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Abstract

Verifying if two audio segments belong to the same speaker has been recently put forward as a flexible way
to carry out speaker identification, since it does not require to be re-trained when new speakers appear on
the auditory scene. Although many of the current techniques have achieved high performances, they require
a considerably high amount of memory, and a specific minimum length for their input audio segments.
These requirements limit the applicability of these techniques in scenarios such as service robots, internet of
things and virtual assistants, where computational resources are limited and the users tend to speak in short
segments. In this work we propose a BLSTM-based model that reaches a level of performance comparable
to the current state of the art when using short input audio segments, while requiring a considerably less
amount of memory. Further, as far as we know, a complete speaker identification system has not been
reported using this verification paradigm. Thus, we present a complete online speaker identifier, based on a
simple voting system, that shows that the proposed BLSTM-based model achieves a similar performance at
identifying speakers online compared to the current state of the art.
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1. Introduction

It is of great interest that computer systems interact with humans in a similar manner as a human
would. Thus, there is a growing need to correctly identify the speaker by their voice alone [1], and there
has been recent important progress in terms of performance in the wild [2]. This progress has been largely
based on the use of deep neural networks [3], which tend to occupy a considerable amount of computational
resources, since the number of parameters used to obtain such a high performance is usually relatively high
[2]. Additionally, several of these techniques tend to require a sizable segment of time with which to identify
the user to obtain these high performances [4]. These two requirements limit the application scenarios in
which these high-performing speaker identification techniques can be used, such as service robots [5], internet
of things [6], and virtual assistants [7]. In these scenarios, users speak in small spurts of time [8], requiring
that the identification is carried out only using short segments of audio (between 0.5 and 1 s). Additionally,
other processes are usually carried out in parallel (such as natural language processing, face recognition,
action planning, etc.) and it is of interest that all functionalities are run on-site (in case of network outages).
This limits the amount of memory and computational resources that can be used for speaker identification.

Although there has been an increasing amount of speaker identification techniques based on Convolutional
Neural Networks (CNN), Bi-directional Long Short-Term Memory networks (BLSTM) have rarely been used
for this purpose, while they have provided good results in other audio applications, such as voice conversion
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[9], sound source separation [10] and speech recognition [11]. An important aspect of BLSTM is their re-
use of weights in their inner processes for modeling temporal data, which results in a smaller amount of
parameters. Additionally, because of their recurrent nature, as well as their use of memory, they are well
suited for finding temporal patterns. Both of these features in conjunction make them a viable candidate to
explore for carrying out lightweight speaker verification.

In typical human-human interaction, new users are often introduced in the environment, such as when
a new customer enters a restaurant or when a new house guest uses a device. Classical identification
techniques rely either on a classification model, that has an output for every known speaker, or on a series of
verification models, each trained to identify a known speaker [12]. Recently, there has been a shift away from
this approach [13] towards what we will refer to “generic verification”, where a model is trained to compare
two text-independent audio segments to establish if they are from the same user or not. This generality
makes the solution space much more complex, but provides the benefit that, with an additional selection
scheme, the two-input verification model can be used for speaker identification. It is important to state that,
although generic verification can be used for this purpose, as far as we know there has not been reported a
complete speaker identification system based on this paradigm.

In this work, we propose a BLSTM-based model to carry out generic speaker verification that requires
a relatively small amount of parameters and short segments of audio. It is important to state that our
proposal does not aim to outperform the current state of the art of speaker verification. It aims to offer a
reasonable trade-off between performance and portability. Meaning, we believe that the differential of the
computational and segment-length requirements between the proposed model and the current state-of-the-
art heavily outweighs their performance differential. Additionally, we propose to use this model alongside a
simple voting system, to provide a complete online speaker identifier that does not requires to be re-trained
when new speakers are encountered.

For clarity, the originality of the proposed approach is the following:

• Embedding-based speaker verification is carried out with only short segments of audio, while using a
relatively small amount of computational requirements.

• A first approach to a complete generic-verification-based speaker identification is presented and eval-
uated.

To facilitate the adoption of our proposal, the source code and trained weights of the complete system
can be freely downloaded from:

https://github.com/julik43/blstm_speaker_id

The remainder of this paper is organized as follows: a summary of works related to ours is presented in
Section 2; in Section 3 the proposed BLSTM-based model is described; in Section 4, the proposed BLSTM-
model is evaluated and compared against the state of the art in terms of performance and memory usage; in
Section 5 a complete online speaker identifier is summarized, and is evaluated using the proposed BLSTM-
based model and the state of the art; and, we conclude our work in Section 6.

2. Related Work

Speaker identification for a considerable amount of time has long been carried out by either classification
or verification [12]. However, recently there has been an important shift towards techniques that transform
the input signal to a “speaker domain”, where the speaker is represented by an embedding vector calculated
from the input signal, and then compared against the embeddings of other known speakers. For example, in
[14, 15] the embeddings were built from traditional features (formants and Shannon entropy wavelet packets),
but a neural network was required to measure their similarity robustly. A more popular approach is based on
i-vectors [16], but more recently the use of deep learning techniques have been more prominent for embedding
calculation [17]. Convolutional Neural Networks (CNN) have been the more popular choice, since they have
been well tested for feature extraction in computer vision. They have been used to generate new types of
features which are then fed into different statistical methods [17, 18, 19, 20, 21]. Moreover, CNNs have also
been used with raw audio [22] to extract the relevant information to be used with an ad-hoc verifier generated
for every speaker. They have also been extensively employed in a Siamese-fashion for biometric-based human
identification for several years, e.g. in signature verification [23], fingerprint recognition [24], face verification
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(in conjunction with a similarity metric) [25], and gait recognition [26]. These applications are compatible
with Siamese networks since they can be used to verify if two input signals are from the same source (in
these cases, from the same user).

To this effect, speaker identification is now being approached by ways of what we refer in this work as
“generic verification”: where a model is trained that establishes if two audio segments belong to the same
speaker or not. In fact, the recent 2019 VoxCeleb Speaker Recognition Challenge (VoxSRC) [13] established
the goal of the contestants for this specific task.

A representative example of this type of approach is the work of Nagrani et. al. [27], where the authors
describe the VoxCeleb1 database and trained a Siamese CNN for generic verification of speakers. They
use the cosine distance between two signals as a measure of similarity. For the identification process they
report an accuracy of 80.5% and 92.1% for top-1 and top-5 respectively. Although the authors also report
an identification, they did not use the generic verification paradigm to carry this out; they used a traditional
classification approach. This work was extended to use a lightweight “thin-ResNet”, with a NetVLAD-based
time feature agreggator, that is able to estimate such embeddings from input segments with a variable length
[28].

Interestingly, the vast majority of these works are based on the use of CNNs for embedding calculation.
A rare exception is [29], where speaker verification is carried out by using a Siamese model of two Long
Short-Term Memory (LSTM) networks, and a contrastive loss function used for verification. However, this
approach involves the training of a verification model for each speaker, which is more akin to the classical
verification approach. The authors reported an Equal Error Rate (EER) of 22.9% and 22.1% in their tests.
As mentioned previously, since BLSTMs re-use weights in their inner processes for temporal modeling, they
tend to employ a small amount of parameters.

Furthermore, even though the vast majority of the recent embedding-based techniques report impressive
verification performances, they do not aim for “lightweightedness”. Meaning, the amount of parameters they
employ are usually quite high, limiting their applicability in scenarios such as service robotics, internet of
things and virtual assistants. As for the length of audio segments, several seconds of information are required
to obtain these high performances. A notable exception to this is the work of [4], where sub-1-second segments
were tested with an EER below 7% and memory usage was of 268 MB.

It is then of interest to have a speaker verification system that provides a trade-off between performance
and computational and segment-length requirements.

It is important to note that, even though a possible use of embedding-based verification is for speaker
identification, as far as we know, there has not been a report of a full speaker identification system based on
this approach. To this effect, the work of [30] approaches the task of classification of written characters by
using embedding-based verification in conjunction with a simple voting-based selection scheme, and obtained
good results. The same can be employed for speaker identification; and, as such, this approach is also explored
in this work.

3. Proposed BLSTM-Based Model

As described earlier, a recently popular approach for speaker identification is to train a system that
establishes if two audio segments belong to the same speaker or not. This is carried out by calculating the
embedding of the audio segments (to transform them into the “speaker domain”) and then measuring their
similarity. To calculate these embeddings, we propose a model based on a Bi-directional Long Short-Term
Memory network (BLSTM), because of the relatively few amount of parameters that are employed to find
temporal patterns. The aim is then to obtain a relatively good performance, using a relatively small amount
of parameters and small input lengths.

To train this model, we first establish a simple classification scenario, in which all but the last layer of
the trained model is used for embedding calculation, as shown in Figure 1.
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Pre-processing Architecture
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Figure 1: Proposed architecture for embedding calculation.

The last layer is a fully connected layer that carries out the classification from the embedding. This
layer is then removed, and the rest of the network is then used for embedding calculation of incoming input
segments. No fine-tuning is carried out afterwards.

The resulting network architecture is comprised of the three BLSTM layers with 256 units, and outputs
an embedding of size 512, twice the number of units.

The similarity between the L2-normalized embeddings is calculated by their inner product.
For pre-processing, we employed the Voice Activity Detection technique based on [31], which employs a

20 dB threshold to discriminate between silent and active windows. In terms of the input segment length,
the model was trained with segments with lengths from 0.25 to 2.0 seconds.

In terms of employed features, we propose to explore different types of spectrograms, such that the input
of the model is a matrix in which one dimension is time. In the other dimension, we extracted the following
features to explore:

• Spectral magnitude in a linear scale. Referred here as SpecMag.

• Spectral magnitude in a decibel scale. The result is a type of frequency selector, since it tends to amplify
frequency bins with high energy, while reducing ones with low energy. Referred here as SpecdB.

• Spectral density, estimated by the square of the linearly-scaled magnitude. The result provides an
estimate of the energy distribution throughout the spectral range. Referred here as Spec.

• Spectral magnitude in a linear scale after filtering the input audio with a simple pre-emphasis filter,
which avoids distortion in high frequencies while reducing variability in the extracted spectra [32].
Referred here as EmphSpec.

• The previous feature, but in a decibel scale. Referred here as EmphSpecdB.

• The Mel-Frequency Cepstral Coefficient (MFCC) spectrum, built with 40 logarithmically spaced tri-
angular filters. Referred here as MFCC.

The time dimension of all the employed spectrograms were calculated by using either a Hamming window
(for Spec, EmphSpec, EmphSpecdB and MFCC) or a Hann window (for SpecMag and SpecdB) of 32 ms,
with an overlap of 16 ms. Given that the recordings used for training and validation (described in the
following section) are sampled at 16 kHz, the length of the window is of 512 samples. An interesting note
here is that, regardless of the input segment length, the embedding dimension will ultimately be of 512,
which could be argued provides consistency in the embedding-domain search space during training.

3.1. Training, Validation, and Testing Methodology

The VoxCeleb2 database [33] was used for training the classification network, from which the speaker
embedding is calculated. This is the same training corpus that was used to train the model with which
we compare our proposed system to (detailed in Section 4.1). VoxCeleb2 has 1092009 recordings of 5994
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speakers in its “dev” subset. To simplify the training process, we chose to use only 1000000 randomly-
selected recordings of only 5000 randomly-chosen speakers of the same subset (as it provided an integer
number of records used per speaker1). It is important to mention, however, that the recordings per speaker
were randomly selected at the start of each training epoch, thus, the whole utterances for each of the selected
speakers of the VoxCeleb2 database were used to train our model.

Each model was trained for 30 epochs using the Adam optimizer [34], a cross-entropy loss function, a
learning rate of 0.0001 and a batch size of 100. After each training epoch, a validation stage was carried out
with 8000 randomly-selected entries to determine its classification performance during training. The amount
of epochs was determined by previous tests that showed that the resulting embeddings provided the same
or worse verification performance.

As mentioned before, a VAD system (which is based on [31]) is used to extract time segments of vocal
activity from the corpus audio files.

For testing the trained model for generic verification, the trained network was evaluated with the Vox-
Celeb1 verification test list, released by the VGG group2, composed of 37720 balanced data pairs of the
VoxCeleb1 dataset. In this stage, for each audio in the test list, the embeddings of the pair of utterances
were generated using the trained model, then the inner product was calculated between the pairs to deter-
mine if both were from the same speaker or not. This was carried out by using a threshold in the mid-point
of [−1, 1] range of possible values of the inner product.

4. Results

Table 1 presents the memory usage (in MB) and the equal error rate (EER) of the verification of each
of the models trained with every possible combination of segment lengths (0.25, 0.5, 1.5 and 2 s) and of
explored input features (SpecdB, Spec, SpecMag, EmphSpec, EmphSpecdB and MFCC).

Input Feat. Length (s) EER (%) Memory Usage (MB)
SpecdB 2.00 13.61 16.80

Spec 2.00 18.84 16.80
SpecMag 2.00 14.22 16.80

EmphSpec 2.00 14.11 16.80
EmphSpecdB 2.00 13.53 16.80

MFCC 2.00 13.63 15.03
SpecdB 1.50 14.81 16.80

Spec 1.50 20.79 16.80
SpecMag 1.50 16.09 16.80

EmphSpec 1.50 16.36 16.80
EmphSpecdB 1.50 15.43 16.80

MFCC 1.50 15.62 15.03
SpecdB 1.00 17.54 16.80

Spec 1.00 22.90 16.80
SpecMag 1.00 19.09 16.80

EmphSpec 1.00 19.03 16.80
EmphSpecdB 1.00 18.61 16.80

MFCC 1.00 18.07 15.03
SpecdB 0.50 24.84 16.80

Spec 0.50 29.41 16.80
SpecMag 0.50 25.76 16.80

EmphSpec 0.50 26.20 16.80
EmphSpecdB 0.50 25.07 16.80

MFCC 0.50 24.88 15.03
SpecdB 0.25 29.92 16.80

Spec 0.25 33.31 16.80
SpecMag 0.25 30.96 16.80

EmphSpec 0.25 31.64 16.80
EmphSpecdB 0.25 30.00 16.80

MFCC 0.25 29.79 15.03

Table 1: Results of the evaluation of all trained models.

1This is preferable when using tfrecords in TensorFlow in a multi-core system.
2Obtained from its GitHub repository in (https://github.com/WeidiXie/VGG-Speaker-Recognition)
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As it can be seen, for lengths 1.5 s and below, the SpecdB feature (a spectrogram with spectral magnitude
in a decibel scale) and the MFCC feature consistently outperformed the other features in each possible
segment length. Between these two features, the SpecdB feature outperformed the MFCC feature in more
length scenarios. Because of these reasons, all of the following comparisons were carried out using the SpecdB
feature as part of the proposed BLSTM-based model.

To fully evaluate our system we compare the BLSTM-based model to relevant state of the art models
with varying degrees of input segment lengths, as well as memory usage.

4.1. EER vs Input Segment Length

In terms of what other embedding-based verification techniques with which to compare our system, i-
vectors [16], x-vectors [35] and ResNet50-based [36], as far as we know, have not been evaluated with small
input segment lengths and are not publicly available. Thus, a direct comparison cannot be made. Thus,
we chose the aforementioned work of [28], where the authors employed a lightweight ‘thin-ResNet” with a
NetVLAD-based aggregator to calculate embeddings, here referred to as thin-ResNet34. It was chosen given
that the model was publicly available, and is directly compatible with the comparison, since it supports
input segments with variable time lengths without requiring to be re-trained. Additionally, it has shown
good results with input lengths of 2 seconds and above. Thus, the high-performing thin-ResNet34 model
is both publicly available (with trained weights) and is able to be evaluated with short segments, thus, it
provides a good benchmark of the performance of the state of the art in the case scenario relevant to our
application setting. Its architecture is shown in Figure 2 and no re-training was carried out for the results
presented here.
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Figure 2: The network architecture presented in [28], referred here as thin-ResNet34.

The VoxCeleb1 corpus [27] was used for evaluation, and the input pairs were selected in the same manner
as described in [28]. To ensure that our evaluation process does not deviate from previously reported results,
we re-created the evaluation procedure used in [28] and re-evaluated thin-ResNet34, and confirmed it reported
the same results. Then, both thin-ResNet34 and the BLSTM-based model were evaluated using segments
with lengths from 0.25 to 4 s, the results of which are shown in Figure 3.

0.25 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

25

30

35

Input Segment Length (s.)

E
E

R
 (

%
)

thin-ResNet34
BLSTM

Figure 3: EER vs input time length using VoxCeleb1, with thin-ResNet34 and the BLSTM-based model.
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It is clear that thin-ResNet34 provides lower EER than our system when using longer input segment
lengths (≥ 1 s). However, both systems perform comparably with shorter segments.

It is also of interest to evaluate the consistency of the evaluated systems across different data sets. To
this effect, the VoxCeleb2 corpus [33] was used to evaluate them both, using the same number of pairs of
input segments (37720), randomly selected from the “test” subset. These results are shown in Figure 4,
along with the results from Figure 3 for comparison (as dashed lines).

0.25 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

25

30

35

Input Segment Length (s.)

E
E

R
 (

%
)

(voxceleb1) thin-ResNet34
(voxceleb1) BLSTM
(voxceleb2) thin-ResNet34
(voxceleb2) BLSTM

Figure 4: EER vs input time length using VoxCeleb2, with thin-ResNet34 and the BLSTM-based model, with the evaluation
using VoxCeleb1 as comparison (dashed lines).

As it can be seen, when tested with VoxCeleb2, our system also performs comparably to thin-ResNet34
with segments that are 1 s long and even outperforms it with segments ≤ 0.5 s. Additionally, it is important
to mention that the EER performance differential between both models in input segments with a length
above 1 s does not surpass beyond 6 percentile points in any of the scenarios, which as it will be seen later,
can be considered a good trade-off considering the memory usage reduction the proposed system provides.

4.2. EER vs Memory Usage

It is also of interest to inspect the amount of memory used by the BLSTM-based model, and see if the loss
in performance is a reasonable trade-off for lighter computational requirements and shorter input segment
lengths. This comparison is shown in Figure 5, where for simplicity, the EER reported is the one obtained
when using an input length of 0.5 s, when being evaluated with the VoxCeleb1 corpus. This input length
was chosen because it has been found that in cases of interaction that have a high grade of back-and-forth
between the user and the automatic conversational system, shorter utterances (between 0.5 and 1 s) are
spoken more frequently by the human user [8].

As it can be seen, even though the EER performance differential is less than 3 percentile points using
VoxCeleb1, the BLSTM-based model only uses nearly half the memory employed by thin-ResNet34.

It is also of interests to carry out the same comparison with longer input segments. In Figure 6 the EER
reported is the one obtained when using an input length of 2 s, when being evaluated with the VoxCeleb1
corpus. This input length was chosen since it had the highest inter-model EER difference.

As it can be seen, the EER performance differential only increased another 3 percentile points from the
results shown in Figure 5. With a difference of 6 percentile points and a reduction of nearly half the memory
employed, a case could be made that the trade-off is still worthwhile. It is important to re-iterate that
the focus of the proposed system is with shorter input segments, and thus these evaluations with longer
input segments are presented here as a type of characterization of the proposed system, and provided for
the benefit of the reader to decide if such a trade-off is applicable in their case scenario.

For completeness sake, it is important to mention the work of UtterIdNet [4], which has achieved a very
low EER of 6.46% with input segments of 0.5 s length. However, as was reported in [4], UtterIdNet requires
268 MB of memory to run, an order of magnitude greater to the one required by the proposed BLSTM-model.
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Figure 5: EER (input length of 0.5 s) vs memory usage with thin-ResNet34 and the BLSTM-based model using VoxCeleb1.
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Figure 6: EER (input length of 2 s) vs memory usage with thin-ResNet34 and the BLSTM-based model using VoxCeleb1.

To this effect, we believe that in applications such as service robots [5], internet of things [6], and virtual
assistants [7], the memory differential heavily outweighs the EER differential with shorter segments.

5. Online Classification via a Voting System

To further compare the BLSTM-based model to current state of the art, we propose a complete online
speaker identifier, based on a simple voting system. It is important to note that this proposal mainly serves
as the basis of comparison between the two systems, and that more sophisticated voting systems may be
applicable. However, we believe that it is important to report the results of an online speaker identifier (albeit
a naive one) based on generic verification, so as to provide an initial baseline to the speaker identification
community.

The voting system is a selection scheme based on carrying out generic verification of the current audio
input with each of the audio entries of an external database, each being an embedding vector belonging to
a known speaker. A diagram of the whole identification process is shown in Figure 7.
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Figure 7: Diagram summarizing the complete online speaker identifier.

To select the speaker to whom the audio input belongs to, the following steps are carried out:

1. Calculate the embedding of the audio input.

2. For each known speaker c, calculate the inner product to each of the audio entries that belong to c.
Their average is the verification result rc of speaker c.

3. Store in R all the calculated rc.

4. Apply Equation 1 to select the system’s output o:

o =

{
unknown, if ∀ rc < 0

arg max
c

(R), otherwise, (1)

Since the value of a verification result ranges between [−1, 1], the threshold of 0 in Equation 1 is the
mid-point of that range and, thus, provides a reasonable threshold to discern if the audio input belongs to
a known user or not. If no member of R surpasses this threshold, the user that uttered the audio input is
deemed unknown. If this is the case, a simple speech/keyboard interaction can be carried out to ask for the
speaker’s name, and subsequently add the embedding calculated from the audio input as an entry to the
external database for their new class. If the speaker is deemed known, the embedding can be added to the
external database as an additional entry for their class.

It is then of interest to evaluate this simple online speaker identifier when using the BLSTM-based model
as well as thin-ResNet34 as its generic verifier. To this effect, an accuracy heatmap was created for each,
where each cell in the heatmap represents a test configuration between a specific number of known speakers
and a specific number of audio entries per speaker in the external database. Figure 8 shows both accuracy
heatmaps.

As it can be seen, there is very little difference between both heatmaps, and the difference that does show
relates to the BLSTM-based model slightly outperforming thin-ResNet34.

It is important to mention that this method is proposed as a first approach of a generic-verification-based
speaker identification system. We propose as future work to explore other decision mechanisms such as: 1)
stopping the search through R when a certain verification threshold is surpassed; 2) pre-ordering R based
on Bayesian decision theory; or 3) employing meta learning methods commonly employed in one-shot and
few-shot learning [37, 38, 39].
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(b) BLSTM-based model.

Figure 8: Accuracy heatmaps of the online speaker identifier using thin-ResNet34 and the BLSTM-based model for verification.

6. Conclusions

There has recently been a shift towards embedding-based generic speaker verification, with which online
speaker identification can be carried out without requiring re-training when new speakers appear in the
auditory scene. Impressive performances have been achieved by using CNN-based models, but they usually
work well with large input segment lengths (≥ 2 s.) and have considerably high computational requirements.

In this work, we proposed the use of a BLSTM-based model to calculate the embedding of the inputs,
which provided performances comparable to the state of the art with shorter input segments, while requiring
considerably less memory to achieve them.

Further, a complete online speaker identifier is presented, based on a simple voting scheme that uses
generic verification to carry out speaker identification without requiring to be re-trained with new speakers.
The identifier was evaluated with the BLSTM-based model and the state of the art, and different testing
configurations were carried with both, in which different amounts of known speakers were tested with different
amounts of entries per known speaker. The accuracy was very similar throughout all of the different testing
configurations when using a short input segment (0.5 s), while only using half of the memory that the state
of the art employs.

For future work, other decision mechanisms will be explored to increase the accuracy of the online speaker
identification system and stricter rules will be tested for database management to increase robustness while
maintaining low response times.
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