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ABSTRACT 

The genetic algorithm (GA), one of the best-known metaheuristic algorithms, has been 

extensively utilized in various fields of management science, operational research, and 

industrial engineering. The efficiency of GAs in solving large-scale optimization problems 

would be enhanced if the iterative processes required by the genetic operators can be 

implemented in a parallel and distributed computing architecture. Apache Hadoop has recently 

been one of the most popular systems for distributed storage and parallel processing of big data. 

By integrating highly the GA into Apache Hadoop, this study proposes an advanced GA parallel 

and distributed computing architecture that achieves the effectiveness and efficiency of GA 

evolution. The developed computing framework is characterized by the sophisticated 

mechanism of dispatching the GA core operators into Apache Hadoop and fits well the cloud 

computing model. The presented GA parallelization architecture outperforms the state-of-the-

art reference architectures according to the computational experiments where the testing 

instances of travelling salesman problems are employed. Our numerical experiments also 

demonstrate that the proposed architecture can readily be extended to Apache Spark. 

Keyword: Genetic algorithm; parallel and distributed computing; Apache Hadoop; travelling 

salesman problems; Apache Spark 

  

*Manuscript
Click here to view linked References

http://ees.elsevier.com/asoc/viewRCResults.aspx?pdf=1&docID=45261&rev=0&fileID=766162&msid={821E4A9D-0DF8-4654-BD17-9C36271B24C7}


2 
 

1. Introduction 

The global optimization of real-world problems in management science and operational 

research, e.g. the container loading problems (Tsai et al., 2015; Huang et al., 2016; Huang and 

Hwang, 2017), vehicle routing problems (Grefenstette et al., 1985; Victor et al., 2013; Teobaldo 

et al., 2018), cutting stock problems (Dyckhoff, 1990; Lu and Huang, 2015; Wuttke et al., 2018), 

production scheduling problems (Murata et al., 1996; Pongchairerks and Kachitvichyanukul, 

2009; Maenhout and Vanhoucke, 2018), are difficult to achieve due to their nature of NP-

hardness (Scheithauer, 1992). Considering those optimization problems on large scale, it is 

relatively realistic to produce a suboptimal or quality feasible solution rather than a global 

optimum. It thus is popular in practice to develop heuristic/metaheuristic solution techniques 

that are capable of yielding acceptable solutions within a reasonable time. One of the most 

common evolutionary algorithms is the genetic algorithm (GA) (Holland, 1975), which has 

been extensively utilized for tackling nonlinear optimization problems in various fields 

(Gallagher and Sambridge, 1994; Hartmann, 2002; Lu and Huang, 2015; Ren et al., 2018). To 

enhance the computational performance of GAs for the large-scale NP-hard problems, the 

parallelization of GA in a distributed computing architecture has been proposed in this study. 

 

1.1 Three baseline models of GA parallel and distributed architecture 

Considering the stochastic solution searching mechanism of GAs, Luque and Alba (2011) 

developed a parallel and distributed architecture integrated with the GA for exploring solution 

spaces. Referring to Luque and Alba (2011), the parallel and distributed architecture for the 

GA processing can be classified into the following three models:  

(i) Master-slave model (also called global parallelization model): In the master-slave model 

(Martino et al., 2012; Geronimo et al., 2012), there is a master node to manage all sub 

populations and distribute individuals among slave nodes. Subsequently, the fitness values 

of individuals are calculated in the corresponding slave nodes. Actually, the redesign of 

GA framework is not required in this model since the individual fitness evaluation operator 

can be independent from one another in the population. 

(ii) Distributed model (also called coarse-grained parallelization model or island model): In 

the distributed model (Ferrucci et al., 2013), a population is divided into several 

subpopulations located in several islands and the GA runs independently in each island. 

Since each island only contains partial individuals of the population, those islands 

periodically exchange information by migrating some individuals for injecting diversity 
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into the converging population (Herrera and Lozano, 2000; Yu and Zhang, 2006; Melab 

and Talbi, 2010; Yu et al., 2011). The model can perform all operators of GA in the parallel 

and distributed computing such that the different islands can explore different portions of 

the search space periodically. 

(iii) Cellular model (also called fine-grained parallelization model or grid model): The cellular 

model (Arora and Chana, 2014; Camacho, 2015; Gong et al., 2015) is to structure a 

population into neighborhoods and put a part of individuals in a node (i.e. grid). The GA 

is performed in parallel computing to evaluate the fitness value of each chromosome and 

apply locally GA operators (i.e. selection, crossover and mutation operators) to the small 

adjacent neighboring. On the basis of the massively parallel architecture, the model can 

significantly speed up the evaluation of all chromosomes. However, it requires a massive 

clustering system to deal with this model. Vidal and Alba (2010) demonstrated that this 

model can be implemented based on the graphical processing units (GPUs) for fast 

computations when the operators are defined as matrix operations.  

 

1.2 GA parallelization based on MapReduce 

MapReduce is a software framework for distributed computing proposed by Dean and 

Ghemawat (2008) in the Google system. The framework is an associated implementation for 

processing large-scale data sets using a distributed algorithm on a cluster.  

In the master-slave model implemented on the MapReduce (Martino et al., 2012; 

Geronimo et al., 2012), the evaluation operator of GA can be delegated by utilizing multiple 

mappers for evaluating the fitness value of each chromosome in the parallel and distributed 

environment. Subsequently, the single reducer is to collect the results and perform the other 

GA operators including the selection, crossover, and mutation operators. One generation means 

an execution round on the MapReduce, and the whole computation is a sequence of executions. 

The master-slave model performs the evaluation operator in the parallel computing with 

multiple mappers, while it does not consider the parallelism of other GA operators (i.e. 

selection, crossover, and mutation operators), all of which are run in the reducers, and may 

cause some scalability issues. 

For the distributed model on the MapReduce, Ferrucci et al. (2013) designed a partitioner 

to assign each island to a reducer. It aims to perform the other operators in parallel computing 

after running the evaluation operator in the mappers. Since the model has much more reducers, 

it is more efficient than the master-slave model. These operators are performed in the 
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incomplete situation such that it often causes the early convergence. 

As for the cellular model, Arora and Chana (2014) and Camacho (2015) integrated the 

clustering technique with the GA to solve the large-scale problems in a massively parallel 

computing environment. Gong et al. (2015) proposed a cellular model that is slightly modified 

from the clustering technique of the distributed model with a partitioner using a pseudorandom 

function on the MapReduce. For the cellular model, individuals only interact with their 

neighbors, which could cause the lack of population diversity. Since the selection and crossover 

operators are not able to generate solutions outside the limited neighborhood, it may fall into a 

local optimum to incur the early convergence. Additionally, the method requires a massive 

powerful clustering system to deal with these operators. 

Hadoop MapReduce has recently been a complete framework for processing vast amounts 

of data in a parallel and distributed environment and one of the most popular distributed 

computing architectures. There exists a well-designed structure for large-scale data processing 

in the distributed servers of Hadoop Distributed File System (HDFS), with which the users can 

easily develop a parallel computing program for large-scale optimization problems. The review 

of GA parallelization with MapReduce (Sachar and Khullar, 2016) indicates that Hadoop 

MapReduce platform has obvious advantages over others. The detailed architectures of Apache 

Hadoop and its extension, i.e. Apache Spark, are discussed in the next subsection. 

 

1.3 Architectures of Apache Hadoop and Spark 

The advent of big data makes the formulation of optimization problems closer to the real 

world while the solution finding and relevant computations become more challenging. In order 

to tackle the large-scale optimization problems by the metaheuristics such as the GA, it is 

necessary to implement the iterative procedures of GA in the distributed computing 

environment so that the computation time can be reduced. Apache Hadoop (2006) and Apache 

Spark (2017) have been the popular distributed computing architectures for the iterative 

algorithms such as the GA. The characteristics of Hadoop and Spark are: (i) Hadoop is designed 

for efficiently dealing with large-scale problems on clusters of hardware with a scalable and 

fault-tolerant framework; (ii) Spark, without a file system, is a cluster computing tool running 

in memory such that its speed is faster than Hadoop. The studies of GA parallelization using 

Apache Hadoop/Spark can be found in the literature. 

Combining a distributed computing framework of Hadoop MapReduce with the GA, 

Verma et al. (2009) employs the mappers to perform the iterative procedures with partial 
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chromosomes, and the results produced by the mappers are transmitted to the reducers for the 

further operations such as selection, crossover, and mutation. Then the new population will be 

generated in the next generation. However, the chromosomes in the reducers are produced from 

the partial population. Since the evolution is limited in an incomplete population, the yielded 

solutions fall into a local optimum, thus causing the premature convergence. Kečo and Subasi 

(2012) proposed a distributed GA approach based on the mapper and reducer of Apache 

Hadoop, where each mapper performs the complete operational procedure of GA and then 

delivers the result the reducer. Subsequently, it is determined by the reducer whether the GA 

operations should be iterated. Unfortunately, this approach cannot effectively divide a whole 

operational procedure into serval sub-procedures for parallel computing, which results in a long 

solving time for large-scale problems. The parallel and distributed architecture for GAs on the 

basis of the mapper and reducer presented by Geronimo et al. (2012) has the similar 

disadvantage. Qi et al. (2016) designed the parallel GA procedure with the scheme of Apache 

Spark, which contains a two-phase parallelization algorithm including fitness evaluation 

parallelization and genetic operational parallelization. 

It is found in our preliminary research that the effectiveness and efficiency of the GA 

parallelization can be enhanced if the evolution operations of GA can be highly integrated into 

Apache Hadoop or Spark. This study proposes a parallel and distributed architecture of GA on 

Apache Hadoop and Spark that outperforms those in the existing literature. The presented GA 

parallelization scheme enhances the utilization of the HDFS of Apache Hadoop by dispatching 

the core operators of GA with a relatively efficient parallelization mechanism, which can 

reduce the idle times of processing jobs in the HDFS. The similar parallelization mechanism 

can be applied to the Resilient Distributed Dataset (RDD) in Apache Spark, and the developed 

scheme can be readily extended to Apache Spark. 

The remainder of this paper is organized as follows. Section 2 discusses the state-of-the-

art architectures of GA parallelization on Apache Hadoop. The proposed GA parallelization 

architecture is presented in Section 3. The computational experiments are provided in Section 

4. The extension of the proposed GA parallelization to Apache Spark is discussed in Section 5. 

The concluding remarks are given in Section 6. 
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2. Review of GA parallelization on Apache Hadoop  

Apache Hadoop (2006) with MapReduce is a distributed architecture on clusters for 

dealing with large-scale data sets. In the environment of MapReduce, the developers can utilize 

the distributed computing program for solving large-scale problems using the map and reduce 

functions. Also, the MapReduce is also a simple programming model, where a scalable, flexible, 

and fault-tolerant algorithm for computations can be easily established. There are various 

applications using the Apache Hadoop with MapReduce to solve large-scale problems (Almeer, 

2012; Dittrich and Quiané-Ruiz, 2012; Gu et al., 2014). 

 

2.1 Procedure of MapReduce on Apache Hadoop 

The procedure of MapReduce is illustrated in Figure 1. The MapReduce plays an 

important role to transform the input data sets into the form of <key, value> for receiving and 

sending. The first element, i.e. key, indicates an index of the corresponding value and is defined 

by the user. The second element, i.e. value, can be a set of data sets, a set of numbers, a set of 

specific sequential values, a chromosome in the GA, etc. There exists a mapper, i.e. function 

map, for converting original 2-tuple <key, value> into an intermediate 2-tuple. Afterward, the 

Hadoop merges, sorts, shuffles, and partitions the intermediate 2-tuple, and then each processed 

2-tuple is transformed into the form of <key, value list> as the input of the reducer, i.e. function 

reduce. Note that the transformed key is also a user-defined index, and the value list refers to 

the multiple sets corresponding to the same index. Finally, the reducer outputs the result to the 

HDFS. Because of the required subsequent transformation from <key, value> into <key, value 

list> for the reducer on the MapReduce, a procedure doing appropriately the dataset dispatching 

in the form of <key, value> in the mapper on the basis of HDFS is the key to the efficiency of 

Apache Hadoop in solving the large-scale problems. 
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Figure 1. Procedure of MapReduce on Hadoop 

 

2.2 Operational procedure of the GA 

Gen and Cheng (2000) implies that the operational procedure of the GA can be run in a 

parallel and distributed system. The concept of GA is demonstrated in Table 1.  

 

Table 1. Operational procedure of the GA 

Begin 
  1t   
  Initialize population ( )P t ; 
  Evaluate the fitness value of each chromosome in ( )P t ; 
  Arrange chromosomes in ( )P t  in non-increasing order of the fitness value. 
  do begin 
    Create new offspring ( )Q t  from ( )P t  by Crossover, and modify the new 

offspring ( )Q t  by Mutation; 
    Evaluate the fitness value of each chromosome in ( )Q t ; 
    Sort all chromosomes in ( )P t  and ( )Q t  into non-increasing order according 

to their fitness values; 
    Generate the next population ( 1)P t   from ( )P t  and ( )Q t  by Selection; 

    1t t  . 
  end while (Checking the termination condition*) 
end 
*Note that the termination condition can be set using a limit to the number of iterations, the CPU time, or a 

threshold of objective value. 
 

2.3 GA parallel architecture of Verma et al. (2009) 

Verma et al. (2009) proposed a GA distributed computing architecture on Apache Hadoop 
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based on the selecto-recombinative GA (Goldberg, 1989; 2013). The approach resolves the 

issue of a long computational time when the problem size in GA becomes large. The 

implementation of GA on Hadoop proposed by Verma et al. (2009) is shown in Figure 2. The 

main procedure starts by loading data sets and then sets up the Hadoop environment according 

to a set of parameters. Subsequently, the Hadoop will be launched to run the operators of GA. 

The mapper only corresponds to the evaluation operator while the reducer corresponds to 

selection, crossover, and mutation operators. These four operators are designed in the main 

procedure. The Hadoop controls the mappers and reducers automatically, while different 

procedures of the mapper and reducer can be designed by various requests. After satisfying the 

stop condition, the iterative procedure of mappers and reducers will be stopped and the 

incumbent solution will be output.  

There are two functions, i.e. map() and reduce(), used in the mapper and reducer, 

respectively. The two functions generate an initial population and send it to the HDFS. Then 

the initial population is divided into serval shards, depending on the size of the input dataset. 

The shards are forked onto different mappers for the fitness evaluation in parallel. Each mapper 

can evaluate (denoted by E in Figure 2) the fitness of each chromosome in the shard and then 

output the 2-tuple <key, value>=<fitness, chromosome> to Hadoop. Afterward, any results 

with the same key in the mapper will be merged in the form of <key, value list>, where the 

value list indicates the multiple chromosomes corresponding to the same index key (i.e. fitness). 

Then the 2-tuple <key, value list> will be send to different reducers for selection (denoted by 

S in Figure 2) and crossover/mutation (denoted by CM in Figure 2) operations.  

 

Figure 2. The GA parallelization on Hadoop developed by Verma et al. (2009) 
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However, the architecture of Verma et al. (2009) may cause the following concerns:  

(i) The evolution of chromosomes in the reducer never considers the whole population, i.e., 

each reducer only performs the operations with partial populations, so the evolution pool 

would not be large enough for maintaining genetic diversity. It thus would lead to an early 

convergence by ending up with a local optimum. 

(ii) The GA roulette wheel selection mechanism could have the better chromosomes 

eliminated but the worse chromosomes reserved in the next generation. The details will 

be discussed with an example in the next paragraph as well as Figure 3. 

(iii) The whole procedure would not be directly terminated even when an optimal solution is 

obtained in the mapper, i.e. the operations of selection and crossover/mutation in the 

reducer could be redundantly performed. 

The abovementioned disadvantage of the GA roulette wheel selection is discussed. 

Consider eight chromosomes in the whole population as shown in Figure 3. The probabilities 

of all the chromosomes in the roulette wheel selection operator are 30%, 20%, 15%, 14%, 8%, 

6%, 4%, and 3%, respectively, as shown in Figure 3(a). After the partitioner randomly assigns 

the chromosomes to the reducers A and B, the probability of each chromosome in the two 

partial populations is recalculated. Figure 3(b) demonstrates that the two partitioned sets (C1, 

C2, C3, C8) and (C4, C5, C6, C7) are assigned to the reducers A and B, respectively. The 

probabilities are (44.12%, 29.41%, 22.06%, 4.41%) and (43.75%, 25.00%, 18.75%, 12.50%) 

for (C1, C2, C3, C8) and (C4, C5, C6, C7), respectively. The selection probability of C3 is less 

than that of C4 or C5 after the partition while the opposite situation exists in the whole 

population. Therefore, this approach could miss significant chromosomes. 
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Figure 3. Probabilities in the roulette wheel selection operator 

 

2.4 GA parallel architecture of Kečo and Subasi (2012) 

The GA parallel architecture presented by Kečo and Subasi (2012), also on Apache 

Hadoop, is shown in Figure 4. Note that the function map() is used in the mapper stage while 

the reducer stage is void. 

 

Figure 4. The GA parallelization on Hadoop developed by Kečo and Subasi (2012) 

 

In the architecture of Kečo and Subasi (2012), the main procedure firstly configures the 

Hadoop environment and runs the initialization. In the first iteration, each mapper performs all 

C2 20% 

C1 30% 

C3 15% 

C4 14% 

C6 6% 
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C7 4% 

C8 3% 
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the GA operators, including initial evaluation (E0), crossover/mutation (CM), evaluation (E), 

and selection(S), where the setting of relevant parameters is required. After the first iteration, 

each mapper performs all operators but E0. The evaluation operator E0 calculates the fitness 

values of the initialized chromosomes, while E calculates the fitness values of those generated 

by the crossover/mutation operators. Then the results are delivered back to the main procedure 

for checking the stop condition. If the stop condition is not satisfied, then the Hadoop will 

repeat all operators except E0. Otherwise, the incumbent solution will be output.  

The main disadvantage of the architecture is that the parallelization effectiveness exists 

only in the GA parameter tuning but not in the GA operator processing. Consider an example 

of the GA procedure in the mapper. Assume that the running times of these four operations, i.e. 

evaluation, crossover, mutation, and selection, for the population ( )P t  are 1 , 2 , 3 , and 

4 , respectively, as shown in Figure 5. Suppose the total run time of the four operators (i.e.

1 2 3 4      ) is 20 seconds in each iteration t. If the whole process of GA runs 180 

iterations, it would take at least 20 180 3, 600   seconds to fulfill this convergent evolution. 

We note that around 95% of the total elapsed time is used for performing these four operators. 

If these four operators can be performed in parallel in a distributed system, then it will 

significantly reduce the total run time of GA. 

 

 

Figure 5. The GA procedure in some iteration t in the mapper 

 

3. Proposed GA parallel and distributed architecture 

How to parallelize the four major operators of GA, i.e. evaluation, crossover, mutation, and 

selection, is crucial to the effectiveness and efficiency of a developed GA parallel and 

distributed architecture. Before proposing the parallelization scheme, this study analyzes the 

characteristics of these four operators one by one as follows: 

Initialization Evaluation Crossover Mutation Selection 

Does satisfy the 
termination condition? 

No 

Yes 

Next procedures 

α1 α2 α3 α4 

Run time (α1+α2+α3+α4) in each iteration t 
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(i) Evaluation: The evaluation operator plays an important role in the GA evolution since 

evaluating all chromosomes’ fitness in each generation is necessary. The fitness 

evaluations actually can be distributed for parallel computing since evaluating the fitness 

of an arbitrary chromosome needs no information from other chromosomes and is an 

independent job. Besides, the computational time for the whole GA procedure grows 

rapidly when the sizes of population ( )P t  and offspring ( )Q t  become large. Thus, the 

evaluation operator is suitable for and shall be developed for parallelization in a parallel 

and distributed system. 

(ii) Crossover: The crossover operator generates an offspring from two parent chromosomes 

of the population. Firstly, the frequency of performing the crossover operation is not 

higher than that of running the evaluation operator in each generation. Secondly, this 

operator requires two parent chromosomes selected from the whole population to avoid 

the same situation as Figure 3. In other words, it may cause premature convergence if the 

crossover operator selects the two parent chromosomes from different sub-populations. 

Moreover, because a generated offspring chromosome could be an infeasible solution, 

designing a procedure to avoid or fix the infeasibility of offspring chromosomes is critical. 

From the above viewpoints, a sophisticated design that any infeasible chromosome 

yielded can be independently adjusted in the parallel computation and any two parent 

chromosomes for producing an offspring are selected from the whole population is needed 

for the crossover operator. 

(iii) Mutation: The main task of the mutation operator is adjusting the offspring chromosome 

generated by the crossover operator for keeping the diversity. The frequency of 

performing the mutation operation is nearly identical to that of the crossover operation. 

Similarly, a mechanism to fix the infeasibility of chromosomes generated from the 

mutation operation is needed. The mutation operation is also suitable for the 

parallelization in distributed computing. 

(iv) Selection: The selection operation for each t-th generation is to generate the new 

population for the (t+1)-th generation, i.e. ( 1) ( ) ( )P t P t Q t   . The desired GA 

principle “survival of the fittest” could fail provided that the whole population is divided 

into sub-populations for the selection operation as demonstrated in Figure 3. It is thus 

necessary to generate a new population from all sub-populations in the reducers. In 

addition, the selection operation is performed just once for each generation in the GA 

procedure. Therefore, it is unnecessary and unsuitable to run the selection operator in 
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parallel and distributed computing. 

The aforementioned discussions of the four GA operators are summarized in Table 2. 

 

Table 2. Characteristics of the four GA operators 

Operator Frequency per 
generation 

The whole 
population 

requirement 

Parallelization 

Evaluation High No Suitable 
Crossover Middle Yes Conditionally suitable 
Mutation Middle No Suitable 
Selection Once Yes Unsuitable 

 

These characteristics inspire this study to develop a GA parallelization scheme that retains the 

following properties: 

Property 1: To enhance the efficiency of exploring the solution space, the three operators 

including evaluation, crossover, and mutation in GA are implemented in a 

parallelization architecture. 

Property 2: Any new child chromosome generated from the crossover or mutation is 

immediately evaluated in a parallelization architecture, i.e. the operators of crossover, 

mutation, and evaluation are executed simultaneously. 

The GA parallel and distributed architecture on Apache Hadoop proposed by this study is 

shown in Figure 6.  
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Figure 6. Proposed parallel and distributed architecture on Apache Hadoop 

 

The three procedures in the proposed GA parallelization architecture are described below:  

(i) Main procedure is a main program to dispatch the data into the MapReduce on Hadoop 

and control the processes of MapReduce 1 and MapReduce 2. It also loads the dataset and 

configures the initial environment of Hadoop. The four GA operators are designed in the 

main procedure. The operators of evaluation, crossover, and mutation are controlled by 

the Hadoop, while the selection operator is governed by the main procedure to collect the 

solutions of all sub-populations on the Hadoop. Besides, to avoid the disadvantage of 

selecting parent chromosomes in partial populations (as shown in Figure 3), we design a 

sub-procedure to select multiple parent chromosome sets (i.e. multiple crossover pools), 

from the whole sub populations. Then, the multiple parent chromosome sets will be sent 

to the mappers for the crossover operation. The design mechanism can achieve the 

parallelization of the crossover/mutation operations and retain the aforementioned 

Property 1 and 2. 

(ii) MapReduce 1 is the initial MapReduce procedure on Hadoop. Mapper 1 in this 

MapReduce procedure evaluates each chromosome in the initial population, while all 

reducers are dummy. 

(iii) MapReduce 2 is the follow-up iterative MapReduce procedure, where each mapper (i.e. 
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Mapper 2) runs the crossover/mutation operators and its corresponding reducer (i.e. 

Reducer 2) evaluates each chromosome assigned from the mapper. 

To increase the efficiency of MapReduce 1 and MapReduce 2, the Hadoop dynamically 

adjusts the numbers of mappers and reducers. In the initial stage, each mapper in the 

MapReduce 1 calls the function map_1(key, value), where the first parameter ‘key’ is an index 

of the second parameter ‘value’ representing the chromosome. The function map_1 (key, value) 

performs the following operations (see Figure 7): 

(i) Call the function Representation(value) to convert ‘value’ into a chromosome. Then save 

it temporarily as ‘chromosome’. 

(ii) Call the function Evaluation(chromosome) to evaluate the fitness of ‘chromosome’. Then 

save it temporarily as ‘fitness’. 

(iii) Call the function Emit() to send the 2-tuple <fitness, chromosome> back to the Hadoop. 

 

function map_1(key, value) 
begin 

chromosome = Representation(value); 
fitness = Evaluation(chromosome); 
Emit(fitness, chromosome); 

End 
Figure 7. The proposed function map_1(key, value)  

 

In the iterative stage, each mapper in MapeReduce 2 calls the other function map_2(key, 

values). The first parameter ‘key’ is similar to that in map_1(). The second parameter ‘values’ 

is defined as a string representing multiple chromosomes. The function map_2(key, values) 

performs the following operations (see Figure 8):  

(i) Call the function RepresentationBuf(values) to convert ‘values’ into a pair of 

chromosomes, and then save them temporarily as ‘chromosomeBuffer’.    

(ii) Call the function CrossoverMutation(chromosomeBuffer) to generate a new child 

chromosome. 

(iii) Call the function Emit() to send the 2-tuple <_index, new_chromosome> back to the 

Hadoop, where the parameter ‘_index’ is the new index for each new offspring 

‘new_chromosome’. 

static int new _index=0; 
function map_2(key, values) 
begin 

chromosomeBuffer = RepresentationBuf(values) 
chromosomeArray = CrossoverMutation(chromosomeBuffer) 
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for each (new_chromosome in chromosomeArray) 
Emit(_index, new_chromosome); 
_index += 1; 

end for each 
end 

Figure 8. The proposed function map_2(key, value) 

 

Additionally, the chromosomes with the same fitness value will be grouped into a string 

named ‘value_list’. Each reducer calls reduce_2(), a function of the two parameters ‘key’ and 

‘value_list’. The function reduce_2(key, value_list) performs the following operations (see 

Figure 9): 

(i) Call the function Representation(value) to convert ‘value’ into a chromosome. Then save 

it temporarily as ‘chromosome’. 

(ii) Call the function Evaluation(chromosome) to evaluate the fitness of ‘chromosome’. Then 

save it temporarily as ‘fitness’. 

(iii) Call the function Emit() to send the 2-tuple <fitness, chromosome> back to the Hadoop. 

function reduce_2(key, value_list) 
begin 

for each (value in value_list) 
  chromosome = Representation(value); 
  fitness = Evaluation(chromosome); 
  Emit(fitness, chromosome); 
end for each 

End 
Figure 9. The proposed function reduce_2(key, value_list) 

 

The proposed GA parallel and distributed architecture on Apache Hadoop mainly contains 

three components, i.e. main procedure, Hadoop MapeReduce 1 and Hadoop MapeReduce 2. 

The detailed steps of the designed procedure are provided below: 

(i) Initial procedure (running only once): 

Step 1: The main procedure generates the initial population according to the user-defined 

parameters.  

Step 2: The main procedure converts the whole population into sub-populations and then 

activates Hadoop MapeReduce 1. 

Step 3: Each sub-population is assigned to one of the mappers for the fitness evaluation 

by Hadoop MapeReduce 1 and then sent back to the main procedure. 

Step 4: The main procedure calls a sub-procedure to prepare multiple crossover pools for 

the mappers of Hadoop MapeReduce 2 and then activates Hadoop MapeReduce 
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2. 

 Note that each mapper corresponds to one reducer, but the reducer is dummy in the 

initial procedure. 

(ii) Iterative procedure: 

Step 5: Each mapper coupled with the corresponding reducer performs sequentially the 

crossover, mutation, and evaluation operators for generating new child 

chromosomes and then sends them back to the main procedure. 

Step 6: The main procedure performs the selection operation for all the new child 

chromosomes collected from the reducers. 

Step 7: The main procedure checks the stop condition. If the stop condition is not satisfied, 

it calls a sub-procedure to prepare multiple crossover pools for the mappers of 

Hadoop MapeReduce 2 and then goes to Step 5 to activate MapeReduce 2. 

Otherwise, it goes to the output phase. 

 Note that the stop condition can be the maximal number of iterations, the maximal run 

time or the objective value accepted. 

(iii) Output: The incumbent solution is yielded in the output stage. 

 

The advantages of the proposed GA parallelization scheme includes:  

(i) The GA procedure is sophisticatedly embedded in Apache Hadoop.  

(ii) The selection operator is designed in the main procedure so that the selection probabilities 

can be calculated in accordance with the rule “survival of the fittest”. 

(iii) Any new child chromosome generated from the crossover/mutation operations can be 

directly evaluated in the parallel and distributed computing system since the two operators 

are run simultaneously, which can achieve the sufficient solution diversity for exploring 

the solution space. 

 

4. Numerical experiments on Apache Hadoop 
This section conducts the computational experiments to compare the performance of the 

proposed GA parallelization architecture (cf. Figure 6) with those of the two reference 

architectures, i.e. Verma et al. (2009) (cf. Figure 2) and Kečo and Subasi (2012) (cf. Figure 4), 

in solving the classical NP-hard combinatorial problem. To test the effectiveness of GA 

parallelization, we employed the asymmetric travelling salesman problem (ATSP) to generate 

three sets of testing instances as shown in Table 3. Instance 1 (denoted by Small-ATSP), 
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Instance 2 (Medium-ATSP) , and Instance 3 (Large-ATSP) are the small-scale ATSP composed 

of 256 cities, middle-scale ATSP composed of 512 cities, and large-scale ATSP composed of 

1024 cities, respectively. The dataset of the three testing instances of ATSPs are provided in 

the supplementary information which can be found online 

(http://drive.google.com/open?id=18DI8tGhraf15ib9uIia70TUI-SX3t160). 

 

Table 3. Three testing instances of ATSP 

Instance Type Number of cities 
1 Small-ATSP 256 
2 Medium-ATSP 512 
3 Large-ATSP 1024 

 

In the experiments, the GA programs were implemented with Java standard edition 

version 9 on eight PCs (i.e. a master and seven slaves) equipped with Intel Core i7 CPU, 

CentOS 7, and Apache Spark 2.2. The detailed information of our equipment is listed in Table 

4. Referring to Verma et al. (2009) and Kečo and Subasi (2012), we had the following 

parameters and settings for the three testing instances. 

(i) Population size: 2048 

(ii) Crossover rate: 0.8 

(iii) Considering the fairness, the mutation rate was set to 0 since the mutation operator was 

not performed in Verma et al. (2009). 

(iv) Considering the fairness, we adopt the roulette wheel selection operator for the three 

testing architectures. 

 

Table 4. Experimental equipment 

Node name Storage Operating system CPU Memory 
Master 64 GB CentOS 7 Intel Core i7 12 GB 

Slaves1-7 32 GB CentOS 7 Intel Core i5 8 GB 
 

In each of the three GA parallelization architectures, we run 30 rounds for all the three 

testing instances. The best, average, and worst results are tabulated in Table 5. The experiments 

employed the maximal run time as the stop condition. Three time thresholds (900, 1400, 9000) 

in seconds were used for Instance 1. For Instance 2, we adopted the three thresholds (900, 3000, 

18000) in seconds. The three thresholds (900, 4200, 36000) in seconds applied to Instance 3. 

The evolution diagrams of each GA parallelization architecture for the three instances are 

depicted in Figures 10-12, where the x-axis stands for the computational time (in seconds) and 
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the y-axis indicates the objective value (i.e. fitness value). The computational results can be 

summarized as follows:  

(i) It is convergent at the 1643rd, 2351st, and 4531st second to solve Small-ATSP, 

Medium-ATSP, and Large-ATSP, respectively, with the proposed GA parallelization 

architecture. The trends of convergence illustrate that the proposed architecture 

outperforms the two reference architectures. 

(ii) Figures 10-12 clearly show that the premature convergence arises in the architecture 

of Verma et al. (2009), which in general is the worst in performance from each aspect. 

It converges at the 1235th, 1314th, and 1740th second to solve Small-ATSP, Medium-

ATSP and Large-ATSP, respectively, in the architecture of Verma et al. (2009). The 

aforementioned disadvantage of the GA roulette wheel selection is evidenced by this 

computational result. Each reducer in the architecture of Verma et al. (2009) performs 

the selection and crossover operations in which sub-populations instead of the whole 

population are used. It leads to an evolution pool that is not large enough and cannot 

contain a genetically stable population. 

(iii) The evolution diagrams show that the required evolution time in the architecture of 

Kečo and Subasi (2012) is the longest among these three. The main reason is that the 

four GA operators in their designed architecture basically are not processed in parallel. 

 

Table 5. Computational results of ATSPs on Apache Hadoop 

Instance 
Time 
(sec.) 

Solution 
Situation 

Verma et al.  
(2009) 

Kečo and 
Subasi (2012) 

Proposed 
architecture 

Evolution 
(Average) 

Small-
ATSP 

900 
Best 105,648.0 99,130.0 70,151.0 

Please 
refer to 

Figure 10 

Average 106,252.3 103,040.8 72,654.3 
Worst 106,652.0 106,716.0 74,605.0 

1,400 
Best 100,780.0 94,669.0 57,557.0 

Average 101,698.7 98,742.6 59,077.7 
Worst 102,230.0 103,828.0 60,362.0 

9,000 
Best 100,780.0 54,411.0 54,352.0 

Average 101,698.7 58,659. 8 55,293.0 
Worst 102,230.0 68,887.0 56,102.0 

Medium-
ATSP 

900 
Best 219,901.0 220,598.0 189,748.0 

Please 
refer to 

Figure 11 

Average 222,977.7 227,739.2 194,268.0 
Worst 226,303.0 237,122.0 197,975.0 

3,000 
Best 219,071.0 197,480.0 139,990.0 

Average 219,683.7 208,742.1 141,599.7 
Worst 219,994.0 216,693.0 142,852.0 

1,8000 
Best 219,071.0 138,410.0 139,990.0 

Average 219,683.7 148,110.6 141,599.7 
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Worst 219,994.0 171,265.0 142,852.0 

Large-
ATSP 

900 
Best 477,883.0 478,314.0 455,583.0 

Please 
refer to 

Figure 12 

Average 481,609.3 485,423.1 458,238.0 
Worst 488,797.0 492,386.0 462,033.0 

4,200 
Best 459,034.0 431,302.0 341,551.0 

Average 462,036.3 450,598.4 351,031.0 
Worst 467,460.0 483,973.0 357,725.0 

36,000 
Best 459,034.0 342,014.0 334,118.0 

Average 462,036.3 361,409.5 344,822.3 
Worst 467,460.0 410,463.0 351,340.0 

 

 

Figure 10. The evolution diagrams for Small-ATSP on Apache Hadoop 

 

 

Figure 11. The evolution diagrams for Medium-ATSP on Apache Hadoop 
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Figure 12. The evolution diagrams for Large-ATSP on Apache Hadoop 

 
5. An extension to Apache Spark  

Apache Hadoop, based on the HDFS, is suitable for solving the large-scale problems, 

while it may lead to a long input/output processing time. The iterative algorithm accessing data 

from the database of Hadoop, i.e. HDFS, is relatively inefficient (Zaharia et al., 2012). Hence, 

Zaharia et al. (2012) presented a scheme of RDD, which is a distributed memory abstraction 

such that procedures efficiently perform in-memory computations on large clusters in a fault-

tolerant manner. Noting that keeping data in memory can significantly improve the 

performance by an order of magnitude, Zaharia et al. (2012) implemented the RDDs in Apache 

Spark, which is an advanced cluster computing technology for fast computation. Apache Spark 

modifies the computational model based on the technique of Hadoop MapReduce to unify 

efficiently the interactive queries and stream processing. Especially, Apache Spark allows the 

iteration processes, i.e. MapReduce, to contain only the mappers without reducers, and vice 

versa. This section extends the proposed GA parallelization architecture to Apache Spark. The 

computational experiments will be conducted again to compare the performance of the 

proposed architecture with those of the reference architectures of Verma et al. (2009) and Kečo 

and Subasi (2012) on Apache Spark. 

 

5.1 Proposed GA parallelization architecture on Apache Spark 

The concept of the proposed GA procedures embedded in Apache Spark is shown in 

Figure 13. The GA operators including evaluation, crossover, mutation, and selection can be 

designed in one of the two stages of mapper/reducer. The stage of reducer on Apache Spark 

can be omitted such that it can save the input/output (I/O) time in an iterative procedure, while 
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the reducer cannot be omitted on Apache Hadoop. It is thus obvious that Apache Spark is more 

suitable for implementing GA parallelization than Apache Hadoop. 

 

GA Operators

RDDs (in-memory)

Iterations

Population Offspring
Mapper

Reducer 
(Omitted)

 

Figure 13. GA procedures on Apache Spark 

For enhancing the efficiency, the master procedure on Apache Spark can dynamically 

modify the numbers of mappers according to the considered problem. To simplify the 

presentation, we set two mappers in the proposed architecture on Apache Spark as follows:  

Mapper 1: The function map() is declared in Mapper 1 for evaluating the fitness value of each 

chromosome. The description of function map(key, value) is given below (see 

Figure 14): 

function map(key, value) 
begin 

chromosome = Representation(value); 
fitness = Evaluation(chromosome); 
Emit(fitness, chromosome); 

End 
Figure 14. The proposed function map(key, value) 

 

Mapper 2: The function flatMap() is declared in Mapper 2 for running the crossover and 

mutation operators. The crossover operator generates a new offspring chromosome 

by selecting a pair of chromosomes from the whole population. The description of 

function flatMap(key, values) is provided below (see Figure 15): 

function flatMap(key, values) 
begin 

chromosomeBuffer = Representation(values); 
chromosomeArray = CrossoverMutation(chromosomeBuffer); 
for each (new_chromosome in chromosomeArray) 

Emit(new_key_1, new chromosome); 
new_key_1 += 1; 

end for each 
end 
Figure 15. The proposed function flatMap(key, values) 
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The proposed GA parallel and distributed architecture on Apache Spark is shown in Figure 

16, and the detailed processes of the proposed architecture are described as follows.  

(i) Initial procedure: 

Step 1: The master procedure generates the initial population and saves it in the RDD. 

Step 2: Mapper 1 is invoked to evaluate each chromosome of the initial population, and 

then the results are recorded in the RDD. 

 Note that the master procedure monitors Mapper 1 and Mapper 2 to avoid 

misinformation and performs information exchanges between them. 

(ii) Iterative procedure: 

Step 3: Mapper 2 is invoked to run the crossover and mutation operations. The crossover 

operator generates a new chromosome, which is selected from the whole 

population by the master procedure and then saved in the RDD. 

Step 4: If there is any new offspring generated by Mapper 2, then Mapper 1 will be 

invoked for evaluating parallel the new offspring. The result of each chromosome 

is saved in the RDD. 

Step 5: The master procedure selects parents to generate the population of new generation 

from the current population and offspring. 

Step 6: The master procedure checks the stop condition, which can be the maximal number 

of iterations, the maximal run time or the objective value accepted. If the stop 

condition is not satisfied, then it goes to Step 3. Otherwise, it goes to the output 

phase.  

(iii) Output: The best solution is yielded by selecting from the whole population. 
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Figure 16. Proposed GA parallel and distributed architecture on Apache Spark 

 

5.2 Numerical experiments on Apache Spark 

To do the performance comparisons between the proposed GA parallelization architecture 

and the two reference architectures, i.e. Verma et al. (2009) and Kečo and Subasi (2012), this 

study utilized a variant of TSP named VTSP to generate the data sets. Each of n cities in the 

VTSP retains 128 attributes, i.e. city i is represented as ,1 ,2 ,128( , , , )i i i ix x x x   for 1, ,i n  . 

The distance between city i and j is calculated according to the Euclidean distance 

128 2
, ,1

( )i k j kk
x x


 . There are three sets of VTSP instances, where ,i kx  is an random integer 

distributed uniformly over the interval [0, 30] for 1, ,i n   and 1, ,128k   . Instance 1 

(named Small-VTSP), Instance 2 (named Medium-VTSP), and Instance 3 (named Large-VTSP) 

have 256 cities (i.e. 256n  ), 512 cities (i.e. 512n  ), and 1024 cities (i.e. 1024n  ), 

respectively. The dataset of these three testing instances of VTSPs are provided as the 

supplementary information which can be downloaded online 

(http://drive.google.com/open?id=1qxeaw-s8-pFe96o5CMbbWTO8vNy3J7wO).  

 

The GA programs were executed on Apache Spark 2.2. The experimental equipment, 

operating system parameters and settings for these three testing instances were set the same as 
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Section 4. These experiments were also run 30 rounds. Table 6 lists the best, average, and worst 

results of the three GA parallelization architectures for all the three testing instances. Figures 

17-19 present the evolution diagrams of the three architectures for Small-VTSP, Medium-

VTSP and Large-VTSP, respectively. The computational results are summarized as follows. 

(i) The proposed architecture converges at the 663rd, 1572nd and 3539th seconds in 

solving Small-VTSP, Medium-VTSP, and Large-VTSP, respectively. The trends of 

convergence again demonstrate that the proposed architecture outperforms the two 

reference architectures.  

(ii) The architecture of Verma et al. (2009) is convergent at the 261st, 454th, and 623rd 

seconds for Small-VTSP, Medium-VTSP and Large-VTSP, respectively. In Figures 

17-19, the architecture of Verma et al. (2009) shows the premature convergence and 

again yields the worst results for all the three testing instances. 

(iii) The evolution of the architecture of Kečo and Subasi (2012) is the slowest for each 

of the three testing instances. 

 

Table 6. Computational results of VTSPs on Apache Spark 

Instance 
Time 
(sec.) 

Solution 
Situation 

Verma et al. 
(2009) 

Kečo and Subasi 
(2012) 

Proposed 
architecture 

Evolution 
(Avg.) 

Small-
VTSP 

30 
Best 244,918.0 244,676.0 244,591.0 

Please 
refer to 

Figure 17 

Average 245,684.3 246,380.1 245,061.0 
Worst 246,468.0 247,208.0 245,832.0 

200 
Best 243,265.0 242,617.0 232,320.0 

Average 244,071.1 243,977.1 234,408.1 
Worst 245,340.0 245,337.0 236,792.0 

800 
Best 243,265.0 234,703.0 221,597.0 

Average 243,522.6 237,659 221,970.4 
Worst 243,695.0 240,156.0 222,204.0 

Medium-
VTSP 

60 
Best 537,995.0 543,354.0 539,000.0 

Please 
refer to 

Figure 18 

Average 540,164.8 544,162.9 540,461.3 
Worst 542,362.0 545,062.2 542,006.0 

400 
Best 537,635.0 536,668.0 519,008.0 

Average 539,215.4 541,380.3 520,318.6 
Worst 540,241.0 544,351.0 522,867.0 

1,600 
Best 537,194.0 526,795.0 495,784.0 

Average 538,321.7 531,748.9 500,002.4 
Worst 540,135.0 538,233.0 504,499.0 

Large-
VTSP 

120 
Best 1,179,301.0 1,182,063.0 1,175,334.0 

Please 
refer to 

Figure 19 

Average 1,180,329.9 1,184,803.5 1,178,384.8 
Worst 1,181,745.0 1,187,021.0 1,180,706.0 

800 
Best 1,174,666.0 1,177,063.0 1,150,080.0 

Average 1,176,151.7 1,179,282.4 1,150,484.6 
Worst 1,177,006.0 1,181,849.0 1,150,921.0 

3,200 Best 1,174,252.0 1,158,344.0 1,104,894.0 
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Average 1,175,044.5 1,164,756.4 1,108,243.2 
Worst 1,176,213.0 1,169,072.0 1,112,515.0 

 

 

Figure 17. The evolution diagrams of Small-VTSP on Apache Spark 

 

 

Figure 18. The evolution diagrams of Medium-VTSP on Apache Spark 
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Figure 19. The evolution diagrams of Large-VTSP on Apache Spark 

 

6. Conclusion 

This study has developed an enhanced GA parallel and distributed architecture for Apache 

Hadoop and Spark. We have designed an effective approach to maintain the “survival of the 

fittest” principle in the selection operator. This sophisticated mechanism makes the proposed 

architecture fairly select the whole parents for crossover and mutation operations in the parallel 

and distributed architecture. Our numerical experiments have shown that the proposed 

architecture on Apache Hadoop or Spark runs significantly more efficiently than the two 

reference architectures, especially for the large-size optimization problems.  
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