
Sparsifying Parity-Check Matrices I

Lúıs M. S. Russo∗

INESC-ID and the Department of Computer Science and Engineering,

Instituto Superior Técnico, Universidade de Lisboa, Portugal

Tobias Dietz

Department of Mathematics, Technische Universität

Kaiserslautern, Germany

José Rui Figueira

CEG-IST, Instituto Superior Técnico, Universidade de Lisboa, Portugal

Alexandre P. Francisco

INESC-ID and the Department of Computer Science and Engineering,

Instituto Superior Técnico, Universidade de Lisboa, Portugal

Stefan Ruzika

Department of Mathematics, Technische Universität
Kaiserslautern, Germany

Abstract

Parity check matrices (PCMs) are used to define linear error correcting codes and

ensure reliable information transmission over noisy channels. The set of codewords

of such a code is the null space of this binary matrix. We consider the problem of

minimizing the number of one-entries in parity-check matrices. In the maximum-

likelihood (ML) decoding method, the number of ones in PCMs is directly related to

∗Corresponding author
Email addresses: luis.russo@tecnico.ulisboa.pt (Lúıs M. S. Russo),

dietz@mathematik.uni-kl.de (Tobias Dietz), figueira@tecnico.ulisboa.pt
(José Rui Figueira), aplf@tecnico.ulisboa.pt (Alexandre P. Francisco),
ruzika@mathematik.uni-kl.de (Stefan Ruzika)

Preprint submitted to Applied Soft Computing May 12, 2020

ar
X

iv
:2

00
5.

05
05

1v
1

 [
cs

.I
T

]
 8

 M
ay

 2
02

0

the time required to decode messages. We propose a simple matrix row manipulation

heuristic which alters the PCM, but not the code itself. We apply simulated annealing

and greedy local searches to obtain PCMs with a small number of one entries quickly,

i.e. in a couple of minutes or hours when using mainstream hardware. The resulting

matrices provide faster ML decoding procedures, especially for large codes.

Keywords: Parity-check matrix, Sparsifying matrices, Minimum decoders, Greedy

search, Simulated annealing, Integer programming

1. Introduction

In today’s world, a fast and reliable wireless internet connection is essential.

During data transmission, the data may become perturbed due to weather conditions,

obstacles, or other data traffic. To achieve robustness, usually all data is encoded

before the transmission and decoded after reception. While encoding is an easy task

once a suitable code is chosen, decoding may be extremely costly in terms of time and

it may produce errors. These two problems can for example occur when streaming

of a video: The video may need much time to load and buffer or the video may be

of bad quality.

The optimal way to decode a message is the so-called Maximum-Likelihood (ML)

decoding (see Helmling et al. (2012) for an introduction). It is well-known that ML

decoding is NP-hard (Berlekamp et al. (1978)). In this paper, we aim to reduce the

ML decoding time by altering the representation of the given code. In detail, we

alter the code’s underlying PCM such that the number of ones is reduced without

changing the code itself. This can be done by adding one or more rows to another row

which does not change the kernel of the matrix and thus does not change the code.

Gensheimer et al. (2018) show that ML decoding works faster on sparse matrices.

The authors also show that the number of one-entries of a PCM can be minimized by

2

solving an integer program for every row of the matrix. Although this optimization

has to be done only once for each code, the computation time increases rapidly

with increasing matrix size. Since each integer problem considered by Gensheimer

et al. (2018) consists of O(n) variables and constraints, where n is the number of

columns, the authors did not compute an optimal solution for large matrices. Instead,

approximations are given. In this paper, we focus on obtaining fast algorithms that

approximate an optimal matrix by applying simulated annealing.

The remainder of this article is organized as follows. Section 2 presents basic

concepts, definitions, and notation. Section 3 is devoted to matrix transitions and

the problem is formulated in the context of simulated annealing meta-heuristics with

the aim of modifying the current PCM quickly. Section 4 contains computational

results which show that our approach efficiently yields very good approximations of

the optimal sparse PCM in reasonable time frames, from a few minutes to a couple

of hours, with commodity hardware (in some cases even greedy local searches obtain

good results). Moreover, we also provide practical guidelines on how to select tem-

peratures and cooling schedules for annealing. Section 5 presents other approaches

used to deal with the same problem, namely those based in binary linear program-

ming and solved by powerful linear programming solvers. Finally, Section 6, presents

the main conclusions and provides future research ideas.

2. Coding Theory Basics

This section introduces basic notations, a fundamental result, and an illustrative

example.

Definition 1 (Binary Linear Code). A binary linear code C ⊆ {0, 1}n of size n

is a linear subspace of {0, 1}n. The elements of C are called codewords.

3

In particular, 0n ∈ C and, for all y, y′ ∈ C, it holds that y + y′ ∈ C where the

addition is performed modulo 2.

Definition 2 (Parity-Check Matrix). A binary linear code C can be represented

by a parity-check matrix (PCM) H ∈ {0, 1}(n−k)×n where C = {y ∈ {0, 1}n : Hy ≡ 0 mod 2}.

If the rows of H are linearly independent, k is the dimension of C.

Thus, a binary linear code can be seen as the kernel of a binary matrix. With a

parity-check matrix H given, it can be easily decided if a given word y ∈ {0, 1}n

belongs to the code C.

Theorem 1 (see (Gensheimer et al., 2018)). Let H ∈ {0, 1}(n−k)×n be a parity-

check matrix of a code C of dimension k. Then H ′ ∈ {0, 1}(n−k)×n is a parity-check

matrix of C if and only if all rows of H are elements of the span of the rows of H ′.

In particular, the code does not change if one or more rows are added to another

row.

The following matrix is a PCM H of a BCH code1,

H =

1 0 1 1 1 0 0 1 1 0 0 0 0 0 0

0 1 1 0 1 0 0 0 1 0 0 0 0 0 0

0 0 1 1 0 1 0 0 0 1 0 0 0 0 0

0 0 0 1 1 0 1 0 0 0 1 0 0 0 0

0 0 0 0 1 1 0 1 0 0 0 1 0 0 0

0 0 0 0 0 1 1 0 1 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 1 0 1 0 0 0 1

. (1)

1In particular n = 15 is the codeword size and k = 7 is the dimension.

4

The codewords are the vectors y for which H ·y ≡ ~0 mod 2, where ~0 is a vector of

zeros. Therefore, the word 000000000000000 is a codeword, likewise 000000100010111

is also a codeword, since H · y = (00000000)T , when y is the vector representation

of this word. Note that for latter, H · y corresponds to summing (modulo 2) the

columns highlighted in gray. This matrix contains 6 ones in the first row and 4 ones

in each of the following 7 rows, yielding a total of 34 ones.

From basic linear algebra, it follows that a PCM can be modified in such a

way that the underlying code is not changed. More precisely, given any invertible

matrix S, the matrix H ′ = S ·H yields an alternative PCM for the same code. For

example, the first row of H can be replaced by adding the second row to it. This

yields H ′ where the first row is (110100010000000) while the remaining rows are

identical to those in H. This first row contains 4 ones and, therefore, H ′ contains

32 ones in total.

Given some code, our goal is to compute a PCM H ′ with the minimal number of

one entries. In the example above, H ′ is sparser than H. In fact, for this particular

code, it can be proven that the minimal number of ones of any PCM equals 32 and,

therefore, H ′ is one of the sparsest PCMs.

3. Constructing Alternative Parity-Check Matrices

There may be several natural approaches to the problem of finding an invertible

matrix S such that H ′ = S ·H is sparse2.

2 Note that, for any word y, we want to have Hy ≡ ~0 iff H ′y ≡ ~0. The forward implication is

straight forward, if Hy ≡ ~0 then H ′y ≡ S ·Hy ≡ S~0 = ~0. The implication in the reverse direction

can be proven by assuming that H ′y ≡ ~0, and because S is invertible, we can apply S−1 to both

sides of the equation and obtain that Hy ≡ ~0.

5

The approach proposed in this article consists of selecting an origin row i and a

destination row j and adding row i to row j. The matrix S representing this kind of

elementary row operation is the unit matrix with an additional 1 in the entry (j, i).

This process is repeated several times, until the resulting matrix is sufficiently close

to the optimal value.

3.1. Row Selection

A successful realization of this strategy entails several open issues, namely how

to efficiently select the rows i and j.

In particular, adding one row to another may sometimes increase the number of

ones in H ′, although this process seems to be contradicting the objective. However,

it is sometimes necessary to escape from local minima in the search space. We show

that the simulated annealing meta-heuristic provides a good policy to guide the

search process for a sparse parity-check matrix.

The main steps of the simulated annealing algorithm take into account the fol-

lowing aspects:

1. In the context of simulated annealing, we use E(H ′) to represent the number

of ones in H ′, i.e., the energy of the current state.

2. We associate with each transition (i.e. adding one row to another) a probabil-

ity e−d/T , where d is the variation of E(H ′) and T is the current temperature

of the process.

3. If the transition maintains the value E(H ′) constant then d = 0 and this

probability is 1, in which case the transition is accepted. Likewise, if d < 0,

then the probability formula yields a value greater than 1 and the transition is

also accepted.

6

4. If d > 0, then the transition represents an uphill movement and is not al-

ways accepted. If T approximates 0, then the formula approximates 0 and the

movement is rejected. Hence, T close to 0 yields a greedy local search.

5. If d > 0 and if T is an adequate value, then the formula yields a value between

0 and 1. In this case, we choose a random number uniformly from [0, 1]. If this

number is smaller than the value e−d/T the transition is accepted, otherwise

the transition is rejected.

An efficient implementation requires some tweaking, particularly, it is better to

use an efficient strategy to select rows i and j. There are several possible approaches:

1. Choosing i and j uniformly at random, but distinct;

2. Analyzing all pairs i and j and selecting the best existing transition;

3. Using dirty flags, in each row, to speed-up the search of good existing transi-

tions.

The following paragraphs provide more details for the previously mentioned ap-

proaches.

3.1.1. Random Choice

This is the simplest approach and consists of choosing i and j uniformly at ran-

dom, but distinct. We use this approach if there are no candidates for transitions

which reduce E(H ′).

3.1.2. Selecting Best Transitions

An alternative to the previous approach consists of analyzing all pairs i and j

and selecting the pair leading to the best existing transition. This requires O(nm2)

7

time, where n is the number of columns in H ′ and m is the number of rows. This

effort has significant impact in the performance of the resulting algorithm, the time

bound is excessive for the resulting gain. Therefore our algorithm never uses this

selection procedure. Instead, we propose an heuristic to obtain similar results in

at most O(nm) time per analysis. Moreover, our approach only spends this time if

there is a chance of reducing the number of ones in H ′. Most of the time, it certifies

that no such move exists in O(1) time.

3.1.3. Assigning Flags to Rows

Our strategy is to assign a dirty flag to each row. If this flag is set, then the row

is considered dirty, otherwise it is considered clean. If i and j are clean rows, then

neither adding row i to row j nor adding row j to row i produces a row with fewer

ones. The smaller the number of ones in a matrix, the more rows become clean.

Recall, for example, the matrix H ′ obtained from H in Equation (1). We can safely

consider all rows of H ′ as clean, because adding any two rows results in a row which

contains more ones. When a given row i is flagged as dirty, we can test this status

by adding i to every other row in H ′. Note that this is only a testing procedure and,

thus, we do not alter H ′. If there exists a row j such that adding i to j reduces

the number of ones, then the pair of rows i and j is sent to the simulated annealing

decision process, which, as discussed above, accepts this transition. The dirty flag of

i is kept by the simulating annealing procedure and, moreover, row j is also flagged

as dirty. Note that only the selection procedure is able to assign clean flags. A dirty

flag is assigned by the simulated annealing process, to row j, whenever row i is added

to row j, no matter what the original flags of i and j are. Also in this case the flag

of i is kept.

Row i can only be flagged as clean if there is no row j such that adding i to j

8

produces a row with less ones. In this case this selection procedure flags i as clean.

This process requires at most O(nm) time, as mentioned before.

Let us now just highlight an important nuance. It is not sufficient to add i to j

and verify if this reduces the number of ones compared to j. We must also verify if

it reduces the number of ones compared to i. If both decrease the number of ones,

we choose the transition which results in the sparser matrix. If the number of ones

never decreases this selection procedure flags row i as clean. Moreover, the rows j

to test are not considered in order, i.e., from 1 to m. This avoids a bias towards the

first rows. Instead this procedure generates a random uniform permutation of the

numbers 1 to m.

3.1.4. Additional Considerations

In the initialization, all rows are flagged as dirty since none of them was verified.

As the algorithm evolves, the number of dirty rows decreases quickly to 0 and, in fact,

most of the time the number of dirty rows is 0. In this case, no analysis is performed

and we select i and j uniformly at random, as explained before. This means that

most of the time, we avoid the O(nm) time operation and, instead, spend O(1) time

only, albeit we also do not obtain decreasing transitions. Still, this process is valuable

since when the annealing algorithm escapes a local minima it quickly moves downhill

to another minima. In some cases, we do pay the O(nm) time cost but row i gets

flagged as clean. In these cases, we also do not find a row j which decreases the

number of ones and again choose i and j uniformly at random.

3.2. Choosing the Temperature

Another important issue in simulated annealing is the selection of the value of

the temperature degrees T . This value is not constant during the execution of the

9

algorithm, but it is kept for around 100 iterations. After these iterations, the tem-

perature is updated using a geometric rule, i.e., we change T to αT with α < 1.

Calculating the value of α is straightforward once we decide the initial temperature

T0, the final temperature F , as well as the number of steps s desired to transform

T0 into F . Hence, the only issue consists in determining the numerical values of

T0 and F . This is challenging without further insight into the chosen parameters.

We provide an intuitive approach to this choice, which is actually very robust for

different problems.

4. Algorithmic Aspects

In this section, we review the simulated annealing algorithm and present its

application to the problem of determining the sparsest parity-check matrix. We

also discuss strategies for selecting the temperature and cooling rate. We finish this

section by showing several experimental results of our approach and surveying the

state of the art.

4.1. Simulated annealing for determining the sparsest PCM

The simulated annealing algorithm is stated in Algorithm 1. The current state

of the algorithm is represented by the matrix H ′ which starts off equal to H. The

initial temperature is set to T0 and the final temperature is set to F . When the

temperature reaches F , the while-loop is executed one last time. Each time this

loop is executed, the for-loop is also executed. The value of Iter is fixed to 100

in all our tests. We kept it at a low value within the recommended range. Recall

that, for all these 100 values of k, the algorithm iterates at a constant temperature.

The temperature is decreased in line 12. To control how long the algorithm runs, we

10

choose a proper value for α. When we want that the external while-loop is executed

s+ 1 (assuming T0 < F) times, we set α = s
√
F/T0.

input : 〈H, T0, F , s〉 { Matrix H is in alist format. }

output: 〈H ′〉

1 H ′ ← H ;

2 T ← T0 ;

3 α← s
√
F/T0 ;

4 while T 6 F do

5 for k = 1 to Iter do

6 (i, j, d)← Analyze(H ′) ;

7 if Random(0, 1) 6 e−d/T then

8 H ′[j]← H ′[i] +H ′[j] ;

9 end

10 k ← k + 1 ;

11 end

12 T ← αT ;

13 end

14 return H ′ ;

Algorithm 1: Pseudo code for simulated annealing algorithm.

The algorithm comprises two functions.

1. Analyze(H ′) follows the procedure described in Section 3. If all the rows are

marked as clean, then row indexes i and j are chosen uniformly at random.

We denote the respective rows by H ′[i] and H ′[j]. If there is at least one row

flagged dirty, then i is chosen uniformly among the dirty rows and j scans

11

through all the other rows to find one which decreases the number of ones. If

such a row is found, then j becomes the index of that row. In fact, i and j

might need to be swapped to maximize the reduction in the number of ones.

If no such row is found, then the flag of i is set to clean and new i and j values

are chosen uniformly at random and passed as the output of Analyze. The

value d in line 6 represents the variation in the number of ones the current

transformation will imply. If d is negative, the number of ones decreases; if d

is positive, it increases. The + symbol in line 8 represents the row addition in

Z2.

2. The function Random(0,1) returns a random number in [0, 1], chosen uniformly

at random. To obtain this value and test the condition in line 7, we rewrite the

condition. The goal is to avoid the loss of precision that results from division

and exponentiation, and to guarantee sound random numbers. Instead, we test

the following condition

d 6 T (30 ln 2− lnR).

In this condition, R is an integer chosen uniformly at random from 1 to 230,

using the arc4random uniform function of the BSD stdlib.

It remains to discuss the selection of the temperature parameters T0 and F . Like

in several parametric methods, determining these values is largely an experimental

procedure, which depends heavily on the application at hand. This is obviously true

for our application. However, we wish to convey some insight into the choice of these

parameters. Let us recall the acceptance condition in line 7 of Algorithm 1. The

following equation captures this condition, using p to denote the random number,

p 6 e−d/T . (2)

12

We may consider the extreme cases, when the inequality becomes an equality, and

we rewrite the condition to obtain T . The resulting equation is

T = −d/ ln p. (3)

This means that a temperature can be defined by specifying d and p. We prefer

to specify these parameters as they lead to a more intuitive notion of temperature.

For example, for the matrix H in Equation (1) in Section 1, we can decide to accept

an increase of two one-entries, i.e., d = 2, in 4% of the transitions considered, this

means p = 0.04. Hence, we obtain a numerical value for T of approximately 0.62133.

Note that a temperature applies to all the tests of line 7, so we might inquire what

is the probability that this temperature accepts a value of d = 4. Using standard

calculus, it turns out that the resulting probability is 0.042 = 0.0016. In general,

if we define the values d1 and p1, then the probability p2 for a delta d2 is given as

p2 = p
d2/d1
1 . Hence, for d2 = 1, we obtain a probability of 20% with p2 =

√
0.04 = 0.2.

The following plot illustrates the resulting curve.

Hence, it is possible to specify the same temperature by inputting any one of

the three points indicated above. In general, defining a temperature in this way

13

is more intuitive than the single numerical value. In our prototype, temperatures

are specified by providing parameters p and f . The value d is then obtained as

d = f × N , where N is the number of columns of the corresponding matrix. We

keep the value f constant at 0.01, meaning that uphill movements that increase the

number of ones by d are only accepted 1% of the time. Hence, the input parameters

are fairly intuitive. Naturally the parameters are chosen by trial and error, still this

approach gives some reasonable initial values.

Another important aspect of the simulated annealing algorithm is the cooling

schedule of temperature degrees, which is affected by the final temperature F . Again,

we specify F by choosing d and p. In this case, it is sensible to maintain one of the

parameters constant. For example, we could choose d = 1 and p = 0.04, meaning

that from T0 to F we maintain the 4% uphill probability, but reduce the value of d

from 2 to 1.

An example of how this approach can simplify the temperature definition is shown

in Table 1, where the selection of hot and cold values for f and p is fairly straight-

forward, but the resulting temperatures T0 and F are fairly peculiar. Note that,

without the insight we have just described, the initial order of magnitude for T0 and

amplitude F −T0 are mysteries that need to be solved by trial and error. Let us now

proceed to the experimental evaluation.

4.2. Experimental results and discussion

In this section, we describe the experimental setup used to test our algorithm. We

used several PCMs in alist format3. The matrices are obtained from a channel code

database4. Our prototype is available at “https://github.com/LuisRusso-INESC-

3“http://www.inference.org.uk/mackay/codes/alist.html
4“https://www.uni-kl.de/channel-codes/channel-codes-database/

14

ID/SPCM.

4.2.1. The Design of the Experiments

We selected reasonable initial temperature T0 and final temperature F . We also

executed our algorithm with extremely low temperature settings. At these tempera-

tures, the simulated annealing heuristic reduces to a greedy local search procedure,

which always reduces the number of ones and never accepts any transitions which

increase this value.

The result of these executions is shown in plots of time versus the number of

ones in the underlying matrix. Moreover, because the algorithm is probabilistic, the

results vary. Therefore, we present the results of several repetitions of the algorithm.

The local search algorithm is repeated 32 times and the simulated annealing algo-

rithm is repeated 128 times. The number of times that the while-loop in Algorithm 1

is executed, can be very big, i.e., s can be as high as several millions. Therefore, we

sample data points from some of those executions.

To execute these tests, we used a dedicated server and executed the tests in

parallel, one per core, but without using hyper-threading. Therefore, we executed 32

parallel tests at a time. Note that this kind of hardware is necessary only because we

want to study the performance of the proposed algorithm. For the goal of obtaining

a sparse PCM of a given code, it is possible to use commodity hardware.

The server contained an Intel(R) Xeon(R) CPU E7 4830 running at 2.13GHz,

with 32 physical cores, the architecture is 64-bit. The server contains 4 sockets each

containing 8 cores. The system reported 4255.86 BogoMIPS, and has the following

cache sizes L1d 32KB, L1i 32KN, L2 256KB, L3 24576KB. This means that the

matrices considered fitted in cache. The overall system memory is 251GB and it

has 7GB of swap, but as we just pointed out, this memory was not crucial to the

15

algorithm. In fact, some of the tests were initially performed on an Eee PC with an

Intel Atom CPU N270 running at 1.60GHz and with 1.96GB of main memory.

4.2.2. Results

In Figure 1, we show how the number of ones can be reduced by our algorithm.

The green bars occupy 100% of the initial number of ones. The blue bars indicate

the percentage of the number of ones obtained by the greedy algorithm compared

to the initial number of ones. This value is the one obtained by the best run of

the greedy search. The red bars indicate the percentage of ones obtained by the

simulated annealing algorithm compared to the initial number of ones.

Figures 2, 3, 4, and 5 show the results from the time experiments. The x axis

indicates time, as the algorithm proceeds. The y axis has a double scale, on the right

we indicate the actual number of ones, on the left, we indicate the ratio between the

current solution and the overall minimum attained value. Note that this minimum

might be larger than the number of ones in the code’s sparsest parity matrix. The

remaining experimental results are shown in Appendix A. The blue points are sam-

pled from the greedy algorithm and the red points are sampled from the simulated

annealing algorithm. If you have a black and white version of this paper, then the

greedy points are still easy to identify, because they seem to form constant lines,

whereas the simulated annealing points are usually decreasing.

In Table 1, we show the parameters that we used for the simulated annealing

algorithm. The number N indicates the number of columns of the corresponding

matrix. The value of d is obtained as f · N , where f is also given in the table.

Likewise, the value p is also stated in the Table 1. We use Equation (3) to determine

both, the initial T0 and the final temperature F . These values are also shown in

the table. The number of iterations S is given in the last column of the table. As

16

Figure 1: Bar chart illustrating the relative number of ones obtained with the greedy and simulated

annealing algorithms.

discussed in Section 4.1, we keep the value f constant at 0.01, meaning that uphill

movements that increase the number of ones by d are only accepted 1% of the time.

4.2.3. Comments and Discussion

The results for the LTE Turbo code with n = 396 and k = 128 show the best

illustration for the methods we present. As shown by the bars in Figure 1, for this

particular code, the number of ones in greedy and simulated annealing algorithms

is significantly smaller than the original number of ones. Moreover, there is even

17

Table 1: Algorithm parametrization.

Start Finish

Code N f p T0 f p F S

LTE-TC-N396-K128 396 0.05 0.01 4.30 0.01 0.01 0.86 5.12E+6

BCH-127-92-5-strip 127 0.05 0.01 2.77 0.01 0.01 0.28 5.12E+6

BCH-255-207-6-strip 255 0.05 0.01 1.38 0.03 0.01 1.66 5.12E+8

BCH-7200-7032-12-strip 7200 0.004 0.01 6.25 0.003 0.01 4.69 1.28E+6

a significant difference between these two algorithms. The points from the greedy

algorithm form straight lines, showing clearly that this algorithm quickly gets cap-

tured in local minima. The number of ones initially decreases quickly for both, the

greedy and simulated annealing algorithm. It is omitted from the plots to keep the

scale range smaller and make it easier to compare the performance of the greedy and

simulated annealing algorithms. However, for the LTE Turbo code, it is significant

as shown by the bars in Figure 1.

For the remaining codes, the difference between the greedy and the simulated

annealing is smaller, mainly because the initial number of ones seems to be closer to

the optimal sparsest PCM. Note that the ratios in the scale of Figures 3, 4, and 5

are very close to 1 and the blue and red bars in Figure 1 are close to the green

bar. The time plots still show the simulated annealing algorithm improving over

time, as it decreases to reach a factor close to 1, at which point the searches seem to

stabilize, and possibly the optimal value was obtained. For the code BCH-255-207-6,

the procedure takes much longer, indicating that for this code better results could

be achieved by the simulated annealing algorithm, given more time. However, since

the running time exceeded 50 hours, the test was stopped. Note that to produce the

information in the plot, we required 5 times this period.

18

Figure 2: Time (x axis) versus number of ones (right y axis) or factor to overall minimum number

of ones (left y axis) for LTE TC N396 K128.

It is also interesting to note that the difficulty of determining the sparsest parity-

check matrix is intrinsic to the code in consideration and cannot be directly inferred

from the number of columns in the code matrix. The code BCH-7200-7032-12 has

7200 columns but seems to stabilize much quicker, in a matter of minutes, whereas

the code BCH-255-207-6 has only 255 columns but is much more challenging.

In Appendix A, we show further experimental results. We show several BCH

and LTE codes. Our algorithm seems to consistently and significantly improve the

LTE codes. This is a good result although the improvement ratio seems to degrade

as the size of the LTE codes increases. We believe that this is a parameter problem,

as all these tests are conducted with the same p and f parameters. It seems that

this generic scheduling is too cold for the smaller LTE codes, as the cloud of red dots

does not seem to contract to a point and, instead, remains wide. When N is between

19

Figure 3: Time (x axis) versus number of ones (right y axis) or factor to overall minimum number

of ones (left y axis) for BCH 127 92 5 strip.

276 and 612, the cooling seems to be adequate, although for the larger codes it may

benefit from more iterations. For the larger codes, the concavity of the cloud seems

to change, thus indicating that, for these codes, the overall scheduling is too hot. We

plan to experiment with cooler schedules.

As a final consideration, we discuss the practical consequences of reducing the

number of ones in PCMs. As mentioned in Section 1, our main motivation for

sparsifying a PCM is to decrease the time necessary for ML decoding. A systematic

study of ML decoding is beyond the scope of this paper, and moreover Gensheimer

et al. (2018) have already established that ML decoding is indeed faster for sparser

matrices. Instead we focus on code checking, instead of decoding. By checking we

mean that the procedure can only determine whether a codeword y belongs to a

certain code C. However when y does not belong to C, the checking procedure can

20

Figure 4: Time (x axis) versus number of ones (right y axis) or factor to overall minimum number

of ones (left y axis) for BCH 127 92 6 strip.

not determine the most likely y′ that belongs to C and that got distorted into y.

Restricting our analysis to a checking procedure, instead of a decoder, is moti-

vated by three reasons. First checking procedures are much simpler than decoders.

Second the number of ones of the PCM has a significant correlation to the perfor-

mance of the simple checking procedure we present. Third, and most importantly,

checking is enough for most of the words. Note that all received words must be

checked, and checking should be enough for most of them, as most of them should

be codewords. Otherwise there will be a significant portion of received words that

will be distorted beyond recovery. This means that checking amounts to the majority

of the time that is necessary to process the received words. Therefore a reduction in

the checking time is guaranteed to translate into a significant reduction of the overall

time, even before the improvement in the decoding procedure is accounted for.

21

Figure 5: Time (x axis) versus number of ones (right y axis) or factor to overall minimum number

of ones (left y axis) for BCH 127 92 12 strip.

Now recall that according to definition 2 checking whether a word y is a code word

is a matter computing a matrix multiplication in Z2, i.e., Hy ≡ 0 mod 2. We will

now explain how to efficiently perform this operation, in a way that depends on the

number of ones in H, meaning that the performance of the algorithm benefits from

the fact that H is sparse. First note that we can use xor to compute addition in Z2.

Second recall the formula for matrix multiplication, given in the following equation,

where the elements of the resulting vector v are indexed as vi, with i between 1 and

n− k,

vi =
n∑

j=1

Hi,jyj. (4)

The elements where Hi,j = 0 can simply be removed from the sum. Hence, in Z2,

22

this equation can be simplified to

vi =
∑

Hi,j=1

yj. (5)

This equation is optimised by the fact that H is fixed for several different words y,

and depends on the number of ones inH. Let us illustrate this for y = 000000100010111

and as defined in Equation (1). The computation in Equation 4 amounts to the fol-

lowing calculation, where the Hi,j = 1 values are highlighted,

1 × 0 + 0× 0 + 1 × 0 + 1 × 0 + 1 × 0 + 0× 0 + 0× 1 + 1 × 0 + 1 × 0 + 0× 0 + 0× 1 + 0× 0 + 0× 1 + 0× 1 + 0× 1

0× 0 + 1 × 0 + 1 × 0 + 0× 0 + 1 × 0 + 0× 0 + 0× 1 + 0× 0 + 1 × 0 + 0× 0 + 0× 1 + 0× 0 + 0× 1 + 0× 1 + 0× 1

0× 0 + 0× 0 + 1 × 0 + 1 × 0 + 0× 0 + 1 × 0 + 0× 1 + 0× 0 + 0× 0 + 1 × 0 + 0× 1 + 0× 0 + 0× 1 + 0× 1 + 0× 1

0× 0 + 0× 0 + 0× 0 + 1 × 0 + 1 × 0 + 0× 0 + 1 × 1 + 0× 0 + 0× 0 + 0× 0 + 1 × 1 + 0× 0 + 0× 1 + 0× 1 + 0× 1

0× 0 + 0× 0 + 0× 0 + 0× 0 + 1 × 0 + 1 × 0 + 0× 1 + 1 × 0 + 0× 0 + 0× 0 + 0× 1 + 1 × 0 + 0× 1 + 0× 1 + 0× 1

0× 0 + 0× 0 + 0× 0 + 0× 0 + 0× 0 + 1 × 0 + 1 × 1 + 0× 0 + 1 × 0 + 0× 0 + 0× 1 + 0× 0 + 1 × 1 + 0× 1 + 0× 1

0× 0 + 0× 0 + 0× 0 + 0× 0 + 0× 0 + 0× 0 + 1 × 1 + 1 × 0 + 0× 0 + 1 × 0 + 0× 1 + 0× 0 + 0× 1 + 1 × 1 + 0× 1

0× 0 + 0× 0 + 0× 0 + 0× 0 + 0× 0 + 0× 0 + 0× 1 + 1 × 0 + 1 × 0 + 0× 0 + 1 × 1 + 0× 0 + 0× 1 + 0× 1 + 1 × 1

.

On the other hand the computation of the same result according to Equation (5)

is illustrated by the following calculation,

0 + 0 + 0 + 0 + 0 + 0

0 + 0 + 0 + 0

0 + 0 + 0 + 0

0 + 0 + 1 + 1

0 + 0 + 0 + 0

0 + 1 + 0 + 1

1 + 0 + 0 + 1

0 + 0 + 1 + 1

.

This latter calculation is much smaller than the previous one, thus making the

checking procedure much faster. Hence we use Equation (5) to implement it. A

hardware implementation of a checking procedure can definitely benefit from Equa-

tion (5), since every add operation is implemented with an xor gate and we only need

to add the bits yj for which Hi,j = 1. Reducing the number of xor gates reduces

23

both the cost and the time requirements of the resulting circuit. This application

is clearly important and it will be the focus of further research. For now we will

describe a computer architecture aware checker implementation.

Modern CPUs provide bitwise XOR operations, meaning that the operation is

applied to all the bits in the computer word, i.e., to 64 bits at a time in contem-

porary CPUs. The bits in the computer word are processed essentially in parallel.

We explore this parallelism by checking 64 independent received words at the same

time. To clearly establish the relation between the number of ones in H and the

performance of a computation based on Equation (5), it would be enough to check

only one word. However this would be a considerable waist of performance. Hence

we chose to check 64 words at a time. This means that a batch of 64 codewords needs

to be packed for checking, so that all the yj bits are stored in a single computer word.

Our test consisted in generating random bit words and checking with several

PCMs for the same code, in particular PCMs obtained with greedy search and with

simulated annealing. The results are shown in the plots in Figures 6 and 7.

In these plots the x axis corresponds to the number of ones in the respective

PCMs, and the y axis corresponds to the average time to check a given word. Like

before the results for the LTE Turbo code with n = 396 and k = 128 show the best

illustration of the methods we present. In this example the PCMs with most ones

are clearly slower than the PCMs with less ones. Moreover because the number of

ones varies significantly, between 1500 and more than 4000, this effect is even more

notorious. This case clearly shows an important improvement that results from

obtaining sparse PCMs of a given code.

On the other hand for the code BCH-127-92-5-strip this effect is not as notorious

as the variance of the checking time is very big.

24

Figure 6: Number of ones (x axis) versus time (y axis).

4.2.4. Related Work

In this section, we discuss some related work to give perspective on our work.

Simulated annealing is a probabilistic technique for approximating the global min-

imum of a function. The name derives from the metallurgy technique of heating

and controlled cooling of metal. The method was initially used to approximate the

global minimum of a function with several variables (Khachaturyan et al., 1979,

1981). It was then formulated in the context of optimization by Kirkpatrick et al.

(1983). One of its initial—and most well-known—applications was to the travelling

salesman problem (Černỳ, 1985). Since then, it has been applied to a wide range of

applications, as surveyed by Koulamas et al. (1994).

Information theory lies at the core of modern computers and communication

technologies (Shannon, 1948) and can be traced back to the 1940s. The two main

applications of information theory are data compression and error correcting codes.

25

Figure 7: Number of ones (x axis) versus time (y axis).

The pioneering work on error correcting codes was made by Hamming (1950) with

the introduction of the Hamming(7,4) code. This code is also a linear code, as the

codewords form a linear subspace. The codewords are 7 bits long. The distance

among codewords is 3 meaning that is possible to correct errors in a single bit, or

detect errors in at most 2 bits. For a nice introduction to the subject, we refer to the

book of Hill (1986). Several linear codes followed this initial breakthrough (Golay,

1949). The BCH codes that we tested extensively in this work were discovered inde-

pendently by Hocquenghem (1959) and Bose and Ray-Chaudhuri (1960). A personal

description of this time is presented by Reed (2000), which naturally describes the

history of Reed-Solomon codes (Reed and Solomon, 1960), also a class of linear codes.

Turbo codes are a much more recent discovery and are the first practical codes to

approximate the channel capacity (Berrou et al., 1993). They are currently in use

in 3G and 4G mobile communication standards and deep space communication, as

26

well as in other applications where it is necessary to achieve reliable information

transmission over bandwidth or latency constrained channels.

The main advantage of linear codes is that, given their parity-check matrix, it

is straightforward to check if a given word is a codeword or not. Cancellieri (2015)

gives an extensive discussion on the relation between generator matrices and PCMs.

Detecting errors is simple as it uses matrix multiplication only. Note that even

matrix multiplication becomes faster for sparser matrices. Still, the main advantage

of sparser matrices is in error correction, for which maximum likelihood approaches

are used (Breitbach et al., 1998; Feldman, 2003; Helmling et al., 2014; Tanatmis et al.,

2010; Vontobel and Koetter, 2007; Zhang and Siegel, 2012). Other applications of

sparse PCMs (in a row sense) along with a theoretical analysis of lower bounds is

presented by Naor and Verstraëte (2008).

Recently, Gensheimer et al. (2018) pointed out that minimizing the number of

ones in the PCM reduces the run time of ML decoding. The authors presented

a method of obtaining sparse PCMs based on integer programming, which can be

solved with the Gurobi or CPLEX solvers. Here, we partially reproduce their result

tables for a couple of BCH and LTE codes and show that the simulated annealing

algorithm obtains comparable final results. Table 2 shows these results, where the

time reflects the amount of time each algorithm was allowed to run. The best result

was often found earlier. The IP refers to the algorithm by Gensheimer et al., the

bound is a lower bound on the number of ones. We only computed the lower bound

for the smaller BCH codes. As expected, the greedy algorithm performs very well, but

does not always obtain the best value. In most cases, the number of ones matches the

lower bound and are therefore known to be optimal. In the case of the code BCH-63-

36, the lower bound is smaller than the results obtained by the simulated annealing

and the IP algorithm, with both obtaining the same result of 384. The results for

27

LTE codes were obtained using the same simulated annealing parameterization as

for BCH codes. Even though the results obtained with simulated annealing (in much

less time) are comparable to those obtained by IP, a more tailored parameterization

would allow to attain even better results.

Table 2: Comparison of the number of ones obtained by lower bound, IP, the greedy algorithm and

the simulated annealing.

Code
bound IP Greedy Annealing

#1s #1s time (s) #1s time (s) #1s time (s)

BCH-63-30 396 396 990 406 191 396 210

BCH-63-36 378 384 810 402 216 384 212

BCH-63-39 336 336 720 344 211 336 221

BCH-63-45 288 288 540 288 301 288 287

BCH-63-51 288 288 360 288 299 288 366

BCH-63-57 192 192 180 192 539 192 630

LTE-132-40 – 472 82800 743 5.76 562 7.71

LTE-156-48 – 568 97200 940 5.83 662 10.8

LTE-180-56 – 663 37200 1180 6.59 776 13.8

LTE-204-64 – 760 42000 1401 6.34 865 18.9

LTE-396-128 – 1594 16080 3543 10.4 2030 127

LTE-780-256 – 3377 31440 10933 20.9 5564 808

A recent survey on the applications of sparse binary matrices was given by Marti-

novic et al. (2005). The authors start by discussing how to represent sparse matrices

to reduce space requirements and then focus on binary matrices and their appli-

cations in clustering, web graph computations, web link analysis and binary factor

analysis Keprt (2014).

28

As a final note we point out the significant impact of the work on graph sparsifi-

cation (Keprt, 2014; Benczúr and Karger, 1996; Spielman and Teng, 2013a,b; Koutis

et al., 2014) which reduces a graph to a smaller graph that contains many of the

same properties, but that requires much less space. This transformation is lossy

in the sense that it may be impossible to recover the original graph from the sparse

graph. This line of research is a good example of the advantages that can be obtained

with sparser binary matrices, in this case graph adjacency matrices.

5. Conclusion and Future work

In this paper, we considered the problem of finding the sparsest parity-check

matrix (PCM) for a given linear error correcting code. We proposed an algorithm

which modifies this matrix by adding one row to another. We flagged rows as clean

or dirty as a way to speed-up the choice of which rows to alter. For codes that

contained excessive density, this process turns out to be effective. However, if this

process is applied in a greedy fashion, i.e., never considering movements which make

the underlying matrix denser, the resulting PCM may still be significantly far from

the global optimum. Therefore, we studied a simulated annealing approach, which

yields very good results.

In general, our experimental results indicate that the simulated annealing algo-

rithm is very likely to achieve a global minimum, given a reasonable amount of time,

with reasonable hardware requirements. Most of the codes tested seemed to stabilize

within a couple of hours with one notable exception being the BCH-255-207-6 code.

We also proposed a simple way to choose the temperature parameters for the

simulated annealing algorithm, by specifying with what probability p are we willing

to accept an uphill transition that impacts our goal by a value of d. We also explained

how this probability p changes for different values of d.

29

We are currently working on checking the performance of our algorithm in other

error correcting codes and on fine tuning the corresponding ideal temperatures and

cooling schedules. The results of applying simulated annealing to error decoding were

very positive. Moreover, Turbo codes are a particularly relevant class of codes, see

Section 4.2.4 and Appendix A. In the future, we plan to investigate more applications

of this technique. In particular, we want to apply this technique to the decoding

process, thus presenting a possible alternative to ML decoding.

Acknowledgements

The work reported in this article was supported by national funds through Fundação

para a Ciência e Tecnologia (FCT) with reference UID/CEC/50021/2019. This work

was funded by European Union’s Horizon 2020 research and innovation programme

under the Marie Sk lodowska-Curie Actions grant agreement No 690941. This work

was supported by DAAD-CRUP Luso-German bilateral cooperation under the 2017-

2018 research project MONO-EMC (Multi-Objective Network Optimization for En-

gineering and Management Support). This work was supported by the DFG (project-

ID: RU 1524/2-3). José Rui Figueira also acknowledges the support from the FCT

grant SFRH/BSAB/139892/2018 under POCH Program.

References

Benczúr, A. A. and Karger, D. R. (1996). Approximating st Minimum Cuts in Õ(n2)

Time. In STOC, volume 96, pages 47–55. Citeseer.

Berlekamp, E., McEliece, R., and van Tilborg, H. (1978). On the inherent intractabil-

ity of certain coding problems (corresp.). IEEE Transactions on Information The-

ory, 24(3):384–386.

30

Berrou, C., Glavieux, A., and Thitimajshima, P. (1993). Near shannon limit error-

correcting coding and decoding: Turbo-codes. 1. In Proceedings of ICC ’93 - IEEE

International Conference on Communications, volume 2, pages 1064–1070 vol.2.

Bose, R. C. and Ray-Chaudhuri, D. K. (1960). On a class of error correcting binary

group codes. Information and control, 3(1):68–79.

Breitbach, M., Bossert, M., Lucas, R., and Kempter, C. (1998). Letter soft-decision

decoding of linear block codes as optimization problem. European Transactions

on Telecommunications, 9(3):289–293.

Cancellieri, G. (2015). Parity Check Matrix Approach to Linear Block Codes, pages

245–320. Springer International Publishing, Cham.

Černỳ, V. (1985). Thermodynamical approach to the traveling salesman problem:

An efficient simulation algorithm. Journal of optimization theory and applications,

45(1):41–51.

Feldman, J. (2003). Decoding error-correcting codes via linear programming. PhD

thesis, Massachusetts Institute of Technology, Cambridge, MA, USA.

Gensheimer, F., Dietz, T., Ruzika, S., Kraft, K., and Wehn, N. (2018). Improved

maximum-likelihood decoding using sparse parity-check matrices. In 25th Inter-

national Conference on Telecommunications, ICT 2018, Saint Malo, France, June

26-28, 2018, pages 236–240. IEEE.

Golay, M. J. (1949). Notes on digital coding. Proc. IEEE, 37:657.

Hamming, R. W. (1950). Error detecting and error correcting codes. The Bell System

Technical Journal, 29(2):147–160.

31

Helmling, M., Rosnes, E., Ruzika, S., and Scholl, S. (2014). Efficient maximum-

likelihood decoding of linear block codes on binary memoryless channels. In 2014

IEEE International Symposium on Information Theory, Honolulu, HI, USA, June

29 - July 4, 2014, pages 2589–2593. IEEE.

Helmling, M., Ruzika, S., and Tanatmis, A. (2012). Mathematical programming

decoding of binary linear codes: Theory and algorithms. IEEE Transactions on

Information Theory, 58(7):4753–4769.

Hill, R. (1986). A first course in coding theory. Oxford University Press.

Hocquenghem, A. (1959). Codes correcteurs derreurs. Chiffres, 2(2):147–56.

Keprt, A. (2014). Binary matrix pseudo-division and its applications. In Innovations

in Bio-inspired Computing and Applications, pages 153–164. Springer International

Publishing.

Khachaturyan, A., Semenovskaya, S., and Vainstein, B. (1979). A statistical-

thermodynamic approach to determination of structure amplitude phases. Sov.

Phys. Crystallography, 24(5):519–524.

Khachaturyan, A., Semenovsovskaya, S., and Vainshtein, B. (1981). The thermo-

dynamic approach to the structure analysis of crystals. Acta Crystallographica

Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography,

37(5):742–754.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated

annealing. Science, 220(4598):671–680.

Koulamas, C., Antony, S., and Jaen, R. (1994). A survey of simulated annealing

applications to operations research problems. Omega, 22(1):41 – 56.

32

Koutis, I., Miller, G. L., and Peng, R. (2014). Approaching optimality for solving

SDD linear systems. SIAM Journal on Computing, 43(1):337–354.

Martinovic, J., Dvorsk, J., and Snasel, V. (2005). Sparse binary matrices. ITAT 2005

- Workshop on Theory and Practice of Information Technologies - Applications and

Theory, Proceedings.

Naor, A. and Verstraëte, J. (2008). Parity check matrices and product representations

of squares. Combinatorica, 28(2):163–185.

Reed, I. (2000). A brief history of the development of error correcting codes. Com-

puters & Mathematics with Applications, 39(11):89 – 93.

Reed, I. and Solomon, G. (1960). Polynomial codes over certain finite fields. Journal

of the Society for Industrial and Applied Mathematics, 8(2):300–304.

Shannon, C. E. (1948). A mathematical theory of communication. Bell system

technical journal, 27(3):379–423.

Spielman, D. and Teng, S.-H. (2013a). Solving sparse, symmetric, diagonally-

dominant linear systems in time o(m/sup 1.31/. In 44th Annual IEEE Symposium

on Foundations of Computer Science, 2003. Proceedings. IEEE Computer. Soc.

Spielman, D. A. and Teng, S.-H. (2013b). A local clustering algorithm for massive

graphs and its application to nearly linear time graph partitioning. SIAM Journal

on Computing, 42(1):1–26.

Tanatmis, A., Ruzika, S., Hamacher, H. W., Punekar, M., Kienle, F., and Wehn,

N. (2010). A separation algorithm for improved lp-decoding of linear block codes.

IEEE Trans. Information Theory, 56(7):3277–3289.

33

Vontobel, P. O. and Koetter, R. (2007). On low-complexity linear-programming de-

coding of LDPC codes. European Transactions on Telecommunications, 18(5):509–

517.

Zhang, X. and Siegel, P. H. (2012). Adaptive cut generation algorithm for improved

linear programming decoding of binary linear codes. IEEE Trans. Information

Theory, 58(10):6581–6594.

34

Appendix A. Experimental Results

This appendix provides more experimental results for our algorithm.

This first plot is similar to the plot in Figure 1, but for our full test set. The bars

represent percentage of the number of ones in the resulting PCMs. The green bars

are always 100%. The blue bars correspond to the results obtained by the greedy

approach and the red bars the results of the Simulated Annealing algorithm. The

results are sorted in decreasing values of the greedy algorithm.

Figure A.8: Bar chart illustrating the relative number of ones obtained with the greedy and simu-

lated annealing algorithms.

35

36

37

38

39

40

41

42

43

44

45

	1 Introduction
	2 Coding Theory Basics
	3 Constructing Alternative Parity-Check Matrices
	3.1 Row Selection
	3.1.1 Random Choice
	3.1.2 Selecting Best Transitions
	3.1.3 Assigning Flags to Rows
	3.1.4 Additional Considerations

	3.2 Choosing the Temperature

	4 Algorithmic Aspects
	4.1 Simulated annealing for determining the sparsest PCM
	4.2 Experimental results and discussion
	4.2.1 The Design of the Experiments
	4.2.2 Results
	4.2.3 Comments and Discussion
	4.2.4 Related Work

	5 Conclusion and Future work
	Appendix A Experimental Results

