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a b s t r a c t

The application of machine learning and soft computing techniques for function approximation is
a widely explored topic in literature. Neural networks, evolutionary algorithms and support vector
machines proved to be very effective, although these models suffer from very low level of interpretabil-
ity by human operators. Conversely, Adaptive Neuro Fuzzy Inference Systems (ANFISs) demonstrated
to be very accurate models featured by a considerable degree of interpretability. In this paper, a
general framework for ANFIS training by clustering is proposed and investigated. In particular, different
derivative-free ANFIS synthesis procedures are considered for performance evaluation, by taking into
account different clustering algorithms, dissimilarity measures and by including an additional neuro-
fuzzy classifier downstream the clustering phase targeted to rule base refinement. The resulting
ANFISs have been compared, in terms of effectiveness and efficiency, on several benchmark datasets
against three suitable competitors, namely a Support Vector Regression, MultiLayer Perceptron and a
K -Nearest Neighbour decision rule. Computational results show that the proposed techniques tend
to outperform competing strategies while, at same time, featuring models with lower structural
complexity. A complete software suite implementing the proposed framework is freely available under
an open-source licence.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

In the last years, with the breakthrough of machine learning
nd soft computing techniques, the trade-off between accuracy
nd interpretability has been the subject of active research lines.
specially in industrial applications, soft computing algorithms
re often required to be as interpretable as possible since they
re in charge to manage complex and critical systems, whose
ailure can result in service interruptions and/or resource waste.
urthermore, operators are likely personnel with no background
n soft computing, hence the model interpretability, readability
nd reproducibility are in many cases strict requirements.
On this topic, models based on fuzzy logic such as Fuzzy Infer-

nce Systems (FISs) and Adaptive Neuro-Fuzzy Inference Systems
ANFISs) have been employed successfully in numerous appli-
ations for decision-making, medical diagnosis [1], control sys-
em [2–5], real time energy management [6–10], prediction [11–
3] and other data mining problems..

∗ Corresponding author.
E-mail addresses: stefano.leonori@uniroma1.it (S. Leonori),

lessio.martino@uniroma1.it (A. Martino), massimiliano.luzi@uniroma1.it
M. Luzi), fabiomassimo.frattalemascioli@uniroma1.it (F.M. Frattale Mascioli),
ntonello.rizzi@uniroma1.it (A. Rizzi).
ttps://doi.org/10.1016/j.asoc.2020.106622
568-4946/© 2020 Elsevier B.V. All rights reserved.
Conversely to some variants of Support Vector Machines
(SVMs) and Artificial Neural Networks (ANNs), considered as
black box models because of their inaccessibility [14], FISs and
ANFISs are often addressed in the literature as grey box models
thanks to their rule-based nature and the ability to deal with
linguistic variables, as claimed in [10,15–17].

Indeed, the rule-based architecture of FISs and ANFISs allows
an implicit interpretation of the architecture itself, as well as
insights on the computational process to be modelled. Concerning
this topic, in [18] a neural network featured by sigmoid activation
function is designed in order to be approximated by an equiv-
alent Takagi–Sugeno type fuzzy system in order to improve its
interpretability.

ANFISs, in particular, have shown remarkable results as uni-
versal approximators, being able to deal with the uncertainty in
training suitable models, as well as to take advantage of expert
knowledge by means of the intrinsic rule-based architecture [19].
As argued by Jang himself, ANFISs are hybrid intelligent systems
which integrate both the fuzzy logic’s qualitative approach and
the ANNs adaptive capabilities towards better performance [20,

21]. Like ANNs, Takagi–Sugeno rules based ANFISs are supervised
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odelling systems able to perform piece-wise linear approxima-
ions of non-linear functions. Moreover, its pseudo-ANN archi-
ecture allows the application of gradient descents optimization
rocedures, unlike plain Mamdani FIS [22].
As their interpretability is concerned, in [15] and [17], the au-

hors discuss about the potentials and issues of human–computer
ooperation and problem solving efficiency of ANFISs. In partic-
lar, they state that although ANFISs are introduced in order to
reserve the FIS linguistic variables and rule properties, without
he injection of expert knowledge these can lose their level of
nterpretability going de-facto towards plain ANNs (i.e., black
ox models). However, it is important to note that, even in
xtreme cases, their rule-based behaviour always allows a better
uman–machine cooperation, unlike ANNs.
In [23] authors well analyse and illustrates how to quantify

fuzzy system level of interpretability listing four main factors
ere briefly summarized:

• Complexity at the rule base level: rules number (i.e. model
conditions)

• Complexity at the fuzzy partition level: number of Member-
ship Functions (MFs) (i.e. model features)

• Semantics at the rule base level: rules fired at the same time
• Semantics at the fuzzy partition level: completeness or cov-

erage and distinguishability.

he first and the second points are related to the model complex-
ty, namely looking at the quantity of rules and MFs. The third and
he fourth points, as instead, aim to ensure semantic integrity by
tudying the coverage and distinguishability of the MFs and the
ules in their respective domain.

Concerning fuzzy systems training procedures, in [1], the
uthors suggest naturally-inspired heuristics, such as Genetic
lgorithms (GAs), as effective optimization tools to get a good
rade-off between model interpretability and accuracy. These
aradigms demonstrated effective solution in renewable energy
ontrol, prediction and management systems as reviewed in [2,3]
or wind turbine and PV systems and in [7,24–26] for hybrid
enewable energy systems and microgrids, where other opti-
ization algorithms are mentioned, such as chaotic optimization,
article swarm optimization (PSO), cuckoo search and differential
volution.
However, paradigms like FIS-GA revealed to be difficult to con-

erge to a suitable solution in case of huge lack of knowledge re-
arding the problem at hand [15], especially for high-dimensional
roblems.
In [19], the authors suggest that, in order to keep a good level

f interpretability, the MFs can be intuitively defined by means of
grid partitioning of the input domain and therefore the rule base
ystem can be defined again by an evolutionary based algorithm.
However, such procedures can critically increase the model

omplexity by over-generating the number of inefficient MFs,
ence the number of rules: indeed, a grid sampling of the in-
ut domain without considering the underlying data distribution
ight lead to the synthesis of MFs in low-density regions, which
re unlikely to be fired. To address this problem and limit the
urse of dimensionality dilemma, Hierarchical FIS-GA have been
roposed in [8] to automatically prune the input MFs, hence
he rule-based system and simplifying the synthesis procedure
y dividing it into several steps. Also the implementation of
n ensemble of ANFISs can improve the model performances,
specially for time series problems [11,12,27].
An alternative approach involves the use of clustering al-

orithms for partitioning the input space for a more practical
nd effective determination of bell-shaped fuzzy sets, especially
or high-dimensional input spaces. Indeed, clustering-based tech-
iques allow to centre and model MFs according to clusters’ data
 t
istribution, whereas the same is not true for grid partitioning
echniques. In [28–30] authors well highlights that clustering
echniques well support evolving structures when adopting split
nd/or merging operations in order to solve Big Data problems.
his procedure allows the integration of knowledge iteratively
r ‘‘on-the-fly’’, and would let evolve a fuzzy model, unlike evo-
utionary based systems which usually have all the data in an
terative optimization procedure. Moreover, the use of clustering-
ased training procedures not only is derivative-free, but it does
ot need any evolutionary-based optimization either: this results
n affordable computational efforts.

As regards recent works on ANFISs, a multi-ANFIS system is
mployed in [5] to model the complex dynamics of a high-speed
lectric multiple unit and to design a predictive controller. The
NFISs MFs are initialized by means of a subtractive clustering
lgorithm, which can take full advantage of the intrinsic data
istribution, and later optimized via backpropagation. In [31], an
NFIS is used to model the voltage response of electrochemical
ells. In this case, the ANFIS is trained by means of PSO, and it
emonstrates a very effective performance at dealing with the
ncertainties of electrochemical cells. In [32], an effective method
o synthesize higher order Takagi–Sugeno–Kang (TSK) fuzzy sys-
ems using first-order TSK models is described. The proposed
odel allows to train high order TSK fuzzy systems in popular
oftwares (e.g., Matlab R⃝) that notably allow the implementa-
ion of low order TSK fuzzy systems only. In [12] an ensemble
earning ANFIS model is tested for chaotic time series prediction.
he ensemble structure allows to vary the training procedure
o each ANFIS in order to better simulate an expert system. An
nsemble of three interval type-2 fuzzy neural network models
ith optimization of Fuzzy integrators is employed for time series
rediction in [11] by means of a GA, comparing its performances
ith PSO.
In [33], a recurrent mechanism for generating an ANFIS by

eans of a kernel-based fuzzy clustering method is used for
dentifying dynamic response of the magnetorheological damper.
he ANFIS is built upon a filtered dataset from impulse noise.
he recurrent mechanism consists in updating the filter by the
NFIS and in re-building itself with the new filtered dataset
ntil the stop criteria is reached. A novel paradigm named Ex-
reme Learning ANFIS (ELANFIS) is proposed in [4] for control and
rediction problems. In ELANFIS, the fast learning procedure of
xtreme learning machines and reservoir networks is exploited
or training an ANFIS. The advantage of using ELANFISs over
imple extreme learning machines relies on MFs (i.e., explicit
nowledge representation), allowing to reduce the randomness
f the generated model [34]. In [35] a general purpose online
elf-organizing ANFIS is compared with a neural network, empha-
izing the ease of implementation. The ANFIS rules are generated
y a nearest-neighbourhood based clustering algorithm and a
runing method is used to allow the online generation of new
ules, deleting those considered no more effective. In [36] dif-
erent ANFIS optimization algorithms are evaluated considering
ack-propagation, mini-lots, and ADAM algorithms.
It has been discussed that synthesizing ANFISs by means of

lustering algorithms is an effective, derivative-free, and com-
utationally efficient method, as well as it allows to determine
utomatically the most relevant input fuzzy sets for addressing
he input–output relationship of the process at hand. Thus, this
ork proposes a generalized framework for synthesizing AN-
IS networks by means of clustering techniques, following two
aseline works [37,38]. Specifically, given a labelled pattern set,
n ANFIS function approximator with multidimensional MFs and
irst-order hyperplane rule consequents has been implemented
nd trained considering different k-means-based techniques. In

his paper, we extend these two baseline works by considering
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several combinations of clustering techniques (one partitional
and two hierarchical strategies), dissimilarity measures (squared
Euclidean and Mahalanobis) and the possibility to refine the clus-
tering solutions by means of different neuro-fuzzy Min–Max clas-
sifiers [39]. These degrees of customization allow to sketch the
ANFIS synthesis as a properly-defined framework, whose building
blocks analysis is the main focus of this paper. Specifically, with
respect to our previous works:

• we consider a more general test campaign for addressing
the performance of the proposed ANFIS design by relying on
benchmark datasets and real-world dataset, whereas in [37]
we tailored our analysis on the synthesis of an energy man-
agement system and in [38] only synthetic datasets have
been used;

• in [37] we considered only hyperplane clustering strategies
for synthesizing the ANFIS, whereas in this work the input
space will also be taken into account by exploiting different
dissimilarity measures;

• in [37] only a specific neuro-fuzzy Min–Max classifier vari-
ant (PARC) has been employed and in [38] only another
variant has been used (ARC), whereas in this work we use
two variants (PARC and GPARC) along with the possibility of
skipping the clusters refining step by neuro-fuzzy classifiers;

• in [38] only a k-means-like clustering procedure has been
adopted for synthesizing the ANFIS, whereas in this work
we use three different clustering variants.

Furthermore, in order to analyse the effectiveness and the com-
petitiveness of the considered methods, all synthesized ANFISs
have been compared with baseline models for function approx-
imation, namely MultiLayer Perceptron (MLP), Support Vector
Regression (SVR) [40] and K -Nearest Neighbours (K -NN) [41].

The paper is organized as follows. In Section 2 the ANFIS
architecture is introduced, while in Section 3 the main actors
involved in the ANFIS synthesis procedure are described (namely,
clustering algorithms, hyperplane clustering and Min–Max classi-
fiers). In Section 4, the details of the synthesis procedure and the
experimental settings are explained, along with the three com-
petitors (MLP, SVR, K -NN). Section 5 shows the computational
results, followed by the conclusions, in Section 6.

The software implementing the proposed framework is avail-
able at https://gitlab.com/labcoin/anfis-toolbox.

2. ANFIS architecture

ANFIS architectures are usually represented as a pseudo-ANN
with five layers where the first layer implements the fuzzification
process for determining suitable input MFs. In the second layer,
the rule fire strengths are calculated and then normalized in the
third layer. Later, in layer four, each Rule Consequent (RC) hyper-
plane is evaluated and, finally, their weighted sum is considered
for evaluating the crisp output.

In this work, we refer to a simplified ANFIS version illustrated
in Fig. 1 which is defined by just three layers since the MF, the
rule weights and the rule premise parts have been incorporated.
This model simplification can be obtained by relying on the
definition of multivariate Gaussian MFs, defined as

φ(i)(u) = e−
1
2 (u−µ(i))·C(i)

−1
·(uT−µ(i)T ) (1)

where φ(i) is the generic ith MF, defined by µ(i) and C(i), namely
he ith cluster centroid and the covariance matrix, respectively.
is the crisp input vector normalized in the unitary hypercube

0, 1]m, being m the number of real-valued input features (input
pace dimension).
Fig. 1. TKS-ANFIS architecture.

Due to the MF multidimensionality, the ith MF φ(i) fixes the
ule antecedent set of the ith rule, defined as follows:

f u is φ(i) then y(i) = uT
· γ (i) (2)

where, in turn, γ (i) is the ith RC, defined by a properly tuned
hyperplane coefficients vector. The absence of and-or operators
in the premise part of the rule allow to collapse the firing rule
strength f to the MF value, namely f (i) ≡ φ(i).

As shown in Fig. 1, a Winner Takes All (WTA) strategy is
adopted for computing the overall FIS output as the output of the
most firing rule (highest MF value).

3. ANFIS synthesis

FISs synthesis by clustering is a technique widely explored in
the literature. As argued in [38], the synthesis involves two steps.
During the first part, clustering algorithms can leverage on the
pattern set (input space) for generating the support domain of
each MFs. In a second step, a linear least square is used to find the
hyperplane that fits the corresponding output values. However, it
is important to note that this approach can be restrictive because
the information carried out by the output values is not used
to generate the MFs, but only (in a second moment) with the
consequent generation. For this reason, it has been underlined
in [38] the possibility to extend the clustering algorithms to work
in the hyperplane space or, better, in the joint input-hyperplane
space in order to exploit the joint input–output information also
in the clustering phase.

3.1. Partitional clustering

The most straightforward technique to synthesize the MFs (see
Eq. (1)) is by means of partitional clustering algorithms such as k-
means [42] or k-medoids [43]. Such algorithms, however, have to
be re-adapted in order to work in a joint input-hyperplane space
fashion, since plain clustering algorithms notably work in an
unsupervised fashion [43–45]. As in [37] and [46], let us consider
a given cluster to be represented by a prototype vector µ in the
input space (e.g., centroid, medoid) and the hyperplane coefficient
vector θ. The distance between a given labelled pattern ⟨x, y⟩ and
a given cluster ⟨µ, θ⟩ is defined as follows:

d̂(⟨x, y⟩, ⟨θ, µ⟩) = εd(x, µ) + (1 − ε)(y − (θTx − θ0))2 (3)

where ε ∈ [0, 1] weights the contribution between the leftmost
term, namely the distance d(·, ·) in the input space (e.g., squared
Euclidean distance), and the rightmost term, namely the distance
in the hyperplane space (i.e., the approximation error due to
the hyperplane). Specifically, if ε = 0, the algorithm collapses

https://gitlab.com/labcoin/anfis-toolbox
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nto a proper hyperplane clustering. Further, it is worth stressing
hat hyperplanes are affine subspaces as they also include the
ntercept θ0.1

The partitional clustering procedure follows the widely-known
oronoi iterations: after a random initialization, each point is
ssigned to the closest cluster according to Eq. (3) and then
lusters’ representatives are updated. In case of k-means the
entroid is defined as the centre of mass of the cluster; for k-
edoid, the medoid is defined as the cluster element which
inimizes the sum of pairwise distances; in both cases the
yperplane coefficient vector can be evaluated by a plain ordinary
east square estimator. The assignments and updates steps iterate
ntil a stopping criterion is met. Algorithm 1 summarizes the
artitional clustering procedure.

Algorithm 1: Pseudocode for joint input-hyperplane
clustering k-means

Input : Dataset instance matrix X, Output values
vector y, number of clusters k, maximum
number of iteration I , tradeoff weight ε

Output: Set of k clusters

1 X = [1 X];
2 numPatterns = size(X, ’rows’);
3 hyperplanes = initialHyperplanes();
4 centroids = initialCentroids();
5 for iter in range(1, I) do
6 for i in range(1, numPatterns) do
7 for j in range(1, k) do
8 D[i, j] = ε · d(X[i, :],centroids[j,:])+

+(1-ε)·(y[i] - (hyperplanes[j, :]T X[i, :]))2;
9 end

10 end
11 for j in range(1, numPatterns) do
12 assignments[j] = argmin(D[j, :]);
13 end
14 for j in range(1, k) do
15 Xj = X[assignments == j, :];
16 yj = y[assignments == j];
17 hyperplanes[j, :] = (XT

j Xj)−1XT
j yj;

18 centroids[j, :] = mean(Xj,’columns’);
19 end
20 if stoppingCriteria() is True then
21 break;
22 end
23 end

3.2. Hierarchical clustering

Alongside plain partitional clustering algorithms, two hierar-
hical procedures are also considered for the ANFIS synthesis,
riginally proposed in [37].
The first variant (divisive) works in a top-down fashion by

tarting with a single root node corresponding to the entire
ataset. A 2-means aims at generating the first set of (two) leaf
odes. Then, iteratively, the following steps are performed until
desired number of kmax leaf nodes is returned:

1. for each leaf node, evaluate the within-cluster sum of dis-
tances (cf. Eq. (3))

2. select the leaf node corresponding to the highest within-
cluster sum of distances

1 In order to explicitly consider the intercept, one shall augment the input
atterns by appending a leading 1, hence x := [1, x].
3. run a 2-means on the latter and generate two offsprings.

The second variant (agglomerative) works in a bottom-up
fashion by starting with a desired number of kmax leaf nodes
obtained using the partitional strategy described in Section 3.1.
Then, iteratively, the following steps are performed until a single
root node corresponding to the entire dataset is returned:

1. evaluate D, the pairwise distance matrix between centroids
2. evaluate E, the pairwise error matrix that encodes the hy-

perplane approximation error obtained if any two clusters
had to be merged together

3. evaluate Ē, the pairwise overall error matrix that encodes
both the intra-cluster (sum of distances) and the inter-
cluster (E) errors obtained if any two clusters had to be
merged together

4. define the score matrix S = max(D, Ē) and select the (i, j)
pair leading to the minimum score as the two clusters to
merge

5. merge the two clusters and evaluate the new centroid µ
and hyperplane coefficient vector θ.

Fig. 2 sketches the two hierarchical variants for a simple
problem where kmax = 3. The rightmost tree shows the divisive
variant, where one starts with the entire dataset, runs a 2-means
on the latter and obtains two leaf nodes. By supposing that cluster
1 leads to the higher within-cluster error, a 2-means is performed
on the cluster and two further clusters are returned, whereas
cluster 2 remains unaltered. The set of leaf nodes after each
splitting procedure returns a ‘layer’ with cardinality k. Similarly,
the leftmost tree shows the agglomerative variant in which the
first set of kmax = 3 nodes is returned by the plain partitional
variant. For the resulting clusters, the pairwise matrices D, E, Ē
and S are evaluated and by supposing that clusters (1, 2) lead
to the lowest score in S, the merging procedure takes place by
stacking patterns and output values belonging to the two clusters
and then updating centroid and hyperplane coefficient. Clusters
not involved in the merging procedure remain unaltered. As per
the divisive counterpart, the set of leaf nodes after k merging
procedures identifies a ‘layer’ with k clusters. Algorithms 2, 3
and 4 summarize the agglomerative clustering procedure. Sim-
ilarly, Algorithms 5, 6 and 7 summarize the divisive clustering
procedure.

3.3. Clusters refining by Min–Max classifiers

Regardless of the specific clustering technique (partitional,
agglomerative, divisive), whether clusters can be described by
means of their prototype vector µ, covariance matrix C and
hyperplane vector θ, they can be used to synthesize the ANFIS
MFs according to Eqs. (1)–(2). However, for some problems, the
following undesired scenario may happen: two clusters well-
separated in the input space are approximated by the same
hyperplane. As the MFs are concerned, this results in ambiguous
MF definitions as heavy overlaps can be observed. The toy prob-
lem [37] shown in Fig. 3-(a) helps in visualizing such scenario:
four clusters lying on four different lines are represented by
black dots in figure, a single (blue) hyperplane approximates two
clusters well separated in the input space, the orange hyperplane
represents a third cluster between them, whereas the green one
covers the fourth cluster on the right. However, the regions
pertaining the first two MFs (orange and blue Gaussian curves in
the bottom panel of Fig. 3-(a)) are mostly overlapped, leading to
ambiguity in the selection of the winning rule for a wide interval
of the input axis. Specifically, the blue MF almost completely pre-
vails on the orange MF causing a bad approximation of samples

falling onto the input space region pertaining to orange cluster.
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Fig. 2. Agglomerative (left) and divisive (right) clustering variants scheme, both having three layers depth.
Fig. 3. Relying on a simple toy problem, the above panels show the role of PARC procedure in avoiding overlapping MFs.
In order to overcome this problem, a classifier can be used
ight after the clustering procedure in order to refine the MF
efinitions [38]. Specifically, a Min–Max classifier is trained on a
abelled dataset where each pattern is labelled with the cluster
D to which the pattern has been assigned to the clustering
lgorithm. With this new re-labelled pattern set, the Min–Max
lassifier is able to return a set of hyperboxes, each one labelled
with their respective cluster ID, returning this way a better tes-
sellation of the input space. In particular, the hyperboxes are
generated in order to avoid any overlapping between pairs of
hyperboxes associated with different class labels. The output of
a Min–Max classifier consists in a set of hyperboxes, each of
which is represented by its min and max vertex coordinates.
Hence, in order to properly re-estimate the MFs, each pattern
from the training set is reassigned to the hyperbox in which
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Algorithm 2: Selection Routine for Agglomerative
Hierarchical Clustering

Input : A set of k clusters Si|
k
i=1 of the form

⟨Xi, yi⟩|ki=1, their centroids µ(i)
|
k
i=1 and

hyperplanes θ(i)
|
k
i=1, tradeoff weight ε

Output: IDs of the two clusters selected for merging

1 for i in range(1, k) do
2 e[i] =∑|Ci|

j=1 εd(x(j), µ(i)) + (1 − ε)(y(j) − (θ(i)Tx(j) − θ
(i)
0 ))2;

3 end
4 for i in range(1, k) do
5 for j in range(1:k) do
6 D[i, j] = ∥µ(i)

− µ(j)
∥
2
2;

7 end
8 end
9 for i in range(1, k) do

10 for j in range(1, k) do
11 Xtmp =

[
Xi ; Xj

]
;

12 ytmp =
[
yi ; yj

]
;

13 θtmp = (XT
tmpXtmp)−1XT

tmpytmp;
14 E[i, j] =

∑
(ytmp − (θT

tmp · [1 Xtmp]))2;
15 end
16 end
17 for i in range(1, k) do
18 for j in range(1, k) do
19 Ē[i, j] = E[i, j] −

e[i]+e[j]
2 ;

20 end
21 end
22 D =

D−min(D)
max(D)−min(D) ;

23 Ē =
Ē−min(Ē)

max(Ē)−min(Ē)
;

24 for i in range(1, k) do
25 for j in range(1, k) do
26 S[i, j] = max(D[i, j], Ē[i, j]);
27 end
28 end
29 [rowID, columnID] = argmin(S);

Algorithm 3: Merging Routine for Agglomerative Hier-
archical Clustering

Input : The two clusters to be merged as returned by
the Selection Routine of the form ⟨Xi, yi⟩ and
⟨Xj, yj⟩

Output: The merged cluster of the form ⟨X, y⟩, their
hyperplane θ and centroid µ

1 X =
[
Xi ; Xj

]
;

2 y =
[
yi ; yj

]
;

3 θ = (XTX)−1XTy;
4 µ =sum(X, ’columns’) / size(X, ’rows’);

it lies by taking into account the min and max coordinates of
the hyperboxes and the coordinates of the pattern itself. After
the reassignment operation is complete, each hyperbox will be
populated by a finite set of training patterns, making possible the
re-estimation of the prototype vector and covariance matrix of
the MF.

Two Adaptive Resolution Min–Max Classifiers [39] are consid-
red in order to avoid large MF superpositions, namely Pruning
Algorithm 4: Pseudocode for Agglomerative Hierarchi-
cal Clustering

Input : Dataset instance matrix X, Output values vector y, number
of clusters kmax , maximum number of iterations I

Output: Dendrogram representation of the kmax clustering solutions

1 {C1, . . . , Ckmax } = partitional(X, y, kmax , I); // Alg. 1
2 dendrogram[kmax] = {C1, . . . , Ckmax };
3 for k in range(kmax − 1, 1) do
4 [i, j] = selection(dendrogram[k + 1]); // Alg. 2
5 Ci = dendrogram[k + 1][i]; // cluster i of layer k+1
6 Cj = dendrogram[k + 1][j];
7 Cnew = merging(Ci , Cj); // Alg. 3
8 dendrogram[k] = Cnew ∪ {dendrogram[k + 1][h]}h̸=i & h̸=j

h=1,...,k+1;
9 end

Algorithm 5: Selection Routine for Divisive Hierarchical
Clustering

Input : A set of k clusters Si|
k
i=1 of the form

⟨Xi, yi⟩|ki=1, their centroids µ(i)
|
k
i=1 and

hyperplanes θ(i)
|
k
i=1, tradeoff weight ε

Output: ID of the cluster selected for splitting

1 for i in range(1, k) do
2 e[i] =∑|Ci|

j=1 εd(x(j), µ(i)) + (1 − ε)(y(j) − (θ(i)Tx(j) − θ
(i)
0 ))2;

3 end
4 ID = argmax(e);

Algorithm 6: Split Routine for Divisive Hierarchical
Clustering

Input : The cluster to split of the form ⟨X, y⟩, the
maximum number of iterations I

Output: Two offspring clusters C1 and C2

1 {C1, C2} = partitional(X, y, 2, I); // Alg. 1

Algorithm 7: Pseudocode for Divisive Hierarchical
Clustering

Input : Dataset instance matrix X, Output values
vector y, number of clusters kmax, maximum
number of iterations I

Output: Dendrogram representation of the kmax
clustering solutions

1 dendrogram[1] = ⟨X, y⟩;
2 for k in range(2, kmax) do
3 i = selection(dendrogram[k − 1]); // Alg. 5
4 Ci = dendrogram[k − 1][i];
5 [Cnew1 , Cnew2 ] = split(Ci); // Alg. 6
6 dendrogram[k]

= Cnew1 ∪ Cnew2 ∪ {dendrogram[k − 1][h]}h̸=i
h=1,...,k+1;

7 end

Adaptive Resolution Min–Max Classifier (PARC) and Generalized
Pruning Adaptive Resolution Min–Max Classifier (GPARC). The
aim of PARC is to cover the entire training set with hyperboxes,
each of which is associated to a given problem-related class label.
PARC considers two lists, LH and LP : the former contains ‘hybrid’
hyperboxes (namely, hyperboxes containing patterns belonging
to different classes), the latter contains ‘pure’ hyperboxes (in
which all patterns share the same class label). In an initial stage,
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the entire dataset is covered by one (hybrid) hyperbox. Iteratively,
hybrid hyperboxes are properly cut until there are no more
hybrid hyperboxes (LH is empty, LP contains a suitable number
of ‘pure’ hyperboxes). Intuitively, this can lead to a huge number
of hyperboxes, especially in case of highly non-linear decision
boundaries. According to basic learning theory, PARC aims at
minimizing the following cost function

F = (1 − λ)π + λκ (4)

where π takes into account the model performances (i.e., ratio
of misclassified pattern), κ considers the model complexity (i.e.,
number of hyperboxes with respect to the training set size) and
λ ∈ [0, 1] weights the two contributions. PARC and GPARC
share the same training procedure, with the major difference that
PARC designs hyperboxes which are parallel to the coordinate
axes of the input space, whereas GPARC is able to rotate the
hyperboxes by considering a different (local) reference system
thanks to the eigendecomposition of the set of patterns belonging
to a candidate hyperbox [47].

Recalling the toy problem of Fig. 3, Fig. 3-(b) shows the refine-
ment procedure thanks to the PARC classifier. Clearly, PARC has
been able to detect the former orange cluster as an in-between,
despite the first and third clusters shared the same (blue) label.
The refinement procedure returned four separate clusters, with
no ambiguities in the corresponding MFs.

Aiming at making more evident the benefits due to the Min–
Max classifier, Figs. 4–5 show an explicit comparison between
the MFs synthesized on the spiral dataset2 by the application
of k-means only, k-means with PARC and k-means with GPARC.
Patterns belonging to the same spiral arm have been associated
with the same class label, casting this way the original data into
a 3-classes classification problem instance. As shown in Fig. 4,
for a satisfactory ANFIS synthesis, the plain k-means algorithm
needs k = 24 clusters, upon which 24 MFs are built. Conversely,
in Fig. 5 GPARC and PARC are able to achieve satisfactory results
by setting k = 6 MFs only, and by exploiting the subsequent
refinement performed by the classifier itself. Therefore, in this
case study, the Min–Max allows to automatically set the res-
olution level of the MFs. Indeed, PARC returns 20 hyperboxes
(hence 20 MFs), whereas GPARC returns 16 hyperboxes (16 MFs).
Moreover, the GPARC ability to rotate the hyperboxes results in
a more optimized coverage of the input space, as thoroughly
discussed in [47]. As a drawback, the GPARC training procedure
is computationally expensive due to the extensive use of singular
value decompositions in order to find, for each hyperbox, the local
reference system spanned by the maximum variance.

We conclude the section by focusing on the model inter-
pretability of the proposed ANFIS design:

• the multidimensional bell-shaped MFs and the automatic
clustering-based synthesis procedures, together with MFs
refining step by Min–Max classifiers, well manages the gen-
eration of a limited number of rules, ensuring at the same
time the coverage of the whole input space;

• hyperplane and joint input-hyperplane clustering proce-
dures allow a more effective piece-wise linear approxima-
tion of the unknown function to be modelled;

• once trained, adopted fuzzy rules can be easily explained
and interpreted by field experts.

4. Experimental settings

4.1. ANFIS synthesis and validation

We considered a set of tests for ANFIS synthesis by changing
the following building blocks:

2 http://cs.uef.fi/sipu/datasets/
• dissimilarity measure D: squared Euclidean distance (sqe),
Mahalanobis distance (mah);

• clustering algorithm C : partitional (prt), (hierarchical) divi-
sive (div), (hierarchical) agglomerative (agg);

• space in which the clustering procedure shall be performed
(see Eq. (3)): input space (ε = 1) and almost pure hyper-
plane space (ε = 0.05).

• classification algorithm P: without classification (-), PARC
classifier (par), GPARC classifier (gpa).

As concerns the ε parameter, it weights the hyperplane space
nd input space contributions in the overall dissimilarity measure
sed for performing the clustering procedure (see Eq. (3)). Pre-
iminary tests showed that the compromise value 0.5 does not
rovide satisfactory results. Moreover, choosing ε = 0.05 rather
han ε = 0 allows to slightly consider the clusters compactness in
he input space. In fact, our tests showed that in the former case
he clustering procedure is faster, with no difference in the final
erformances, since it helps to keep low the number of clusters
uring training. Hence, our analyses will only focus on the two
forementioned values of ε = 0.05 and ε = 1. The λ value in

Eq. (4) has been set equal to 0, hence privileging the classification
accuracy.

In order to study how the ANFISs performances change as
function of C , D , P and ε, every combination of the above
parameters has been individually tested.

Regarding the ANFIS synthesis procedure, let us consider a
labelled dataset split in Training Set (TR), Validation Set (VL) and
Test Set (TS): the clustering algorithm is executed on the TR in or-
der to generate kmax solutions. In case of partitional clustering, the
procedure is independently executed kmax times by changing the
number of clusters k from 1 to kmax. For hierarchical clustering,
each layer (i.e., the set of leaf nodes after k merging – or splitting
operations) is considered as a prospective clustering solution.
After the clustering execution, if no downstream classifica-

ion algorithm is set, the ANFIS MFs (1) and hyperplanes (2)
re directly evaluated for each solution, as illustrated in Fig. 4.
therwise, the TR patterns will be labelled with their respective
luster membership and then fed to the classifier. As shown
n Fig. 5, the classifier would split every cluster in hyperboxes
n order to refine the generation of the ANFIS MFs (and rule
yperplanes) increasing their own granularity and compactness:
ach resulting hyperbox can be read as a cluster, hence it can be
sed to synthesize the ANFIS MFs according to Eqs. (1)–(2).
Since this strategy foresees the generation of several ANFISs

namely one ANFIS for each clustering solution), the one which
hows the minimum Root Mean Squared Error (RMSE) on the VL
s selected, whereas the others are discarded. The ANFIS selected
s then performed on the TS and its goodness is evaluated by
onsidering its structural complexity (number of rules) and its
erformances (coefficient of determination, also known as R2).

RMSE and R2 are respectively defined as:

RMSE =

√1
n

n∑
i=1

(yi − ŷi)2 (5)

2
=

(
n
∑n

i=1 yiŷi −
(∑n

i=1 ŷi
) (∑n

i=1 yi
))2(

n
∑n

i=1 ŷ
2
i −

(∑n
i=1 ŷi

)2)
·

(
n
∑n

i=1 y
2
i −

(∑n
i=1 yi

)2) (6)

where n is the number of samples, y and ŷ indicate the true and
predicted output values, respectively.

In Fig. 6, the block scheme of the overall ANFIS synthesis
procedure is shown by considering the downstream support of a
classifier: for the sake of simplicity, the scheme is focused on the
synthesis of ANFISk̄, where k̄ is the number of clusters generated
by the clustering block. It coincides with the ANFIS number of
MFs only in case the classifier is not used or does not split any
cluster.

http://cs.uef.fi/sipu/datasets/
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Fig. 4. Application of plain k-means on spiral dataset, considering 6, 12 and 24 clusters for the ANFIS MFs generation.
Fig. 5. Study of the k-means supported by PARC and GPARC classifiers for the generation considering the spiral dataset.
S

.2. Benchmark models

The investigated ANFIS synthesis techniques are benchmarked
gainst three affirmed models for function approximation:

-NN: Given a test pattern x, performing regression via nearest
neighbours consists in finding its K closest samples accord-
ing to the Euclidean distance. Each neighbour is weighted
by considering the reciprocal of the Euclidean distance. The
predicted output ŷ is given by ŷ =

∑K
i=1 wiyi/

∑K
i=1 wi,

where wi and yi are the weight and the ground-truth
output for the ith neighbour.

The number of neighbours K is an hyper-parameter which
needs to be properly tuned: to this end, different K -NN
models have been synthesized by bruteforcing the number
of neighbours K = {1, 2, . . . , 21}: the best K is the one that
minimizes the RMSE on the VL.

LP: In the late 80’s/early 90’s the Cybenko theorem proved
the universal approximation capabilities of feedforward
ANNs [48,49], which have been widely used for solving
non-linear function approximation problems. The second
competitor is a feedforward MLP with the following hyper-
parameters to be tuned: number of layers in {1, 2, 3}, num-
ber of neurons per layer in {2, 3, . . . , 100}, learning rate
in [0, 0.9], hidden layers activation function to be chosen
between six suitable candidates3 and training algorithm to
be chosen between standard backpropagation and adaptive
backpropagation.

Conversely to the K -NN case, where the only parameter to
be tuned is fairly bounded and integer-valued, a GA has
been used in order to find a suitable MLP architecture.
Each individual exploits the configuration written in its
genetic code in order to generate a candidate MLP which
is trained on TR and its performances are evaluated on the
VL. As the evolution ends, the best individual is retained
and tested on TS. The GA has been configured as fol-
lows: the initial population has been randomly generated
considering a population of 50 individuals; the maximum

3 Logarithmic sigmoid, ReLU, linear, radial basis, soft-max, symmetric
igmoid.
 s
number of generation has been set to 25 and in case the
fitness function does not decrease of ∼10−5 for at least
4 generations, the optimization procedure halts. Standard
crossover, mutation, elitism and selection operators take
care of moving towards the next generation.

VR: SVMs aim at finding the maximal margin hyperplane in
order to separate two classes. For function approximation
tasks, the hyperplane is found in such a way that the
training data is approximated within a given precision.
Specifically, a kernelized ν-SVR equipped with the radial
basis function kernel is considered. The penalty term ν ∈

(0, 1] and the kernel shape parameter γ ∈ (0, 100] are the
two hyper-parameters to be tuned.

As per the MLP case, a GA has been used in order to find
suitable values for ν and γ . The optimization procedure
does not change with respect to the former case.

5. Computational results

5.1. Datasets

Different datasets available in the literature have been used
for studying the efficiency and effectiveness of the algorithms
discussed in this paper. These datasets are detailed in Table 1,4
by remarking the dimensionality of the input space (number of
variables) and the range of candidate clusters considered for each
ANFIS synthesis test. Each dataset has been split in TR, VL and
TS: in most cases, the training, validation, and test split has been
performed by keeping the proportions of 50%, 25% and 25% for
TR, VL and TS, respectively. For NASA, as instead, the dataset
partitioning has been kept as in [50].

5.2. Results

The ANFIS tests have been distinguished per dataset, dis-
similarity function D , clustering algorithm C , and classification
algorithm P .

4 MGFC dataset is not yet available since the reference paper is under
ubmission.
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Table 1
Details of the datasets considered for testing.
Dataset Ref. TR set size VL set size TS set size #vars Clusters range

NASA [51] 18e3 6e3 21e3 4 1–20
abalone [52] 2e3 1e3 1e3 8 1–20
building [53] 2.1e3 1e3 1e3 14 1–20
heart [53] 4.5e2 2.3e2 2.3e2 35 1-11
mgdata [52] 6.9e2 3.5e2 3.5e2 6 1–20
MGFC 2.8e3 1.3e3 1.3e3 6 1–20
mpgdata [52] 1.9e2 9.7e1 9.6e1 7 1–16
space ga [54] 1.5e3 7.7e2 7.7e2 6 1–20
PCN [55] 2.4e3 1.2e3 1.2e3 348 1–6
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Fig. 6. Scheme of the ANFIS synthesis procedure.

The software has been implemented in Matlab R⃝ R2019a on
workstation equipped with two 6-cores Intel R⃝ Xeon R⃝ E5-2630

CPUs at 2.60 GHz and 64 GB RAM.
The overall results achieved by the ANFIS configurations are

shown in Table 2, Table 3, and Table 4, where the resulting ε

value, R2 on the TS and number of rules are listed, respectively.
For each configuration and dataset, the tables report the results of
the best synthesized ANFIS according to the procedure described
in Fig. 6, i.e. the one that achieves the best performances in
VL. For each dataset, the configuration achieving the best R2 on
the TS is highlighted in bold red. A dagger (†) indicates that
the corresponding tests have failed to return a suitable ANFIS
model due to out-of-memory error on the considered hardware.
A double-dagger (‡) indicates that the corresponding tests have
failed to return a suitable ANFIS model within a 24-h dead-
line on the considered hardware. The former case regards NASA,
by far the largest dataset in terms of number of patterns, and
usually happens when dealing with partitional or agglomerative
clustering techniques. Indeed, these techniques exploit multi-
threaded parallelism in order to perform in parallel different
replicates of the (partitional) clustering procedure with different
initial seeds, which might trigger out-of-memory errors when
dealing with large datasets. The latter case regards PCN, by far
the dataset with greatest number of features, especially when the
GPARC classifier is involved: as already mentioned in Section 3.3,
GPARC extensively leverages on singular value decompositions
for properly rotating the hyperboxes and by considering the com-
putational complexity for solving the eigencomposition problem
(i.e., Ω(nm2

+mn2) for an n×m set), this can lead to non-negligible
training times.

Concerning the clustering space, it can be seen in Table 2
that there is not a predominant configuration for the ε value.
Indeed, ε = 1 emerged as the most suitable value 89 times over
62, whereas ε = 0.05 appears 73 times. This parameter seems
o be highly dependent on the specific dataset, suggesting that
or abalone, building, mgdata, mpgdata and spacega the input
pace only is preferable, whereas in NASA, MGFC, PCN ε = 0.05
s preferred.

Concerning the clustering algorithms, the divisive method is
he most performing, appearing among the best configurations
n 5 datasets over 9 (NASA, abalone, building, heart and mpg-
ata). The agglomerative variant appears as the most performing
lustering strategy only for spacega, whereas the partitional clus-
ering is the best for PCN, MGFC and mgdata. Following the same
easoning, the most performing dissimilarity measure is SQE,
chieving the best performances in 6 datasets (NASA, abalone,
eart, MGFC, spacega and PCN). Finally, concerning the Min–
ax classifier, for 4 datasets over 9 the best results have been
chieved without the Min–Max postprocessing. It is interesting
o note that where the Min–Max has been beneficial, in the vast
ajority of the cases, the parameter ε was set to 1, according to

he fact that the Min–Max classifier helps at refining the solutions
ound by a pure input space clustering. All in all, from the above
iscussion it appears that the best configuration employs the
ivisive algorithm, with the classification post-processing.
In order to verify the effectiveness of the proposed ANFIS

ynthesis techniques, Table 5 shows the comparison among the
est synthesized ANFISs and the benchmark models (SVR, MLP,
nd K -NN) in terms of model performance (R2 and RMSE on the
S), the running times for both training and testing phases and
he model complexity. The latter is defined as the number of
eurons per layer for MLP, the number of patterns elected as
upport vectors for SVR, and the number of synthesized rules
or ANFIS. It is important to note that, despite the number of
eighbours K is shown in Table 5, the proper complexity of K -NN
s always related to the number of training data, since no training
hase (data compression) is performed: indeed, regardless of the
umber of neighbours, K -NN performs a lazy evaluation of all
airwise distances between the test pattern and the training data.
his intrinsically results in K -NN being the worst technique in
erms of model complexity.

The worst ANFIS training times are referred to the Heart
ataset (the best ANFIS has been generated by using GPARC) and
he NASA dataset, which is featured by the bigger TR. With the
xception of these two cases, the ANFIS training procedure is
pproximately restricted up to few tens of seconds, whereas the
LP and SVR models are mostly featured by training time of
undreds or even thousands of seconds, respectively.
For a better comparison among the selected ANFIS and the

enchmark solutions, a box-plot of the R2 results of Table 3 is
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able 2
est ε parameter between the two tested values ε ∈ {0.05, 1} for each ANFIS configuration. In bold red, for each dataset, the value corresponding to the configuration
hat returned the highest R2 (see Table 3).
NASA † 0.05 0.05 0.05 † 0.05 † 0.05 0.05 0.05 † 0.05 † 1 0.05 0.05 † 0.05
abalone 1 1 1 1 0.05 1 1 1 0.05 1 1 1 1 1 1 1 1 1
building 0.05 1 1 1 0.05 1 1 1 1 1 0.05 1 0.05 1 0.05 1 1 1
heart 0.05 0.05 1 1 0.05 1 0.05 0.05 1 1 1 1 1 1 0.05 0.05 0.05 0.05
mgdata 1 1 1 1 0.05 1 0.05 1 1 1 0.05 1 1 1 1 1 1 1
MGFC 0.05 0.05 1 0.05 0.05 0.05 0.05 0.05 0.05 1 0.05 1 0.05 1 0.05 0.05 1 1
mpgdata 1 0.05 1 1 0.05 0.05 1 1 1 0.05 1 0.05 1 1 1 1 0.05 0.05
spacega 1 1 1 1 0.05 1 1 1 1 1 1 1 1 1 1 1 0.05 1
PCN ‡ ‡ ‡ ‡ ‡ ‡ 0.05 0.05 1 0.05 0.05 0.05 1 0.05 0.05 0.05 1 0.05

Dataset
test

C AGG AGG DIV DIV PRT PRT AGG AGG DIV DIV PRT PRT AGG AGG DIV DIV PRT PRT
D MAH SQE MAH SQE MAH SQE MAH SQE MAH SQE MAH SQE MAH SQE MAH SQE MAH SQE
P GPA GPA GPA GPA GPA GPA PAR PAR PAR PAR PAR PAR – – – – – –
Table 3
ANFIS R2 values considering each test. In bold red, the best (highest) result for each dataset.
NASA † 1.00 0.98 0.99 † 0.99 † 1.00 1.00 1.00 † 1.00 † 0.99 1.00 1.00 † 0.99
abalone 0.46 0.46 0.53 0.54 0.52 0.54 0.50 0.50 0.50 0.54 0.51 0.50 0.53 0.53 0.53 0.54 0.54 0.52
building 0.29 0.77 0.80 0.55 0.63 0.54 0.86 0.82 0.86 0.75 0.78 0.80 0.81 0.78 0.10 0.49 0.75 0.78
heart 0.50 0.47 0.49 0.52 0.29 0.51 0.27 0.28 0.26 0.41 0.47 0.49 0.49 0.50 0.49 0.49 0.49 0.49
mgdata 0.57 0.57 0.62 0.63 0.60 0.60 0.64 0.57 0.64 0.65 0.65 0.66 0.66 0.66 0.63 0.65 0.62 0.70
MGFC 0.77 0.78 0.77 0.79 0.79 0.81 0.81 0.82 0.81 0.80 0.82 0.81 0.82 0.81 0.82 0.82 0.82 0.82
mpgdata 0.84 0.88 0.88 0.88 0.84 0.88 0.87 0.87 0.89 0.87 0.85 0.86 0.82 0.85 0.88 0.87 0.88 0.88
spacega 0.67 0.66 0.67 0.69 0.63 0.69 0.71 0.68 0.66 0.67 0.68 0.69 0.65 0.71 0.64 0.63 0.69 0.69
PCN ‡ ‡ ‡ ‡ ‡ ‡ 0.00 0.38 0.00 0.01 0.04 0.35 0.08 0.37 0.24 0.24 0.30 0.44

Dataset
test

C AGG AGG DIV DIV PRT PRT AGG AGG DIV DIV PRT PRT AGG AGG DIV DIV PRT PRT
D MAH SQE MAH SQE MAH SQE MAH SQE MAH SQE MAH SQE MAH SQE MAH SQE MAH SQE
P GPA GPA GPA GPA GPA GPA PAR PAR PAR PAR PAR PAR – – – – – –
Table 4
ANFIS numbers of rules. In bold red, for each dataset, the value corresponding to the configuration that returned the highest R2 (see Table 3).
NASA † 66 159 98 † 95 † 46 108 26 † 55 † 19 2 2 † 20
abalone 35 45 10 10 8 12 26 36 57 9 8 39 10 5 2 2 15 9
building 6 3 5 2 6 3 13 12 11 4 4 5 2 3 2 2 4 5
heart 2 4 2 2 2 2 28 36 11 11 3 8 2 2 1 1 1 1
mgdata 27 16 10 20 19 14 14 14 9 20 21 22 10 18 3 4 11 11
MGFC 22 55 19 57 24 49 15 32 25 23 21 11 3 13 2 1 6 9
mpgdata 5 2 3 2 4 3 8 2 3 2 6 3 7 5 2 2 3 4
spacega 24 32 24 20 37 20 49 75 56 68 75 75 7 14 2 2 9 14
PCN ‡ ‡ ‡ ‡ ‡ ‡ 202 16 431 148 173 19 3 2 1 1 2 3

Dataset
test

C AGG AGG DIV DIV PRT PRT AGG AGG DIV DIV PRT PRT AGG AGG DIV DIV PRT PRT
D MAH SQE MAH SQE MAH SQE MAH SQE MAH SQE MAH SQE MAH SQE MAH SQE MAH SQE
P GPA GPA GPA GPA GPA GPA PAR PAR PAR PAR PAR PAR – – – – – –
shown in Fig. 7 together with benchmark results of Table 5. The
box-plot captures the distribution of the performances obtained
on a given dataset across all tested configurations (ε, D , C , P). In
similar way, Fig. 8 depicts the complexity: the number of rules
ANFIS), alongside the number of neurons (MLP) and number of
upport vectors (SVR). By jointly considering Table 5 and Figs. 7–
, it is safe to summarize our experiments by saying that the
best) ANFIS models outperform the three competitors in terms
f R2 for the vast majority of the considered datasets, while at the
ame time keeping a low computational complexity.

. Conclusions

In industrial applications relying on control systems or de-
ision support systems, not only effectiveness and robustness,
ut also complexity and interpretability by human operators are
ey features that must be addressed when designing suitable
ata-driven solutions to engineering problems.
In literature, ANFISs are often mentioned due to their po-

entials in solving non-linear supervised modelling problems,
nderlining their rule-based structure which can contribute to
better comprehension of how the model takes its decisions,
eculiarity which rarely holds in other machine learning models.
In this paper, we investigated advanced synthesis procedures

ased on k-clustering algorithms for training ANFISs models for
function approximation, equipped with bell-shaped multidimen-
sional MFs. Starting from a straightforward synthesis procedure
based on a plain partitional k-means clustering which explores
a range of partitions obtained by increasing number of clusters,
different variants have been implemented in order to stress the
problem under analysis and to observe possible upgrades of such
kind of paradigm. Indeed the plain k-means is performed to
discover clusters (i.e. rule antecedents, and thus MFs) considering
distance measures (such as the Euclidean one) defined in the
plain input space, not considering explicitly the output informa-
tion associated to each training pattern. In order to overcome
this limitation, we have carried out an exhaustive investigation
exploring:

(i) some hierarchical clustering variants;
(ii) the use of the Mahalanobis distance, in order to improve

non-spherical clusters modelling;
(iii) hyperplane space clustering procedures, in order to improve

the overall piece-wise linear approximation of resulting AN-
FIS models;

(iv) the downstream support of neuro-fuzzy Min–Max classifiers
for MFs refinement.

These variants have been tested on different datasets available
in the literature and then compared with three benchmark so-
lutions: a K -NN approximator and GA-optimized SVR and MLP.
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Table 5
MLP, K -NN, SVR and best ANFIS results reported in terms of R2 and the RMSE on the TS, the model complexity, the
TS operational time and the model training time. Concerning the model complexity, #Nrs, #SVs and #Rules indicate
the number of neurons (MLP), the number of support vectors (SVR) and the number of rules (ANFIS), respectively.
For K -NN, we also show the number of neighbours, albeit it should not be interpreted as a proper measure of
structural complexity. In bold, for each dataset, the most performing method according to the R2 .
SVR Dataset RMSE R2 Operational Time [s] Training Time [s] Complexity #SVs

NASA 0.04 0.98 0.06 79924.7 96
abalone 0.15 0.52 0.04 232.2 84
building 0.14 0.73 0.01 596.4 101
heart 0.27 0.51 0.01 37.2 181
mgdata 0.16 0.59 0.00 30.1 29
MGFC 0.09 0.81 0.01 1163.7 78
mpgdata 0.08 0.88 0.01 4.9 41
spacega 0.11 0.57 0.00 109.0 30
PCN 0.31 0.03 0.04 926.9 246

MLP RMSE R2 TS Op. Time [s] TR Time [s] #NRs/Layer

NASA 0.02 0.99 0.04 4371.0 14 [13 1 0]
abalone 0.12 0.53 0.02 1396.0 24 [23 1 0]
building 0.22 0.15 0.02 2520.0 67 [66 1 0]
heart 0.28 0.47 0.02 1829.0 104 [60 43 1]
mgdata 0.15 0.65 0.02 8976.0 26 [25 1 0]
MGFC 0.05 0.83 0.02 7856.0 34 [33 1 0]
mpgdata 0.08 0.88 0.01 6416.0 35 [34 1 0]
spacega 0.10 0.66 0.01 4928.0 46 [45 1 0]
PCN 0.27 0.27 0.04 3582.0 100 [77 22 1]

K -NN RMSE R2 TS Op. Time [s] TR Time [s] K

NASA 0.05 0.97 14.56 – 4
abalone 0.13 0.50 0.23 – 14
building 0.10 0.89 0.08 – 21
heart 0.26 0.51 0.01 – 18
mgdata 0.14 0.70 0.01 – 21
MGFC 0.05 0.82 0.11 – 9
mpgdata 0.09 0.82 0.02 – 3
spacega 0.10 0.63 0.04 – 4
PCN 0.18 0.66 0.21 – 5

ANFIS RMSE R2 TS Op. Time [s] TR Time [s] #Rules

NASA 0.01 1 25.14 396.0 26
abalone 0.12 0.54 0.46 73.0 9
building 0.13 0.86 0.62 49.5 11
heart 0.19 0.52 0.01 901.0 2
mgdata 0.14 0.70 0.18 3.4 11
MGFC 0.05 0.82 0.59 14.4 9
mpgdata 0.07 0.89 0.01 1.8 3
spacega 0.09 0.71 0.52 7.8 14
PCN 0.23 0.44 5.85 33.2 3
Fig. 7. R2 results. The boxplot shows the ANFIS results from Table 3, whereas competitors results refer to Table 5.
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Fig. 8. Structural complexity results. The boxplot shows the ANFIS results from Table 4, whereas competitors results refer to Table 5.
omputational results show that ANFIS model outperform on
verage the considered competitors, showing at the same time
remarkably lower model complexity and training time.
The ANFIS synthesis procedure herein proposed has to be

onsidered as a general framework and can easily be person-
lized according to the data and problem at hand. In fact, the
hoice behind k-means-like clustering procedures, possibly in an
yperplane clustering configuration, and the use of neuro-fuzzy
lassifiers for MFs refining should be considered just as first effec-
ive components, as suggested in previous works (e.g., [37,38,46]):
onetheless, virtually any clustering algorithm capable of being
quipped with ad hoc dissimilarity measures can be placed in the
lustering block and any classifier able to perform a tessellation
f the input space can be placed in lieu of the Min–Max classifier
n the classification block (cf. Fig. 6).

A complete software suite implementing the proposed frame-
ork is freely available on GitLab under an open-source licence.

The software is a general tool for training ANFIS function ap-
proximation models by derivative free clustering techniques. The
library is written in Matlab R⃝ by following an Object-Oriented
Programming paradigm. It allows to easily customize most of
training parameters for ANFIS synthesis. Specifically, it is possible
to chose the clustering algorithm, the dissimilarity measure, the
cluster representative and to define the clustering space ranging
from the plain input space to the pure hyperplane space. The tool
is also equipped with different Min–Max classifiers, implemented
in C++ and available as pre-compiled .exe files, for possible run-
ning, downstream the clustering phase, a refining procedure of
ANFIS Membership Functions.

Future research efforts will focus in investigating different
strategies in this remark. Moreover, future works foresee the
application of the proposed ANFIS synthesis approach in real
problems by also considering training procedures able to track
time-variant systems.
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