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Abstract:  

High levels of air pollution may seriously affect people's living environment and 

even endanger their lives. In order to reduce air pollution concentrations, and warn the 

public before the occurrence of hazardous air pollutants, it is urgent to design an 

accurate and reliable air pollutant forecasting model. However, most previous research 

have many deficiencies, such as ignoring the importance of predictive stability, and 

poor initial parameters and so on, which have significantly effect on the performance 

of air pollution prediction. Therefore, to address these issues, a novel hybrid model is 

proposed in this study. Specifically, a powerful data preprocessing techniques is applied 

to decompose the original time series into different modes from low- frequency to high- 

frequency. Next, a new multi-objective algorithm called MOHHO is first developed in 

this study, which are introduced to tune the parameters of ELM model with high 

forecasting accuracy and stability for air pollution series prediction, simultaneously. 

And the optimized ELM model is used to perform the time series prediction. Finally, a 

scientific and robust evaluation system including several error criteria, benchmark 

models, and several experiments using six air pollutant concentrations time series from 

three cities in China is designed to perform a compressive assessment for the presented 

hybrid forecasting model. Experimental results indicate that the proposed hybrid model 

can guarantee a more stable and higher predictive performance compared to others, 

whose superior prediction ability may help to develop effective plans for air pollutant 

emissions and prevent health problems caused by air pollution. 

 

Keywords: PM2.5 and PM10; Multi-objective Harris hawks optimization algorithm; 

Hybrid forecasting model; Improvement of accuracy and stability. 
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1  Introduction 
In this section, the research background, literature review and the aims and 

innovation of this paper are shown in detail. 

1.1 Background 

Atmospheric environmental pollution issues have become a significant challenge as 

well as received increasing attention by the public and policy makers around the world, 

particularly the developing countries, due to the thick smog and haze along with the 

dominant pollutant, particularly PM (particulate matter with aerodynamic diameter 

below 2.5 mm and below 10) frequently happened that contain many poisonous and 

harmful substances, which can cause all kinds of adverse health impacts such as 

respiratory diseases, heart failure, cardiovascular disease, etc. [1-3]. 

In recent years, smog and dust-haze caused by atmospheric pollution have gradually 

become the norm and covered most of China’s areas including the Jing-Jin-Ji region, 

the Yangtze River delta region, the north of Southern China and other regions [4, 5]. 

Meanwhile, most major cities’ concentrations of air pollutants greatly exceed standards 

recommended by the WHO (World Health Organization) and they have been regarded 

as the fourth biggest threat to the health of Chinese people after heart disease, dietary 

risk and smoking [6]. For instance, researches by the World Bank, WHO, and the 

Chinese Academy for Environmental Planning on the effect of air pollution on health 

summarized that between 350,000 and 500,000 people die prematurely every year on 

account of outdoor atmospheric pollution [7]. Moreover, the 2014 Environment 

Performance Index denoted that China ranked only 118th in environmental quality 

among the 178 observed countries [8]. Therefore, a series of relative measures, analysis, 

and precise prediction should be highly desirable to implement, which can not only 

supply some suggestions for the air quality regulatory requirements to reduce air 

pollution emission, but also help to guide people's daily activities, warn and protect 

them from harmful air pollutants. 

1.2 Literature overview 

Air pollutant concentration prediction has become one of the most effective ways 

to assist relevant departments to develop effective management measures of air quality 

[9], which can supply the real-time data for forecasting concentration and help decision-

makers analyze, monitoring air quality and warn people in time. Nowadays, many 

different prediction models have been designed and used to perform air pollutants 

forecasting. Generally, these models mainly contains three types: chemical transport 

models (CTMs), statistical methods and hybrid approaches [10]. 

Specifically speaking, owing to the high complexity of atmospheric chemical and 

transport processes, CTMs such as cannot always perform well. Different from CTMs, 

statistical methods are relatively simple and easy to operate, which have been widely 

applied to air pollutants prediction. For example, Zhang et al. applied ARIMA to 

analyze and predict Fuzhou’s PM2.5 [11]. Moreover, other statistical models such as grey 

models [12-14] are also studied in many literatures. However, these models are unable 

to accurately forecast due to their linear correlation structure. Hence, the nonlinear 

models are increasingly regarded as the alternatives of the linear ones [15]. The 

nonlinear models such as ANNs (artificial neural networks) [16], LSSVM (least squares 

support vector machine) [17] and other models are commonly used to air pollutants 

prediction because of their capacity of nonlinear mapping and self-learning. 

However, the limited performance of the single models make it difficult to deal with 

several kinds of time series, particularly the datasets whose traits are unknown [18]. For 
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instance, poor initial parameters in ANNs may result in poor prediction accuracy [19]. 

Under this background, the methods, called as hybrid models , which combine different 

techniques: forecasting models (ENN (Elman neural network), ELM (extreme learning 

machine), WNN (wavelet neutral network) etc.), optimization algorithms (HHO (Harris 

hawks optimization), GWO (Grey Wolf Optimizer), PSO (Particle Swarm Optimization) 

and so on) and data decomposition techniques (i.e. EMD (empirical mode 

decomposition), VMD (variational mode decomposition), CEEMD (complete 

ensemble empirical mode decomposition) etc.) [20]. Recently, hybrid prediction 

models have been popularly used to perform the air pollutants prediction, and improved 

the prediction performance. As an example, Niu et al. [5] developed a hybrid model 

through combining CEEMD and GWO, and support vector regression (SVR) to 

perform PM2.5 concentration prediction. Wang et al. [21] combined the VMD, CEEMD, 

ELM tuned by DE (differential evolution) to predict air quality index in China. 

Additionally, Zhou et al. [22] also built a hybrid model applying data decomposition 

methods and GRNN (general regression neural network) to forecast PM2.5 time series. 

Overall, the high performances of the hybrid models mentioned in the literatures 

showing that hybrid models possess better prediction abilities than that of single models. 

In recent decades, most researchers have performed lots of studies concerning air 

pollution prediction and its related issues. Finally, these proposed models enhanced the 

forecasting effectiveness, which also provided the relative information of air pollution 

for decision-makers. However, there are still many deficiencies (such as using simple 

data preprocessing techniques, underestimating the importance of prediction stability, 

and sometimes adopting poor initial parameters, etc.) existing in the aforementioned 

models, which urgently need to be addressed. Hence, considering the drawbacks of 

previous studies about air pollutant forecasting aforementioned above, higher precise 

and more stable prediction models should be highly desirable to perform for air 

pollutant concentration prediction, which can not only supply some suggestions for the 

air quality regulatory requirements to reduce air pollution emission, but also help to 

guide people's daily activities, warn and protect them from harmful air pollutants. 

3. Aims and innovations 

In order to address the aforementioned shortcomings of previous studies and 

improve the prediction performance of air pollutant concentration forecasting, an 

innovative hybrid forecasting model through utilizing the improvement of accuracy and 

stability optimization strategy regarding ICEEMDAN (improved complete ensemble 

empirical mode decomposition with adaptive noise), MOHHO (multi-objective Harris 

hawks optimization) algorithm first presented here and ELM for air pollutant 

concentration prediction is performed in this study. Air pollutant concentrations i.e. 

PM2.5 and PM10 datasets collected from Jinan, Nanjing and Chongqing are taken as case 

studies to test the forecasting ability of the proposed hybrid model.  

The leading innovations of this research are summarized as below: (i) The 

advantage of ICEEMDAN in decomposing air pollutant time series issues is employed 

to enhance air pollutant concentrations prediction accuracy; (ii) A novel algorithm, 

called MOHHO (multi-objective Harris hawks optimization), is successfully developed 

here, which outperforms MOGOA, MOPSO, and MSSA in most cases, it also supply a 

novel viable option for addressing multi-objective optimization issues; (iii) The 

innovative hybrid forecasting model based on ICEEMDAN, MOHHO and ELM are 

first developed, which can achieve high accurate and stable forecasting results 

simultaneously for air pollutant concentration prediction, it can also overcome the 

shortcomings of single objective optimization algorithms; (iv) A scientific and 
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reasonable model assessment system including several experiments, seven model 

performance metrics, and DM (Diebold-Mariano) test applying several air pollution 

time series are utilized to give a systematic assessment of the presented hybrid model. 

Moreover, the superior performance of the proposed model indicates that the proposed 

hybrid model supplies a new option for the air quality regulatory requirements to reduce 

air pollution emission, but also help to guide people's daily activities, warn and protect 

them from harmful air pollutants. 

1.4. The remainder structure of this paper 

The structure of this research is designed as follows. Section 2 describes the 

framework of proposed model and the relative methodology formulation used in this 

study. Section 3 introduces the data description and model evaluation criteria adopted 

in this paper. And two experiments and forecasting results are built and analyzed in 

Section 4. Section 5 gives some discussions of the proposed model and the first 

developed MOHHO algorithm in this study. Finally, Section 6 concludes this study.  

2  Methodology formulation 
Subsection 2.1 describes the flowchart of the presented hybrid model, and the next 

several subsections i.e. subsection 2.2, 2.3 and 2.4 give the basic theories of the 

ICEEMDAN, MOHHO and ELM, respectively. 

2.1 The framework of proposed model 

The flowchart of the hybrid forecasting model is displayed in Fig. 1. 

 Decomposition. An effective data preprocessing techniques i.e. ICEEMDAN is 

adopted to decompose the original air pollutant concentration time series a finite 

set of modes shown in Fig.1 (a). The different features hidden in the container 

throughput time series can be extracted by different modes from low- frequency to 

high- frequency. 

 Optimization. This process contains (b), (c), (d) and (e) in Fig. 1. The (b) designs 

the input-output structure of the proposed model, the (c) is the flowchart of the 

MOHHO algorithm, which is used to optimize the ELM in (d), and then the 

optimized ELM can be built in (e). In this stage, the new presented MOHHO 

algorithm in this study is introduced to optimize the parameters of the ELM model 

with the hope of archiving high accuracy and stability for air pollutant 

concentrations prediction, simultaneously. 

 Prediction. The ELM model optimized by the MOHHO are designed in (e) of 

Fig.1 to perform the prediction of each modes obtained from ICEEMDAN. As a 

result, the final forecasts are achieved through integrating the forecasting results of 

each mode. 

 Evaluation. As for the (f) in Fig.1, a scientific and robust evaluation system 

including several error criteria, benchmark models, and several experiments based 

on six air pollutant concentrations time series from China is designed to make a 

compressive evaluation for the proposed model with aim of deeply evaluating the 

forecasting ability of the presented hybrid forecasting model.  
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Fig. 1. The flowchart and forecasting results of the proposed hybrid model. 

Moreover, the relative detailed algorithms and theories can be summarized 

primarily as below. 

2.2 ICEEMDAN 

As one member of the EMD family, the ICEEMDAN in this study is used to 

decompose the original series of air pollutants, which is an improvement version 

developed by Colominas et al. [23]. Different form the conventional data processing 

methods, such as the wavelet decomposition restricted to nonstationary but linear data, 

Fourier decomposition primarily used to process smooth cyclical data, and so on, The 

EMD family is a series of data-processing approaches based on EMD, which are 

designed for nonlinear and nonstationary datasets [24].  
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Generally speaking, the EMD method proposed by Huang et al. [25] is an adaptive 

data driven technique that decomposes datasets into several intrinsic mode functions by 

a sifting process. Subsequently, noise-assisted versions are developed to address mode 

mixing problem of the EMD. Among them, EEMD method was proposed by Wu and 

Huang [26] to address the mode mixing issues through adding white noise. However, 

the addend white noise of EEMD cannot be completely removed. Therefore, another 

improvement version called CEEMD approach is developed, which can not only ensure 

the decomposition effect of EEMD, but also reduce the reconstruction error caused by 

adding paired noise with positive and negative signals [27]. However, there are still 

problems in CEEMD such as the completeness property is not proven, and the final 

averaging issue is still unsolved. As another improvement versions of EEMD, 

CEEMDAN [28] realizes a negligible reconstruction error and solve the modulus 

problem of different implementations of signal plus noise. Moreover, there are many 

aspects of CEEMDAN, which need to improve: (1) some residual noise, (2) spurious” 

modes in the early stages. Finally, the improved CEEMDAN is developed for achieving 

components with less noise and more physical meaning. This method have be widely 

used in many fields [29-32]. Details considering the ICEEMDAN technique refer to the 

relative literature [1]. 

2.3 Multi-objective Harris hawks optimization algorithm (MOHHO) 
The HHO (Harris hawks optimization) algorithm developed by Heidari et al. [33], 

was primarily inspired by the cooperative behavior and chasing style of Harris’ hawks. 

Some hawks swooped cooperatively on their prey from different directions, trying to 

surprise it. Moreover, depend on the different scenes and patterns of prey flight, Hawks 

Harris can chose different chase patterns. There are three main phases in HHO: 

exploring a prey, surprise pounce, and many kinds of attacking strategies of Harris 

hawks. The details of each phase are descried as the follows. 

Phase I: Exploration phase 

This subsection is mainly mathematically modeled to wait, search, and detect the 

prey. During every step, the Harris’ hawks is regarded as the alternative or the best 

solutions. The iter+1-position ( 1)iterX  of the Harris’ hawks can be modeled based 

on the following equation: 

 
    

1 2

3 4

( ) ( ) 2 ( )                      0.5
( 1)

( ) ( )     0.5

   
  

   

rand rand

rabbit m

iter r iter r iter if q
iter

iter iter r r if q

X X X
X

X X LB + UB LB
  (1) 

Thereinto, iter  is the present iteration, the is rabbitX  is the position of the rabbit, 

randX  is randomly chosen hawk at the present population, ,   1, 2,3, 4ir i , q are 

random numbers between 0 and 1, and mX  represents the average position of the 

hawks, which can be calculated by: 

 
1

1
( ) ( )



 
N

m i

i

iter iter
N

X X   (2) 

Where the vector iX represents the location of every hawk, and N is the size of hawks.  

Phase II: Transition from exploration to exploitation 

According to the escaping energy of the rabbit, HHO can be able to exchange 

exploration and exploitation. Moreover, the energy of the rabbit can be computed using 

the following formula: 
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 02 1
 

  
 

iter
E E

T
  (3) 

In which the E denotes the escaping energy of the rabbit, T presents the maximum size 

about the iterations, and  0 1,  1 E  indicates the initial energy during every step. 

HHO can judge the state of rabbit depend on change trend of 0E (The HHO start 

exploration phase in order to explore prey location, when 1E , otherwise, this method 

attempt to exploit the neighborhood of the solutions during the exploitation steps).  

Phase III: Exploitation phase 

In this algorithm, hawks take a hard or soft besiege to hunt the prey from many 

directions softly or hard according to remaining energy of the prey. Under this situation, 

whether the prey escapes or not depend on the chance r  of a prey (successfully 

escaping: if 0.5r ). Moreover, if 0.5E  HHO will adopt soft besiege, otherwise, 

the hard besiege will be applied. On the basis of the escaping phenomena of the prey 

and pursuing strategies of the Harris’ hawks, HHO algorithm applied four strategies to 

simulate the attacking stage: soft besiege, hard besiege, soft besiege with progressive 

rapid dives, hard besiege with progressive rapid dives. Specially speaking, 0.5E is 

that the rabbit has enough energy to run away, however, whether the prey escape 

successfully or not depending on both values of the E  and r . 

(i) Soft besiege ( 0.5r and 0.5E ) 

This measure can be written as follows: 

 ( 1) ( ) ( ) ( )       rabbititer iter E J iter iterX X X X   (4) 

 ( ) ( ) ( )  rabbititer iter iterX X X   (5) 

Where ( ) iterX  indicates the difference between the position vector of the rabbit at 

iter- iteration,  51J = 2 r  is the random jump intensity of the rabbit during the 

escaping process, and  5 0,1r  is a random number.  

(ii) Hard besiege ( 0.5r and 0.5E ) 

As for this strategy, the present positions can be updated by the formula below: 

 ( 1) ( ) ( ) ( )       rabbititer iter E J iter iterX X X X   (6) 

(iii) Soft besiege with progressive rapid dives ( 0.5E and 0.5r ) 

As for the soft besiege, the hawks decide their next step by the following equation: 

 ( ) ( ) ( )     rabbit rabbititer E J iter iterY X X X   (7) 

On the basis of the LF-based patterns, the hawks dive according to the following rules: 

     LF DZ Y S   (8) 

In which D  donates the dimension of problem and 1DS  indicates a random vector 

and the levy flight: LF can be calculated by: 
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  (9) 

Thereinto,   and v  indicate random values between 0 and 1. 

Therefore, the last strategy of this phase in order to update the hawks’ positions can 

be expressed by: 

 
   

   

      ( )
( 1)

      ( )


  



if F F iter
iter

if F F iter

Y Y X
X

Z Z X
  (10) 

(iv) Hard besiege with progressive rapid dives ( 0.5E and 0.5r ) 

In this step, the hawks are constantly close to the prey. The behavior can modeled as 

follows: 

 
   

   

      ( )
( 1)

      ( )


  



if F F iter
iter

if F F iter

Y Y X
X

Z Z X
  (11) 

In which Y  and Z can be computed using the following formulas: 

 ( ) ( ) ( )     rabbit rabbit miter E J iter iterY X X X   (12) 

     LF DZ Y S   (13) 

where 
1

1
( ) ( )



 
N

m i

i

iter iter
N

X X . 

In this subsection, a multi-objective version of the HHO, namely MOHHO (Multi-

objective Harris hawks optimization algorithm), is developed for solving multi-

objective optimization problem using HHO. In MOHHO algorithm, an archive as well 

as roulette wheel selection is utilized to carry out the multi-objective function. The 

archive is primary in charge of storing the non-dominated Pareto optimal solutions 

selected by the present iteration. What is noteworthy is that the maximum number of 

the archive need to set in advance, which represents the maximum capacity about the 

best non-dominated solutions obtained by fat. During each iteration, the obtained non-

dominated solutions are used to compare with the archived members to update the 

archive. If a novel solution is better or at least no worse than the solutions in the archive, 

at last they will be recorded in the archive. More importantly, when the archive is full, 

a removed probability is also considered to delete the most populated neighborhoods 

for accommodating new solutions.  

 ,   1i
i

N
P c

c
    (14) 

In which c  represents a constant and iN  is the number of solutions in the vicinity of 

the i-th solution. 

Additionally, a roulette wheel method with probability i iP c N  is also 

introduced in MOHHO to improve the distribution of solutions in the archive. And the 

related concepts of multi-objective optimization are given in Appendix A.  

2.4 Extreme Learning Machine 
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The ELM model, first developed by Huang et al [34], becomes famous and widely 

applied in forecasting field due to it has fast learning speed and its input weights and 

hidden biases are initialized with random numbers. Additionally, the output weights can 

be obtained using an inverse operation to the hidden layer output matrix [35]. More 

importantly, the ELM model is easily utilized to address least squares problems with 

much less time [36]. Considering N observations: ( , ),  1, 2,..,t t t Nx y , where n

t Rx

represents input pattern, m

t Ry  is the output. Then, the ELM’s output with L hidden 

neurons is expressed using the following formula: 

  
1

,   1,2,...,
L

j j t j j

j

f b t N


   w x o   (15) 

Where 
jb  is the bias,  f  is the activation function, 

1 2[ , ,..., ]j j j jnw w w w  and 

1 2[ , ,..., ]j j j jm     represent the input weight and output weight vectors, 

respectively. 

The Eq. (13) can also be written as below: 

      (16) 

where is the hidden layer output matrix, which can be expressed as below: 

 

   
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1 1 1 1

1 1

L L

N L N L N L

f b f b

f b f b
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w x w x

w x w x

  (17) 

 

1 1

, 

T T

T T

L NL m N m
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t
 

   
   

    
   
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

 



  (18) 

Moreover, the coefficient   can be computed by following equation. 

 ˆ HH T T min


         (19) 

In which ̂    , the 
  represents the Moore-Penrose generalized inverse of the 

hidden layer output matrix. 

3  Data description and model evaluation criteria 
This section contains of two parts: data description and model evaluation criteria, 

the details are given as follows.  

3.1 Study area and data description 

As for this subsection, the air quality datasets including daily PM2.5 and PM10 time 

series collected from three cities i.e. Jinan, Nanjing and Chongqing are taken as case 

studies to test the forecasting ability of the proposed hybrid model. Six historical daily 

air pollutant concentrations time series, whose descriptive statistics shown in Table 1, 

are all collected from November 1, 2017 to November 23, 2018 with a total 338 

observations. The former 338 samples are taken as the training datasets to build the 

proposed model, and the remaining data series are applied to verify the prediction 

abilities of the forecasting models. Moreover, three study areas and their related 

information are shown in Fig. 2.  
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Table 1. Descriptive statistics of air pollutants (unit of PM2.5 PM10:μg/m3) . 

Areas Pollutants Maximum Median Mean Minimum Std.  

Jinan PM2.5 269 44 8 52.77  35.33  
PM10 410 102.5 12 112.08  53.88  

Nanjing PM2.5 221 35 7 43.56  29.58  

PM10 287 67 11 78.34  42.32  

Chongqing PM2.5 156 34 11 41.66  26.02  

PM10 229 58 16 67.42  36.77  

 
Fig. 2 Information of the study areas in this study 

3.2 Model evaluation criteria 

Recently, many model evaluation criteria have been widely employed to verify the 

prediction performance of prediction models in many literatures. In this study, five 

common error criteria including the MAE (mean absolute error), RMSE (root mean 

square error), MAPE (mean absolute percent error), U1 (Theil U statistic 1), and U2 

(Theil U statistic 2) [37], are adopted to evaluate the effective of the developed model 

and other models used for comparisons. The smaller the values of the error criteria are, 

the better the model is. Additionally, the IA (index of agreement) and r (Pearson's 

correlation coefficient) are also used in this study, the higher the values of IA and r are, 

the better the models are. 
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In which L  is the number of testing time series, y  is the mean value of y ,  ACT l
y  

is the l-th actual values, and  PRE l
y  represents the l-th predicted values. 

4  Experiments and analysis 
Aiming to verify the validity of the developed hybrid model in this study, several 

datasets of air pollutant concentration and five comparison models are collected and 

established, respectively in this study. Furthermore, two experiments i.e. Experiment I: 

PM2.5 forecasting, and Experiment II: PM10 forecasting, are designed to further 

illustrate the superiority of the presented hybrid models. In addition, the improvement 

percentages of model evaluation criteria (listed in Appendix B) are also adopted in this 

section in order to discuss the performances of the prediction models. The details can 

be seen as follows. 

4.1. Experiment I: PM2.5 forecasting 

In order to show the superiority of the presented ICEEMDAN-MOHHO-ELM model, 

three PM2.5 series datasets collected form Jinan, Nanjing and Chongqing are adopted in 

this experiment. Moreover, the ARIMA, ELM, LSSVM, EMD-MOHHO-ELM, and 

CEEMD-MOHHO-ELM models are built to compare with the proposed model. 

Moreover, this subsection design three types of model comparisons: comparisons 

between individual models, comparisons between hybrid models, and comparisons 

between individual models and hybrid models. The forecasting errors of the proposed 

model and comparison models are listed in Table 2, where the values marked in 

boldface are the best values of each evaluation metric. 

With regard to the single models from Table 2, several conclusions can be drawn that 

the predictive errors of ARIMA, ELM, and LSSVM are much high, whose values of 

the MAPE are all bigger than 20%, they are difficult to satisfy the air quality regulatory 

requirements. For instance, as for Jinan, the MAPE of ARIMA model is 35.913%, the 

MAPE of ELM model is 38.441%, and the MAPE of LSSVM model is 38.945%, 

whereas the MAE is 15.866, 15.619 and 15.473. This phenomena show the limited 
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performance of the single models once again. 

As for hybrid model shown in Table 2, several conclusions can be obtained that 

different hybrid models possess different prediction accuracy, whose prediction 

performance maybe vary widely. For example, as for Nanjing, the RMSE values of 

EMD-MOHHO-ELM, CEEMD-MOHHO-ELM and ICEEMDAN-MOHHO-ELM are 

23.567%, 13.112% and 8.718%, respectively. The reason can be interpreted by that the 

ICEEMDAN contribute more on the performance of the proposed hybrid model than 

the comparisons hybrid models with EMD and CEEMD. This aforementioned 

discussion show the necessity and importance of usage about the data decomposition 

technique. 

The error values of single models and the hybrid models in Table 2 indicating that 

hybrid models perform better than single models in most cases. As an example, with 

respect to Chongqing, the IA values of individual models are 0.812 (ARIMA), 0.803 

(ELM) and 0.802 (LSSVM), while the IA values of hybrid models are 0.860 (EMD-

MOHHO-ELM), 0.965 (CEEMD-MOHHO-ELM) and 0.986 (ICEEMDAN-MOHHO-

ELM), respectively. The Comparative analysis between the presented hybrid model and 

the single model confirm the advantages of the hybrid forecasting model.  

Moreover, Table 3 displays the improvement percentages of PM2.5 prediction among 

the developed hybrid model and the comparison models. According to Tables 2 and 3, 

it is obvious that the values of MAE, RMSE, MAPE, U1, and U2 of the developed 

hybrid model are all smaller than the other considered models and the values of IA and 

r of the developed hybrid model are all bigger than that of the comparison models, 

which further confirm the superiority of the presented hybrid model in terms of the 

prediction ability. 

Table 2. The forecasting errors of different models for PM2.5 in three cities. 

Areas Models MAE RMSE MAPE IA U1 U2 r 

Jinan ARIMA 15.866  20.901  35.913  0.693  0.197  0.862  0.496  
ELM 15.619  20.251  38.441  0.699  0.184  0.682  0.494  

LSSVM 15.473  19.745  38.945  0.682  0.180  0.704  0.497  
EMD-MOHHO-ELM 9.947  11.257  24.447  0.920  0.101  0.658  0.865  

CEEMD-MOHHO-ELM 6.969  8.762  15.253  0.950  0.080  0.530  0.936  
ICEEMDAN-MOHHO-ELM 4.869  6.160  10.820  0.979  0.055  0.317  0.963  

Nanjing ARIMA 10.896  14.272  40.799  0.757  0.186  0.624  0.609  
ELM 10.541  13.841  37.986  0.765  0.175  0.586  0.624  

LSSVM 10.814  14.121  39.916  0.745  0.179  0.598  0.602  
EMD-MOHHO-ELM 6.627  7.905  23.567  0.947  0.099  0.593  0.900  

CEEMD-MOHHO-ELM 4.287  6.771  13.112  0.951  0.087  0.476  0.940  
ICEEMDAN-MOHHO-ELM 2.901  3.810  8.718  0.987  0.048  0.327  0.977  

Chongqing ARIMA 8.841  11.929  23.708  0.812  0.139  0.600  0.676  
ELM 9.157  12.069  24.922  0.803  0.139  0.617  0.665  

LSSVM 8.828  11.972  23.505  0.802  0.138  0.586  0.663  
EMD-MOHHO-ELM 7.922  10.128  22.450  0.860  0.115  0.753  0.764  

CEEMD-MOHHO-ELM 3.972  5.464  11.178  0.965  0.062  0.622  0.940  
ICEEMDAN-MOHHO-ELM 2.814  3.572  7.381  0.986  0.041  0.320  0.973  
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Table 3. Improvement percentages of the developed model compared with other models. 

Areas Models PMAE PRMSE PMAPE PIA PU1 PU2 Pr 

Jinan Proposed model vs. ARIMA 69.312  70.528  69.872  41.270  72.081  63.225  94.153  

Proposed model vs.  ELM 68.826  69.582  71.853  40.057  70.109  53.519  94.939  

Proposed model vs. LSSVM 68.532  68.802  72.217  43.548  69.444  54.972  93.763  

Proposed model vs. EMD-MOHHO-ELM 51.051  45.278  55.741  6.413  45.545  51.824  11.329  

Proposed model vs. CEEMD-MOHHO-ELM 30.133  29.696  29.063  3.053  31.250  40.189  2.885  

Nanjing Proposed model vs. ARIMA 73.376  73.304  78.632  30.383  74.194  47.596  60.427  

Proposed model vs. ELM 72.479  72.473  77.049  29.020  72.571  44.198  56.571  

Proposed model vs. LSSVM 73.174  73.019  78.159  32.483  73.184  45.318  62.292  

Proposed model vs. EMD-MOHHO-ELM 56.225  51.803  63.008  4.224  51.515  44.857  8.556  

Proposed model vs. CEEMD-MOHHO-ELM 32.330  43.731  33.511  3.785  44.828  31.303  3.936  

Chongqing Proposed model vs. ARIMA 68.171  70.056  68.867  21.429  70.504  46.667  43.935  

Proposed model vs. ELM 69.269  70.404  70.384  22.790  70.504  48.136  46.316  

Proposed model vs. LSSVM 68.124  70.164  68.598  22.943  70.290  45.392  46.757  

Proposed model vs. EMD-MOHHO-ELM 64.479  64.731  67.122  14.651  64.348  57.503  27.356  

Proposed model vs. CEEMD-MOHHO-ELM 29.154  34.627  33.969  2.176  33.871  48.553  3.511  

4.2. Experiment II: PM10 forecasting 

In this subsection, three daily PM10 time series of Jinan, Nanjing and Chongqing are 

used as another experiment to further verify the forecasting performance of the 

developed ICEEMDAN-MOHHO-ELM model. Similar to the prediction of PM2.5, the 

five benchmark models are also taken as the comparison models. Table 4 shows the 

values of the model evaluation criteria including MAE, RMSE, MAPE, IA, U1, U2 and 

r of the proposed model and comparison models adopted in this study. In addition, 

Table 5 gives the improvement percentages of PM10 prediction among the proposed 

model and comparison models.  

It can be seen from Tables 4 and 5 that the presented ICEEMDAN-MOHHO-ELM 

model is superior to the comparison models. Specifically, the developed model can 

obtain the smallest values of MAE, RMSE, MAPE, U1 and U2 and achieve largest 

values of IA and r when it compared with the other models. For example, as for Nanjing, 

the U1 values of are 0.143 (ARIMA), 0.140 (ELM), 0.139 (LSSVM), 0.073 (EMD-

MOHHO-ELM), 0.125 (CEEMD-MOHHO-ELM) and 0.039 (CEEMD-MOHHO-

ELM), respectively. 

Based on the discussions and the values in Tables 4 and 5, it can be observed that as 

for the three daily PM10 time series of Jinan, Nanjing and Chongqing, the proposed 

ICEEMDAN-MOHHO-ELM model can obtain the best values of MAE, RMSE, MAPE, 

IA, U1, U2 and r, showing that the advantages of the hybrid model and the importance 

usage of the data decomposition technique, especially more efficient decomposition 

method such as the ICEEMDAN. Taking the prediction results of series PM10 in Jinan 

as an example, in Table 5 the values of PMAE are 71.140% (Proposed model vs. 

ARIMA), 70.561% (Proposed model vs. ELM), 69.865% (Proposed model vs. 

LSSVM), 56.604% (Proposed model vs. EMD-MOHHO-ELM), 43.741% (Proposed 

model vs. CEEMD-MOHHO-ELM), respectively. This phenomenon illustrates that the 

developed ICEEMDAN-MOHHO-ELM model significantly outperforms the 

prediction accuracy compared to the five models.  

 

 

 

 



14 

 

Table 4. The forecasting errors of different models for PM10 in three cities. 

Areas Models MAE RMSE MAPE IA U1 U2 r 

Jinan ARIMA 24.168  31.721  25.061  0.592  0.143  0.839  0.347  
ELM 23.693  31.038  26.880  0.564  0.134  0.711  0.301  

LSSVM 23.146  30.402  26.236  0.545  0.133  0.720  0.300  
EMD-MOHHO-ELM 16.073  19.400  17.128  0.862  0.084  0.649  0.772  

CEEMD-MOHHO-ELM 12.398  15.559  13.339  0.907  0.068  0.606  0.874  
ICEEMDAN-MOHHO-ELM 6.975  9.098  7.509  0.973  0.040  0.306  0.966  

Nanjing ARIMA 15.957  19.760  31.894  0.767  0.143  0.862  0.635  
ELM 16.322  19.935  32.341  0.784  0.140  0.704  0.638  

LSSVM 16.077  19.830  32.707  0.771  0.139  0.726  0.633  
EMD-MOHHO-ELM 8.886  10.352  17.419  0.953  0.073  0.598  0.912  

CEEMD-MOHHO-ELM 9.304  17.243  14.872  0.856  0.125  0.770  0.746  
ICEEMDAN-MOHHO-ELM 4.459  5.547  8.208  0.987  0.039  0.392  0.976  

Chongqing ARIMA 14.066  18.365  25.362  0.810  0.140  0.585  0.681  
ELM 14.373  19.397  27.348  0.778  0.145  0.616  0.628  

LSSVM 14.031  18.760  25.789  0.795  0.140  0.547  0.655  
EMD-MOHHO-ELM 11.945  15.598  22.879  0.874  0.114  0.718  0.781  

CEEMD-MOHHO-ELM 6.067  7.587  10.629  0.973  0.056  0.504  0.951  
ICEEMDAN-MOHHO-ELM 3.924  5.483  6.858  0.987  0.041  0.365  0.974  

Table 5. Improvement percentages of the developed model compared with other models. 

Areas Models PMAE PRMSE PMAPE PIA PU1 PU2 Pr 

Jinan Proposed model vs. ARIMA 71.140  71.319  70.037  64.358  72.028  63.528  178.386  

Proposed model vs.  ELM 70.561  70.688  72.065  72.518  70.149  56.962  220.930  

Proposed model vs. LSSVM 69.865  70.074  71.379  78.532  69.925  57.500  222.000  

Proposed model vs. EMD-MOHHO-ELM 56.604  53.103  56.160  12.877  52.381  52.851  25.130  

Proposed model vs. CEEMD-MOHHO-ELM 43.741  41.526  43.706  7.277  41.176  49.505  10.526  

Nanjing Proposed model vs. ARIMA 72.056  71.928  74.265  28.683  72.727  54.524  53.701  

Proposed model vs. ELM 72.681  72.175  74.620  25.893  72.143  44.318  52.978  

Proposed model vs. LSSVM 72.265  72.027  74.904  28.016  71.942  46.006  54.186  

Proposed model vs. EMD-MOHHO-ELM 49.820  46.416  52.879  3.568  46.575  34.448  7.018  

Proposed model vs. CEEMD-MOHHO-ELM 52.074  67.830  44.809  15.304  68.800  49.091  30.831  

Chongqing Proposed model vs. ARIMA 72.103  70.144  72.960  21.852  70.714  37.607  43.025  

Proposed model vs. ELM 72.699  71.733  74.923  26.864  71.724  40.747  55.096  

Proposed model vs. LSSVM 72.033  70.773  73.407  24.151  70.714  33.272  48.702  

Proposed model vs. EMD-MOHHO-ELM 67.149  64.848  70.025  12.929  64.035  49.164  24.712  

Proposed model vs. CEEMD-MOHHO-ELM 35.322  27.732  35.478  1.439  26.786  27.579  2.419  

5  Discussions 
With the aim of showing the predicative superiority and effectiveness of the 

developed hybrid model, DM (Diebold–Mariano) test and stability test are performed 

in this subsection 5.1. Additionally, in subsection 5.2 three multi-objective algorithms: 

MOPSO (multi-objective particle swarm optimization) [38], MOGOA (multi-objective 

grasshopper optimization algorithm) [39] and MSSA (multi-objective salp swarm 

algorithm) [40] and four common test functions (ZDT1, ZDT2, ZDT3, and ZDT1 with 

a linear front) [41-42] are all adopted to benchmark the performance of the developed 

MOHHO algorithm.  

5.1. DM test and stability test  

In this subsection, the hypothesis testing i.e. DM (Diebold-Mariano) test [43] is 

employed to show the superiority of the presented hybrid forecasting model compared 

with the five models. More detailed description of DM test can be seen in the literatures 

[44-46]. Moreover, a stability test: (VR) variance ratio [47] is also performed in this 
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subsection in order to show the higher stable ability of forecasting models. The higher 

the variance ratio is, the higher the forecasting stability of the model is. Table 6 lists 

the results of the DM test and VR. Moreover, the values marked in boldface represent 

the best values of every evaluation metric. 

From the values in Table 6, several conclusions are obtained that the values of DM 

test are larger than the
0.01 2 2.58Z , illustrating that the prediction ability of the 

developed hybrid method is different from that of the comparison models, meaning that 

our proposed hybrid forecasting model observably outperforms the comparison 

forecasting models. Additionally, the biggest VR values of the presented hybrid model 

displays that the proposed forecasting model possesses higher forecasting stability than 

the five models taken as comparisons. The discussions in this subsection once again 

prove that the developed hybrid forecasting model can enhance the prediction 

effectiveness, which can be used to reduce the atmospheric pollutants emissions and 

warn the public before the occurrence of hazardous air pollutants. 

 

Table 6. Results of DM test and stability test of different models. 

Areas Models 
PM2.5 PM10 

DM values P values VR DM values P values VR 

Jinan ARIMA 4.514 a  4.003*10-5  0.571  4.396 a  5.911*10-5   0.542  

ELM 4.413 a  5.600*10-5 0.553  4.268 a  8.992*10-5 0.422  

LSSVM 4.580 a  3.207*10-5 0.277  6.416 a  5.336*10-8 0.364  

EMD-MOHHO-ELM 5.118 a  5.162*10-6 0.689  4.608 a  2.919*10-5 0.609  

CEEMD-MOHHO-ELM 3.316 a  1.726*10-3 0.600  3.966 a  2.377*10-4 0.515  

ICEEMDAN-MOHHO-ELM — — 0.823  — — 0.664  
Nanjing ARIMA 4.581 a  3.202*10-5 0.556  4.686 a  2.252*10-5 0.525  

ELM 3.839 a  3.550*10-4 0.501  5.014 a  7.380*10-6 0.625  

LSSVM 3.775 a  4.324*10-4 0.458  4.880 a  1.166*10-5 0.535  

EMD-MOHHO-ELM 4.945 a  9.329*10-6 0.991  4.901 a  1.084*10-5 0.872  

CEEMD-MOHHO-ELM 1.773 c  8.245*10-2 0.594  1.815 c  7.562*10-2 0.699  

ICEEMDAN-MOHHO-ELM   0.884    0.915  
Chongqing ARIMA 3.635 a  4.003*10-4 0.790  3.863 a  3.291*10-4 0.713  

ELM 3.987 a  4.003*10-4 0.795  3.697 a  5.503*10-4 0.663  

LSSVM 3.892 a  4.003*10-4 0.746  3.747 a  4.722*10-4 0.680  

EMD-MOHHO-ELM 4.381 a  4.003*10-5 0.677  4.453 a  4.898*10-5 0.772  

CEEMD-MOHHO-ELM 2.242 b  4.003*10-2 0.843  3.410 a  1.308*10-3 0.836  

ICEEMDAN-MOHHO-ELM — — 0.904  — — 0.929  
a is the 1% significance level  

0.01 2 2.58Z  ; b is the 5% significance level  
0.05 2 1.96Z   

c is the 10% significance level 
0.10 2 1.64Z  ;  

5.2. Validity of the proposed MOHHO algorithm 

To verify the performance of the developed MOHHO algorithm, a set of four 

challenging multi-objective test functions, namely ZDT test problems (i.e. ZDT1, 

ZDT2, ZDT3 and ZDT1 with line front) as well as the well-known algorithm: MOPSO 

and the new proposed ones: MOGOA and MSSA are utilized to test the quality of the 

developed MOHHO algorithm. Additionally, the Inverted Generational Distance (IGD) 

[48] is taken as a performance metric in this subsection for quantitatively analysis the 

performance of the developed algorithm. The aforementioned algorithms are run 50 

times and the statistical results are reported and shown in Table 7 and Figs 3-4. It is 

worth noting that an archive size of 100, 100 iterations, and 40 search agents were set 

in each time. Moreover, the qualitative and quantitative results listed as below show 

that the proposed MOHHO performs well, which adds a new algorithm for multi-
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objective optimization problems. 
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    (27) 

Where td  is the Euclidean distance between the t-th true Pareto optimal solution and 

the nearest ones achieved by the MOPSO, MSSA, MOGOA and MOHHO, n  is the 

size of true Pareto optimal answers. 

As seen from Figs 3-4 and Table 7, several analyses can be obtained as below: (a) 

Inspecting Figs 3-4, it might be seen that MOGOA indicates the poorest convergence 

despite its good coverage in ZDT1 and ZDT1 with line front. Conversely, the MOHHO 

and MSSA can both converge well to all the true Pareto optimal fronts. It is worth 

mentioning that MOPSO algorithm significantly outperforms the other three algorithms 

on the majority of ZDT3 test function. (b)Table 7 indicates that the MOHHO algorithm 

managed to outperform the MOPSO, MOGOA and MSSA algorithms significantly on 

the ZDT test functions, except for ZDT3 test function. The advantage can be observed 

in the columns of ZDT1, ZDT2 and ZDT1 with line front test functions, demonstrating 

a higher accuracy and better robustness of MOHHO compared to the other algorithms. 

As for ZDT3 test function, The MOHHO algorithm, however, indicates very 

competitive results in comparison with the listed algorithms and occasionally 

outperforms them. 

Remark. The aforementioned qualitative and quantitative analyses and results show 

that MOHHO can be able to efficiently approximate the true front of ZDT test functions 

with a very high convergence and coverage. What’s more, this algorithm adds a new 

way for addressing the multi-objective optimization issues, which can be regarded as 

an alternative for solving challenging real-world problems as well. 

 
Fig. 3. The Pareto optimal solutions achieved by MOHHO, MOGOA, MOPSO and 

MSSA for ZDT1 and ZDT2. (The PF represents Pareto Font) 
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Fig. 4. The Pareto optimal solutions achieved by MOHHO, MOGOA, MOPSO and 

MSSA for ZDT3 and ZDT1 with linear front. 
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Table 7 1 

The values of IGD of the multi-objective algorithms. 2 

Algorithm 

ZDT1 

Algorithm 

ZDT2 

Ave. Std. Median Best Worst Ave. Std. Median Best Worst 

MOGOA 0.025581  0.016067  0.017007  0.011493  0.094338  MOGOA 0.058590  0.005903  0.057628  0.057628  0.098954  

MOPSO 
0.008471  0.014866  0.003294  0.001799  0.069642  

MOPSO 0.022392  0.030090  0.003447  0.001649  0.080115  

MSSA 0.002391  0.000848  0.002134  0.001603  0.005611  MSSA 0.002459  0.001142  0.002189  0.001716  0.009682  

MOHHO 0.001525  0.000309  0.001441  0.001158  0.002594  MOHHO 0.001485  0.000209  0.001449  0.001155  0.002188  

Algorithm 

ZDT3 

Algorithm 

ZDT1 with linear front 

Ave. Std. Median Best Worst Ave. Std. Median Best Worst 

MOGOA 0.021405  0.000997  0.021442  0.019231  0.023190  MOGOA 
0.006272  0.015994  0.001538  0.001238  0.094659  

MOPSO 0.008227  0.002943  0.007529  0.005115  0.018103  MOPSO 
0.020488  0.025154  0.006306  0.001857  0.092015  

MSSA 0.024277  0.000581  0.024342  0.023057  0.025492  MSSA 
0.002216  0.000445  0.002140  0.001522  0.003953  

MOHHO 0.024593  0.000307  0.024496  0.024127  0.025513  MOHHO 0.001512  0.000311  0.001468  0.001076  0.002787  

Note: The values with bold represent the best ones of the IGD.3 
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6  Conclusions 4 

Along with the accelerating of urbanization and industrialization process, and the 5 

increasing growth of energy consumption, air pollution issues are becoming more and 6 

more serious, which receive increasing attention in the world. High levels of air 7 

pollution can seriously affect people's living environment and even endanger their lives. 8 

Thus, it is urgent to design the accurate and reliable air pollutant forecasting model, 9 

which can be utilized to help reduce air pollution and guide people's daily activities and 10 

warn the public before the occurrence of hazardous air pollutants. 11 

Recently, most forecasting air pollutant concentrations forecasting models have been 12 

developed and eventually enhanced the forecasting effectiveness to some extent. 13 

Nevertheless, many deficiencies, such as simple data decomposition techniques, 14 

ignoring the importance of predictive stability, and poor initial parameters of models 15 

and so on, still exist in the aforementioned models, which have significantly effect on 16 

the performance of air pollution prediction. Hence, to address these issues, a novel 17 

hybrid model based on the improvement of the prediction accuracy and stability of 18 

forecasting models is proposed in this study. Specifically, a powerful data preprocessing 19 

techniques is applied to decompose the original time series into different modes from 20 

low- frequency to high- frequency. Next, a new multi-objective algorithm called 21 

MOHHO is first developed in this study, which are designed to tune the parameters of 22 

the ELM model with the hope of archiving high accuracy and stability for air pollutant 23 

concentrations prediction at the same time. And the optimized ELM model is used to 24 

perform the time series prediction. Finally, a scientific and robust evaluation system 25 

including several error criteria, benchmark models, and several experiments using six 26 

air pollutant concentrations time series from three cities in China is designed to make a 27 

compressive evaluation for the proposed hybrid model to deeply confirm the superiority 28 

of the presented hybrid model in terms of the prediction ability. 29 

As a result, according to the empirical results and the aforementioned discussions, 30 

conclusions can be drawn that the developed hybrid forecasting model possesses higher 31 

prediction accuracy and more stable results than the five models considered as 32 

comparisons. The hybrid model proposed in this study adds a novel feasible  measure 33 

for air pollution prediction, and its superior prediction ability may help to develop 34 

effective plans for air pollutant emissions and prevent health problems caused by air 35 

pollution. 36 

Appendix A: Concepts of multi-objective optimization 37 

Owing to two or more objective functions in MOPs, the conventional relational 38 

operators, such as  ,  ,  ,    and = etc., cannot be suitable for multi-objective 39 

optimization. Fortunately, a new concept of dominates is proposed by scientists, which 40 

can be adopted to search for best solutions. In the multi-objective optimization, a 41 

minimization problem can be expressed as below: 42 

 

1 2:   ( ) [ ( ), ( ),..., ( )]

            . .  ( ) 0,        1, 2,...,

                   ( ) 0,        1, 2,...,

                   ,    1, 2,...,

ob

j

j

j j j

Minimize f f f f

S t g j m

h j p

L x U j n



 

 

  

x x x x

x

x   (B1) 43 

In the above equation, the n, ob, m and p stand for the number of the variables, the 44 

number of the objective functions, the number of the inequality constraints and the 45 
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number of the equality constraints, respectively. Meanwhile, ( )jg and ( )jh  are the 46 

j-th inequality and the j-th equality constraints, respectively.  jL and  jU are the lower 47 

and upper boundary values of the j-th variable, respectively. 48 

Moreover, the other concepts involved in the multi-objective optimization problems, 49 

such as the Pareto Dominance, the Pareto optimality, the Pareto optimal set, and the 50 

Pareto optimal front can be expressed by the following definitions: 51 

Definition 1. Pareto Dominance: 52 

 1 2, ,..., nx x xx  dominates  1 2, ,..., ny y yy  i.e. x y  if and only if: 53 

        1, , 1, : ( )i i ii n f x f y i n f x             (B2) 54 

Definition 2. Pareto optimality: 55 

A Pareto-optimal x X  iff: 56 

   . . ( ) ( )s t F Fy X y x   (B3) 57 

Definition 3. Pareto optimal set: 58 

     P := ,s F F x y X y x   (B4) 59 

Definition 4. Pareto optimal front:  60 

A set including the value of objective functions for Pareto solutions set: 61 

   P := Pf sF x x   (B5) 62 

Appendix B. List of abbreviations 63 

Table B1 The improvement percentages of criteria. 64 

Metric Definition Equation 

PMAE The improvement percentages of MAE 1 2

1


MAE

MAE MAE

MAE
P  

PRMSE The improvement percentages of RMSE 1 2

1


RMSE

RMSE RMSE

RMSE
P   

PMAPE The improvement percentages of MAPE 1 2

1


MAPE

MAPE MAPE

MAPE
P  

PIA The improvement percentages of IA 1 2

1


IA

IA IA

IA
P  

PU1 The improvement percentages of U1 1 2
1

1

1 1

1


U

U U
P

U
  

PU2 The improvement percentages of U2 1 2
2

1

2 2

2


U

U U
P

U
 

Pr The improvement percentages of r 1 2

1


r

r r

r
P  

 65 
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