHI [7] is the simplest classifier included in the study. To build the rule base, CHI creates a new fuzzy

rule for each training example using the conjunction of the fuzzy sets with the highest membership

degrees. As for the FPM, CHI uses a fixed uniform partitioning.

• FARC-HD [1] is a fuzzy association rule-based classifier that creates fuzzy rules from the frequent

itemsets extracted by the Apriori algorithm. The rule base is later optimized with an evolutionary

algorithm that simultaneously performs rule selection and lateral tuning of linguistic labels. This is

a clear example of an FPM which initially creates a trivial uniform partition that is later optimized

during the learning process of the classifier.

• FHGBML [15] is a hybrid algorithm of Pittsburgh-style and Michigan-style fuzzy genetics-based ma-

chine learning approaches. FHGBML simultaneously uses four fuzzy partitions for each feature, each

having 2, 3, 4, and 5 fuzzy sets, respectively. As a result, each antecedent can be associated with one

of these 14 fuzzy sets plus a “don’t care” label.

• FURIA [12] fuzzifies the rules extracted by RIPPER [8] and optimizes the rule base by means of

a greedy algorithm. During the learning process, FURIA replaces the interval representing each

antecedent with a trapezoidal membership function which is later optimized to improve the coverage

degree of the rule. Therefore, the FPM used by FURIA generates an independent fuzzy partition for

each rule.

• FuzzyID3 [29] is an extension of the ID3 decision tree which uses fuzzy sets to select the test attribute

based on the fuzzy information gain. Although the fuzzy sets used in the original paper were previously

defined by experts without any FPM, in this study we used a trivial uniform partition.

• GFS-GP [27] uses genetic programming with tree-shaped genotypes where rules are represented as

single chains in a context-free grammar by means of their parse tree or by a pair, composed by a

syntactic tree and a chain of parameters. In this case, the FPM is included in an evolutionary learning

process that simultaneously generates the rules and optimizes the fuzzy sets.

• IVTURS [28] extends the FARC-HD algorithm by introducing interval-valued fuzzy sets (IVFSs) to

model the uncertainty and ignorance that might exist when defining membership functions. In IVFSs,

the membership degree of an element to the set is an interval instead of a single number. The amplitude

of such an interval can be considered as the ignorance related to the assignment of a single value to

the membership function.

• PDFC [6] learns a Support Vector Machine to extract the support vectors along with their correspond-

ing Lagrange multipliers. Each support vector is converted into a fuzzy rule, where fuzzy partitions

are given by adding the values of the support vector to some reference membership functions and the
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rule weight is determined by the Lagrange multiplier. Although the reference membership functions

are uniform and common to all rules, fuzzy partitions are later optimized based on the corresponding

support vector, and thus they are rule-specific.

• SLAVE [11] uses an iterative approach to extract the best fuzzy rule for each class at each iteration

by means of a genetic algorithm. The original method uses a trivial uniform partition as CHI and

FuzzyID3.

The way in which all these classifiers construct fuzzy partitions is key to understanding the variation in the

effectiveness of FUZZ-EQ when applied with different classifiers. For this reason, Table 2 shows a summary

of the FPM used by each classifier.

Regarding performance metrics, we decided to use the average accuracy rate per class (AccClass) and

the geometric mean (GM) [4] because they consider the discrimination capability for each class, and thus

they are suitable for the many multi-class problems considered in the experimental study. These metrics

are defined as follows:

AccClass =

M∑
m=1

TPRm

M
; GM =

M

√√√√ M∏
m=1

TPRm, (9)

where TPRm is the true positive rate of class cm (proportion of correctly classified examples belonging to

class cm), Nm is the number of examples from class cm, and N is the total number of examples.

To find statistical evidence in the improvement obtained when applying FUZZ-EQ, we used the Wilcoxon

signed-ranks test [30] to perform pairwise comparisons of the classification performance of each method with

and without FUZZ-EQ.

Table 2: Description of the fuzzy partitions used by each method.

Algorithm #FS Trainable Shared

CHI 3 No (fixed uniform partitions) 3

FARC-HD 5 Position 3

FHGBML 14 No (4 fixed uniform partitions per variable) 3

FURIA - #Fuzzy sets, position, and shape 7

FuzzyID3 5 No (fixed uniform partitions) 3

GFS-GP 3 Position and shape 3

IVTURS 5 Position and shape (interval-valued) 3

PDFC 3 Position 7

SLAVE 5 No (fixed uniform partitions) 3

#FS: number of fuzzy sets per variable

Trainable: shows which property of the fuzzy sets is optimized

Shared: shows whether fuzzy partitions are shared by all rules
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5. Experimental study

In this study, we assessed the effectiveness of our proposal in terms of classification performance gain

by comparing the AccClass and GM achieved by each classifier when working with and without FUZZ-EQ.

Additionally, we measured the effect of FUZZ-EQ on the rule base complexity and reported the additional

execution time required to apply the proposed transformation on each dataset. Finally, we analyzed the

scalability of FUZZ-EQ when dealing with Big Data.

5.1. Performance

Tables 3 and 4 show the AccClass and GM on the original and transformed datasets for each classifier.

According to these results, transforming the data with FUZZ-EQ resulted in an overall performance gain,

except for FHGBML, FURIA, and PDFC, where the transformation had little effect in general. As shown

in Table 2, FURIA and PDFC are the only classifiers included in this study that build rule-specific fuzzy

partitions. The fuzzy sets built by these methods are specifically optimized for each rule based on its

discrimination capability. This leaves any previous process with little room for improvement in terms of

classification performance. As for FHGBML, each rule can use any of the four fuzzy partitions for each

feature, which allows the classifier to dynamically adapt the granularity in each case. This adaptability

minimizes the benefits of adjusting the granularity of each region based on its probability mass, which

is what FUZZ-EQ does. Nevertheless, the three classifiers which did not obtain any performance gain

(FHGBML, FURIA, PDFC) were not negatively affected by FUZZ-EQ.

To assess whether the classification performance gain derived from the usage of FUZZ-EQ is statistically

significant, we used the Wilcoxon’s test to perform a pairwise comparison for each classifier (Table 5). In all

cases, we compared the AccClass and GM when running the corresponding classifier with and without FUZZ-

EQ. As expected, FHGBML, FURIA, and PDFC did not show any statistical difference. The classifiers that

obtained the most significant performance gain were CHI, FARC-HD, IVTURS, and SLAVE, where AccClass

and GM were both increased with α = 0.05. As for GFS-GP, we found evidence of improvement with α =

0.05 for the GM and α = 0.1 for the AccClass. Finally, FuzzyID3 benefited from FUZZ-EQ in a significant

way in terms of AccClass with α = 0.1, but no difference was observed in GM .

Regarding the effect of FUZZ-EQ on the rule base complexity, Table 6 reports the average rule length and

number of rules built by each classifier with and without FUZZ-EQ. We include a supplementary document

with the results for each dataset. Overall, the classification performance gain derived from FUZZ-EQ was

accompanied by an increase in the number of rules, while the average rule length was maintained. Although

rule induction algorithms can greatly differ from each other, the fact that FUZZ-EQ increases the granularity

of those fuzzy sets covering high probability mass regions causes rules to be more specific, needing more

rules to correctly cover training examples. Interestingly, this increase in the number of rules bring along an
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increase in the final performance, which shows the usefulness of FUZZY-EQ to make linguistic labels more

meaningful.

Finally, we measured the time required for transforming each of the datasets with FUZZ-EQ. According

to Table 7, the transformation runs on the order of milliseconds on an Intel Xeon E5-2620v2 processor with

6 physical/12 virtual cores at 2.1 GHz.

Table 3: Accuracy rate per class (AccClass) comparison between the original (ORG) and transformed (TRA) datasets.

CHI FARC-HD FHGBML FURIA FuzzyID3 GFS-GP IVTURS PDFC SLAVE

Dataset ORG TRA ORG TRA ORG TRA ORG TRA ORG TRA ORG TRA ORG TRA ORG TRA ORG TRA

app 80.56 73.56 67.38 72.97 63.45 58.75 74.97 74.97 71.65 69.24 68.56 72.47 76.06 69.88 74.88 76.06 68.56 72.24

bal 65.39 65.16 63.08 64.12 45.15 63.90 59.96 59.96 47.92 56.60 56.61 56.14 62.28 63.19 81.17 82.07 47.34 49.55

ban 56.05 69.22 85.48 85.68 82.46 79.96 88.67 88.67 81.36 87.29 69.90 72.67 80.82 85.34 90.22 90.20 77.45 75.89

bup 51.57 67.23 67.46 66.99 56.98 57.54 67.03 67.03 62.34 62.55 55.98 64.38 64.59 69.75 70.91 71.10 53.52 65.39

con 42.59 46.88 49.61 49.72 27.80 39.09 51.08 51.08 44.88 45.52 45.69 48.02 49.76 51.01 50.82 50.26 40.15 47.20

eco 60.47 68.60 73.53 70.11 41.67 46.25 61.33 61.80 71.05 61.19 37.32 52.32 69.10 70.27 72.97 74.56 66.77 68.52

gla 40.65 53.51 56.48 57.52 33.46 43.13 68.50 66.61 16.52 26.60 38.18 35.10 61.95 57.43 66.55 66.90 53.03 57.56

hab 51.17 57.41 53.75 57.87 50.25 50.64 61.35 61.35 55.78 57.81 55.71 56.30 58.88 62.01 57.20 53.47 57.54 56.29

hay 61.19 64.37 77.13 88.16 52.34 56.87 84.75 84.75 75.73 75.73 69.80 72.63 82.09 84.04 82.78 82.78 85.90 85.33

hea 68.42 65.08 81.67 82.33 48.61 56.92 82.25 82.25 78.42 74.08 70.42 76.33 82.17 84.58 78.08 81.08 75.25 77.08

ion 56.49 54.99 88.11 87.94 35.35 34.30 87.91 87.69 85.49 87.11 66.35 69.72 91.38 88.27 93.35 93.11 79.35 85.75

iri 93.33 92.00 94.67 94.67 84.67 83.33 93.33 93.33 96.00 96.00 90.00 93.33 95.33 95.33 94.67 94.67 96.67 96.00

led 61.71 61.71 70.03 69.52 33.84 40.24 72.14 72.14 67.81 67.81 48.92 49.05 70.28 69.66 68.38 68.31 65.72 66.26

let 33.63 76.78 57.98 68.67 11.90 10.43 91.03 90.99 80.79 89.42 18.26 26.24 48.20 63.50 97.22 97.41 39.86 75.04

mag 68.41 71.49 80.72 80.40 66.83 56.81 80.64 80.64 79.62 81.61 73.14 74.33 79.84 78.78 85.10 85.05 75.19 75.93

mon 55.77 81.42 100.00 100.00 97.37 97.12 100.00 100.00 100.00 100.00 97.37 98.02 99.78 98.38 100.00 100.00 100.00 100.00

new 66.67 89.75 92.70 94.16 69.48 93.81 89.17 89.40 90.89 94.32 75.21 87.78 93.43 92.25 97.33 95.05 85.02 88.73

opt 50.52 29.66 93.38 93.76 10.60 10.37 95.49 95.49 87.33 86.78 43.42 40.23 94.37 94.67 99.04 98.95 82.35 84.92

pag 33.02 66.64 59.39 72.16 35.50 45.29 83.72 83.66 48.24 65.18 51.56 33.62 56.85 73.40 85.49 87.99 43.10 55.95

pen 97.87 97.31 96.14 96.17 36.12 33.01 98.23 98.23 97.72 97.47 55.35 52.08 95.47 95.06 99.61 99.63 97.30 97.31

pho 52.97 72.24 79.04 80.63 69.51 68.55 81.54 81.57 75.86 82.34 73.41 70.27 77.52 79.12 85.68 87.58 69.69 75.55

pim 64.02 70.68 72.42 72.99 65.79 65.71 70.84 70.74 71.85 67.10 67.12 67.46 71.85 71.93 70.06 70.05 72.79 70.75

rin 54.98 61.51 93.72 89.84 63.90 56.74 94.21 94.25 91.04 85.15 71.05 75.06 90.04 89.15 97.19 96.32 91.23 90.95

sah 65.68 61.62 62.66 64.64 49.29 49.18 64.35 64.52 61.34 62.91 60.79 60.75 67.37 65.21 60.92 61.07 61.18 64.76

sat 46.45 83.30 76.50 84.00 55.65 45.78 86.20 86.20 49.12 60.40 54.30 67.08 68.00 81.37 89.97 91.34 31.79 67.69

seg 86.23 91.52 93.33 94.98 58.67 49.89 97.32 97.27 92.12 95.71 67.14 70.00 90.74 93.16 98.48 98.44 89.52 94.55

son 76.81 59.91 84.11 78.53 26.33 29.85 77.69 77.69 78.19 69.10 66.58 68.98 81.70 80.98 90.07 87.19 72.07 69.75

spa 64.96 77.27 90.28 92.21 51.45 39.24 93.20 93.09 90.47 91.30 68.49 80.76 90.48 92.42 94.38 95.00 68.69 89.42

spe 56.31 58.00 61.84 64.10 32.95 31.76 59.62 59.62 53.49 61.77 53.55 53.79 63.89 70.47 69.63 68.32 50.63 50.41

tae 56.15 54.35 55.71 57.78 46.62 37.98 45.91 45.91 49.94 51.88 58.17 51.97 57.03 57.18 62.23 61.70 54.29 49.61

tex 73.82 86.04 93.18 93.75 47.88 34.23 96.38 96.36 94.35 97.78 54.65 63.84 86.42 90.82 99.67 99.58 76.02 88.47

thy 36.93 57.36 59.17 90.23 46.21 52.95 98.47 98.38 46.17 67.67 53.23 36.96 59.33 89.71 95.57 96.20 35.53 70.68

tit 72.35 72.35 69.35 69.35 69.35 69.35 68.44 68.44 69.35 69.35 69.33 71.60 69.35 69.35 69.35 69.35 69.35 69.19

two 90.55 93.04 95.11 93.89 64.54 69.83 93.62 93.58 94.69 89.22 78.25 78.51 95.91 94.50 97.39 97.36 92.43 93.04

veh 61.83 64.55 69.60 70.45 41.02 42.25 74.56 74.56 70.30 70.78 51.61 53.75 68.41 70.82 80.25 79.88 60.19 72.67

vow 53.23 77.27 74.75 81.41 19.07 19.26 81.72 81.92 92.32 92.93 26.36 38.38 64.44 75.05 98.59 98.79 71.62 87.68

wdb 92.11 91.58 94.68 96.00 59.62 57.35 94.96 94.96 94.30 95.63 92.70 89.83 94.44 96.14 97.07 97.21 91.84 94.17

win 94.59 95.51 95.32 93.54 72.05 69.02 93.83 93.83 97.06 92.10 90.57 89.50 95.32 97.34 98.52 98.08 93.58 94.48

wre 22.86 27.86 26.44 27.43 20.13 20.49 29.40 29.55 0.48 3.78 21.75 22.88 23.68 27.20 36.46 37.21 22.86 28.68

wwh 20.15 27.26 21.43 21.36 17.67 18.07 25.44 25.46 5.53 6.73 17.35 16.74 21.56 20.70 39.55 39.44 17.45 23.48

yea 34.54 45.63 51.32 46.13 22.83 21.26 49.15 49.15 52.43 41.53 35.47 15.48 38.20 38.63 51.82 52.17 46.04 39.56

AVG. 60.32 67.84 73.87 76.00 48.40 48.94 77.28 77.25 70.00 71.65 59.01 60.35 72.88 75.56 81.19 81.24 66.56 72.35
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Table 4: Geometric mean (GM) comparison between the original (ORG) and transformed (TRA) datasets.

CHI FARC-HD FHGBML FURIA FuzzyID3 GFS-GP IVTURS PDFC SLAVE

Dataset ORG TRA ORG TRA ORG TRA ORG TRA ORG TRA ORG TRA ORG TRA ORG TRA ORG TRA

app .7898 .6941 .6115 .6863 .4009 .3593 .7147 .7147 .6646 .5593 .6196 .6742 .7315 .6435 .7216 .7315 .6196 .6596

bal .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .7547 .7696 .0000 .0000

ban .3750 .6329 .8514 .8534 .8186 .6837 .8852 .8852 .8056 .8700 .6493 .7220 .8041 .8522 .9012 .9010 .7726 .7461

bup .1745 .6464 .6534 .6557 .3894 .4716 .6549 .6549 .5819 .6168 .4730 .5953 .6364 .6884 .7042 .7082 .3172 .6306

con .3787 .4447 .4763 .4712 .0000 .1618 .4825 .4825 .4423 .4389 .3384 .4307 .4623 .4845 .5001 .4956 .3862 .4547

eco .3633 .4516 .4800 .3383 .0000 .0000 .1305 .1305 .4693 .1541 .0000 .0000 .2795 .4830 .4856 .4851 .1379 .3329

gla .0000 .0000 .0000 .1135 .0000 .0000 .1346 .0000 .0000 .0000 .0000 .0000 .0000 .2397 .3828 .2826 .0000 .0000

hab .1474 .4297 .4016 .4818 .2709 .2865 .4874 .4874 .4059 .5066 .3949 .4099 .4700 .5601 .4761 .4389 .4579 .4298

hay .4463 .5001 .7573 .8747 .0000 .1491 .8404 .8404 .7426 .7426 .6846 .7046 .8126 .8357 .8183 .8183 .8493 .8404

hea .6325 .5981 .8093 .8210 .0000 .1474 .8172 .8172 .7813 .7372 .6953 .7573 .8172 .8435 .7795 .8099 .7498 .7682

ion .4086 .3585 .8792 .8755 .0000 .0000 .8760 .8740 .8481 .8674 .5619 .6411 .9130 .8784 .9313 .9285 .7717 .8471

iri .9270 .9107 .9432 .9440 .5655 .5516 .9301 .9301 .9575 .9575 .8952 .9286 .9514 .9514 .9442 .9442 .9657 .9588

led .4525 .4525 .1739 .1722 .0000 .0000 .7051 .7051 .5044 .5044 .0000 .0000 .1700 .1690 .5154 .5145 .6378 .6447

let .0000 .7466 .0000 .6595 .0000 .0000 .9094 .9090 .7981 .8925 .0000 .0000 .0000 .5807 .9720 .9739 .0000 .4517

mag .6231 .6667 .7977 .7951 .4555 .1575 .7958 .7958 .7955 .8129 .7163 .7315 .7891 .7782 .8464 .8469 .7296 .7395

mon .4410 .8065 1.000 1.000 .9732 .9708 1.000 1.000 1.000 1.000 .9732 .9799 .9978 .9837 1.000 1.000 1.000 1.000

new .6175 .8914 .9235 .9395 .3204 .9335 .8817 .8833 .9036 .9416 .7100 .8710 .9307 .9180 .9719 .9470 .8355 .8768

opt .4555 .2053 .9328 .9367 .0000 .0000 .9545 .9545 .8715 .8653 .0000 .0527 .9429 .9459 .9903 .9895 .6592 .8442

pag .0350 .6122 .4101 .4347 .0000 .0000 .8257 .8251 .2130 .6031 .0000 .0000 .2085 .5934 .8454 .8708 .1374 .3684

pen .9785 .9729 .9610 .9613 .0000 .0000 .9822 .9822 .9770 .9746 .2107 .0705 .9542 .9496 .9961 .9963 .9724 .9727

pho .2636 .6979 .7856 .8009 .5866 .5760 .8098 .8101 .7513 .8181 .7234 .6709 .7721 .7847 .8541 .8739 .6707 .7432

pim .5554 .6910 .7158 .7192 .5395 .5437 .6874 .6867 .7026 .6544 .6361 .6460 .7062 .7031 .6949 .6964 .7127 .6876

rin .3129 .4917 .9365 .8974 .1788 .2728 .9414 .9418 .9056 .8485 .6977 .7460 .8996 .8904 .9716 .9628 .9114 .9086

sah .6056 .5844 .5865 .6212 .2085 .2230 .5954 .5965 .5806 .6142 .5519 .5424 .6488 .6349 .5833 .5870 .5275 .6061

sat .0000 .8153 .0000 .8235 .0000 .0000 .8478 .8480 .0000 .0000 .1137 .3546 .0000 .7920 .8934 .9084 .0000 .0000

seg .8448 .9092 .9304 .9481 .0000 .0000 .9728 .9723 .9112 .9558 .1292 .6009 .9018 .9288 .9847 .9843 .8845 .9433

son .7439 .4368 .8396 .7809 .0000 .0000 .7737 .7737 .7792 .6869 .6602 .6854 .8151 .8077 .8972 .8689 .7116 .6951

spa .5620 .7437 .9017 .9217 .0000 .0000 .9314 .9302 .9042 .9127 .6601 .8041 .9039 .9239 .9435 .9499 .5799 .8923

spe .4636 .4679 .5452 .5819 .0000 .0000 .4950 .4950 .3124 .5604 .1973 .2845 .5761 .6795 .6560 .6148 .0843 .1185

tae .4855 .4608 .5308 .5613 .1590 .0986 .2356 .2356 .4526 .4935 .5631 .4979 .5216 .5500 .6119 .6000 .5026 .4578

tex .6382 .8490 .9300 .9355 .0000 .0000 .9633 .9631 .9397 .9776 .0626 .4707 .8547 .9037 .9967 .9958 .2848 .5459

thy .0372 .3381 .0000 .8984 .0000 .0000 .9847 .9838 .0000 .6232 .0392 .0000 .0000 .8935 .9545 .9613 .0000 .4936

tit .6903 .6903 .6305 .6305 .6305 .6305 .6170 .6170 .6305 .6305 .6304 .6755 .6305 .6305 .6305 .6305 .6305 .6281

two .9048 .9304 .9511 .9389 .1799 .3516 .9362 .9358 .9469 .8921 .7784 .7810 .9590 .9450 .9739 .9736 .9243 .9304

veh .5723 .5878 .6403 .6642 .0000 .0000 .6999 .6999 .6687 .6634 .4115 .4519 .6348 .6628 .7799 .7753 .2484 .6877

vow .0000 .7472 .6808 .8015 .0000 .0000 .8088 .8109 .9197 .9270 .0000 .0000 .5830 .7334 .9855 .9876 .6509 .8636

wdb .9205 .9135 .9460 .9597 .0000 .0000 .9490 .9490 .9414 .9556 .9244 .8956 .9435 .9610 .9702 .9718 .9155 .9415

win .9438 .9537 .9521 .9337 .1895 .1678 .9379 .9379 .9698 .9162 .8990 .8919 .9522 .9724 .9849 .9801 .9341 .9429

wre .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

wwh .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

yea .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

AVG. .4339 .5690 .5991 .6691 .1675 .1887 .6877 .6844 .6117 .6384 .4049 .4529 .5896 .6775 .7538 .7506 .5164 .6013
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Table 5: Wilcoxon’s test: original (+) vs. transformed (-) datasets.

Accuracy rate per class (AccClass)

Algorithm R+ R- Hypothesis p-value

CHI 136.0 644.0 Rejected for (-) with (α = 0.05) 0.0004

FARC-HD 184.0 557.0 Rejected for (-) with (α = 0.05) 0.0068

FHGBML 421.0 399.0 Not rejected 0.8825

FURIA 119.5 111.5 Not rejected 0.8894

FuzzyID3 225.0 441.0 Rejected for (-) with (α = 0.1) 0.0897

GFS-GP 285.0 576.0 Rejected for (-) with (α = 0.1) 0.0594

IVTURS 199.0 581.0 Rejected for (-) with (α = 0.05) 0.0077

PDFC 310.0 393.0 Not rejected 0.5313

SLAVE 132.0 688.0 Rejected for (-) with (α = 0.05) 0.0002

Geometric mean (GM)

Algorithm R+ R- Hypothesis p-value

CHI 114.0 481.0 Rejected for (-) with (α = 0.05) 0.0017

FARC-HD 141.0 489.0 Rejected for (-) with (α = 0.05) 0.0044

FHGBML 61.0 110.0 Not rejected 0.2860

FURIA 110.0 61.0 Not rejected 0.2860

FuzzyID3 176.0 289.0 Not rejected 0.2452

GFS-GP 91.0 405.0 Rejected for (-) with (α = 0.05) 0.0021

IVTURS 116.0 514.0 Rejected for (-) with (α = 0.05) 0.0011

PDFC 307.0 288.0 Not rejected 0.8710

SLAVE 88.0 507.0 Rejected for (-) with (α = 0.05) 0.0003

Table 6: Average rule length (RL) and number of rules (#Rules) built on the original (ORG) and transformed (TRA) datasets.

#Rules RL

Method ORG TRA ORG TRA

CHI 369.93 1090.69 16.73 16.73

FARC-HD 35.60 51.63 2.25 2.22

FHGBML 7.01 7.83 16.73 16.73

FURIA 42.45 42.45 2.87 3.21

FuzzyID3 14015.11 1654.72 8.56 5.78

GFS-GP 5.00 5.00 180.17 177.84

IVTURS 38.68 58.11 2.27 2.24

PDFC 1687.99 1952.20 16.76 16.76

SLAVE 45.91 73.56 29.79 28.21
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Table 7: Runtime(ms) of FUZZ-EQ on an Intel Xeon E5-2620v2 processor.

Dataset Time (ms) Dataset Time (ms) Dataset Time (ms)

app 68.5 mag 400.0 spe 236.3

bal 77.3 mon 75.1 tae 112.8

ban 201.8 new 124.1 tex 713.6

bup 136.9 opt 1,330.3 thy 571.8

con 176.0 pag 336.7 tit 146.2

eco 129.2 pen 466.5 two 235.5

gla 128.5 pho 227.0 veh 199.1

hab 119.4 pim 162.5 vow 107.5

hay 65.2 rin 228.8 wdb 199.2

hea 132.8 sah 146.1 win 122.8

ion 187.9 sat 967.7 wre 221.9

iri 114.4 seg 246.9 wwh 320.5

led 74.9 son 172.9 yea 208.5

let 792.1 spa 1,287.4

5.2. Scalability

In order to test the scalability of our proposal in Big Data, we implemented a Spark4 version of FUZZ-

EQ callled FUZZ-EQ-Spark. The parallelization of computation primarily relies on the sortBy5 function

provided by the Resilient Distributed Dataset (RDD) [35] API of Spark. This function sorts the values of

a variable in a distributed fashion and is used by FUZZ-EQ-Spark to compute the quantiles, which is the

task that determines the time complexity of FUZZ-EQ. Each variable is preprocessed sequentially, and thus

we measured the scalability of the algorithm with respect to the number of examples rather than features.

We considered 6 Big Data classification problems available at UCI [18] and OpenML6 repositories (Table

8) and applied the 5-fold cross-validation scheme described in the previous section. In this case, we ran the

only open-source fuzzy classifier for Big Data that does not apply any optimization process to adjust the

fuzzy partitions, i.e., CHI-BD [9]. Other Big Data Chi-based methods such as Chi-FRBCS-BigData [19]

were excluded from the study because CHI-BD reported better results. The scalability was measured in

terms of three well-known metrics to evaluate distributed systems, i.e., speedup, sizeup, and scaleup [17].

• Speedup: the data size is kept constant and the number of cores is increased. An ideal distributed

algorithm should feature linear speedup, that is, a system with m cores must provide a speedup of m.

However, in practice a linear speedup is difficult to obtain due to communication and synchronization

overhead.

Speedup(m) =
runtime on 1 core

runtime on m cores
(10)

4https://spark.apache.org
5https://spark.apache.org/docs/2.0.2/api/scala/#org.apache.spark.rdd.RDD
6https://www.openml.org/search?type=data
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• Sizeup: the number of cores is kept constant and the data size is increased. Sizeup measures how much

longer it will take to process an m-times larger dataset. A linear increase in execution time represents

the ideal case.

Sizeup(data,m) =
runtime for processing m · data

runtime for processing data
(11)

• Scaleup: the ability of a system to run an m-times greater job with m-times larger system is measured,

whose ideal value should be 1 (runtime of the baseline system).

Scaleup(data,m) =
runtime for processing data on 1 core

runtime for processing m · data on m cores
(12)

We ran the algorithms in a Hadoop7 cluster composed of 6 slave nodes and a master node connected via

1Gb/s Ethernet LAN network. Half of the slave nodes have 2 Intel Xeon E5-2620 v3 processors at 2.4 GHz

(3.2 GHz with Turbo Boost) with 12 virtual cores in each one (where 6 of them are physical). The other

half are equipped with 2 Intel Xeon E5-2620 v2 processors at 2.1 GHz with the same number of cores as

the previous ones. The master node is composed of an Intel Xeon E5-2609 processor with 4 physical cores

at 2.4 GHz. All slave nodes are equipped with 64 GB of RAM memory, while the master works with 32

GB of RAM memory. With respect to the storage specifications, all nodes use Hard Disk Drives featuring

a read/write performance of 128 MB/s.

Table 9 shows the runtime of FUZZ-EQ-Spark on several reduced versions of HIGGS with different

number of single-core executors. More specifically, we took 4 executors and 10% of HIGGS as the baseline

case (m = 1) and we gradually doubled both the number of executors and the data size (maintaining the

original class distribution), until 32 executors and 80% of HIGGS. This way, for each number of executors

(4, 8, 16, 32) we run the algorithm using 10%, 20%, 40%, and 80% of data. These runtimes were used to

compute the speedup, sizeup, and scaleup (Fig. 6).

According to the results, FUZZ-EQ-Spark provides near-linear speedup and sizeup, leading to scaleup

values closed to 1 (ideal case). Regarding the benefits of using FUZZ-EQ in Big Data classification problems,

Table 10 shows that CHI-BD significantly improved its discrimination power on COVERTYPE and SUSY

and got slightly worse results on BNG Australian. In the case of HIGGS, the fine tuning of fuzzy partitions

led to a rule number explosion due to the inherent learning nature of CHI-BD, which is explained in detailed

in [9]. These results suggest that FUZZ-EQ will probably be more beneficial in those cases were the learning

algorithm (e.g. CHI-BD) exhibits low classification performance.

6. Concluding remarks

In this paper we have proposed a preprocessing algorithm (called FUZZ-EQ) for helping fuzzy partitioning

methods (FPMs) adjust the fuzzy sets to the distribution of training data and boost the classification

7http://hadoop.apache.org
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Table 8: Description of the Big Data datasets.

Dataset #Examples #Features #Classes

(R/I/C)/T

BNG Australian 1,000,000 (8/6/0)/14 2

COVERTYPE 581,012 (10/0/44)/54 7

HIGGS 11,000,000 (28/0/0)/28 2

SUSY 5,000,000 (18/0/0)/18 2

Table 9: Runtime (s) of FUZZ-EQ-Spark on HIGGS.

Data size 4 executors 8 executors 16 executors 32 executors

10% 279 203 118 100

20% 330 260 146 126

40% 567 399 230 185

80% 939 577 352 276

4 8 16 32
Single-core executors 

1
2

4

8

Sp
ee

du
p

10% of data
20% of data
40% of data
80% of data
Linear

(a) Speedup

10 20 40 80
Data size (%%)

1
2

4

8

Si
ze

up

4 cores
8 cores
16 cores
32 cores
Linear

(b) Sizeup

1 2 4 8
m

0.2

0.4

0.6

0.8

1.0

Sc
al

eu
p

Ideal
FUZZ-EQ

(c) Scaleup

Figure 6: Scalability of FUZZ-EQ-Spark on HIGGS.

Table 10: Classification performance of CHI-BD on original and transformed Big Data datasets.

Dataset Accuracy rate per class (AccClass) Geometric mean (GM)

Original Transformed Original Transformed

BNG 85.02 82.87 .8483 .8264

COVERTYPE 66.73 79.44 .6419 .7847

HIGGS∗ 58.48 - .5847 -

SUSY 62.42 76.65 .5524 .7634

∗The rule number explosion made CHI-BD run out of memory.
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performance of fuzzy classifiers. FUZZ-EQ consists in transforming the original data distribution into a

uniform distribution by means of the probability integral transform theorem. Specifically, the histogram of

each variable is equalized so that the fuzzy sets contained in a hypothetical uniform partition would carry

the same amount of experimental evidence. The proposed transformation improves the representation of

training data by implicitly adapting the granularity of fuzzy sets depending on the probability mass.

The experimental results revealed that FUZZ-EQ boosted the classification performance of those classi-

fiers that share the same linguistic terms among their rules. Even in those cases where membership functions

were rule-specific (i.e., each rule uses its own linguistic terms), FUZZ-EQ did not negatively affect discrim-

ination capability and was able to maintain classification performance. As for interpretability, we include

a tool for recovering the interpretability of linguistic terms by mapping each data point in the transformed

space back to the original space. The nonlinearities which might appear in membership functions when

applying this tool helps FPMs create a more accurate representation of the data.

Beyond fuzzy approaches, future work might include a non-fuzzy version of FUZZ-EQ to help algorithms

discretize continuous domains into a set of bins or intervals, which is a common practice in many popular

machine learning methods such as decision trees. This would also allow us to empirically analyze how fuzzy

classifiers perform with respect to non-fuzzy alternatives.
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[19] López, V., del Ŕıo, S., Beńıtez, M., Herrera, F., 2015. Cost-sensitive linguistic fuzzy rule based classification systems

under the MapReduce framework for imbalanced big data. Fuzzy Sets and Systems 258, 5–38.
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