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Abstract: 

The proper monitoring of quality-related but hard-to-measure variables is currently one 

of the bottlenecks limiting the safe and efficient operations of industrial processes. This 

paper proposes a novel ensemble learning algorithm by coordinating global and local 

Gaussian process regression (GPR) models, and this algorithm is able to capture global 

and local process behaviours for accurate prediction and timely process monitoring. To 

further address the deterioration in predictions when using the off-line training and 

online testing strategy, this paper proposes an adaptive ranking strategy to perform 

ensemble learning for the sub-GPR models. In this adaptive strategy, we use the 

moving-window technique to rank and select several of the best sub-model predictions 

and then average them together to make the final predictions. Last but not least, the least 

absolute shrinkage and selection operator (Lasso) works together with factor analysis (FA) 

in a two-step variable selection method to remove under-correlated model input variables 

in the first stage and to compress over-correlated model input variables in the second 

stage. The proposed prediction model is validated in two real wastewater treatment plants 

(WWTPs) with stationary and nonstationary behaviours. The results show that the 

proposed methodology achieves better performance than other standard methods in 

the context of their predictions of quality-related variables. 
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1. Introduction 17 

In process industries, quality-related but hard-to-measure variables are always derived 18 

by either under-sampled off-line analyses or over-expensive online measurement devices, 19 

both of which usually lead to improper monitoring, maintenance and optimization [1-2]. Since 20 

soft-sensors can replace hardware instruments or assist in off-line analyses, they have 21 

received significant attention from both the academic and industrial communities over the 22 

past few decades. Soft-sensors always work well because they are able to properly describe the 23 

inherent relationships between the input and response variables by building a predictive 24 

model, which can be used online for prediction [3-4]. 25 

Existing approaches, such as artificial neural networks (ANNs), fuzzy algorithms, and 26 

Bayesian networks [5-7], are widely used to construct soft-sensors [8-9], particularly for 27 

approaching nonlinear processes. The Gaussian process model is a Bayesian nonparametric 28 

framework for inference that is gaining popularity in control, maintenance and reinforcement 29 

learning applications [10-12]. Gaussian process models are inherently global models that fit a 30 

distribution over data and, in turn, learn data for regressions or classifications. In global 31 

learning, GPR models are usually approximated by matrix approximation and likelihood 32 

approximation methodologies. Fully independent conditional (FIC) [13] and partially 33 

independent conditional (PIC) [14] approximations are two of most commonly used 34 

likelihood approximation algorithms for GPR models with different assumptions. 35 

Unfortunately, FIC approximations always fail to fit data with local abrupt features or 36 

nonstationary features. To describe localized features properly, PIC approximations slightly 37 

relax the conditional independence assumption among model input variables. The main 38 

disadvantage of global learning is that appropriate parameters must be chosen well to 39 

describe the observed data globally. Conversely, local learning aims to refine useful local 40 

information from the observed data, believing that closer pairs of observations exhibit 41 

stronger correlations [14-15]. Therefore, only a small number of neighbouring points are used 42 

in local learning. During the local learning process, the whole domain is decomposed into 43 
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several subdomains, and the selected subdomain is used for model training first. Second, the 44 

trained model makes predictions by justifying which subdomain the test point belongs to. For 45 

example, Chiwoo Park et al. proposed a DDM model that aimed at dealing with nonstationary 46 

changes adaptively with cheap computations [16]. Another method of local learning is to 47 

construct multiple local prediction models and then derive a group of local predicted values 48 

based on the local models if the new input values are given. Then, the final prediction can be 49 

achieved by weighting the average of all the local predicted values with techniques such as the 50 

Bayesian committee machine [17], local probabilistic regression [18], and a mixture of 51 

Gaussian process experts [19-20]. Although local learning outperforms global learning in 52 

some fields, building models that are purely dependent upon local information results in the 53 

loss of the global view of the data, and thus the critical data structure cannot be captured; the 54 

presence of this critical structure may yield better performances than those of models without 55 

this structure. Conversely, global learning can summarize global knowledge about the data 56 

structure. Depending on the global knowledge, new data can be reproduced accurately and fed 57 

into a model for a thorough analysis. It is envisaged that both local learning and global 58 

learning can be complementary to each other when performing model construction. Ensemble 59 

learning provides an alternative way to address this issue. The main purpose of ensemble 60 

learning is to combine a set of learned submodels to improve the prediction performance for 61 

new instances [21], even though individual inducers are comparable with each other. 62 

Additionally, by performing ensemble learning, a complex, difficult learning problem can be 63 

decomposed into easier subproblems that can be solved efficiently. 64 

When building a proper soft-sensor either by ensemble learning or via other approaches, 65 

the priority is to select proper variables or features. It has been shown that more features will 66 

result in a more complex machine learning model and worse model fitting. Therefore, variable 67 

selection is an essential step to improve the prediction performance of a soft sensor. 68 

Additionally, performing variable selection can provide insight into the essence of a system 69 

[22]. Variable selection can be achieved by experts’ knowledge or data-driven techniques. 70 

Even though expert suggestions are appealing, they are always limited to specified areas and 71 
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are difficult to transfer to other fields. Data-driven techniques are able to mitigate such an 72 

inconsistency. Many diverse techniques are used for variable selection, and these techniques 73 

fall into two categories: unsupervised and supervised methods [22]. Unsupervised methods 74 

aim to create new features by mapping the original features. The new features do not have any 75 

physical meaning and are difficult to interpret. Although the number of original features is 76 

indeed reduced, the number of hardware sensors required is not reduced. The most widely 77 

used techniques are principal component analysis (PCA) and factor analysis (FA) [23]. 78 

Supervised methods, on the other hand, are able to select the relatively best subset by 79 

evaluating the input and output data. VIP-PLS (variable importance in projection-partial least 80 

squares) is one of the earliest variable selection methods that measures the contributions of 81 

input variables in describing the corresponding output variables. The contribution of each 82 

variable is quantified by a VIP value, and a value that is less than a control limit indicates an 83 

unimportant variable [4, 24]. Additionally, other variable selection methods, i.e., backward 84 

variable elimination (BVE) and the genetic algorithm (GA), have been used for selecting input 85 

variables for soft-sensor modelling [25]. The GA is a preferred method for selecting variables 86 

in soft sensor modelling [26]. Through this selection process, useful and compact information 87 

can be derived to improve prediction performance. However, correlated relationships under a 88 

multivariate framework cancel the effects among input variables, thereby leading to poor 89 

selections by the GA. Additionally, regularization is another method for the selection of 90 

variables. A linear SVR with l1-norm minimization was used by reference [27] to select input 91 

variables. Once the minimization is achieved, unimportant weights are driven to zero. The 92 

Lasso method is another a regularization method that has been used for variable selection 93 

problems with small data sets. Typically, variable selection can regularize on a weight 94 

parameter by using the Lasso algorithm. However, this method is still not able to guarantee 95 

the refinement of proper features but rather partly useful variables to represent the true 96 

variations in processes [28]. In this light, this paper proposes a two-stage variable selection 97 

strategy, termed Lasso-FA. In this strategy, FA is further used to extract simple features after 98 

implementing the Lasso algorithm. Thus, the strategy is able to solve the problem of high 99 
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computational complexity and avoid model overfitting when performing sequential 100 

soft-sensor modelling. Having a very large number of models in an ensemble increases the 101 

need for performing such an efficient variable selection strategy. It is important to note that 102 

few attempts have been devoted to discussing the variable selection issues with ensemble 103 

learning-based soft-sensor modelling, which has strict computational requirements. 104 

Once proper variables are selected by the Lasso-FA algorithm, the next step is to build an 105 

ensemble learning-based soft-sensor model. Bagging (bootstrap aggregating) is a well-known, 106 

simple yet effective approach for generating an ensemble of independent submodels in which 107 

each submodel is trained using a set of random samples of instances taken from the original 108 

data set [29]. Majority voting is performed on the predictions of submodels to determine the 109 

final prediction of an unseen instance. However, due to the use of random sampling with 110 

replacement, the training data set may always include the same samples while rendering other 111 

samples useless. To alleviate this issue, random forests [30], gradient boosting machines [31] 112 

and extremely randomized trees [32] are proposed accordingly. Considering the high 113 

nonlinearity of process patterns, few attempts have been devoted to combining ensemble 114 

learning and Deep ANNs for soft sensors in recent years [33]. Additionally, Minku and Yao 115 

conducted a comparable study to evaluate how diversity levels affect the prediction 116 

performance of nonlinear ensemble models, illustrating that sufficient diversity results in a 117 

reduction of the prediction error. Another work by Minku proved this by assembling two 118 

decision forests with different levels of diversity [34]. Unfortunately, data distributions and 119 

process patterns tend to change over time, thus resulting in the degradation of the predictive 120 

performance of standard ensemble learning models. Kolter J. and Maloof M. proposed a 121 

dynamic weighted majority strategy to create or remove submodels depending on their 122 

real-time predictive performances [35]. However, this adaptive strategy usually achieves 123 

highly accurate performances at the cost of intensive computations. This is mainly because 124 

these strategies must retrain the prediction model during each update step. Therefore, this 125 

paper proposes an adaptive ranking strategy to combine all the submodels. Beyond the 126 

variable selection method (called Lasso-FA), the other main contributions of this work are 127 
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summarized as follows: (i) To increase the diversity of the submodels, three kinds of GPR 128 

models (global GPR models: PIC models; local GPR models: LPR [sparse probability Gaussian 129 

process regression] models; and DDM models) [36] are implemented as submodels. Through 130 

coordinating two seemingly different yet complementary characteristics (global and local 131 

learning) in an integrative framework, ensemble learning provides an alternative method for 132 

refining useful local information without losing the global view of the data [37]. To further 133 

increase the diversity of ensemble learning, this paper uses bootstrapping to stimulate the 134 

training data sets and the hyperparameters of the global and local GPR models. Several 135 

training sets are reproduced by performing the bootstrap methodology and then used for GPR 136 

model training. Beyond the training data, the hyperparameters are also bootstrapped over the 137 

assigned range to diversify the GPR models. (ii) Different from the standard adaptive 138 

strategies, our strategy uses the moving-window technique to rank the submodel predictions, 139 

and then average them together to make the final predictions. The motive behind this strategy 140 

is based on the observation that few of the submodels with the best performances in the 141 

previous few steps will have similar prediction accuracy rates for the incoming new data 142 

points. Additionally, due to the use of a GPR model as the submodel, the proposed 143 

methodology is able to describe the uncertainties properly. 144 

The remainder of this paper is organized as follows: Section 2 presents basic GPR models 145 

for ensemble learning. The proposed soft-sensor framework is presented in Section 3. Section 146 

4 provides a numerical example to illustrate the proposed model. Section 5 discusses the pros 147 

and cons of the proposed soft sensor. Finally, concluding remarks and future research ideas 148 

are given in Section 6. 149 

2. An overview of Gaussian process regression 150 

GPR is a method for Bayesian nonlinear nonparametric regression. Given a training set 151 

𝐷 = {(𝑥i, 𝑦i)|i=1
𝑁 } (N is the number of samples), the noisy outputs 𝑦i can be described as a 152 

GPR model with the predictive distribution of f. In the GPR model, the noises are assumed to 153 

be additive, independent, and Gaussian for the sake of easing the computation. Thus, the 154 

relationship between 𝑥𝑖 and 𝑦𝑖 can be described by the following equations [38]: 155 
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𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜀i                                (1) 156 

𝜀i~ℕ(0,σ
2)                                 (2) 157 

𝑓(∙)~𝐺𝑃𝑅(0, 𝑘(∙,∙))                               (3) 158 

𝑥 is the input data matrix (process variables), where 𝑥 ∈ ℝ𝑁×𝑑1  and 𝑥𝑖 ∈ ℝ1×𝑑1. 𝑦 is the 159 

response data matrix (quality variables), where 𝑦 ∈ ℝ𝑁×1 and 𝑦𝑖 ∈ ℝ1×1. 𝑑1is the number of 160 

variables in the input data. 𝐺𝑃𝑅(0, 𝑘(∙,∙)) denotes a Gaussian process with a mean and 161 

covariance matrix of 0 and 𝑘(∙,∙), respectively. Similarly, Eq. (2) represents the fact that the 162 

noises 𝜀 adhere to a Gaussian distribution with mean 0 and covariance σ2. Additionally, 163 

𝑘(𝑖, 𝑗) can be simplified as 𝑘𝑖𝑗. By inference, it is easy to obtain that the outputs follow a 164 

multivariate joint Gaussian distribution: 165 

𝑦~ℕ(0, 𝐾𝑦)                                (4) 166 

where 𝐾𝑦 = 𝐾 + 𝜎
2I, 𝐾𝑦 is the covariance matrix of dimension 𝑁 × 𝑁. The corresponding 167 

 element is 168 

(𝐾𝑦)𝑖𝑗 = 𝑐𝑜𝑣(𝑦𝑖 , 𝑦𝑗) = 𝑘(𝑥𝑖 , 𝑥𝑗) + 𝜎
2𝛿𝑖𝑗                 (5) 169 

where 𝛿𝑖𝑗 is the Kronecker function. The major difference between K and 𝐾𝑦 is that K is 170 

noise-free, while 𝐾𝑦 is the noise-induced covariance matrix. In the GPR model, the most 171 

commonly used covariance matrix is the squared-Exp (SE) kernel, which is shown as follows: 172 

𝑘𝑖𝑗 = 𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑐𝑜𝑣 (𝑓(𝑥𝑖), 𝑓(𝑥𝑗)) = σ𝑓
2exp {−

(𝑥𝑖−𝑥𝑗)
2

2𝑙2
}           (6) 173 

where σ𝑓
2  and l are hyperparameters in need of identification. It should be noted that 174 

commonly used kernels such as the squared-exp (SE), neural network (NN) or Matérn kernels 175 

are local kernels [38] that depend only on the scaled Euclidean distance between two points. 176 

Because (𝑦1, 𝑦2, … , 𝑦𝑁, 𝑓(𝑥
∗))𝑇 is a Gaussian distribution, the predicted mean and variance 177 

values for the new incoming sample 𝑥∗ (𝑥∗ ∈ ℝ1×𝑑1) can be derived as follows： 178 

μ
∗
′ = 𝑘∗𝑥𝐾𝑦

−1𝑦                               (7) 179 

σ∗
′ 2 = 𝑘∗∗ − 𝑘∗x𝐾y

−1𝑘∗𝑥                           (8) 180 

𝑘∗𝑥 = (𝑘(𝑥
∗, 𝑥1), … , 𝑘(𝑥

∗, 𝑥𝑁))
𝑇  is used to describe the correlated relationship between 𝑥∗ and 181 

𝑥𝑖. 𝑘∗∗ = k(x
∗, x∗). More details can be found in Supplementary Information A. 182 

2.1. Global GPR model: Sparse pseudo-input Gaussian process regression (PIC-GPR) 183 

To preserve the sparsity and other desirable properties of the standard partially 184 
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independent conditional GPR model (PIC-GPR), Snelson and Ghahramani proposed a sparse 185 

pseudo-input Gaussian process regression (PIC-GPR) [13]. This paper assumes that the 186 

likelihood follows Gaussian process distribution. The corresponding likelihood can be 187 

parameterized using a pseudo-data set 𝐷̃ = [𝑥̃, 𝑓]𝑚=1
𝑀 , where 𝑥̃ and 𝑓  represent 188 

pseudo-inputs with 𝑥̃ ∈ ℝ𝑀×𝑑1 and pseudo-response variables with 𝑓 ∈ ℝ𝑀×1, respectively, 189 

and M<N. Given a new sample 𝑥∗ the predictive distribution with respect to 𝑥∗ is then 190 

obtained by integrating the likelihood (B.1) with the equation in section B.2 of Supplementary 191 

Information B: 192 

        p(y∗|x∗, D, x̃) = ℕ(y∗|μ∗,σ∗
2)                       (9) 193 

where 194 

μ
∗
= k∗

TQM
−1KMN(Λ+ σ2I)−1y                       (10) 195 

σ∗
2 = k∗∗ − k∗

T(KM
−1 − QM

−1)k∗ + σ2                    (11) 196 

where [KM]mm′ = k(x̃m, x̃m′)  and [kxx̃]m = k(x̃m, x) . In the above equations, QM = KM +197 

KMN(Λ+ σ2I)−1KNM  for 𝑚 = 1,⋯ ,𝑀 and m′ = 1,⋯ ,𝑀 . Details about the definition and 198 

identification of kernel parameters can be seen in Supplementary Information B. PIC-GPR 199 

can be considered as a special case of GPR with a pseudo-input-parameterized covariance. 200 

The most attractive attribute of PIC-GPR is that it can converge to an extremely sparse 201 

solution for large data sets. It is important to note that pseudo-input points are simulated 202 

from true data points but are not limited to these true points, thus being capable of 203 

approaching some nonstationary effects. 204 

2.2. Local GPR models: LPR-GPR and DDM-GPR 205 

1) Sparse probability Gaussian process regression (LPR-GPR) 206 

LPR-GPR is inspired by locally weighted regression with nearest neighbours and aims to 207 

learn individual models from few local samples and then adapt to local regions with different 208 

behaviours [3]. In the LPR-GPR model, if compact neighbourhoods are located, a model is 209 

inferred and trained locally. Then, multimodal behaviours can be learned online once a new 210 

testing sample is received. Multiple GPR experts are consequently combined to address these 211 

multimodal behaviours. Because the number of neighbours is controlled to be at most 50, the 212 

inference process is computationally cheap. If the data are multimodal, each expert focuses on 213 
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the neighbouring mode to which the test point belongs. The local models are built by the 214 

standard GPR model (Eq. (7)-Eq. (8)). The predictive distribution of the ensemble learning is 215 

calculated as 216 

p(𝑦∗|𝑥∗, 𝐷′,β) ≈ ∑ πiℕ(𝜇𝑗
∗, 𝜎∗𝑗

2 )
L1
𝑗=1                      (12) 217 

where 𝐿1 and S represent the number of experts and the maximum sample size of each local 218 

GPR, respectively. When receiving a new sample 𝑥∗, the neighbours 𝐷′ can be selected. To 219 

ensure that local prediction can be integrated properly, the probability of a given expert πi is 220 

defined to act as the weighting parameter. 𝜋i can be calculated as the inverse predicted 221 

variance of the i-th expert. 𝜇𝑖
∗ and 𝜎∗𝑖

2  are the predictive mean and variance of the i-th expert, 222 

respectively. The LPR-GPR algorithm is summarized in Supplementary Information C, and 223 

the schematic of LPR-GPR can be seen in Supplementary Information H (Fig. S1). 224 

2) Domain Decomposition Method-Gaussian Process Regression (DDM-GPR) 225 

The basic idea of the DDM is to formulate the GPR as optimization problems that provide 226 

local predictions. This method decomposes the domain Ω  into L2  disjoint subdomains 227 

{Ω}𝑗=1,⋯,𝐿2. Let {𝑥𝑗 , y𝑗} be the subset that belongs to Ω𝑗. Then, a local GPR function for each 228 

subdomain is inferred. Finally, if the new sample 𝑥∗ is in Ω𝑗, the prediction is performed by 229 

the GPR model belonging to Ω𝑗. The procedure of the detailed algorithm can be seen in the 230 

paper of reference [16], and a schematic of DDM-GPR can be seen in Supplementary 231 

Information H (Fig. S2). In summary, the prediction problem is formulated as a collection of 232 

local learning and inference. 233 

3. Adaptive ranking based ensemble learning of Gaussian process models 234 

(AR-EGP) 235 

To compress useful information into a few representative features, we propose a two-stage 236 

feature selection strategy, termed Lasso-FA (LF). The derived features are then used for 237 

sequential soft-sensor modelling. The proposed integrated framework for soft-sensor 238 

modelling is illustrated in Fig. 1. 239 
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 240 

Fig. 1 Graphical illustration of AR-EGP 241 

 242 

3.1. LASSO-FA for feature selection 243 

In ensemble learning, computational intensity, model complexity and model overfitting must 244 

be considered carefully. To address these issues, the Lasso can regularize the weight 245 

parameter by the L1 norm. By shrinking the weight estimates, the L1 regularization process is 246 

able to regularize light weights to zero and large weights to nonzero values. Thereafter, 247 

features with zero weights are cut off while nonzero weights are retained to refine useful 248 

features. In the Lasso algorithm, sparsity can be strengthened by utilizing a large 249 

regularization constant, thus leading to irrelevant features being regularized by light weights. 250 

These relevant or irrelevant features, in turn, enhance the interpretability of the Lasso. 251 

Therefore, the Lasso algorithm is able to extract simple and compact information from 252 

observed variables. Even though compact information can be derived from the Lasso, it is still 253 

necessary to refine the representative features obtained from the raw data. Factor analysis is a 254 

commonly used interdependency method for refining compact latent variables from large 255 

numbers of observed variables. It is particularly suitable for addressing the cases in which 256 
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systematic interdependence exists among data variables and commonality can be represented 257 

by a few latent factors. Therefore, this paper proposes a novel feature extraction strategy by 258 

combining the Lasso algorithm with FA. The Lasso acts as a primary variable selection tool. 259 

The resulting variables are then fed to FA, which serves as a secondary variable selection 260 

mechanism. By doing so, representative and useful features can be derived as follows: 261 

{(𝑥𝑖 , 𝑦𝑖)|𝑖=1
𝑁 }

Lasso−FA
→      {(𝑥𝑖

′, 𝑦𝑖)|𝑖=1
𝑁 } 262 

where {(𝑥𝑖 , 𝑦𝑖)|𝑖=1
𝑁 }  represents N pairs of inputs 𝑥𝑖  and noisy outputs 𝑦𝑖 , whereas 263 

{(𝑥𝑖
′, 𝑦𝑖)|𝑖=1

𝑁 } represents N pairs of new mapping inputs 𝑥𝑖
′
 and noisy outputs 𝑦𝑖 after the 264 

Lasso-FA treatment is completed. 265 

Remark 1: The reason why the two-stage strategy uses the Lasso-FA combination rather 266 

than FA-Lasso is that the features refined by the Lasso have true meanings and can be 267 

maintained; then, the meaningful features from the Lasso can further enhance the extraction 268 

of latent factors. If FA is used first in the two-stage strategy, unrealistic information (latent 269 

factors) is delivered to the Lasso, and the underlying raw data structure could be somehow 270 

destroyed. More details can be found in Supplementary Information D and E. 271 

3.2. Adaptive ranking based ensemble of GPR models (AR-EGP) 272 

(1) Bagging for GPR modelling 273 

Different from fitting a single model to collected data, a large number of submodels are 274 

constructed in the proposed AR-EGP model. In ensemble learning, one of the potential ways 275 

is to execute this construction process is to increase the diversity of the training samples or 276 

submodels. Thus, to increase the diversity, the original training data are resampled by a 277 

bagging method and further used to train each submodel. Once moved to the online testing 278 

stage, the predicted values from each submodel are integrated to enhance model accuracy and 279 

robustness. The overall calculated procedure for resampling by a bagging method is shown as 280 

follows: 281 

Given the original training data 𝑍𝐴 = {(𝑥𝑖
′, 𝑦𝑖)|𝑖=1

𝑑1 }, we randomly sample d (d<𝑑1) data 282 

points from 𝑍𝐴 with selection probabilities of 1/𝑑1. For each selection round, d data points 283 

are derived and taken as a group to form a training set. The sampling procedure is repeated U 284 
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times. After that, the U resampled data sets can be obtained as follows: 𝑍1, ⋯ , 𝑍𝑈. Finally, 285 

based on the U resampled data sets, U sub-models are developed. In the proposed model, 286 

GPR acts as the submodel, which exhibits an unstable modelling pattern and is potentially 287 

useful for the bagging method. For a GPR model, hyperparameter estimation tends to 288 

converge to local optima, and this leads to an unstable model due to its sensitivity to 289 

initialized values. However, hyperparameter sensitivity is, in turn, capable of strengthening 290 

the diversity of the learning process. Therefore, we also randomly sample the 291 

hyperparameters, ‘widths’ and ‘kernel lengths’ from the assigned ranges. In summary, beyond 292 

bagging the training data, the hyperparameters of the GPR models are also sampled using 293 

bootstrapping over the assigned ranges to ensure the diversity of the GPR models. Suppose U 294 

sets of data have been derived. More details about how to conduct ensemble learning of 295 

sub-GPR models are discussed sequentially. 296 

(2) Ensemble learning of global-local GPR models 297 

In general, global GPR models, such as standard GPR or PIC-GPR models, are suitable for 298 

stationary processes but are not able to handle abrupt local changes or nonstationary features. 299 

In contrast, local GPR models, such as DDM-GPR and LPR-GPR, decompose the entire 300 

domain into subdomains, train each submodel by using subdomain samples and finally make 301 

a prediction for a test point using the related trained submodel. Thus, it is envisioned that 302 

local GPR models are able to adapt to nonstationary changes while training a model with low 303 

computational intensity. However, local GPR models can achieve discontinuous predictions 304 

on the boundaries of subdomains. Given the pros and cons corresponding to global and local 305 

GPR models, this paper proposes the use of ensemble learning to coordinate global and local 306 

models and ensure that the predicted models are adaptive for both nonstationary processes. 307 

The coordination of global and local models increases the diversity of ensemble learning. 308 

Diversity is essentially a basic and necessary property for achieving acceptable accuracy rates. 309 
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 310 

Fig. 2 Graphical illustration of the submodel selection process for online prediction 311 

 312 

Additionally, unlike standard ensemble learning using the average strategy, our method uses a 313 

moving window to select a few submodels with the best performances (mainly dependent on 314 

their RMSE values) to serve as a criterion for justifying the selection of the models used for 315 

sequential prediction. The procedure of adaptive ranking with ensemble learning is briefly 316 

shown as follows (Fig. 2). Given the original testing samples 𝑍𝑇 = {(𝑥𝑖
′, 𝑦𝑖)|𝑖=1

𝑑2 }, the moving 317 

window length is s, and the number of submodel prediction values at each predicted step is 318 

𝑄1. At the current time t, the moving window envelops the data set {(𝑥𝑖
′, 𝑦𝑖)|𝑖=𝑡−𝑠

𝑡−1 }. Since the 319 

predicted values for 𝑥𝑡−𝑠,⋯,𝑡−1
′  are already known, i.e., the predicted values for 𝑄1 submodels 320 

{(𝑦̂𝑡−𝑠,⋯,𝑡−1
𝑗

)|𝑗=1
𝑄1 } have been derived, the RMSE value of each submodel in the moving window 321 

can be obtained by using the following equation: 322 

𝑅𝑀𝑆𝐸 = √
1

𝑠
∑ (𝑦𝑡−𝑗 − 𝑦̂𝑡−𝑗)

2𝑠
𝑗=1                       (10) 323 

It is reasonable to assume that the prediction performance of the model with respect to time t 324 

is similar to the most recent prediction performances, such as the predictions at times 𝑡 −325 

𝑠,⋯ , 𝑡 − 1. Therefore, a few submodels with the best performances at times 𝑡 − 𝑠,⋯ , 𝑡 − 1 326 

can be used for prediction at time t once they receive the current input values 𝑥∗′. 𝑄2 327 
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submodels with the best RMSE values in the moving window are selected as the base models 328 

for the sequential prediction for a given 𝑥∗′. 329 

The predictive mean and variance of the proposed AR-EGP model can be obtained as follows: 330 

𝐸(𝑦∗) =
1

𝑄2
∑ 𝑦̂∗(𝑖)
𝑄2
𝑖=1                               (11) 331 

var(𝑦∗) =
1

𝑄2
∑ 𝜎∗

2(𝑖)
𝑄2
𝑖=1 +

1

𝑄2
∑ (𝑦̂∗(𝑖) − 𝐸(𝑦∗))2
𝑄2
𝑖=1                   (12) 332 

where 𝑦̂∗(𝑖) represents the prediction of the i-th model. The motive behind the averaging 333 

rule is to alleviate the negative effects of prediction disturbances and to improve the 334 

prediction accuracy and robustness of the AR-EGP model. It is important to note that the 335 

standard variance can be achieved simultaneously along with the mean values in the GPR 336 

model. var(𝑦∗), 2 ∗ var(𝑦∗) and 3∗ var(𝑦∗) represent confidence rates of 68.3%, 95.5% and 337 

99.7%, respectively, meaning that the percentage of erroneous predictions in entire predicted 338 

data should be at most 31.7%, 4.5% and 0.3%. Depending on the confidence measurement, 339 

soft sensors can indicate how confident each prediction is and can provide interval prediction 340 

values that are able to check how reliable the given predictive regions are. 341 

Remark 2: The reason why both global and local GPR models are used to serve as submodels 342 

is twofold: (i) the use of global and local GPR models can increase the diversity of ensemble 343 

learning, which potentially improves the prediction performance; (ii) predictions of local 344 

models are sometimes too aggressive and deviate far from the true values, whereas 345 

predictions of global models are too smooth and are likely to converge to the mean of the true 346 

values. It is envisioned that the ensemble of the global and local predictions can make the 347 

aggregated prediction close to the true value. 348 

4 Case Studies 349 

Two case studies are used for validation purposes. The data for both cases were collected 350 

from the field. First, a prediction performance comparison is made between the prediction 351 

model with and without feature selection. Then, the predictive performance is assessed by 352 

comparing the AR-EGP -based soft sensor with other models (PIC: PIC-GPR model; DDM: 353 

DDM-GPR model; LPR: LPR-GPR model; BGP: Bagging ensemble of GPR; AGP: Ensemble of 354 
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GPR with averaged prediction outputs; R-EGP: Ensemble of GPR with ranked prediction 355 

outputs) 356 

The root mean square error (RMSE) and correlation coefficient (r) are used to assess the 357 

predictive performance of the inferential model. The root mean square error (RMSE) criterion 358 

is defined as follows for quality comparisons between different methods: 359 

                   (13) 360 

where  and  are the measured and predicted values, respectively. 361 

𝑟(𝑌, 𝑌̂) =
COV(𝑌,𝑌̂)

√VAR(Y)VAR(Ŷ)
                          (14) 362 

where 𝑌 is the true value vector and Ŷ is the prediction value vector. COV represents the 363 

covariance, and VAR represents the variance of the model. 364 

4.1. A full-scale WWTP 365 

1) Background 366 

Activated sludge-based WWTPs (wastewater treatment plants) are widely and efficiently 367 

used for organic matter and nutrient removal, accounting for almost 90% of all WWTPs in 368 

China. Thus, an activated sludge-based WWTP is studied in the first case study. The 369 

microorganism population (both in terms of quality and the number of species) is dynamically 370 

varied over time. The dynamic scenario is most severe when suffering from extreme weather 371 

conditions. These fluctuations often result in the degradation or failure of online analysers. In 372 

this case study, data are sampled at one time every day due to the fact that there are few 373 

online sensors. Among the data, 314 points are used for model training, and the remaining 374 

209 samples are used for testing. All the collected variables are tabulated in Table S2 in 375 

Supporting Information F. 376 

2) Performance of feature selection 377 

To verify the proposed feature selection algorithm, the Lasso and FA are separately used 378 

with the base learners (PIC, DDM and LPR). To assess the variable selection performances for 379 

the base learners, the RMSE and correlation coefficient, r, are presented as indicators. As 380 

profiled in Table 1, the Lasso-FA variable selection strategy for all three base models (PIC, 381 
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DDM and LPR) achieved the best performance in predicting biological oxygen demand (BOD) 382 

when compared with the other two scenarios (Lasso or FA) based on the RMSE and r values 383 

obtained. This is mainly because the Lasso-FA algorithm can allow for true feature extractions 384 

by using the primary step, Lasso, and then useful dimension reduction by using the secondary 385 

step, FA. Among the three variable selection strategies, the prediction performance of the 386 

Lasso strategy is better than that of FA. This is mainly because factors derived from FA may 387 

lose some useful information by using data mapping to achieve dimension reduction. In 388 

contrast, the Lasso is able to select the true variables by using regularization on a weight 389 

parameter with little information loss. With the Lasso-FA algorithm, the PIC base learner 390 

achieves the most acceptable results in terms of RMSE and r. In this case study, the processed 391 

data exhibit stationary features, which are most suitable for the global model (PIC), enabling 392 

the PIC model to achieve the best performance. 393 

3) Performance of the AR-EGP algorithm 394 

To evaluate the prediction performance and demonstrate the advantage of the AR-EGP 395 

algorithm fairly, the Lasso-FA algorithm is used for variable selection of all predicted models. 396 

In this section, the traditional ensemble learning method, BGP, is used as the comparison 397 

scenario. Additionally, to display the advantage of the ranking strategy, the standard 398 

averaging strategy serves as a comparison scenario as well. As profiled in Table 1, the AR-EGP 399 

algorithm performs best in terms of the BOD prediction, with RMSE and r values of 0.31 and 400 

0.96, respectively. This is mainly because of the fact that the AR-EGP model is not only able to 401 

capture the diversity of data by using diverse submodels but also to make full use of the best 402 

few submodels to adaptively converge to the best prediction. It is important to note that even 403 

though both the BGP and AGP models are in fact using ensemble learning with averaging, the 404 

use of diverse submodel structures can indeed improve the prediction performances of these 405 

two models compared with those of the PIC models (Table 1). Fitted predictions can be seen 406 

in Fig. 3. 407 
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 408 

Fig. 3. The BOD prediction performances of the BGP, AGP and AR-EGP models in case study 409 

1 410 

 411 

4) Uncertainty description 412 

To assess the uncertainty level of a model, the indicator used is the negative log predictive 413 

density (NLPD): 414 

𝑁𝐿𝑃𝐷 =
1

𝑄2
∑ [

(𝑦̂∗(𝑖)−𝜇∗(𝑖))

2σ∗
2(𝑖)

𝑄2
𝑖=1 +

1

2
log (2𝜋σ∗

2(𝑖))]               (13) 415 

It is important to note that both the predictive variance σ∗
2 and mean 𝜇∗ are taken into 416 

account in this equation. As profiled in Fig. 4, the NLPD of the AR-EGP model is the smallest 417 

value than, implying that the AR-EGP model fits the data with the least uncertainties. In 418 

contrast, the PIC, DDM, LPR, BGP, AGP and R-EGP models have higher NLPD values than 419 

that of the AR-EGP model. As seen in the definition of the NLPD, a larger RMSE and a 420 

smaller predictive variance lead to higher NLPD values. The differences in the NLPD values 421 
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mainly come from the differences in RMSE and σ∗
2. Due to the close RMSEs of the AR-EGP 422 

and AGP models, we can conclude for this case study that the NLPD differences between the 423 

AR-EGP and AGP models mainly result from the small predictive variances of the AGP model. 424 

The reason why the AGP model has small predictive variances is because the AGP model 425 

underestimates them. It is also important to note that the EGP model has the highest RMSE 426 

and NLPD values compared with those of the other models, demonstrating that the EGP 427 

model may be uncompetitive for stationary data sets (for example, this case study). In other 428 

words, the AR-EGP model achieves the best performance compared with those of all other 429 

methods when using stationary data sets. 430 

Table 1.Prediction performance for the case study 1 431 

 RMSE - Prediction with and 

without feature selection methods 

r - Prediction with and without 

feature selection methods 

Models Lasso FA Lasso-FA Lasso FA Lasso-FA 

PIC 0.71 0.88 0.42 0.73 0.59 0.91 

DDM 0.67 0.79 0.55 0.79 0.57 0.83 

LPR 0.73 0.85 0.45 0.58 0.53 0.91 

BGP / / 0.45 / / 0.9 

AGP / / 0.41 / / 0.92 

AR-EGP / / 0.31 / / 0.96 

 432 

Fig. 4(a) A comparison of the NPLD values of all GPR models. (b) The fitted predictions of the 433 
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AR-EGP model and the true values for the testing samples from day 50 to day 150 434 

To assess the reliability of the model predictions, predictive intervals that do not include the 435 

true values are considered incorrect predictions. Therefore, we use the percentage of samples 436 

that are not able to offer a proper predictive region including the true values. Fig. 4 (b) shows 437 

that some real samples are out of the predictive regions. Table 2 displays the empirical 438 

reliability performance. 439 

Table 2. Empirical Reliability of AR-EGP for the case study 1 440 

Comments Empirical Reliability (%) 

Empirical confidence 90% 95% 99% 

Predicted confidence 90.43% 96.21% 99.56% 

It is important to highlight that the predictive regions are widened if the values of the 441 

process variable deviate from the original state values. The tightness of the corresponding 442 

predictive regions can, in turn, be used to indicate a specific significance level and further 443 

measure how efficient our algorithm is for prediction. 444 

4.2. A real wastewater plant 445 

1) Background 446 

The data for this case study are collected from a real WWTP (Beijing, China). This plant aims 447 

to collect and treat household wastewater covering 480,000 populations by using a modified 448 

activated sludge process, termed the oxidation ditch (OD) process. More details about the 449 

background of this plant can be found in Supplementary Information L. 450 

In this case study, a filamentous sludge bulking fault occurred and lasted over almost half a 451 

year. Filamentous sludge bulking often results in poor operational performances and 452 

untreated wastewater entering rivers directly. The sludge volume index (SVI) is an empirical 453 

measurement used in the field to show how severe a case of filamentous sludge bulking is. In 454 

this case study, the SVI is set to 200 mL/g and used to act as a control limit to indicate if 455 

filamentous sludge bulking is occurring. However, the SVI is always difficult to measure, so 456 

we must resort to a lab analysis. To build a model, the selected training variables are tabulated 457 

as Table S3 in Supplementary Information G. In this case study, 212 samples are collected, 458 

among which the first 127 days of data are for training, whereas the others are for testing. 459 
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2) Performance of feature selection 460 

The comparative scenarios are defined similarly to those in case study 1. As displayed in 461 

Table 3, the Lasso-FA variable selection strategy with all three base models (PIC, DDM and 462 

LPR) achieved the best performances for SVI prediction when compared with the 463 

performances of the other two scenarios (Lasso or FA) in terms of RMSE and r. This is mainly 464 

because the Lasso-FA algorithm allows for true feature extractions by using the primary step 465 

(Lasso) and then an efficient dimension reduction by using the secondary step (FA). 466 

Obviously, the prediction performance of the Lasso strategy is better than that of FA based on 467 

the RMSE and r values in Table 3. This is mainly because factors derived from FA may lose 468 

some useful information by using data mapping to achieve dimension reduction. In contrast, 469 

the Lasso is able to select the true variables by using regularization on a weight parameter 470 

with little information loss. With the Lasso-FA algorithm, the PIC base learner achieves the 471 

most acceptable results based on the RMSE and r values in Table 3. However, the 472 

performance of PIC in case study 1 is slightly better than that in case study 2 in terms of r 473 

(Table 3). This can be explained by the slightly nonstationary features in case study 2. Overall, 474 

coordination of the Lasso and FA approaches can indeed improve the prediction accuracy of 475 

soft sensors. 476 

Table 3. Prediction performance for the case study 2 477 

 RMSE - Prediction with and without 

feature selection methods 

r - Prediction with and without 

feature selection methods 

Models Lasso FA Lasso-FA Lasso FA Lasso-FA 

PIC .54 .59 .37 .83 .83 .91 

DDM .53 .65 .47 .83 .76 .88 

LPR .52 .68 .41 .85 .77 .91 

BGP / / 0.39 / / 0.9 

AGP / / 0.37 / / 0.91 

AR-EGP / / 0.29 / / 0.95 

 478 

3) Performance of the AR-EGP algorithm 479 

The Lasso-FA algorithm is used for variable selection of all predicted models in this case 480 

study. In this section, the traditional ensemble learning model, BGP, is used as a comparison 481 
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scenario. Additionally, to display the advantage of the adaptive ranking strategy, the AGP 482 

model acts as a comparison scenario as well. As profiled in Table 3, the AR-EGP model 483 

achieves the best performance for SVI prediction, with RMSE and r values of 0.29 and 0.95, 484 

respectively. This can be explained by the ability of the AR-EGP model to adaptively deal with 485 

the processed data. It is also obvious that the deviation occurs mainly in the stages with 486 

significant variation. Even though the performances of the BGP model and AGP are poorer 487 

than that of the AR-EGP model in terms of RMSE and r, averaging ensemble learning with 488 

diverse submodel structures can indeed improve the prediction performance over those of the 489 

PIC models (Table 3). The main reason why averaging ensemble learning is able to improve 490 

the prediction performance is that the generalization error of averaging ensemble learning is 491 

proven to be smaller than the expected error of each submodel individually. The prediction 492 

performance of the AGP model can be further validated by the differences between the 493 

predicted and true values, as shown in Fig. 5 (b). 494 

 495 
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Fig. 5 The SVI prediction performance of the BGP, AGP and AR-EGP models in case study 2 496 

 497 

4) Uncertainty description 498 

As shown in Fig. 6, the AR-EGP model achieves the smallest NLPD, suggesting that the 499 

AR-EGP model fits the data best. For this case study, the PIC, DDM, LPR, BGP, AGP, and 500 

R-EGP models have larger NLPD values than that of the AR-EGP model. As seen in the 501 

definition of the NLPD, a larger RMSE and a smaller predictive variance lead to higher NLPD 502 

values. The differences in the NLPD values mainly come from the differences in RMSE and σ∗
2. 503 

Due to the close RMSEs of the AR-EGP and AGP models, we can conclude for this case study 504 

that the NLPD differences between the AR-EGP and AGP models mainly result from the small 505 

predictive variances of the AGP model. The reason why the AGP model has small predictive 506 

variances is because the AGP model underestimates them. For the slightly nonstationary data 507 

set, the performances of all predicted models with respect to their NLPD values are very 508 

similar (Fig. 4(a) and Fig. 6(a)). The BGP model has the highest RMSE and NLPD values, 509 

demonstrating that the BGP model may not be suitable for either stationary or nonstationary 510 

data sets. By comparing the R-EGP and AR-EGP models in Fig. 4(a), it is also important to 511 

note that they achieve very similar performances with NLPD values of 0.38 and 0.36, 512 

respectively. In contrast, the NLPD of the AR-EGP model is 19.4% better than that of the 513 

R-EGP model for the nonstationary scenario. This can be explained by the fact that the 514 

moving-window-based adaptive ranking strategy is capable of enhancing the prediction 515 

performance of a model. Overall, even for a nonstationary pattern, the AR-EGP model is able 516 

to achieve the best performance. 517 

To further check the reliability of the prediction performance, the samples that are not 518 

included in prediction intervals are considered incorrect predictions, as in case study 1. To 519 

quantify the predictive reliability of a model, the successful prediction rate should be greater 520 

than the desired accuracy. Table 4 suggests that the predicted results at the 90% confidence 521 

level are not acceptable since 18% of the predicted values are outside of the control intervals. 522 

In contrast, the predicted results at the 95% and 99% confidence levels perform well. As 523 
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profiled in Fig. 6(b), the differences between the predicted values and true values are 524 

acceptable, even though this is true only with an 82% confidence level. The deviations 525 

between predicted and true values mainly occur in places with abrupt changes. 526 

 527 

Fig. 6(a) Comparison of all GPR models in terms of their NPLD values. (b) The differences 528 

between the values the predicted by the AR-EGP model and the true values for the testing 529 

samples 530 

Fig. 6(b) shows that the confidence could be widened due to the deviations of steady state 531 

values. This enables one to further check the tightness of predictive regions over a specific 532 

significance level. 533 

Table 4. Empirical Reliability of AR-EGP for the case study 1 534 

Comments Empirical Reliability (%) 

Empirical confidence 90% 95% 99% 

Predicted confidence 82% 95.4% 99.7% 

 535 

4. Discussions 536 
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4.1 Parameter discussions 537 

We present a variable selection methodology using the Lasso together with FA as a template. 538 

Regularization methodologies, such as the Lasso algorithm, can work together with dimension 539 

reduction methods, such as principal component analysis (PCA) and partial least squares 540 

(PLS). These regularization methodologies are purposely used to remove under-correlated 541 

model input variables, and the dimension reduction methods aim to compress over-correlated 542 

model input variables. This variable selection method can reduce the computational intensity 543 

and model complexity sequentially. 544 

  To clarify the uses of all the hyperparameters, we have summarized them in Fig. 7. In stage 545 

1, the number of cross validation (CV) steps for Lasso learning should be selected. In case 546 

study 1, 314 samples with 19 variables are used for Lasso-based variable selection learning, 547 

whereas 127 samples with 13 variables are used in case study 2. To ensure that the Lasso 548 

algorithm can be used for validation, we must guarantee that 
314

𝐶𝑉
> 19 in case 1 and 

123

𝐶𝑉
> 13 549 

in case 2. This means that the Lasso regression matrix based on the validated data set should 550 

be non-singular. By considering this point, the CV steps of cases 1 and 2 are set to 30 and 20, 551 

respectively. At around these iteration numbers, the Lasso values can converge to a stable 552 

state. Since we have already implemented the Lasso algorithm for the primary variable 553 

selection process, an 85% control limit for accumulated contributions is used for both cases 1 554 

and 2. As tabulated in Table 5 (Line 3), three factors are sufficient to represent all the 555 

necessary information for sequential modelling. Thus, it is envisioned that the Lasso-FA 556 

algorithm is able to lower the complexity of the model and improve its predictive 557 

performance. 558 

  It is important to note that to increase the diversity of ensemble learning, the “number of 559 

pseudo-inputs” in PIC-GPR, the “number of training samples allocated to each local expert” in 560 

LPR-GPR and the “mesh size” in DDM-GPR are all bootstrapped by specifying a range, and 561 

these ranges are shown in Table 5. The minimum value of the specified range should be 562 

greater than 19 (the variable number in case 1) and 13 (the variable number in case 2) to 563 

ensure that there are sufficient samples to train a local model, whereas the maximal value 564 
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should ensure that a sufficient number of submodels can be derived and not cost too much in 565 

terms of computational intensity. For the “number of random sites chosen for local 566 

hyperparameter learning” in LPR-GPR and the “number of locations to check for the 567 

continuity of predictions over the boundary” in DDM-GPR, these two hyperparameters are 568 

used to decide the number of locations used to calculate the local hyperparameters. The 569 

“covariance function” is one of the important hyperparameters for determining the shape of a 570 

GPR-based prediction curve. By having deep insight into the evolution of the training data set, 571 

we use 'covSEard'+'covNoise' in case study 1. As profiled in Fig. 3, the processed data exhibit a 572 

relatively stable pattern but with high variations around a mean value. In contrast, the 573 

processed data in case 2 exhibit a decreasing trend with many variations. Therefore, 574 

'covSEard'+'covLINard' is selected as the covariance function of all GPR models. 575 

To optimize the “average ranking with ensemble learning” model, two hyperparameters 576 

(the window size and the number of selected submodels) are required for a proper setup. As 577 

profiled in Fig. 2, the samples in the window are mainly used to calculate RMSE values to 578 

justify the submodels selected for sequential ensemble learning. In case 1, since the variations 579 

of the processed data are relatively stable, the window size is selected as 6. However, to adapt 580 

to the decreasing trend in case 2, the window size must be shortened to 4 to ensure that 581 

proper submodels can be selected by capturing the most recent variations. Additionally, in 582 

this manuscript, 1/3 of the submodels with the best RMSE values are selected for sequential 583 

ensemble learning. In fact, an alternative method is to set up a control limit for the RMSE and 584 

to select the submodels with RMSE values greater than the control limit. 585 
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 586 

Fig. 7 Hyperparameter Analysis 587 

Table 5 Hyperparameter analysis for both case studies 588 

Algorithms Sub-models Hyper-parameters Case study 1 Case study 2 

Lasso (/) Number of cross validation 30 20 

FA (/) Number of factors 3 3 

 

 

 

 

 

 

Sub-model 

PIC-GPR Number of pseudo inputs Bootstrapping 

[19, 40] 

Bootstrapping 

[13, 30] 

 

 

LPR-GPR 

Number of local experts 18 20 

Number of random sites chosen for 

local hyper-parameter learning 

20 10 

Number of training samples allocated 

to each local sub-model 

Bootstrapping 

[19, 49] 

Bootstrapping 

[13, 43] 

 

 

DDM-GPR 

Mesh size Bootstrapping 

[19,58]-> [30,58] 

Bootstrapping 

[13,58]-> [40,58] 

Number of locations to check the 

continuity of prediction over 

boundary 

10 5 

(/) Covariance Function 'covSEard'+'covNoise' 'covSEard'+'covLINard' 

Ranking 

ensemble 

learning  

(/) Window size 6 4 

(/) Number of selected sub-models 20 10 

 589 

4.2 Future works 590 

In this paper, the proposed AR-EGP model is validated by simulated and field data. The 591 

results demonstrate that the AR-EGP model performs well for both case studies. Even though 592 
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the AR-EGP model works well and can represent the true scenarios, the proposed method still 593 

requires the implementation in a programmable logic controller (PLC) rather than the limit in 594 

MATLAB. Additionally, it is necessary to take extreme conditions into account, for example, 595 

other fault patterns. Many disasters come from unpredictable, abnormal events. Fortunately, 596 

the predictive intervals of the AR-EGP model can alleviate this issue by indicating how 597 

reliable the predicted values are. In this way, the predicted intervals sound alarms before the 598 

occurrence of the failure. Although ensemble learning and GPR models have previously been 599 

demonstrated to be able to predict hard-to-measure variables in extreme conditions, further 600 

investigation is required to gain insight into how to predict a variable reliably and robustly. In 601 

our study, global and local GPR models are considered submodels for prediction. Additionally, 602 

GPR models can provide sufficient information for descriptions of uncertainty. It is envisaged 603 

that fuzzy logic models offer similar performances in terms of their abilities to capture 604 

uncertainties. Future research will focus on the integration of soft sensors with fault diagnosis 605 

and process management. 606 

eXtreme Gradient Boosting (XGBoost), CatBoost and LightGBM are three of boosting ensemble 607 

learning algorithms and are all based on Gradient Boosting Decision Tree (GBDT) algorithm[39]. 608 

XGBoost proposed a pre-sorted algorithm to enhance GBDT, aiming improve the prediction efficiency 609 

of GBDT. However, XGBoost is mainly based on the depth-wise or level-wise search optimization, 610 

which will implicates intense computational costs. LightGBM and CatBoost can lower the 611 

computational requirement while maintain prediction performance. Future researches will devote to 612 

learning these boosting algorithms to improve the proposed AR-EGP to be more accurate with 613 

less computational costs. 614 

5. Conclusions 615 

To monitor quality-related but hard-to-measure variables in industrial processes, this 616 

paper proposes an adaptive ensemble learning framework for Gaussian process models. The 617 

framework is able to coordinate local and global GPR models to capture process behaviours 618 

properly and to ensemble the sub-GPR models adaptively to obtain robust and accurate 619 

predictions. Additionally, the proposed methodology can describe uncertainties and show 620 
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how reliable the predicted values are. The proposed prediction model, AR-EGP, is validated in 621 

a simulated WWTP with stationary behaviours and a true WWTP with a drifting fault. 622 

Quality-related variables can be predicted effectively by the AR-EGP model, with RMSE 623 

values of 0.31 and 0.96 in the first case study and values of 25.6% and 21.6% in the second 624 

case study, which are better than those of the bagging GPR model and the average ensemble 625 

GPR model. Ensemble learning achieves improved accuracy at the cost of increasing the 626 

computational cost required. Future works will focus on how to build an ensemble learning 627 

model with low computational intensity and how to optimize the structure of the ensemble 628 

learning model. 629 
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