

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/166344

Serrano, A.; Imbernón, B.; Pérez-Sánchez, H.; Cecilia-Canales, JM.; Bueno-Crespo, A.;
Abellán, JL. (2020). QN-Docking: An innovative molecular docking methodology based on
Q-Networks. Applied Soft Computing. 96:1-12. https://doi.org/10.1016/j.asoc.2020.106678

https://doi.org/10.1016/j.asoc.2020.106678

Elsevier

DQN-Docking: An innovative molecular docking
methodology based on Deep Q-Networks

Antonio Serrano1,∗, Baldomero Imbernón1, Horacio Pérez-Sánchez1, José M.
Cecilia1, Andrés Bueno-Crespo1, José L. Abellán1

1Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer
Science Department, Universidad Católica de Murcia (UCAM), Spain

Abstract

Drug discovery is a long and expensive process that normally takes 10-15 years

from primary evaluation to regulator’s approval. As a result, molecular com-

puter simulations known as virtual screening are often used to predict phar-

macological candidates during the first stages. One of the most widely used

methods in virtual screening is molecular docking. The goal of this method is

to predict the 3D conformations where a potential pharmacological candidate

(also known as the ligand) binds to a given spot. Traditional docking methods

are based on optimization procedures of scoring functions–i.e. mathematical

functions that model molecular interactions–characterized by being computa-

tionally expensive. Thus, an alternative approach called DQN-Docking based

on deep reinforcement learning is proposed to provide a novel framework for de-

veloping docking simulations efficiently. In particular, the developed approach

is built upon a Deep Q-Network to train the ligand (the agent) to find its op-

timal interaction. The experimental section is centered on the cyclodextrin as

the host molecule, and it is shown that once the agent is trained, it is able to

find the optimal solution independently of its starting position. These results

suppose a valuable milestone in developing a faster and effective method for

∗Corresponding author
Email address: aserrano7@ucam.edu (Antonio Serrano)
The authors declare that there is no conflict of interests regarding the publication of this

article.

Preprint submitted to Applied Soft Computing May 11, 2021

docking simulations.

Keywords: Deep reinforcement learning, Deep Q-Network, Structure-based

drug design, Protein-ligand interactions, Molecular docking

1. Introduction

Drug development process is known for being excessively expensive, long,

and difficult. In fact, it often takes an average of 10-15 years from the ini-

tial steps—where thousands of pharmacological candidates are considered—to

regulator’s approval [10]. Drug discovery, in particular, encompasses the first5

stages of the entire drug development pipeline previous to chemical synthesis

of a selected group of pharmacological candidates. In the last decade, Vir-

tual Screening (VS) methods have been heavily used to speed up this part of

drug development. They consist of molecular simulations performed in a fast,

precise fashion to recreate the atomic interactions among molecules. One of10

the most effective methods in VS is docking [20], applied to solve the so-called

Protein-ligand Docking Prediction (PLDP) problem. Such a method is based

on the exploration of ligand conformations adopted within the binding sites of

macromolecular targets [3]. As a result, docking not only shortens the research-

to-market cycles but also leads to enormous cost savings [18]. The other side of15

the coin, however, is its intensive computational expense, which demands pow-

erful high-performance computing platforms programmed by means of advanced

parallel programming models [13].

In parallel, the field of Artificial Intelligence has gained a tremendous mo-

mentum in the last decade. This heyday is mostly due to the last achievements20

in the subfield of Machine Learning (ML), and in particular in Deep Learning

(DL). DL is a family of ML algorithms based on Artificial Neural Networks

(ANNs) with many sequential layers of simple computing units (artificial neu-

rons) for learning data representations [43]. The adjective ”deep” refers to the

fact that the given ANN is made of many layers, in contrast with shallow ANNs.25

One of the strongest features of these powerful and flexible models is that they

2

are able to automatically learn high-level abstractions of data. Consequently,

DL has been successfully applied to a wide range of contexts such as speech

recognition, machine translation, image recognition, and self-driving cars [26],

to name just a few.30

As a consequence in the last lustrum, there has been an increasing and vivid

research trend of DL applied to drug discovery [2; 39; 5; 6], specially since the

astounding results achieved in Merck Kaggle and NIH Tox21 data challenges.

Thus, [2] identifies five major topics in this regard: molecular property and

activity prediction; molecular de novo design; reactions prediction, planning35

synthesis, and retrosynthetic analysis; protein-ligand interactions prediction;

and biological imaging analysis. To the extent of our knowledge, the first two

topics along with biological imaging analysis are by far the most fruitful within

drug discovery in terms of achieved performance and the number of publications.

With respect to the protein-ligand interactions prediction, which involves the40

resolution of the PLDP problem, there have been also some remarkable advance-

ments [57; 37; 16]. In most of them, 3D and 2D grids generated from molecular

coordinates are used as inputs for Convolutional Neural Networks (CNNs) [23],

a particular ANN architecture that performs specially well in image recognition

tasks. CNNs are then used as Scoring Functions (SFs) in active/inactive detec-45

tion in protein-ligand complexes, or in score pose and binding affinity prediction,

for example.

In addition to DL, Reinforcement Learning (RL) is another renowned sub-

discipline in ML. It pursues the goal of training an agent to interact with a

given environment to maximize some notion of cumulative reward in the long50

term [53]. During training, a policy function that determines the action to be

taken by the agent is optimized in an iterative trial and error learning process.

RL is currently living a renaissance thanks to more powerful computers, new

algorithmic techniques, mature software packages and architectures, and strong

financial support [28]. Among those novel algorithmic techniques, it stands out55

the combination of DL and RL, giving rise to a new family of algorithms known

as Deep Reinforcement Learning (DRL). These algorithms integrate an ANN

3

in some of the basic components of an RL system such as the policy function,

the value function, or the transition model. Although there had been several

important attempts to integrate DL and RL algorithms in a single system be-60

fore, nobody had been successful until the advent of the striking breakthroughs

of Deep Q-network (DQN) [32] and AlphaGo [47; 48]. Consequently, DRL is

expected to revolutionize the field of Artificial Intelligence in the next years [1].

Moreover, RL and DRL have been applied in drug discovery as well, in particular

in molecular de novo design [15; 33; 36], retrosynthesis [44], and inverse-design65

chemistry [41].

As explained by [2], the results so far in drug discovery applying DL and RL

methods show better performance for certain tasks like bioactivity prediction

through multitask learning, de novo molecular design, and image analysis. In

respect of molecular docking, though, the same authors pointed out that despite70

of the hopeful results obtained with CNNs, it is not clear whether they will be-

come a real, much better alternative to traditional methods. Nevertheless, we

do believe that DRL can definitely enhance and accelerate the resolution of the

PLDP problem by harnessing the power of ANNs as function approximators to

train the agent to navigate and find the optimal solution. With this aim, in this75

paper we propose for the first time an approach based on a DRL scheme. This

work is an extension of our previous effort [45]. To the best of our knowledge,

there is no other previous study on protein-ligand interactions prediction based

on DRL apart from our aforementioned work [24; 62]. In particular, we intro-

duce a system that involves the application of the DQN algorithm to train the80

ligand to search for the optimal interaction site in a docking scenario guided

by a force-field-based SF. Thus, the main contribution of this work could be

considered the creation of a novel docking method compared to current state-

of-the-art alternatives. We are convinced that this alternative approach based

on DRL could overcome some of the weaknesses of those more traditional meth-85

ods, which are currently unfeasible to process large chemical databases in a

reasonable amount of time. As a first step to fulfill this ambitious task, we de-

sign a conceptual study with the aim of demonstrating that, once the agent has

4

been trained, it is able to find the optimal spot in a subsequent prediction phase

regardless of its initial location. We believe that this is a promising, stimulating90

avenue of research that can contribute to accelerate drug discovery and sooner

deliver medicines to patients urgently in need.

2. Background

2.1. Molecular docking

The PLDP problem involves two molecules known as the ligand and the95

host. The ligand—i.e. the pharmacological candidate or compound—is the

smallest molecule with normally less than 200 atoms. The host, also known

as the target or the receptor, is typically a protein or enzyme involved in a

given disease [40]. Molecular docking is a computational method that models

the interaction between the ligand and the host to solve the PLDP problem100

and has become an essential tool in drug discovery in recent years. The main

goal in docking is for the ligand to find the optimal interaction site where both

molecules interact with one another (see Figure 1). To do so, docking consists of

two interrelated steps: (i) sampling conformations of the ligand in the binding

site of the host; and (ii) accurate prediction of the interaction energy associated105

with those conformations using a SF. In this definition, it is assumed that the

location of the binding site of the protein is known. If the binding site is totally

unknown, then the problem is called blind docking [54].

Moreover, there exist two different approaches in drug design, Structure-

Based Drug Design (SBDD) and Ligand-Based Drug Design (LBDD) / Similarity-110

Based Drug Discovery [31; 3]. SBDD exploits three-dimensional structural infor-

mation gathered from the protein, while LBDD is based only on the knowledge

implicitly contained in the chemical structure or physical properties of other

ligands—i.e. their similarity—that bind to the biological target of interest.

Needless to say, molecular docking falls in the SBDD category. In addition,115

docking is performed multiple times for different chemical compounds from a

ligand library in a method called Structure-Based Virtual Screening (SBVS).

5

Figure 1: Illustration of the PLDP problem. The objective for the simulated ligand (A,

with a blue skeleton) is to find the optimal interaction site (B, with a green skeleton)

in the host surface. The optimal interaction site is zoomed for clarity sake.

Such a method broadly encompasses docking, molecular dynamics, and quan-

tum mechanics. In SBVS applied to docking, large libraries of ligands are com-

putationally screened against a target of known structure, and those that are120

predicted to bind reasonably fine are experimentally tested through a subse-

quent High-Throughput Screening (HTC) process [25]. Actually, these libraries

may contain millions of compounds [14]. So, the underlying assumption is that

the more extensive and diverse the database, the higher possibilities of discov-

ering new drugs. Nonetheless, SBVS methods currently fail to make accurate125

activity and toxicity predictions. This is due to constrains both in the capabil-

ity of the SFs from a theoretical point of view and in the access to sufficient

computational resources. The consequence of these drawbacks is that even the

quickest SBVS methods are not able to process large chemical databases in a

reasonable amount of time.130

Another important distinction in docking is related to flexibility of the in-

volved molecules. Early docking programs follow the lock-and-key theory [4],

which conceives the ligand-host binding mechanism as a rigid ligand fitting into

a rigid host just as much as a key fitting in a lock. A more realistic approach is

that of based on the induced-fit theory [22], which states that both the ligand135

and the active site of the host are continually reshaped by the interactions be-

tween each other. However, adding flexibility to the host is a great challenge,

6

especially with respect to backbone flexibility. Molecular dynamics would be

the ideal way of addressing this issue. Unfortunately, this method entails a

much higher computational cost, which prevents this alternative from being140

routinely applied to screen vast biological databases. Consequently, in nearly

every docking software nowadays it is adopted an intermediate position that

only considers the ligand as flexible. This approach implies a good trade-off

between accuracy and cost.

Thus, the resolution of the PLDP problem is not an easy, straightforward145

task. As for the conformational search, there are six degrees of translational and

rotational freedom as well as the conformational degrees of freedom of both the

ligand and protein. Therefore, there is a huge number of potential interaction

modes between two molecules, which makes docking a NP-complete problem [46]

where it is computationally unfeasible to generate all the possible conformations150

or to perform an exhaustive search. Still, if the best docking pose–i.e. the one

with the lowest SF value–were found, evaluating its binding energy would not

be a trivial task either. There are three types of SFs depending on the nature

of the information included in their estimates: force-field-based, empirical, and

knowledge-based [30]. Each of those SFs have their own benefits and drawbacks.155

In addition to molecular flexibility, there are other issues to bear in mind, such

as the simulation of structural water located in deep cavities of the host, drug

toxicity, or how to represent the molecules involved in the PLDP problem. Last

but not least, there is a natural limit of computational resources that makes

necessary to find a good balance between accurate, realistic representation of160

the molecular interactions and the cost of such resources.

2.2. Deep Q-Network

As previously mentioned, in RL an agent interacts with a certain environ-

ment trying to learn an optimal control policy to maximize the sum of some kind

of cumulative reward. In finite-horizon, episodic tasks, the agent learns across a165

set of subsequent attempts or episodes made of several time-steps. As it is shown

in Figure 2, the agent observes a state st at a given time-step t, takes an action

7

at, gets the reward rt from the environment, and transitions to the next state

st+1. Unlike supervised learning, there is no explicit dataset. The environment

generates the data according to the actions that the agent takes. Additionally,170

this work is focused on non-stationary and Partially Observable Markov Deci-

sion Process (POMDP)–where the agent only is able to see part of the world

state instead of the internal state (memory) to act optimally–problems.

POLICY
STATE (st)

ACTION (at)

NEXT STATE (st+1)

REWARD (rt+1)

ENVIRONMENT

AGENT

Figure 2: Representation of a typical problem in Reinforcement Learning.

In this work a DQN is applied, which is based on another well-know algo-

rithm called Q-learning [59]. This is a model-free algorithm because the tran-175

sition probabilities are unknown. Instead, the environment produces the states

and rewards. In addition, it is value-based since it tries to learn a state-action

value function—Q-function from here onward—that reflects the utility values of

each state when executing a certain action, instead of directly learn the optimal

policy as in policy-based algorithms. More specifically, those utility values are180

continuously updated according to the rule in Equation 1:

Q′(s, a) = Q(s, a) + α(r + γ max
a′

Q(s′, a′)−Q(s, a)) (1)

where Q(s, a) is the current expected utility of taking action a in the state s,

α is the learning rate, and the term in parenthesis refers to the error between the

8

target expected utility r+γ max
a′

Q(s′, a′) and its current predicted value Q(s, a).

γ is a discount factor (normally close to 1) that is used under the assumption185

that estimated future rewards are worth less than certain immediate ones. The

predicted expected utility is equal to the sum of the immediate reward r plus the

discounted Q value of the next state s′, assuming that the best possible actions

is taken (a′). Q-learning is considered as an off-policy algorithm because the

next action a′ is selected to maximize the value of the next state s′ instead of190

following the current policy—also known as the behavior policy—as in on-policy

methods such as SARSA [52]. In particular, DQN follows an ϵ-greedy strategy

as the behavior policy in order to manage the exploration/exploitation trade-off.

DQN is also an approximate solution method, not tabular. In this case, an

ANN is used to approximate the Q-value function Q(s, a|θ), where θ represent195

the weights from the ANN that parametrize those Q values. Those weights are

updated iteratively during the training process. In every of those iterations, the

goal is to minimize the loss function included in Equation 2:

L(s, a|θi) = (r + γ max
a′

Q̂(s′, a′|θ−i)−Q(s, a|θi))2 (2)

The weights are updated in the next iteration i+1 based on backpropagation

by computing θi+1 = θi−α∇θL(θi). As the Q-function performs several weights200

updates and its estimates become more reliable, the agent starts to take more

and more deterministic actions based on that function. Adam [19] is chosen as

the update rule for this work. In supervised learning, the loss is the difference

between the actual and the predicted values. Similarly, in this context the

loss is difference between the target values rt + γ max
a′

Q̂(s′, a′|θ−i), and the205

predicted values Q(s, a|θi). Note that θ−i refers to the weights of the so-called

target network, which is a copy of the deep Q-Network—also known as online

network. The difference between both ANNs is that the weights of the target

network normally remain fixed, being updated only every C iterations, while

the online network is updated in every single iteration.210

In addition, the Q-learning algorithm with one-step return based on non-

9

linear function approximators such as ANNs is known for its difficulty to con-

verge. Thus, the authors of DQN adopted additional measures to enable and

speed up convergence, such as the use of an experience replay database [29], the

target network with frozen weights, and reward clipping. Namely, the experi-215

ence replay dataset is used to store a fixed number of experiences or memories,

which are transition tuples containing (st, at, rt, st+1)–i.e. the current state, the

action taken, the reward obtained, and the next state. Those experiences are

uniformly sampled from the dataset in minibatches to train the ANN. The ad-

dition of those experiences helps to break the correlation between samples from220

subsequent time-steps, and therefore facilitates convergence.

Moreover, DQN has been improved over the years with several refinements.

Thus, double deep q-learning [56] tackles the problem of overoptimistic value

estimates by evaluating the greedy policy according to the online network, while

estimating its value following the target network. This modification improves225

DQN in terms of value accuracy and policy quality. In addition, the dueling

network architecture [58] contributes to identify which states are valuable per

se, without learning the effect of each action for each state. To do so, it includes

two separate estimators, one for the state value function V (s) and one for the

action advantage function A(s, a). The stream V (s; θ, β) of the model learns a230

general value that is shared across many similar actions at that state s, leading

to a faster convergence. Finally, prioritized experience replay [42] also speeds

convergence by sampling experiences according to how surprising or unexpected

they are instead of doing it randomly. To avoid overfitting, though, a stochas-

tic sampling method that interpolates between pure greedy prioritization and235

uniform random sampling is employed.

3. Related work

Next, it is succinctly reviewed previous works in DL applied to docking.

Note that these articles are based on supervised learning instead of RL. But as

far as we are aware, these are the nearest related works to the intersection of240

10

the PLDP problem and DRL algorithms, as intended in the current work.

As previously stated, there is a research trend in which scientists are already

investigating the application of DL algorithms to protein-ligand interactions

prediction [35]. Basically, they aim to substitute traditional docking SFs and

ML SFs by CNNs to predict binding affinity [11; 51; 50; 7; 17], pose score245

[38], active/inactive molecules [57; 37; 8; 34], binding sites [16], or properties of

potential ligands interacting with proteins [49].

In these models, 3D grids are the most widely used format to describe the

molecules. This kind of input does not only take into account the atom co-

ordinates but also extra information such as the atom types, partial charges,250

pharmacophoric and SMART properties, voxel occupancy, atom connections,

hybridization, amino acid types, etc. According to this kind of input, 3D CNNs

is the preferred ANN’s architecture. It is worth noting that only [17] make use

of deeper ANNs—in particular a variant of SqueezeNet [12]—, while the rest of

the authors make use of shallower CNNs with no more than three convolutional-255

pooling layers and a fully connected network with no hidden layers attached at

the end, in most cases.

Results obtained up to now are slightly better or at par than other ML

methods and traditional scoring-function-based methods. For example, [57]

achieve an AUC greater than 0.9 in the DUD-E benchmark, surpassing previous260

docking methods included in Smina [21]. But these results are constrained to

57.8% of the targets included in the benchmark. Furthermore, the CNN in [37]

outperforms Autodock Vina [55] empirical SF, and ML-based SFs like RF-Score

and NNScore in VS and intertarget evaluations of pose prediction. However, it

performs worse at intratarget pose ranking, which is more relevant to docking.265

[51] evaluate their CNN in the D3R challenge. They find that their performance

is best-in-class when performing affinity ranking for two of the targets (three

of the subchallenges), albeit it is average on two of the other targets and poor

on a third. The model from [50] outperforms the SFs tested in [27] in two test

sets (PDBbind v. 2016 and CASF-2013)–the best-performing X-Score had R270

= 0.61 and SD = 1.78, while their model achieved R = 0.70 and SD = 1.61.

11

However, the RF-Score v3 SF has better performance, achieving R = 0.74 and

SD = 1.51 on CASF-2013. [17] compare their model with other three ML SFs

(RF-Score, X-Score, and cyScore). In the PDBbind core set, their model is able

to outperform the rest of the methods, with a similar correlation coefficient as275

RF-Score while achieving significantly lower error in terms of RMSE. In the

CSAR sets, however, RF-Score offers the best average performance, supporting

the hypothesis that more complex ML methods tend to underperform outside

the training manifold.

Indeed, the main drawback of all these models is that they resoundingly fail280

when predicting the output with new examples out of the datasets they were

trained for. This problem is not only related to the algorithms themselves but

also with the lack of gold-standard datasets in ML applied to drug discovery

[39]. This lack is partly due to the heterogeneity of the information included

in the drug discovery datasets. There have been some recent, laudable efforts285

in drug discovery to create something similar to ImageNet database in image

recognition [60]. In the meantime, though, datasets like PDBbind, scPDB,

CSAR, DUD, and DUD-E are some of the most widely used benchmarks in

protein-ligand interactions prediction. Although some of these results obtained

with CNNs are encouraging, this issue casts doubts on the ability of these DL290

models to consistently improve results compared to traditional SFs and other

ML-based methods [2].

4. Implementation

The main contribution of the current work is to introduce a new promising

method based on DRL for solving the PLDP problem. In the following lines,295

it is thoroughly explained how this method has been implemented. This brings

about important decisions on the building blocks of DRL: defining the states,

actions, states, reward function, architecture of the ANN, stop conditions, etc.

As illustrated in Figure 3, these are the major components of RL (see Sec-

tion 2) associated with the PLDP problem:300

12

• The agent, which is incarnated by the ligand.

• The value function, which indirectly determines the policy of the agent.

It is represented by a standard feedforward ANN estimating the Q values.

• The actions the agent may take. There are two possible discrete actions:

moving forward or backward along one spatial axis.305

• The environment ε represented by the docking program METADOCK

[13].

• The states and next states embodied by the mass center of the ligand plus

the rotational quaternions and their norm.

• The reward based on a transformed score obtained from METADOCK SF.310

This reward gradually adds the SF terms according to several conditions,

as depicted below.

As for the actions, at each time-step the agent takes a specific action at from

the set of possible actions, A = {1, . . . , K}. As mentioned earlier, for this

problem, two possible actions can be taken by the ligand. In particular, the315

agent can move forward and backward along the x axis. The idea is to reduce

the search space of Q-values as much as possible to facilitate the convergence of

the algorithm. In future publications, it is intended to include movement and

rotation in the three axes and ligand folding. But this is far beyond a reasonable

scope for the current work. Then, the selected action is passed to METADOCK,320

which computes the new position or state of the ligand and its corresponding

score.

With respect to the states, these are vectors xt ∈ Rd representing the posi-

tion of the mass center of the ligand, where t refers to a particular timestep from

a given episode and d to the dimension of the states. In addition, it is included325

the rotational quaternions and their norm for later extensions of DQN-Docking.

More complete representations of molecules like 3D structures [61] could be used

here. However, those alternatives were discarded in favor of simplicity to en-

sure a functional docking method. For the same reason, information concerning

13

ONLINE
NETWORK

TARGET
NETWORKCOPY WEIGHTS EVERY C STEPS

LOSS

𝑄 𝑠, 𝑎 𝜃&
𝑚𝑎𝑥
𝑎)

*𝑄 𝑠), 𝑎) 𝜃&+

VALUE
FUNCTION

ENVIRONMENT
(METADOCK)

STATE
(x, y, z, a, bi, cj, dk)

ACTION
(a0 , a1)

NEXT STATE
(x, y, z, a, bi, cj, dk)REWARD

(es + ww + hb + sc)

AGENTPOLICY

Figure 3: Operational schema of DQN-Docking. Coordinates (x, y, z) belong to the

mass center of the ligand. (a, bi, cj, dk) represents the rotational quaternions and their

norm. (a0, a1) indicates the possible action to be chosen, that is, moving forward along

axis x or backward. Finally, es, ww, and hb stands for the SF terms, which respectively

correspond to the electrostatic term, Wan der waals forces, and hydrogen bonds. In

addition, sc refers to the overall score from the SF computed by METADOCK.

the host is not incorporated in the states nor other kind of knowledge such as330

atom types or partial charges. That information is indirectly included via the

reward function based, in turn, on the METADOCK SF, which implicitly takes

into account the structure of the host. Those two functions–reward and SF–are

described in the lines below.

Moreover, METADOCK is conceived as the RL environment ε. This software335

has recently been proposed as an efficient heuristic-based software framework

that makes affordable the study of protein-ligand interactions that occur during

the ligand-host binding process. Other alternatives such as AutoDock Vina or

Smina were considered but METADOCK stands out for being computationally

14

faster, which is an important aspect with regard to DRL training. In particular,340

METADOCK can apply translations and rotations to the ligand in the Euclidean

space, and report the quality of the movement taken by using a force-field-based

SF. This function involves the calculation of three major terms, as shown in

Equation 3: (1) electrostatic interactions; (2) the potential of Lennard-Jones

as a mathematical model to solve Van der Waals’ forces; and (3) the hydrogen345

bonds term. In addition, it can include the same solvation term and rotable

bonds than AutoDock 4.

n∑
i=0

m∑
j=0

k

(
qi qj
rij

)
+

n∑
i=0

m∑
j=0

4ϵij

((
σij

rij

)12

−
(
σij

rij

)6
)
+

n∑
i=0

m∑
j=0

(
cosθij

(
Cij

r12ij
− Dij

r10ij

)
+ sinθij 4ϵij

((
σij

rij

)12

−
(
σij

rij

)6
)) (3)

Algorithm 1 briefly describes how the score is computed by METADOCK

given a particular position of the ligand.

Algorithm 1 Sequential baselines for the Lennard-Jones interactions between

host and ligand.
for i=1 to N_CONFORMATION do

for j=1 to N_ATOMS_HOST do

for k=1 to N_ATOMS_LIGAND do

Energy = 4×ϵ×(term_raised_to_12(j, k)−term_raised_to_6(j, k))

Scoring += Energy

end for

end for

S_energy[i] = Scoring

Scoring = 0

end for

The reward function is one of the most sensitive parts in RL since it serves350

as a guide for the agent to interact with the environment. It implies a deep

15

knowledge concerning the problem to be solved–in this case, the PLDP problem.

The natural choice in this context would be to directly take the raw score from

the SF since it represents the quality of the position of the ligand coupled

with the host. However, unlike other settings such as the Atari videogames355

that DQN was orginally designed for, this score is not cumulative, it does not

increase slightly over time, and it is not always positive. Instead, it is negative

most of the time and can drop sharply if (1) the two atoms with positive charge

from the ligand and host respectively get too close (electrostatic repulsion); or

(2) the ligand overlaps the host (steric repulsion). In fact, the range of the360

SF goes from stratospheric negative numbers (e.g. -4.5e+21) to 500 at most,

depending on the molecules involved. Therefore, this score turns out to be too

noisy to be employed as a reward signal and it does not favor convergence of

the RL algorithm. As a workaround, the original SF terms are retrieved and

gradually added according to several conditions described in Algorithm 2. This365

reward function enables a more reasonable behavior for the agent. It is worth

noting that 14 previous versions of the reward function were tested until the

final candidate was selected.

Additionally, the value function in DQN-Docking is based on a standard

feedforward ANN, also known as dense (fully connected) neural network or370

multilayer perceptron (MLP). This ANN takes transition tuples containing

(st, at, rt, st+1)–i.e. the current state, the taken action, the obtained reward,

and the next state–as input from the experience replay dataset. This simpler

architecture is chosen over other more compelling alternatives because of the

relative simplicity of the inputs. In particular, CNNs and RNNs are discarded375

since DQN-Docking does not use 2D/3D grids or molecular sequences as input

data, unlike the works analyzed in Section 3. Moreover, those memories are

sampled from the dataset in minibatches to train the ANN. Specifically, the

criterion of absolute Temporal-Difference (TD) error is followed to relatively

favor more surprising (better) experiences. In turn, the network outputs the380

estimated Q values of each action in a given time-step. The action with the

highest Q value is selected for the agent at that particular time-step. The spe-

16

Algorithm 2 Reward function in DQN-Docking
Require: es: electrostatic term; ww: Wan der waals forces; hb: hydrogen

bonds; sc: overall score from METADOCK SF ;λ, ι, δ, ζ: empirically-set

cut-offs.

Ensure: reward.

Initialize reward terms esr, wwr, hbr, and scr.

if abs(es) >= λ then

esr = 1

if -ww >ι then

wwr = log(-ww)

if hb <-1 and abs(ww) <δ then

hbr = 1

if -sc >ζ then

scr = η

end if

end if

end if

end if

reward = add(esr, wwr, hbr, scr)

17

cific hyper-parameters of the ANN model are listed in Table 1.

Another important aspect in RL refers to stop conditions. Docking has been

conceived in this work as a finite-horizon, episodic task. METADOCK takes care385

of shifting the agent in the three-dimensional space and subsequently computing

the SF but does not specifies when a given episode is over. As a consequence, two

stop conditions are manually added. First, a maximum number of time-steps

is set as in any RL episodic task (see Table 1). Second, sometimes the ligand

may deviate and get way from the host excessively. To correct such undesired390

behavior, the episode immediately terminates if the Euclidean distance between

the two molecules is greater than a certain cut-off D in 10 following time-steps.

In practice, this condition limits the exploration area of the agent around the

host. These two stop conditions definitely contribute to accelerate the learning

process. Furthermore, an overall condition is necessary to determine when the395

agent has optimized the policy well enough. So, another condition is set to stop

the whole training process when the average reward in the last 100 episodes

reaches a theoretical maximum. That quantity is calculated considering the

distance between the initial position of the ligand and the optimal solution, the

maximum time-steps per episode, the highest possible reward per time-step, etc.400

In this work, the aforementioned distance between the initial position and the

solution can be estimated since the latter is known. In practice, however, the

solution is unknown, so the theoretical maximum should be reformulated.

5. Evaluation methodology

Once it is explained how the new docking method is implemented, next it405

is introduced the followed methodology to evaluate the proposed solution. As

for the involved molecules, the evaluation of DQN-Docking is based on a beta-

cyclodextrin as the target host. These molecules are produced from starch by

enzymatic conversion. They stand out for their simplicity and water solubil-

ity. As for the ligand, the candidate selected for the experiment is known as410

kaempferol. Both the target and the ligand were obtained from the Protein

18

Data Bank (PDB).

The conducted experiment entails the training of the agent starting from six

different positions independently, as shown in Figure 4. Three of these positions

fall into the left side of the cyclodextrin set in the origin, while the rest lie on415

the right side. The agent can move forward and backward along the axis that

cross through the inner hole of the cyclodextrin and its optimal spot. A different

maximum number of time-steps per episode is set empirically for each position

to guarantee convergence. In particular, for the most distant starting positions

(position no. 1 and 6), the agent is trained in episodes with 4,000 maximum420

time-steps. This limit decreases up to 2,000 steps for intermediate positions (2

and 5) and to 1,000 for closer positions (3 and 4) since the optimal solution is

nearer, so the algorithm needs less training in order to converge. After training,

the agent is allowed to act according to the learned policy in a new single episode

of prediction with a 1,000 time-steps length. In particular, the ligand trained in425

each starting position is run in the predictive episode starting from that position

and the other five. This leads to 36 different runs as a result of crossing the

six starting positions in training and prediction. Finally, the goal and desired

behaviour for the agent is to check whether it can find the optimal solution,

which is known beforehand, and stay put to maximize the reward across the430

episode.

The experiment is performed on a server with an Intel(R) Xeon(R) CPU

E5-2640 v4 @ 2.40GHz, 128 GB of RAM, 1 TB SSD Hard Disk, and a NVIDIA

GeForce GTX 780 GPU (Kepler). OpenAI Baselines 0.1.5 is used to deploy the

DQN algorithm. This library is based on Tensorflow and Keras frameworks to435

design and train ANNs. Specifically, TensorFlow 1.7.0 and Keras 2.1.5 are used

for the experiment.

6. Results and discussion

First of all, a manual hyperparameter tuning [9] focused on execution time is

carried out in order to select the optimal combination of DRL hyperparameters440

19

Figure 4: Evaluation methodology based on beta-cyclodextrin and kaempferol. The

agent is independently trained from six different positions numbered from 1 to 6.

The objective for the agent is to discover the optimal solution in the center of the

cyclodextrin and stay oscillating around that spot. In a later predictive episode for

each of those six training process, the agent is allowed to move according to the learned

policy starting in the original position that was trained from and the rest of the five

positions, giving rise to a total of 36 runs for the prediction phase.

and speed up training. The performed analysis encompasses more than 180

runs with different combinations of both Deep and Reinforcement Learning

hyperparameters for initial position no. 3. For each hyperparameter, different

values are tested. In turn, for each of these values five runs are performed

with the intent to reduce the uncertainty caused by the randomness of several445

elements of the algorithm such as the weights initialization of the ANN or the

ϵ-greedy strategy. After performing the five runs, the best value on average is

set for the next hyperparameter to be tested. This process of selecting the value

of hyperparameters sequentially requires a deep knowledge of the interrelations

among them. For example, changing the maximum of global timesteps of the450

experiment directly affects the impact of the exploration fraction on execution

time. Those interrelations are carefully taken into account in this analysis.

Likewise, this tuning process is cyclically repeated several times until there is

no any remarkable improvement in terms of time saving. As a result, execution

time is progressively reduced from the original 80 hours to only 12 for initial455

position no. 3.

Figure 5 shows the hyperparameters that prove to have a deeper impact in

20

8 16 32 64 128 256 512 1024
(a)

0

10

20

30

40

50

60

70
Mini-batch size

1 2 3 4 5
(b)

0

10

20

30

40

50

60

70
Number of layers

128 256 512 1024
(c)

0

10

20

30

40

50

60

70
Number of units for one layer

1000 10000 100000 1000000 10000000
(d)

0

20

40

60

80

100

120

140

Target network updating frequency

0.005 0.01 0.02 0.05 0.1
(e)

0

10

20

30

40

50

60

70
Exploration fraction

Tr
ai

ni
ng

 ti
m

e
(h

ou
rs

)

Figure 5: Result of hyperparameters analysis. Hyperparameters values are tested

sequentially. Red bars with diagonal stripes indicate that the algorithm failed to

converge. Error bars are based on confidence intervals with α = 0.05. Note that the

y-axis scale is the same for all the bar charts, ranging from 0 to 70, but for 5.d, which

ranges from 0 to 150.

terms of computational efficiency. Overall, exploration fraction and mini-batch

size are the most determining ones. With respect to the mini-batch size (bar

plot 5.a), 32 tuples of experiences seems to be the optimal. This value is in460

line with the original work of DQN. Regarding the neural network architec-

ture, a standard feedforward ANN with up to 5 hidden layers composed of 128

units each is tested (5.b). The ANN with one layer seems to be the most suit-

21

Table 1: Values of the hyperparameters used in DQN-Docking
RL hyperparameters

Hyperparameter Value Description

Number of global time-steps 488,581 / 293,332 / 195,571 Average number of global time-steps completed along the simulation for positions 1&6, 2&5, and 3&4

Global maximum time-steps limit 10,000,000 Maximum time-steps limit along the entire simulation

Maximum time-steps per episode T 4,000 / 2,000 / 1,000 Maximum time-steps limit per episode for positions 1&6, 2&5, and 3&4

State space 7 Real numbers needed to represent a particular state

Action space 2 Real numbers needed to represent the possible actions to be taken by the agent

Shifting length per step 0.1 Angstroms traveled by the ligand in each step when shifting

Rotating angle per step 0.5 Degrees turned by the ligand in each step when rotating

Exploration fraction 0.005 Fraction of entire simulation over which the exploration rate is annealed

ϵ initial value 1 Initial value of ϵ (if ϵ=1, then 100% actions are randomly selected)

ϵ final value 0.02 Final value of ϵ.

γ discount rate 0.99 Discount rate for future rewards

Experience replay pool size N 1,000,000 Number of memories (st, at, rt+1, st+1, terminal) to be stored to perform experience replay

Learning start 100,000 Number of initial steps where the agent only takes random actions

Steps C to update target network 1,000 Frequency at which the target network is updated

α PER 0.6 Alpha parameter for prioritized experience replay

β0 PER 0.4 Initial value of beta for prioritized experience replay

β iterations PER None Number of iterations over which beta will be annealed from initial value to 1

ϵ PER 0.000001 Epsilon to add to the TD errors when updating priorities

DL hyperparameters

Hyperparameter Value Description

Number of hidden layers 1 Number of hidden layers between input and output layers

Hidden layer size 256 Number of units in the hidden layers

Activation function tanh Activation function used by hidden units to decide whether they should be activated or not

Update rule Adam The parameter update rule used by the optimizer

Learning rate 0.1 Learning rate used by the optimizer

Minibatch size 32 Number of training examples per update

able for the task at hand. However, three or more layers make the algorithm

unable to converge. Next, it is also tested the number of units for one layer465

(5.c). Specifically, 256 neurons seem to be the optimal considering the size of

the error bars although time saving is not really significant compared to other

hyperparameters. The impact of the target network updating frequency C (5.d)

is not specially important but values greater than 1 million make the algorithm

unfeasible to converge. Moreover, the exploration fraction (5.e) is the most470

important hyperparameter with respect to execution time. In particular, small

values (between 0.005 and 0.02) considerably lower convergence time from more

than 50 hours on average (0.1) to just 12. For all these tests, a global maximum

limit of 10 million time-steps was set. Finally, Table 1 shows the most efficient

combination of hyperparameters selected to train the agent after the manual475

hyperparameter tuning.

Next, it is shown the evolution of the average total reward per time-step

during the training process for each initial position in Figure 6. It is calculated

22

0

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

(a)

0.0

0.5

1.0

1.5

2.0 1e8
Position no. 1

0

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

(b)

0.0

0.5

1.0

1.5

2.0 1e8
Position no. 2

0

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

(c)

0.0

0.5

1.0

1.5

2.0 1e8
Position no. 3

0

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

(d)

0.0

0.5

1.0

1.5

2.0 1e8
Position no. 4

0

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

(e)

0.0

0.5

1.0

1.5

2.0 1e8
Position no. 5

0

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

(f)

0.0

0.5

1.0

1.5

2.0 1e8
Position no. 6

Training global time-steps

A
v
e
ra

g
e
 r

e
w

a
rd

Figure 6: Average total reward per time-step during the training process. The average

is calculated considering the previous 100 episodes. For the sake of comparison, both

x and y axes share the same range of values in the six charts.

with respect to the previous 100 episodes. Agent in positions 1 and 6 (charts

a and f) needs almost 500,000 time-steps and 20 hours of training since these480

are farthest from the crystallographic solution. Conversely, agent in positions 3

and 4 (c and d) spends less than 200,000 time-steps and 10 hours of training.

Thus, the average total reward takes a while until it starts rising. When this

happens, it gradually increases until the algorithm converges, suggesting that

the agent steadily learns to make better decisions over time. When visualizing485

its movements in PyMol by the end of training, the ligand tends to stick to

the optimal solution oscillating between that position and the next closest one.

This is the optimized and desired policy considering that for the agent staying

still is not an option.

As for prediction, the heatmap in Figure 7a shows the Root Mean Square490

Deviation (RMSD) in Angstroms between the last position in the episode of

prediction and the optimal solution. This distance is calculated for each pair

of training and prediction initial positions. The purpose is to demonstrate that

23

1 2 3 4 5 6

Training positions
(a)

1

2

3

4

5

6

Pr
ed

ict
io

n
po

sit
io

ns
6 0 6 6 0 0

6 0 6 6 0 0

6 0 6 6 0 0

6 0 6 6 0 0

6 0 6 6 0 0

6 0 6 6 0 0

0

50

100

150

200

250

1 2 3 4 5 6

Training positions
(b)

1

2

3

4

5

6

Pr
ed

ict
io

n
po

sit
io

ns

10
(31)

7
(17)

5
(8)

4
(6)

6
(19)

10
(33)

9
(30)

6
(17)

4
(6)

4
(6)

6
(15)

10
(31)

8
(29)

5
(15)

4
(6)

4
(6)

5
(15)

8
(29)

9
(30)

5
(15)

4
(6)

4
(6)

5
(15)

8
(29)

8
(29)

5
(15)

4
(6)

4
(6)

5
(15)

8
(29)

8
(29)

5
(15)

4
(6)

4
(6)

5
(15)

8
(29)

50

100

150

200

250

Figure 7: (a) RMSD between the last position in the episode of prediction and the

optimal solution. The distance is computed for each pair of training and prediction

initial positions. The maximum distance between the current position and the solution

across the 36 pairs is 256 Å. (b) Average RMSD between current position and the

optimal solution across the episode of prediction. The standard deviation is shown in

parentheses.

the agent is able to find the optimal spot regardless of which was the initial

position during training. Specifically, the RMSD varies between 0 and 6 for all495

cases insinuating that the agent successfully ends up in the optimal location.

Consistently with its behavior at the end of the training process, the ligand

alternates between the solution (where RMSD = 0) and the next closest position

(RMSD = 6) once arrives to the former.

Alternatively, the average RMSD value between the current position at each500

time-step and the optimal solution is computed across the episode of prediction.

The intention of this measure is to ensure that the agent behaves according to

the optimal policy. In effect, the average RMSD in Figure 7b is pretty low (10

Å as much) for each pair of training and prediction initial positions. This con-

firms that the ligand does not behave erratically before arriving to the optimal505

spot. Additionally, the minimum RMSD value between the current position

at each time-step and the optimal solution was also calculated. However, the

corresponding heatmap is omitted as the RMSD = 0 for all of the 36 pairs

24

of training and prediction initial positions. These results corroborate that the

ligand finds the crytallographic solution at least once in every pair, which is510

coherent with findings in the previous heatmaps.

7. Conclusions and future work

Computational drug discovery is an amazing field with an incredible room

for extension, innovation, and impact. The same is true for VS and docking,

where the fastest methods are not currently able to process the largest biological515

databases in a reasonable time-frame. This limits its practical application in

medical research. As a consequence, there is an appealing, urgent research gap

to be filled. Instead of mainly relying on parallel programming schemes and

more powerful hardware to accelerate the resolution of the PLDP problem, we

took an alternative approach based on the latest advances in DRL. Particularly,520

we created a system with an embedded DQN to train the ligand to look for

the optimal solution in a molecular docking setting by following a reward signal

derived from a traditional force-field-based SF. Results from both training and

prediction phases demonstrate that once the agent has been properly trained

it is able to find the solution where both molecules interact, irrespective of the525

original position it was trained from.

We do believe that this pioneering study is a valuable first milestone to

generalize our findings to other ligand-host pairs and thus reach the ambitious

goal of developing a faster, more accurate tool to solve the PLDP problem. By

extending the present work, we hope to contribute to save tons of economic530

resources for the pharmaceutical industry and, what is more important, to save

the life of those who urgently need the drugs to be develop.

Acknowledgements

This work was partially supported by the Fundación Séneca del Centro

de Coordinación de la Investigación de la Región de Murcia under Projects535

20813/PI/18, 20988/PI/18 and 20524/PDC/18, and by the Spanish Ministry of

25

Science, Innovation and Universities under grants TIN2016-78799-P (AEI/FEDER,

UE) and CTQ2017-87974-R. The authors also thankfully acknowledge the e-

infrastructure program of the Research Council of Norway, and the supercom-

puter center of UiT - the Arctic University of Norway.540

References

[1] Kai Arulkumaran, Marc P Deisenroth, Miles Brundage, and Anil A

Bharath. A brief survey of deep reinforcement learning. arXiv preprint

arXiv:1708.05866, 2017.

[2] Hongming Chen, Ola Engkvist, Yinhai Wang, Marcus Olivecrona, and545

Thomas Blaschke. The rise of deep learning in drug discovery. Drug Dis-

covery Today, 23(6):1241–1250, 2018.

[3] Leonardo Ferreira, Ricardo dos Santos, Glaucius Oliva, and Adriano An-

dricopulo. Molecular docking and structure-based drug design strategies.

Molecules, 20(7):13384–13421, 2015.550

[4] Emil Fischer. Einfluss der configuration auf die wirkung der enzyme.

Berichte der Deutschen Chemischen Gesellschaft, 27(3):2985–2993, 1894.

[5] Fahimeh Ghasemi, Alireza Mehridehnavi, Afshin Fassihi, and Horacio

Pérez-Sánchez. Deep neural network in qsar studies using deep belief net-

work. Applied Soft Computing, 62:251–258, 2018.555

[6] Fahimeh Ghasemi, Alireza Mehridehnavi, Alfonso Pérez-Garrido, and Ho-

racio Pérez-Sánchez. Neural network and deep-learning algorithms used in

qsar studies: merits and drawbacks. Drug Discovery Today, 23(10):1784,

2018.

[7] Joseph Gomes, Bharath Ramsundar, Evan N Feinberg, and Vijay S Pande.560

Atomic convolutional networks for predicting protein-ligand binding affin-

ity. arXiv preprint arXiv:1703.10603, 2017.

26

[8] Adam Gonczarek, Jakub M Tomczak, Szymon Zaręba, Joanna Kacz-

mar, Piotr Dąbrowski, and Michał J Walczak. Interaction prediction in

structure-based virtual screening using deep learning. Computers in Biol-565

ogy and Medicine, 100:253–258, 2018.

[9] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT

press, 2016.

[10] Philip J Hajduk and Jonathan Greer. A decade of fragment-based drug

design: strategic advances and lessons learned. Nature Reviews Drug dis-570

covery, 6(3):211–219, 2007.

[11] Joshua Hochuli, Alec Helbling, Tamar Skaist, Matthew Ragoza, and

David R Koes. Visualizing convolutional neural network protein-ligand

scoring. Journal of Molecular Graphics and Modelling, 84:96–108, 2018.

[12] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf,575

William J Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accu-

racy with 50x fewer parameters and< 0.5 mb model size. arXiv preprint

arXiv:1602.07360, 2016.

[13] Baldomero Imbernón, José M. Cecilia, Horacio, and Domingo Giménez.

Metadock: A parallel metaheuristic schema for virtual screening methods.580

The International Journal of High Performance Computing Applications,

32(6):1–15, 2017.

[14] John J Irwin and Brian K Shoichet. ZINC–a free database of commercially

available compounds for virtual screening. Journal of Chemical Information

and Modeling, 45(1):177–182, 2005.585

[15] Natasha Jaques, Shixiang Gu, Dzmitry Bahdanau, José M Hernández-

Lobato, Richard E Turner, and Douglas Eck. Sequence tutor: Conservative

fine-tuning of sequence generation models with kl-control. In Proceedings of

the 34th International Conference on Machine Learning-Volume 70, pages

1645–1654. JMLR. org, 2017.590

27

[16] José Jiménez, Stefan Doerr, Gerard Martínez-Rosell, Alexander S. Rose,

and Gianni De Fabritiis. Deepsite: protein-binding site predictor using

3d-convolutional neural networks. Bioinformatics, 33(19):3036–3042, 2017.

[17] José Jiménez, Miha Skalic, Gerard Martinez-Rosell, and Gianni De Fab-

ritiis. K deep: Protein–ligand absolute binding affinity prediction via 3d-595

convolutional neural networks. Journal of Chemical Information and Mod-

eling, 58(2):287–296, 2018.

[18] William L Jorgensen. The Many Roles of Computation in Drug Discovery.

Science, 303:1813–1818, 2004.

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-600

mization. arXiv preprint arXiv:1412.6980, 2014.

[20] Douglas B Kitchen, Hélène Decornez, John R Furr, and Jürgen Bajorath.

Docking and scoring in virtual screening for drug discovery: methods and

applications. Nature Reviews Drug Discovery, 3(11):935–949, 2004.

[21] David R Koes, Matthew P Baumgartner, and Carlos J Camacho. Lessons605

learned in empirical scoring with smina from the csar 2011 benchmarking

exercise. Journal of Chemical Information and Modeling, 53(8):1893–1904,

2013.

[22] Daniel E Koshland. Correlation of structure and function in enzyme action.

Science, 142(3599):1533–1541, 1963.610

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-

sification with deep convolutional neural networks. In Advances in neural

information processing systems, pages 1097–1105, 2012.

[24] Antonio Lavecchia. Deep learning in drug discovery: opportunities, chal-

lenges and future prospects. Drug Discovery Today, 24(10):2017–2032,615

2019.

28

[25] Antonio Lavecchia and Carmen Di Giovanni. Virtual screening strate-

gies in drug discovery: a critical review. Current Medicinal Chemistry,

20(23):2839–2860, 2013.

[26] Yann LeCun, Yoshua Bengio, and Geoffrey E Hinton. Deep learning. Na-620

ture, 521(7553):436, 2015.

[27] Yan Li, Li Han, Zhihai Liu, and Renxiao Wang. Comparative assessment

of scoring functions on an updated benchmark: 2. evaluation methods and

general results. Journal of Chemical Information and Modeling, 54(6):1717–

1736, 2014.625

[28] Yuxi Li. Deep reinforcement learning: An overview. arXiv preprint

arXiv:1701.07274, 2017.

[29] Long-Ji Lin. Self-improving reactive agents based on reinforcement learn-

ing, planning and teaching. Machine Learning, 8(3-4):293–321, 1992.

[30] Xuan-Yu Meng, Hong-Xing Zhang, Mihaly Mezei, and Meng Cui. Molecu-630

lar docking: a powerful approach for structure-based drug discovery. Cur-

rent computer-aided drug design, 7(2), 2011.

[31] Kenneth M Merz Jr, Dagmar Ringe, and Charles H Reynolds. Drug design:

structure-and ligand-based approaches. Cambridge University Press, 2010.

[32] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel635

Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fid-

jeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioan-

nis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane

Legg, and Demis Hassabis. Human-level control through deep reinforce-

ment learning. Nature, 518(7540):529, 2015.640

[33] Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen.

Molecular de-novo design through deep reinforcement learning. Journal of

Cheminformatics, 9(1):48, 2017.

29

[34] Janaina C Pereira, Ernesto R Caffarena, and Cicero N dos Santos. Boosting

docking-based virtual screening with deep learning. Journal of Chemical645

Information and Modeling, 56(12):2495–2506, 2016.

[35] Javier Pérez-Sianes, Horacio Pérez-Sánchez, and Fernando Díaz. Virtual

screening meets deep learning. Current Computer-Aided Drug Design,

15(1):6–28, 2019.

[36] Mariya Popova, Olexandr Isayev, and Alexander Tropsha. Deep reinforce-650

ment learning for de novo drug design. Science Advances, 4(7):eaap7885,

2018.

[37] Matthew Ragoza, Joshua Hochuli, Elisa Idrobo, Jocelyn Sunseri, and

David R Koes. Protein–ligand scoring with convolutional neural networks.

Journal of Chemical Information and Modeling, 57(4):942–957, 2017.655

[38] Matthew Ragoza, Lillian Turner, and David R Koes. Ligand pose optimiza-

tion with atomic grid-based convolutional neural networks. arXiv preprint

arXiv:1710.07400, 2017.

[39] Ahmet Sureyya Rifaioglu, Heval Atas, Maria Jesus Martin, Rengul Cetin-

Atalay, Volkan Atalay, and Tunca Dogan. Recent applications of deep660

learning and machine intelligence on in silico drug discovery: methods,

tools and databases. Briefings in Bioinformatics, 10, 2018.

[40] Judith M Rollinger, Hermann Stuppner, and Thierry Langer. Virtual

screening for the discovery of bioactive natural products. In Natural Com-

pounds as Drugs Volume I, pages 211–249. Springer, 2008.665

[41] Benjamin Sanchez-Lengeling, Carlos Outeiral, Gabriel L Guimaraes, and

Alán Aspuru-Guzik. Optimizing distributions over molecular space. an

objective-reinforced generative adversarial network for inverse-design chem-

istry (organic). Harvard University, Chem Rxiv, 2017.

[42] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized670

experience replay. arXiv preprint arXiv:1511.05952, 2015.

30

[43] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neu-

ral Networks, 61:85–117, 2015.

[44] Marwin HS Segler, Mike Preuss, and Mark P Waller. Learning to plan

chemical syntheses. arXiv preprint arXiv:1708.04202, 2017.675

[45] Antonio Serrano, Baldomero Imbernón, Horacio Pérez-Sánchez, José M Ce-

cilia, Andrés Bueno-Crespo, and José L Abellán. Accelerating drugs discov-

ery with deep reinforcement learning: An early approach. In Proceedings

of the 47th International Conference on Parallel Processing Companion,

page 6. ACM, 2018.680

[46] Brian K Shoichet, Irwin D Kuntz, and Dale L Bodian. Molecular docking

using shape descriptors. Journal of Computational Chemistry, 13(3):380–

397, 1992.

[47] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,

George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda685

Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John

Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine

Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Master-

ing the game of go with deep neural networks and tree search. Nature,

529(7587):484, 2016.690

[48] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou,

Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai,

Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre,

George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering

the game of go without human knowledge. Nature, 550(7676):354, 2017.695

[49] Miha Skalic, Alejandro Varela-Rial, José Jiménez, Gerard Martínez-Rosell,

and Gianni De Fabritiis. Ligvoxel: inpainting binding pockets using 3d-

convolutional neural networks. Bioinformatics, 35(2):243–250, 2018.

31

[50] Marta M Stepniewska-Dziubinska, Piotr Zielenkiewicz, and Pawel

Siedlecki. Development and evaluation of a deep learning model for protein–700

ligand binding affinity prediction. Bioinformatics, 34(21):3666–3674, 2018.

[51] Jocelyn Sunseri, Jonathan E King, Paul G Francoeur, and David R

Koes. Convolutional neural network scoring and minimization in the d3r

2017 community challenge. Journal of Computer-Aided Molecular Design,

33(1):19–34, 2019.705

[52] Richard S Sutton. Generalization in reinforcement learning: Successful

examples using sparse coarse coding. In Advances in neural information

processing systems, pages 1038–1044, 1996.

[53] Richard S Sutton and Andrew G Barto. Reinforcement learning: An in-

troduction. MIT press, 2018.710

[54] Ana Tapia-Abellán, Diego Angosto-Bazarra, Helios Martínez-Banaclocha,

Carlos de Torre-Minguela, Jose P Cerón-Carrasco, Horacio Pérez-Sánchez,

Juan I Arostegui, and Pablo Pelegrin. Mcc950 closes the active confor-

mation of nlrp3 to an inactive state. Nature Chemical Biology, 15(6):560,

2019.715

[55] Oleg Trott and Arthur J Olson. Autodock vina: improving the speed and

accuracy of docking with a new scoring function, efficient optimization, and

multithreading. Journal of Computational Chemistry, 31(2):455–461, 2010.

[56] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement

learning with double q-learning. In Thirtieth AAAI Conference on Artificial720

Intelligence, 2016.

[57] Izhar Wallach, Michael Dzamba, and Abraham Heifets. Atomnet: a deep

convolutional neural network for bioactivity prediction in structure-based

drug discovery. arXiv preprint arXiv:1510.02855, 2015.

32

[58] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot,725

and Nando De Freitas. Dueling network architectures for deep reinforce-

ment learning. arXiv preprint arXiv:1511.06581, 2015.

[59] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine Learning,

8(3-4):279–292, 1992.

[60] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb730

Geniesse, Aneesh S Pappu, Karl Leswing, and Vijay Pande. Moleculenet:

a benchmark for molecular machine learning. Chemical Science, 9(2):513–

530, 2018.

[61] Yinqiu Xu, Hequan Yao, and Kejiang Lin. An overview of neural networks

for drug discovery and the inputs used. Expert Opinion on Drug Discovery,735

13(12):1091–1102, 2018.

[62] Chao Yu, Jiming Liu, and Shamim Nemati. Reinforcement learning in

healthcare: A survey. arXiv preprint arXiv:1908.08796, 2019.

33

