
Elsevier required licence: © <2020>. This manuscript version is made available under the CC-BY-NC-ND 4.0
license http://creativecommons.org/licenses/by-nc-nd/4.0/
The definitive publisher version is available online at https://doi.org/10.1016/j.asoc.2020.106497

1

Parallel and Distributed Architecture of Genetic Algorithm on Apache

Hadoop and Spark

Hau-Chun Lua, F.J. Hwangb, Yao-Huei Huangc,a,*

aDepartment of Information Management,

Fu Jen Catholic University, New Taipei City, Taiwan
bSchool of Mathematical and Physical Sciences,

University of Technology Sydney, Ultimo, Australia
cSchool of Economics and Management,

Southwest Jiaotong University, Chengdu, China

E-mail: haoclu@gmail.com; feng-jang.hwang@uts.edu.au; yaohuei.huang@gmail.com

ABSTRACT

The genetic algorithm (GA), one of the best-known metaheuristic algorithms, has been

extensively utilized in various fields of management science, operational research, and

industrial engineering. The efficiency of GAs in solving large-scale optimization problems

would be enhanced if the iterative processes required by the genetic operators can be

implemented in a parallel and distributed computing architecture. Apache Hadoop has recently

been one of the most popular systems for distributed storage and parallel processing of big data.

By integrating highly the GA into Apache Hadoop, this study proposes an advanced GA parallel

and distributed computing architecture that achieves the effectiveness and efficiency of GA

evolution. The developed computing framework is characterized by the sophisticated

mechanism of dispatching the GA core operators into Apache Hadoop and fits well the cloud

computing model. The presented GA parallelization architecture outperforms the state-of-the-

art reference architectures according to the computational experiments where the testing

instances of travelling salesman problems are employed. Our numerical experiments also

demonstrate that the proposed architecture can readily be extended to Apache Spark.

Keyword: Genetic algorithm; parallel and distributed computing; Apache Hadoop; travelling

salesman problems; Apache Spark

*Manuscript
Click here to view linked References

http://ees.elsevier.com/asoc/viewRCResults.aspx?pdf=1&docID=45261&rev=0&fileID=766162&msid={821E4A9D-0DF8-4654-BD17-9C36271B24C7}

2

1. Introduction

The global optimization of real-world problems in management science and operational

research, e.g. the container loading problems (Tsai et al., 2015; Huang et al., 2016; Huang and

Hwang, 2017), vehicle routing problems (Grefenstette et al., 1985; Victor et al., 2013; Teobaldo

et al., 2018), cutting stock problems (Dyckhoff, 1990; Lu and Huang, 2015; Wuttke et al., 2018),

production scheduling problems (Murata et al., 1996; Pongchairerks and Kachitvichyanukul,

2009; Maenhout and Vanhoucke, 2018), are difficult to achieve due to their nature of NP-

hardness (Scheithauer, 1992). Considering those optimization problems on large scale, it is

relatively realistic to produce a suboptimal or quality feasible solution rather than a global

optimum. It thus is popular in practice to develop heuristic/metaheuristic solution techniques

that are capable of yielding acceptable solutions within a reasonable time. One of the most

common evolutionary algorithms is the genetic algorithm (GA) (Holland, 1975), which has

been extensively utilized for tackling nonlinear optimization problems in various fields

(Gallagher and Sambridge, 1994; Hartmann, 2002; Lu and Huang, 2015; Ren et al., 2018). To

enhance the computational performance of GAs for the large-scale NP-hard problems, the

parallelization of GA in a distributed computing architecture has been proposed in this study.

1.1 Three baseline models of GA parallel and distributed architecture

Considering the stochastic solution searching mechanism of GAs, Luque and Alba (2011)

developed a parallel and distributed architecture integrated with the GA for exploring solution

spaces. Referring to Luque and Alba (2011), the parallel and distributed architecture for the

GA processing can be classified into the following three models:

(i) Master-slave model (also called global parallelization model): In the master-slave model

(Martino et al., 2012; Geronimo et al., 2012), there is a master node to manage all sub

populations and distribute individuals among slave nodes. Subsequently, the fitness values

of individuals are calculated in the corresponding slave nodes. Actually, the redesign of

GA framework is not required in this model since the individual fitness evaluation operator

can be independent from one another in the population.

(ii) Distributed model (also called coarse-grained parallelization model or island model): In

the distributed model (Ferrucci et al., 2013), a population is divided into several

subpopulations located in several islands and the GA runs independently in each island.

Since each island only contains partial individuals of the population, those islands

periodically exchange information by migrating some individuals for injecting diversity

3

into the converging population (Herrera and Lozano, 2000; Yu and Zhang, 2006; Melab

and Talbi, 2010; Yu et al., 2011). The model can perform all operators of GA in the parallel

and distributed computing such that the different islands can explore different portions of

the search space periodically.

(iii) Cellular model (also called fine-grained parallelization model or grid model): The cellular

model (Arora and Chana, 2014; Camacho, 2015; Gong et al., 2015) is to structure a

population into neighborhoods and put a part of individuals in a node (i.e. grid). The GA

is performed in parallel computing to evaluate the fitness value of each chromosome and

apply locally GA operators (i.e. selection, crossover and mutation operators) to the small

adjacent neighboring. On the basis of the massively parallel architecture, the model can

significantly speed up the evaluation of all chromosomes. However, it requires a massive

clustering system to deal with this model. Vidal and Alba (2010) demonstrated that this

model can be implemented based on the graphical processing units (GPUs) for fast

computations when the operators are defined as matrix operations.

1.2 GA parallelization based on MapReduce

MapReduce is a software framework for distributed computing proposed by Dean and

Ghemawat (2008) in the Google system. The framework is an associated implementation for

processing large-scale data sets using a distributed algorithm on a cluster.

In the master-slave model implemented on the MapReduce (Martino et al., 2012;

Geronimo et al., 2012), the evaluation operator of GA can be delegated by utilizing multiple

mappers for evaluating the fitness value of each chromosome in the parallel and distributed

environment. Subsequently, the single reducer is to collect the results and perform the other

GA operators including the selection, crossover, and mutation operators. One generation means

an execution round on the MapReduce, and the whole computation is a sequence of executions.

The master-slave model performs the evaluation operator in the parallel computing with

multiple mappers, while it does not consider the parallelism of other GA operators (i.e.

selection, crossover, and mutation operators), all of which are run in the reducers, and may

cause some scalability issues.

For the distributed model on the MapReduce, Ferrucci et al. (2013) designed a partitioner

to assign each island to a reducer. It aims to perform the other operators in parallel computing

after running the evaluation operator in the mappers. Since the model has much more reducers,

it is more efficient than the master-slave model. These operators are performed in the

4

incomplete situation such that it often causes the early convergence.

As for the cellular model, Arora and Chana (2014) and Camacho (2015) integrated the

clustering technique with the GA to solve the large-scale problems in a massively parallel

computing environment. Gong et al. (2015) proposed a cellular model that is slightly modified

from the clustering technique of the distributed model with a partitioner using a pseudorandom

function on the MapReduce. For the cellular model, individuals only interact with their

neighbors, which could cause the lack of population diversity. Since the selection and crossover

operators are not able to generate solutions outside the limited neighborhood, it may fall into a

local optimum to incur the early convergence. Additionally, the method requires a massive

powerful clustering system to deal with these operators.

Hadoop MapReduce has recently been a complete framework for processing vast amounts

of data in a parallel and distributed environment and one of the most popular distributed

computing architectures. There exists a well-designed structure for large-scale data processing

in the distributed servers of Hadoop Distributed File System (HDFS), with which the users can

easily develop a parallel computing program for large-scale optimization problems. The review

of GA parallelization with MapReduce (Sachar and Khullar, 2016) indicates that Hadoop

MapReduce platform has obvious advantages over others. The detailed architectures of Apache

Hadoop and its extension, i.e. Apache Spark, are discussed in the next subsection.

1.3 Architectures of Apache Hadoop and Spark

The advent of big data makes the formulation of optimization problems closer to the real

world while the solution finding and relevant computations become more challenging. In order

to tackle the large-scale optimization problems by the metaheuristics such as the GA, it is

necessary to implement the iterative procedures of GA in the distributed computing

environment so that the computation time can be reduced. Apache Hadoop (2006) and Apache

Spark (2017) have been the popular distributed computing architectures for the iterative

algorithms such as the GA. The characteristics of Hadoop and Spark are: (i) Hadoop is designed

for efficiently dealing with large-scale problems on clusters of hardware with a scalable and

fault-tolerant framework; (ii) Spark, without a file system, is a cluster computing tool running

in memory such that its speed is faster than Hadoop. The studies of GA parallelization using

Apache Hadoop/Spark can be found in the literature.

Combining a distributed computing framework of Hadoop MapReduce with the GA,

Verma et al. (2009) employs the mappers to perform the iterative procedures with partial

5

chromosomes, and the results produced by the mappers are transmitted to the reducers for the

further operations such as selection, crossover, and mutation. Then the new population will be

generated in the next generation. However, the chromosomes in the reducers are produced from

the partial population. Since the evolution is limited in an incomplete population, the yielded

solutions fall into a local optimum, thus causing the premature convergence. Kečo and Subasi

(2012) proposed a distributed GA approach based on the mapper and reducer of Apache

Hadoop, where each mapper performs the complete operational procedure of GA and then

delivers the result the reducer. Subsequently, it is determined by the reducer whether the GA

operations should be iterated. Unfortunately, this approach cannot effectively divide a whole

operational procedure into serval sub-procedures for parallel computing, which results in a long

solving time for large-scale problems. The parallel and distributed architecture for GAs on the

basis of the mapper and reducer presented by Geronimo et al. (2012) has the similar

disadvantage. Qi et al. (2016) designed the parallel GA procedure with the scheme of Apache

Spark, which contains a two-phase parallelization algorithm including fitness evaluation

parallelization and genetic operational parallelization.

It is found in our preliminary research that the effectiveness and efficiency of the GA

parallelization can be enhanced if the evolution operations of GA can be highly integrated into

Apache Hadoop or Spark. This study proposes a parallel and distributed architecture of GA on

Apache Hadoop and Spark that outperforms those in the existing literature. The presented GA

parallelization scheme enhances the utilization of the HDFS of Apache Hadoop by dispatching

the core operators of GA with a relatively efficient parallelization mechanism, which can

reduce the idle times of processing jobs in the HDFS. The similar parallelization mechanism

can be applied to the Resilient Distributed Dataset (RDD) in Apache Spark, and the developed

scheme can be readily extended to Apache Spark.

The remainder of this paper is organized as follows. Section 2 discusses the state-of-the-

art architectures of GA parallelization on Apache Hadoop. The proposed GA parallelization

architecture is presented in Section 3. The computational experiments are provided in Section

4. The extension of the proposed GA parallelization to Apache Spark is discussed in Section 5.

The concluding remarks are given in Section 6.

6

2. Review of GA parallelization on Apache Hadoop

Apache Hadoop (2006) with MapReduce is a distributed architecture on clusters for

dealing with large-scale data sets. In the environment of MapReduce, the developers can utilize

the distributed computing program for solving large-scale problems using the map and reduce

functions. Also, the MapReduce is also a simple programming model, where a scalable, flexible,

and fault-tolerant algorithm for computations can be easily established. There are various

applications using the Apache Hadoop with MapReduce to solve large-scale problems (Almeer,

2012; Dittrich and Quiané-Ruiz, 2012; Gu et al., 2014).

2.1 Procedure of MapReduce on Apache Hadoop

The procedure of MapReduce is illustrated in Figure 1. The MapReduce plays an

important role to transform the input data sets into the form of <key, value> for receiving and

sending. The first element, i.e. key, indicates an index of the corresponding value and is defined

by the user. The second element, i.e. value, can be a set of data sets, a set of numbers, a set of

specific sequential values, a chromosome in the GA, etc. There exists a mapper, i.e. function

map, for converting original 2-tuple <key, value> into an intermediate 2-tuple. Afterward, the

Hadoop merges, sorts, shuffles, and partitions the intermediate 2-tuple, and then each processed

2-tuple is transformed into the form of <key, value list> as the input of the reducer, i.e. function

reduce. Note that the transformed key is also a user-defined index, and the value list refers to

the multiple sets corresponding to the same index. Finally, the reducer outputs the result to the

HDFS. Because of the required subsequent transformation from <key, value> into <key, value

list> for the reducer on the MapReduce, a procedure doing appropriately the dataset dispatching

in the form of <key, value> in the mapper on the basis of HDFS is the key to the efficiency of

Apache Hadoop in solving the large-scale problems.

7

Figure 1. Procedure of MapReduce on Hadoop

2.2 Operational procedure of the GA

Gen and Cheng (2000) implies that the operational procedure of the GA can be run in a

parallel and distributed system. The concept of GA is demonstrated in Table 1.

Table 1. Operational procedure of the GA

Begin
 1t 
 Initialize population ()P t ;
 Evaluate the fitness value of each chromosome in ()P t ;
 Arrange chromosomes in ()P t in non-increasing order of the fitness value.
 do begin
 Create new offspring ()Q t from ()P t by Crossover, and modify the new

offspring ()Q t by Mutation;
 Evaluate the fitness value of each chromosome in ()Q t ;
 Sort all chromosomes in ()P t and ()Q t into non-increasing order according

to their fitness values;
 Generate the next population (1)P t  from ()P t and ()Q t by Selection;

 1t t  .
 end while (Checking the termination condition*)
end
*Note that the termination condition can be set using a limit to the number of iterations, the CPU time, or a

threshold of objective value.

2.3 GA parallel architecture of Verma et al. (2009)

Verma et al. (2009) proposed a GA distributed computing architecture on Apache Hadoop

8

based on the selecto-recombinative GA (Goldberg, 1989; 2013). The approach resolves the

issue of a long computational time when the problem size in GA becomes large. The

implementation of GA on Hadoop proposed by Verma et al. (2009) is shown in Figure 2. The

main procedure starts by loading data sets and then sets up the Hadoop environment according

to a set of parameters. Subsequently, the Hadoop will be launched to run the operators of GA.

The mapper only corresponds to the evaluation operator while the reducer corresponds to

selection, crossover, and mutation operators. These four operators are designed in the main

procedure. The Hadoop controls the mappers and reducers automatically, while different

procedures of the mapper and reducer can be designed by various requests. After satisfying the

stop condition, the iterative procedure of mappers and reducers will be stopped and the

incumbent solution will be output.

There are two functions, i.e. map() and reduce(), used in the mapper and reducer,

respectively. The two functions generate an initial population and send it to the HDFS. Then

the initial population is divided into serval shards, depending on the size of the input dataset.

The shards are forked onto different mappers for the fitness evaluation in parallel. Each mapper

can evaluate (denoted by E in Figure 2) the fitness of each chromosome in the shard and then

output the 2-tuple <key, value>=<fitness, chromosome> to Hadoop. Afterward, any results

with the same key in the mapper will be merged in the form of <key, value list>, where the

value list indicates the multiple chromosomes corresponding to the same index key (i.e. fitness).

Then the 2-tuple <key, value list> will be send to different reducers for selection (denoted by

S in Figure 2) and crossover/mutation (denoted by CM in Figure 2) operations.

Figure 2. The GA parallelization on Hadoop developed by Verma et al. (2009)

9

However, the architecture of Verma et al. (2009) may cause the following concerns:

(i) The evolution of chromosomes in the reducer never considers the whole population, i.e.,

each reducer only performs the operations with partial populations, so the evolution pool

would not be large enough for maintaining genetic diversity. It thus would lead to an early

convergence by ending up with a local optimum.

(ii) The GA roulette wheel selection mechanism could have the better chromosomes

eliminated but the worse chromosomes reserved in the next generation. The details will

be discussed with an example in the next paragraph as well as Figure 3.

(iii) The whole procedure would not be directly terminated even when an optimal solution is

obtained in the mapper, i.e. the operations of selection and crossover/mutation in the

reducer could be redundantly performed.

The abovementioned disadvantage of the GA roulette wheel selection is discussed.

Consider eight chromosomes in the whole population as shown in Figure 3. The probabilities

of all the chromosomes in the roulette wheel selection operator are 30%, 20%, 15%, 14%, 8%,

6%, 4%, and 3%, respectively, as shown in Figure 3(a). After the partitioner randomly assigns

the chromosomes to the reducers A and B, the probability of each chromosome in the two

partial populations is recalculated. Figure 3(b) demonstrates that the two partitioned sets (C1,

C2, C3, C8) and (C4, C5, C6, C7) are assigned to the reducers A and B, respectively. The

probabilities are (44.12%, 29.41%, 22.06%, 4.41%) and (43.75%, 25.00%, 18.75%, 12.50%)

for (C1, C2, C3, C8) and (C4, C5, C6, C7), respectively. The selection probability of C3 is less

than that of C4 or C5 after the partition while the opposite situation exists in the whole

population. Therefore, this approach could miss significant chromosomes.

10

Figure 3. Probabilities in the roulette wheel selection operator

2.4 GA parallel architecture of Kečo and Subasi (2012)

The GA parallel architecture presented by Kečo and Subasi (2012), also on Apache

Hadoop, is shown in Figure 4. Note that the function map() is used in the mapper stage while

the reducer stage is void.

Figure 4. The GA parallelization on Hadoop developed by Kečo and Subasi (2012)

In the architecture of Kečo and Subasi (2012), the main procedure firstly configures the

Hadoop environment and runs the initialization. In the first iteration, each mapper performs all

C2 20%

C1 30%

C3 15%

C4 14%

C6 6%

C5 8%

C7 4%

C8 3%

(a) The whole population

C2 29.41% (20/68)

C1 44.12% (30/68)

C3 22.06% (15/68)

C8 4.41% (3/68)

R
ed

uc
er

A

C4 43.75% (14/32)

C6 18.75% (6/32)

C5 25.00% (8/32)

C7 12.50% (4/32)

R
ed

uc
er

B

assigned

(b) Two partial populations after

the assignment to the reducers

11

the GA operators, including initial evaluation (E0), crossover/mutation (CM), evaluation (E),

and selection(S), where the setting of relevant parameters is required. After the first iteration,

each mapper performs all operators but E0. The evaluation operator E0 calculates the fitness

values of the initialized chromosomes, while E calculates the fitness values of those generated

by the crossover/mutation operators. Then the results are delivered back to the main procedure

for checking the stop condition. If the stop condition is not satisfied, then the Hadoop will

repeat all operators except E0. Otherwise, the incumbent solution will be output.

The main disadvantage of the architecture is that the parallelization effectiveness exists

only in the GA parameter tuning but not in the GA operator processing. Consider an example

of the GA procedure in the mapper. Assume that the running times of these four operations, i.e.

evaluation, crossover, mutation, and selection, for the population ()P t are 1 , 2 , 3 , and

4 , respectively, as shown in Figure 5. Suppose the total run time of the four operators (i.e.

1 2 3 4     ) is 20 seconds in each iteration t. If the whole process of GA runs 180

iterations, it would take at least 20 180 3, 600  seconds to fulfill this convergent evolution.

We note that around 95% of the total elapsed time is used for performing these four operators.

If these four operators can be performed in parallel in a distributed system, then it will

significantly reduce the total run time of GA.

Figure 5. The GA procedure in some iteration t in the mapper

3. Proposed GA parallel and distributed architecture

How to parallelize the four major operators of GA, i.e. evaluation, crossover, mutation, and

selection, is crucial to the effectiveness and efficiency of a developed GA parallel and

distributed architecture. Before proposing the parallelization scheme, this study analyzes the

characteristics of these four operators one by one as follows:

Initialization Evaluation Crossover Mutation Selection

Does satisfy the
termination condition?

No

Yes

Next procedures

α1 α2 α3 α4

Run time (α1+α2+α3+α4) in each iteration t

12

(i) Evaluation: The evaluation operator plays an important role in the GA evolution since

evaluating all chromosomes’ fitness in each generation is necessary. The fitness

evaluations actually can be distributed for parallel computing since evaluating the fitness

of an arbitrary chromosome needs no information from other chromosomes and is an

independent job. Besides, the computational time for the whole GA procedure grows

rapidly when the sizes of population ()P t and offspring ()Q t become large. Thus, the

evaluation operator is suitable for and shall be developed for parallelization in a parallel

and distributed system.

(ii) Crossover: The crossover operator generates an offspring from two parent chromosomes

of the population. Firstly, the frequency of performing the crossover operation is not

higher than that of running the evaluation operator in each generation. Secondly, this

operator requires two parent chromosomes selected from the whole population to avoid

the same situation as Figure 3. In other words, it may cause premature convergence if the

crossover operator selects the two parent chromosomes from different sub-populations.

Moreover, because a generated offspring chromosome could be an infeasible solution,

designing a procedure to avoid or fix the infeasibility of offspring chromosomes is critical.

From the above viewpoints, a sophisticated design that any infeasible chromosome

yielded can be independently adjusted in the parallel computation and any two parent

chromosomes for producing an offspring are selected from the whole population is needed

for the crossover operator.

(iii) Mutation: The main task of the mutation operator is adjusting the offspring chromosome

generated by the crossover operator for keeping the diversity. The frequency of

performing the mutation operation is nearly identical to that of the crossover operation.

Similarly, a mechanism to fix the infeasibility of chromosomes generated from the

mutation operation is needed. The mutation operation is also suitable for the

parallelization in distributed computing.

(iv) Selection: The selection operation for each t-th generation is to generate the new

population for the (t+1)-th generation, i.e. (1) () ()P t P t Q t   . The desired GA

principle “survival of the fittest” could fail provided that the whole population is divided

into sub-populations for the selection operation as demonstrated in Figure 3. It is thus

necessary to generate a new population from all sub-populations in the reducers. In

addition, the selection operation is performed just once for each generation in the GA

procedure. Therefore, it is unnecessary and unsuitable to run the selection operator in

13

parallel and distributed computing.

The aforementioned discussions of the four GA operators are summarized in Table 2.

Table 2. Characteristics of the four GA operators

Operator Frequency per
generation

The whole
population

requirement

Parallelization

Evaluation High No Suitable
Crossover Middle Yes Conditionally suitable
Mutation Middle No Suitable
Selection Once Yes Unsuitable

These characteristics inspire this study to develop a GA parallelization scheme that retains the

following properties:

Property 1: To enhance the efficiency of exploring the solution space, the three operators

including evaluation, crossover, and mutation in GA are implemented in a

parallelization architecture.

Property 2: Any new child chromosome generated from the crossover or mutation is

immediately evaluated in a parallelization architecture, i.e. the operators of crossover,

mutation, and evaluation are executed simultaneously.

The GA parallel and distributed architecture on Apache Hadoop proposed by this study is

shown in Figure 6.

14

Figure 6. Proposed parallel and distributed architecture on Apache Hadoop

The three procedures in the proposed GA parallelization architecture are described below:

(i) Main procedure is a main program to dispatch the data into the MapReduce on Hadoop

and control the processes of MapReduce 1 and MapReduce 2. It also loads the dataset and

configures the initial environment of Hadoop. The four GA operators are designed in the

main procedure. The operators of evaluation, crossover, and mutation are controlled by

the Hadoop, while the selection operator is governed by the main procedure to collect the

solutions of all sub-populations on the Hadoop. Besides, to avoid the disadvantage of

selecting parent chromosomes in partial populations (as shown in Figure 3), we design a

sub-procedure to select multiple parent chromosome sets (i.e. multiple crossover pools),

from the whole sub populations. Then, the multiple parent chromosome sets will be sent

to the mappers for the crossover operation. The design mechanism can achieve the

parallelization of the crossover/mutation operations and retain the aforementioned

Property 1 and 2.

(ii) MapReduce 1 is the initial MapReduce procedure on Hadoop. Mapper 1 in this

MapReduce procedure evaluates each chromosome in the initial population, while all

reducers are dummy.

(iii) MapReduce 2 is the follow-up iterative MapReduce procedure, where each mapper (i.e.

15

Mapper 2) runs the crossover/mutation operators and its corresponding reducer (i.e.

Reducer 2) evaluates each chromosome assigned from the mapper.

To increase the efficiency of MapReduce 1 and MapReduce 2, the Hadoop dynamically

adjusts the numbers of mappers and reducers. In the initial stage, each mapper in the

MapReduce 1 calls the function map_1(key, value), where the first parameter ‘key’ is an index

of the second parameter ‘value’ representing the chromosome. The function map_1 (key, value)

performs the following operations (see Figure 7):

(i) Call the function Representation(value) to convert ‘value’ into a chromosome. Then save

it temporarily as ‘chromosome’.

(ii) Call the function Evaluation(chromosome) to evaluate the fitness of ‘chromosome’. Then

save it temporarily as ‘fitness’.

(iii) Call the function Emit() to send the 2-tuple <fitness, chromosome> back to the Hadoop.

function map_1(key, value)
begin

chromosome = Representation(value);
fitness = Evaluation(chromosome);
Emit(fitness, chromosome);

End
Figure 7. The proposed function map_1(key, value)

In the iterative stage, each mapper in MapeReduce 2 calls the other function map_2(key,

values). The first parameter ‘key’ is similar to that in map_1(). The second parameter ‘values’

is defined as a string representing multiple chromosomes. The function map_2(key, values)

performs the following operations (see Figure 8):

(i) Call the function RepresentationBuf(values) to convert ‘values’ into a pair of

chromosomes, and then save them temporarily as ‘chromosomeBuffer’.

(ii) Call the function CrossoverMutation(chromosomeBuffer) to generate a new child

chromosome.

(iii) Call the function Emit() to send the 2-tuple <_index, new_chromosome> back to the

Hadoop, where the parameter ‘_index’ is the new index for each new offspring

‘new_chromosome’.

static int new _index=0;
function map_2(key, values)
begin

chromosomeBuffer = RepresentationBuf(values)
chromosomeArray = CrossoverMutation(chromosomeBuffer)

16

for each (new_chromosome in chromosomeArray)
Emit(_index, new_chromosome);
_index += 1;

end for each
end

Figure 8. The proposed function map_2(key, value)

Additionally, the chromosomes with the same fitness value will be grouped into a string

named ‘value_list’. Each reducer calls reduce_2(), a function of the two parameters ‘key’ and

‘value_list’. The function reduce_2(key, value_list) performs the following operations (see

Figure 9):

(i) Call the function Representation(value) to convert ‘value’ into a chromosome. Then save

it temporarily as ‘chromosome’.

(ii) Call the function Evaluation(chromosome) to evaluate the fitness of ‘chromosome’. Then

save it temporarily as ‘fitness’.

(iii) Call the function Emit() to send the 2-tuple <fitness, chromosome> back to the Hadoop.

function reduce_2(key, value_list)
begin

for each (value in value_list)
 chromosome = Representation(value);
 fitness = Evaluation(chromosome);
 Emit(fitness, chromosome);
end for each

End
Figure 9. The proposed function reduce_2(key, value_list)

The proposed GA parallel and distributed architecture on Apache Hadoop mainly contains

three components, i.e. main procedure, Hadoop MapeReduce 1 and Hadoop MapeReduce 2.

The detailed steps of the designed procedure are provided below:

(i) Initial procedure (running only once):

Step 1: The main procedure generates the initial population according to the user-defined

parameters.

Step 2: The main procedure converts the whole population into sub-populations and then

activates Hadoop MapeReduce 1.

Step 3: Each sub-population is assigned to one of the mappers for the fitness evaluation

by Hadoop MapeReduce 1 and then sent back to the main procedure.

Step 4: The main procedure calls a sub-procedure to prepare multiple crossover pools for

the mappers of Hadoop MapeReduce 2 and then activates Hadoop MapeReduce

17

2.

 Note that each mapper corresponds to one reducer, but the reducer is dummy in the

initial procedure.

(ii) Iterative procedure:

Step 5: Each mapper coupled with the corresponding reducer performs sequentially the

crossover, mutation, and evaluation operators for generating new child

chromosomes and then sends them back to the main procedure.

Step 6: The main procedure performs the selection operation for all the new child

chromosomes collected from the reducers.

Step 7: The main procedure checks the stop condition. If the stop condition is not satisfied,

it calls a sub-procedure to prepare multiple crossover pools for the mappers of

Hadoop MapeReduce 2 and then goes to Step 5 to activate MapeReduce 2.

Otherwise, it goes to the output phase.

 Note that the stop condition can be the maximal number of iterations, the maximal run

time or the objective value accepted.

(iii) Output: The incumbent solution is yielded in the output stage.

The advantages of the proposed GA parallelization scheme includes:

(i) The GA procedure is sophisticatedly embedded in Apache Hadoop.

(ii) The selection operator is designed in the main procedure so that the selection probabilities

can be calculated in accordance with the rule “survival of the fittest”.

(iii) Any new child chromosome generated from the crossover/mutation operations can be

directly evaluated in the parallel and distributed computing system since the two operators

are run simultaneously, which can achieve the sufficient solution diversity for exploring

the solution space.

4. Numerical experiments on Apache Hadoop
This section conducts the computational experiments to compare the performance of the

proposed GA parallelization architecture (cf. Figure 6) with those of the two reference

architectures, i.e. Verma et al. (2009) (cf. Figure 2) and Kečo and Subasi (2012) (cf. Figure 4),

in solving the classical NP-hard combinatorial problem. To test the effectiveness of GA

parallelization, we employed the asymmetric travelling salesman problem (ATSP) to generate

three sets of testing instances as shown in Table 3. Instance 1 (denoted by Small-ATSP),

18

Instance 2 (Medium-ATSP) , and Instance 3 (Large-ATSP) are the small-scale ATSP composed

of 256 cities, middle-scale ATSP composed of 512 cities, and large-scale ATSP composed of

1024 cities, respectively. The dataset of the three testing instances of ATSPs are provided in

the supplementary information which can be found online

(http://drive.google.com/open?id=18DI8tGhraf15ib9uIia70TUI-SX3t160).

Table 3. Three testing instances of ATSP

Instance Type Number of cities
1 Small-ATSP 256
2 Medium-ATSP 512
3 Large-ATSP 1024

In the experiments, the GA programs were implemented with Java standard edition

version 9 on eight PCs (i.e. a master and seven slaves) equipped with Intel Core i7 CPU,

CentOS 7, and Apache Spark 2.2. The detailed information of our equipment is listed in Table

4. Referring to Verma et al. (2009) and Kečo and Subasi (2012), we had the following

parameters and settings for the three testing instances.

(i) Population size: 2048

(ii) Crossover rate: 0.8

(iii) Considering the fairness, the mutation rate was set to 0 since the mutation operator was

not performed in Verma et al. (2009).

(iv) Considering the fairness, we adopt the roulette wheel selection operator for the three

testing architectures.

Table 4. Experimental equipment

Node name Storage Operating system CPU Memory
Master 64 GB CentOS 7 Intel Core i7 12 GB

Slaves1-7 32 GB CentOS 7 Intel Core i5 8 GB

In each of the three GA parallelization architectures, we run 30 rounds for all the three

testing instances. The best, average, and worst results are tabulated in Table 5. The experiments

employed the maximal run time as the stop condition. Three time thresholds (900, 1400, 9000)

in seconds were used for Instance 1. For Instance 2, we adopted the three thresholds (900, 3000,

18000) in seconds. The three thresholds (900, 4200, 36000) in seconds applied to Instance 3.

The evolution diagrams of each GA parallelization architecture for the three instances are

depicted in Figures 10-12, where the x-axis stands for the computational time (in seconds) and

19

the y-axis indicates the objective value (i.e. fitness value). The computational results can be

summarized as follows:

(i) It is convergent at the 1643rd, 2351st, and 4531st second to solve Small-ATSP,

Medium-ATSP, and Large-ATSP, respectively, with the proposed GA parallelization

architecture. The trends of convergence illustrate that the proposed architecture

outperforms the two reference architectures.

(ii) Figures 10-12 clearly show that the premature convergence arises in the architecture

of Verma et al. (2009), which in general is the worst in performance from each aspect.

It converges at the 1235th, 1314th, and 1740th second to solve Small-ATSP, Medium-

ATSP and Large-ATSP, respectively, in the architecture of Verma et al. (2009). The

aforementioned disadvantage of the GA roulette wheel selection is evidenced by this

computational result. Each reducer in the architecture of Verma et al. (2009) performs

the selection and crossover operations in which sub-populations instead of the whole

population are used. It leads to an evolution pool that is not large enough and cannot

contain a genetically stable population.

(iii) The evolution diagrams show that the required evolution time in the architecture of

Kečo and Subasi (2012) is the longest among these three. The main reason is that the

four GA operators in their designed architecture basically are not processed in parallel.

Table 5. Computational results of ATSPs on Apache Hadoop

Instance
Time
(sec.)

Solution
Situation

Verma et al.
(2009)

Kečo and
Subasi (2012)

Proposed
architecture

Evolution
(Average)

Small-
ATSP

900
Best 105,648.0 99,130.0 70,151.0

Please
refer to

Figure 10

Average 106,252.3 103,040.8 72,654.3
Worst 106,652.0 106,716.0 74,605.0

1,400
Best 100,780.0 94,669.0 57,557.0

Average 101,698.7 98,742.6 59,077.7
Worst 102,230.0 103,828.0 60,362.0

9,000
Best 100,780.0 54,411.0 54,352.0

Average 101,698.7 58,659. 8 55,293.0
Worst 102,230.0 68,887.0 56,102.0

Medium-
ATSP

900
Best 219,901.0 220,598.0 189,748.0

Please
refer to

Figure 11

Average 222,977.7 227,739.2 194,268.0
Worst 226,303.0 237,122.0 197,975.0

3,000
Best 219,071.0 197,480.0 139,990.0

Average 219,683.7 208,742.1 141,599.7
Worst 219,994.0 216,693.0 142,852.0

1,8000
Best 219,071.0 138,410.0 139,990.0

Average 219,683.7 148,110.6 141,599.7

20

Worst 219,994.0 171,265.0 142,852.0

Large-
ATSP

900
Best 477,883.0 478,314.0 455,583.0

Please
refer to

Figure 12

Average 481,609.3 485,423.1 458,238.0
Worst 488,797.0 492,386.0 462,033.0

4,200
Best 459,034.0 431,302.0 341,551.0

Average 462,036.3 450,598.4 351,031.0
Worst 467,460.0 483,973.0 357,725.0

36,000
Best 459,034.0 342,014.0 334,118.0

Average 462,036.3 361,409.5 344,822.3
Worst 467,460.0 410,463.0 351,340.0

Figure 10. The evolution diagrams for Small-ATSP on Apache Hadoop

Figure 11. The evolution diagrams for Medium-ATSP on Apache Hadoop

21

Figure 12. The evolution diagrams for Large-ATSP on Apache Hadoop

5. An extension to Apache Spark

Apache Hadoop, based on the HDFS, is suitable for solving the large-scale problems,

while it may lead to a long input/output processing time. The iterative algorithm accessing data

from the database of Hadoop, i.e. HDFS, is relatively inefficient (Zaharia et al., 2012). Hence,

Zaharia et al. (2012) presented a scheme of RDD, which is a distributed memory abstraction

such that procedures efficiently perform in-memory computations on large clusters in a fault-

tolerant manner. Noting that keeping data in memory can significantly improve the

performance by an order of magnitude, Zaharia et al. (2012) implemented the RDDs in Apache

Spark, which is an advanced cluster computing technology for fast computation. Apache Spark

modifies the computational model based on the technique of Hadoop MapReduce to unify

efficiently the interactive queries and stream processing. Especially, Apache Spark allows the

iteration processes, i.e. MapReduce, to contain only the mappers without reducers, and vice

versa. This section extends the proposed GA parallelization architecture to Apache Spark. The

computational experiments will be conducted again to compare the performance of the

proposed architecture with those of the reference architectures of Verma et al. (2009) and Kečo

and Subasi (2012) on Apache Spark.

5.1 Proposed GA parallelization architecture on Apache Spark

The concept of the proposed GA procedures embedded in Apache Spark is shown in

Figure 13. The GA operators including evaluation, crossover, mutation, and selection can be

designed in one of the two stages of mapper/reducer. The stage of reducer on Apache Spark

can be omitted such that it can save the input/output (I/O) time in an iterative procedure, while

22

the reducer cannot be omitted on Apache Hadoop. It is thus obvious that Apache Spark is more

suitable for implementing GA parallelization than Apache Hadoop.

GA Operators

RDDs (in-memory)

Iterations

Population Offspring
Mapper

Reducer
(Omitted)

Figure 13. GA procedures on Apache Spark

For enhancing the efficiency, the master procedure on Apache Spark can dynamically

modify the numbers of mappers according to the considered problem. To simplify the

presentation, we set two mappers in the proposed architecture on Apache Spark as follows:

Mapper 1: The function map() is declared in Mapper 1 for evaluating the fitness value of each

chromosome. The description of function map(key, value) is given below (see

Figure 14):

function map(key, value)
begin

chromosome = Representation(value);
fitness = Evaluation(chromosome);
Emit(fitness, chromosome);

End
Figure 14. The proposed function map(key, value)

Mapper 2: The function flatMap() is declared in Mapper 2 for running the crossover and

mutation operators. The crossover operator generates a new offspring chromosome

by selecting a pair of chromosomes from the whole population. The description of

function flatMap(key, values) is provided below (see Figure 15):

function flatMap(key, values)
begin

chromosomeBuffer = Representation(values);
chromosomeArray = CrossoverMutation(chromosomeBuffer);
for each (new_chromosome in chromosomeArray)

Emit(new_key_1, new chromosome);
new_key_1 += 1;

end for each
end
Figure 15. The proposed function flatMap(key, values)

23

The proposed GA parallel and distributed architecture on Apache Spark is shown in Figure

16, and the detailed processes of the proposed architecture are described as follows.

(i) Initial procedure:

Step 1: The master procedure generates the initial population and saves it in the RDD.

Step 2: Mapper 1 is invoked to evaluate each chromosome of the initial population, and

then the results are recorded in the RDD.

 Note that the master procedure monitors Mapper 1 and Mapper 2 to avoid

misinformation and performs information exchanges between them.

(ii) Iterative procedure:

Step 3: Mapper 2 is invoked to run the crossover and mutation operations. The crossover

operator generates a new chromosome, which is selected from the whole

population by the master procedure and then saved in the RDD.

Step 4: If there is any new offspring generated by Mapper 2, then Mapper 1 will be

invoked for evaluating parallel the new offspring. The result of each chromosome

is saved in the RDD.

Step 5: The master procedure selects parents to generate the population of new generation

from the current population and offspring.

Step 6: The master procedure checks the stop condition, which can be the maximal number

of iterations, the maximal run time or the objective value accepted. If the stop

condition is not satisfied, then it goes to Step 3. Otherwise, it goes to the output

phase.

(iii) Output: The best solution is yielded by selecting from the whole population.

24

Figure 16. Proposed GA parallel and distributed architecture on Apache Spark

5.2 Numerical experiments on Apache Spark

To do the performance comparisons between the proposed GA parallelization architecture

and the two reference architectures, i.e. Verma et al. (2009) and Kečo and Subasi (2012), this

study utilized a variant of TSP named VTSP to generate the data sets. Each of n cities in the

VTSP retains 128 attributes, i.e. city i is represented as ,1 ,2 ,128(, , ,)i i i ix x x x  for 1, ,i n  .

The distance between city i and j is calculated according to the Euclidean distance

128 2
, ,1

()i k j kk
x x


 . There are three sets of VTSP instances, where ,i kx is an random integer

distributed uniformly over the interval [0, 30] for 1, ,i n  and 1, ,128k   . Instance 1

(named Small-VTSP), Instance 2 (named Medium-VTSP), and Instance 3 (named Large-VTSP)

have 256 cities (i.e. 256n ), 512 cities (i.e. 512n ), and 1024 cities (i.e. 1024n ),

respectively. The dataset of these three testing instances of VTSPs are provided as the

supplementary information which can be downloaded online

(http://drive.google.com/open?id=1qxeaw-s8-pFe96o5CMbbWTO8vNy3J7wO).

The GA programs were executed on Apache Spark 2.2. The experimental equipment,

operating system parameters and settings for these three testing instances were set the same as

25

Section 4. These experiments were also run 30 rounds. Table 6 lists the best, average, and worst

results of the three GA parallelization architectures for all the three testing instances. Figures

17-19 present the evolution diagrams of the three architectures for Small-VTSP, Medium-

VTSP and Large-VTSP, respectively. The computational results are summarized as follows.

(i) The proposed architecture converges at the 663rd, 1572nd and 3539th seconds in

solving Small-VTSP, Medium-VTSP, and Large-VTSP, respectively. The trends of

convergence again demonstrate that the proposed architecture outperforms the two

reference architectures.

(ii) The architecture of Verma et al. (2009) is convergent at the 261st, 454th, and 623rd

seconds for Small-VTSP, Medium-VTSP and Large-VTSP, respectively. In Figures

17-19, the architecture of Verma et al. (2009) shows the premature convergence and

again yields the worst results for all the three testing instances.

(iii) The evolution of the architecture of Kečo and Subasi (2012) is the slowest for each

of the three testing instances.

Table 6. Computational results of VTSPs on Apache Spark

Instance
Time
(sec.)

Solution
Situation

Verma et al.
(2009)

Kečo and Subasi
(2012)

Proposed
architecture

Evolution
(Avg.)

Small-
VTSP

30
Best 244,918.0 244,676.0 244,591.0

Please
refer to

Figure 17

Average 245,684.3 246,380.1 245,061.0
Worst 246,468.0 247,208.0 245,832.0

200
Best 243,265.0 242,617.0 232,320.0

Average 244,071.1 243,977.1 234,408.1
Worst 245,340.0 245,337.0 236,792.0

800
Best 243,265.0 234,703.0 221,597.0

Average 243,522.6 237,659 221,970.4
Worst 243,695.0 240,156.0 222,204.0

Medium-
VTSP

60
Best 537,995.0 543,354.0 539,000.0

Please
refer to

Figure 18

Average 540,164.8 544,162.9 540,461.3
Worst 542,362.0 545,062.2 542,006.0

400
Best 537,635.0 536,668.0 519,008.0

Average 539,215.4 541,380.3 520,318.6
Worst 540,241.0 544,351.0 522,867.0

1,600
Best 537,194.0 526,795.0 495,784.0

Average 538,321.7 531,748.9 500,002.4
Worst 540,135.0 538,233.0 504,499.0

Large-
VTSP

120
Best 1,179,301.0 1,182,063.0 1,175,334.0

Please
refer to

Figure 19

Average 1,180,329.9 1,184,803.5 1,178,384.8
Worst 1,181,745.0 1,187,021.0 1,180,706.0

800
Best 1,174,666.0 1,177,063.0 1,150,080.0

Average 1,176,151.7 1,179,282.4 1,150,484.6
Worst 1,177,006.0 1,181,849.0 1,150,921.0

3,200 Best 1,174,252.0 1,158,344.0 1,104,894.0

26

Average 1,175,044.5 1,164,756.4 1,108,243.2
Worst 1,176,213.0 1,169,072.0 1,112,515.0

Figure 17. The evolution diagrams of Small-VTSP on Apache Spark

Figure 18. The evolution diagrams of Medium-VTSP on Apache Spark

27

Figure 19. The evolution diagrams of Large-VTSP on Apache Spark

6. Conclusion

This study has developed an enhanced GA parallel and distributed architecture for Apache

Hadoop and Spark. We have designed an effective approach to maintain the “survival of the

fittest” principle in the selection operator. This sophisticated mechanism makes the proposed

architecture fairly select the whole parents for crossover and mutation operations in the parallel

and distributed architecture. Our numerical experiments have shown that the proposed

architecture on Apache Hadoop or Spark runs significantly more efficiently than the two

reference architectures, especially for the large-size optimization problems.

REFERENCES

Almeer, M.H. (2012). Cloud hadoop map reduce for remote sensing image analysis. Journal

of Emerging Trends in Computing and Information Sciences, 3(4), 634-644.

Apache Hadoop. (2006). The Apache Software Foundation, http://hadoop.apache.org/.

Apache Spark. (2017). The Apache Software Foundation, https://spark.apache.org/.

Arora, S., & Chana, I. (2014). A survey of clustering techniques for big data analysis. 2014 5th

International Conference-Confluence The Next Generation Information Technology

Summit (Confluence), 59-65.

Camacho, D. 2015. Bio-inspired clustering: basic features and future trends in the era of big

data. 2015 IEEE 2nd International Conference on Cybernetics (CYBCONF), 1-6.

Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data processing on large clusters.

Communications of the ACM, 51(1), 107-113.

Dittrich, J., & Quiané-Ruiz, J.A. (2012). Efficient big data processing in Hadoop MapReduce.

Proceedings of the VLDB Endowment, 5(12), 2014-2015.

Dyckhoff, H. (1990). A typology of cutting and packing problems. European Journal of

Operational Research, 44(2), 145-159.

Ferrucci, F., Kechadi, M.T., Salza, P., & Sarro, F. (2013). A framework for genetic algorithms

based on Hadoop. ariXiv, 30.

Gallagher, K., & Sambridge, M. (1994). Genetic algorithms: a powerful tool for large-scale

nonlinear optimization problems. Computers & Geosciences, 20(7), 1229-1236.

Gen, M., & Cheng, R. 2000. Genetic algorithms and engineering optimization. John Wiley &

28

Sons Inc.

 Geronimo, L.D., Ferrucci, F., Murolo, A., & Sarro, V. (2012). A parallel genetic algorithm

based on hadoop mapreduce for the automatic generation of junit test suites. 2012 IEEE

Fifth International Conference on Software Testing, Verification and Validation, 785-

793.

Goldberg, D.E. (1989). Genetic algorithms in search optimization and machine learning.

Addison-Wesley Professional.

Goldberg, D.E. (2013). The design of innovation: Lessons from and for competent genetic

algorithms. Springer Science & Business Media, 7.

Gong, Y.J., Chen, W.N., Zhan, Z.H., Zhang, J., Li, Y., Zhang, Q., & Li, J.J. (2015). Distributed

evolutionary algorithm and their models: A survey of state-of-the-art. Applied Soft

Computing, 34, 286-300.

Grefenstette, J., Gopal, R., Rosmaita, B., Van Gucht, D. (1985). Genetic algorithms for the

traveling salesman problem. In Grefenstette, J., Proceedings of the first International

Conference on Genetic Algorithms and their Applications: 160-168.

Gu, R., Yang, X., Yan, J., Sun, Y., Wang, B., Yuan, C., & Huang, Y. (2014). SHadoop:

improving mapreduce performance by optimizing job execution mechanism

in Hadoop clusters. Journal of parallel and distributed computing, 74(3), 2166-2179.

Hartmann, S. (2002). A self-adapting genetic algorithm for project scheduling under resource

constraints. Naval Research Logistics, 49(5), 433-448.

Herrera, F., & Lozano, M. (2000). Gradual distributed real-Coded genetic algorithms. IEEE

Transactions on Evolutionary Computation 4(1), 43–63.

Holland J.H. (1975). Adaptation in natural and artificial systems: an introductory analysis.

Control and artificial intelligence.

Huang Y.H., & Hwang, F.J. (2017). Global optimization for the three-dimensional open-

dimension rectangular packing problem. Engineering Optimization, DOI:

10.1080/0305215X.2017.1411484.

Huang, Y.H., Hwang, F.J., & Lu, H.C. (2016). An effective placement method for the single

container loading problem. Computers & Industrial Engineering, 97, 212-221.

Kečo, D., & Subasi, A. (2012). Parallelization of genetic algorithms using Hadoop

Map/Reduce. SouthEast Europe Journal of Soft Computing, 1(2).

Lu, H., & Huang, Y.H. (2015). An efficient genetic algorithm with a corner space algorithm for

a cutting stock problem in the TFT-LCD industry. European Journal of Operational

29

Research, 246(1), 51-65.

Luque, G., & Alba, E. (2011). Parallel models for genetic algorithms. Parallel Genetic

Algorithms: Theory and Real World Applications, 367.

Maenhout, B., & Vanhoucke, M. (2018). A perturbation matheuristic for the integrated

personnel shift and task re-scheduling problem. European Journal of Operational

Research, 269(3), 806-823.

Martino, S.D., Ferrucci, F., Maggio, V., & Sarro, F. (2012). Chapter 6: Towards migrating

genetic algorithms for test data generation to the cloud. Software Testing in the Cloud:

Perspectives on an Emerging Discipline, 113-135.

Melab, N., & Talbi, E.G. (2010). GPU-based island model for evolutionary algorithms.

Proceedings of the 12 Annual Conference on Genetic and Evolutionary Computation,

1089-1096.

Murata, T., Ishibuchi, H., & Tanaka, H. (1996). Genetic algorithms for flowshop scheduling

problems. Computers & Industrial Engineering, 30(4), 1061-1071.

Pongchairerks, P., & Kachitvichyanukul, V. (2009). A particle swarm optimization algorithm

on job-shop scheduling problems with multi-purpose machines. European Journal of

Operational Research, 26(2), 161-184.

Qi, R.Z., Wang, Z.J., & Li, S.Y. (2016). A parallel genetic algorithm based on spark for pairwise

test suite generation. Journal of Computer Science and Technology, 31(2), 417–427.

Ren, Y., Zhang, C., Zhao, F., Xiao, H., & Tian, G. (2018). An asynchronous parallel

disassembly planning based on genetic algorithm. European Journal of Operational

Research, 269(2), 647-660.

Sachar, P., & Khullar, V. (2016). Genetic algorithm using MapReduce-A critical review. i-

manager’s Journal on Cloud Computing, 2(4), DOI:10.26634/jcc.2.4.4907.

Scheithauer, G. (1992). Algorithms for the container loading problem. Operations Research

Proceedings, 1991, 445-452.

Teobaldo, B., Minh, H.H., Rafael, M., & Thibaut, V. (2018). The vehicle routing problem with

service level constraints. European Journal of Operational Research, 265(2), 544-558.

Tsai, J.F., Wang, P.C., & Lin, M.H. (2015). A global optimization approach for solving three-

dimensional open dimension rectangular packing problems. Optimization, 64, 2601-2618.

Verma, A., Llorà, X., Goldberg, D.E., & Campbell, R.H. (2009). Scaling genetic algorithms

using mapreduce. In IEEE, Intelligent Systems Design and Applications. ISDA'09.

Ninth International Conference on: 13-18.

30

Victor, P., Michel, G., Christelle, G., & Andrés, L.M. (2013). A review of dynamic vehicle

routing problems. European Journal of Operational Research, 225(1), 1-11.

Vidal, P., & Alba, E. (2010). Cellular genetic algorithm on graphic processing units. Nature

Inspired Cooperative Strategies for Optimization (NICSO 2010), 223-232.
Wuttke, D.A., & Heese, H.S. (2018). Two-dimensional cutting stock problem with sequence

dependent setup times. European Journal of Operational Research, 265(1), 303-315.

Yu, B., Yang, Z., Sun, X., Yao, B., Zeng, Q., & Jeppesen, E. (2011). Parallel genetic algorithm

in bus route headway optimization. Applied Soft Computing, 11(8), 5081-5091.

Yu, W., & Zhang, W. (2006). Study on function optimization based on master-slave structure

genetic algorithm. 2006 8th International Conference on Signal Processing, 3.

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M.J., Shenker,

S., & Stoica, I. (2012). Resilient distributed datasets: A fault-tolerant abstraction for in-

memory cluster computing. Proceedings of the 9th USENIX conference on Networked

Systems Design and Implementation, 2.

	Clipboard Data(1)
	ASOC-S-19-02736.pdf

