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Abstract

Multi-objectivization is a term used to describe strategies developed for
optimizing single-objective problems by multi-objective algorithms. This
paper focuses on multi-objectivizing the sum-of-the-parts combinatorial
optimization problems, which include the traveling salesman problem,
the unconstrained binary quadratic programming and other well-known
combinatorial optimization problem. For a sum-of-the-parts combinatorial
optimization problem, we propose to decompose its original objective into
two sub-objectives with controllable correlation. Based on the decomposition
method, two new multi-objectivization inspired single-objective optimization
techniques called non-dominance search and non-dominance exploitation
are developed, respectively. Non-dominance search is combined with two
metaheuristics, namely iterated local search and iterated tabu search,
while non-dominance exploitation is embedded within the iterated Lin-
Kernighan metaheuristic. The resultant metaheuristics are called ILS+NDS,
ITS+NDS and ILK+NDE, respectively. Empirical studies on some TSP and
UBQP instances show that with appropriate correlation between the sub-
objectives, there are more chances to escape from local optima when new
starting solution is selected from the non-dominated solutions defined by the
decomposed sub-objectives. Experimental results also show that ILS+NDS,
ITS+NDS and ILK+NDE all significantly outperform their counterparts on
most of the test instances.
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Optimization, Traveling Salesman Problem

1. Introduction

The so-called multi-objectivization approach deals with a single-objective
problem by converting it into a multi-objective one and then optimizing
it by a multi-objective algorithm. Many related studies [1, 2, 3, 4, 5, 6]
have confirmed that the idea of multi-objectivization can achieve better
performance than some traditional single-objective algorithms.

This paper differs from the existing multi-objectivization studies in two
aspects.

• This paper focuses on multi-objectivizing an important subclass of
the Combinatorial Optimization Problems (COPs) [8], the sum-of-the-
parts COPs, through decomposing its original objective into two sub-
objectives.

• Different from most multi-objectivization studies which directly opti-
mize the sub-objectives using multi-objective optimization algorithms,
This paper uses the sub-objectives to help search-based single-objective
metaheuristics1 escape from local optima and find better solutions.

In a sum-of-the-parts COP, its objective function can be represented as
the summation of a finite number of sub-functions over unit costs. The
well-known Traveling Salesman Problem (TSP) [9], Unconstrained Binary
Quadratic Programming (UBQP) [10] problem, Quadratic Assignment
Problem (QAP) [11] and Vehicle Routing Problem (VRP) [12] all belong
to this type. We propose to decompose a sum-of-the-parts COP’s objective
function f into two sub-objectives f1 and f2 by splitting each unit cost
of the problem into two parts. The decomposed f1 and f2 are subject
to f(x) = f1(x) + f2(x) for any solution x in the solution space. The
cost splitting follows a probability distribution, while the sub-objectives’
correlation can be controlled by varying the probability distribution.

1A search-based metaheuristic is an iterative optimization algorithm for COPs. At
each iteration, it searches for a better solution in the neighborhood of current solution.
If a local optimum is found, it tries to escape from it by starting the search from a new
point.
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Based on the proposed objective decomposition method, two new
multi-objectivization inspired techniques are developed, both of which are
based on the idea that the sub-objectives can help search-based single-
objective metaheuristics escape from local optima and find better solutions.
The first multi-objectivization inspired method we propose is called Non-
Dominance Search (NDS) which is suitable to be combined within search-
based metaheuristics with fixed neighborhood structure. The idea behind
NDS is similar to that of Variable Neighborhood Search (VNS) [13] which
enlarges the neighborhood size when a local optimum is found. NDS also tries
to find better solutions in the neighborhoods of the neighboring solutions of
the local optimum. Instead of searching the neighborhood’s neighborhood
exhaustively, NDS assumes that the improved solutions are more likely to be
found in the neighborhood of a non-dominated neighboring solution of the
current local optimum x∗. We call this hypothesis the “neighborhood non-
dominance” hypothesis. Here a non-dominated neighboring solution of x∗
is the neighboring solution that is non-dominated to x∗ in terms of (f1, f2).
We denote the set of all the non-dominated neighboring solutions of x∗ as
N (x∗ | f1, f2). When trapping in a local optimum x∗, NDS will only search
the neighborhoods of the solutions in N (x∗ | f1, f2), looking for an improving
solution. If no improvement is found, NDS returns x∗.

To verify the hypothesis of NDS, we carry out empirically study on
two kinds of the sum-of-the-parts COPs, namely, the TSP and the UBQP.
Empirical results confirm that the hypothesis holds for all the considered
TSP and UBQP instances. Further, it is found that the effectiveness of
the decomposition depends highly on the correlation between the two sub-
objectives.

A limitation of NDS is that it requires that the neighborhood structure
is fixed, i.e., given a solution, one can list all the neighboring solutions.
However, NDS cannot be combined within a local search with varied
neighborhood structure, e.g., the Lin-Kernighan (LK) local search [14] for
the TSP. To overcome this problem, we propose another multi-objectivization
inspired technique, called Non-Dominance Exploitation (NDE). NDE looks
for local optima that are non-dominated to the current best solution. The
search region close to these local optima will be further exploited.

In this paper, we combine NDS with the well-known Iterated Local Search
(ILS) [15] and Iterated Tabu Search (ITS) [16], while we combine NDE
with the Iterated Lin-Kernighan algorithm (ILK) [17, 18]. The resultant
algorithms are called ILS+NDS, ITS+NDS and ILK+NDE, respectively. In
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the experimental studies, we compare ILS+NDS against the basic ILS and
a variant of ILS+NDS (in which the guidance of (f1, f2) is eliminated) on
some TSP instances and UBQP instances, compare ITS+NDS against the
basic ITS on some UBQP instances and compare ILK+NDE against the
basic ILK and a variant of ILK+NDE (in which the guidance of (f1, f2)
is eliminated) on some middle- and large-size TSP instances. In addition,
in the implementations of ILS+NDS, ITS+NDS and ILK+NDE, different
levels of sub-objectives’ correlation are tested. The experimental results show
that ILS+NDS, ITS+NDS and ILK+NDE all significantly outperform their
counterparts on most of the test instances with a proper value of correlation
coefficient between the sub-objectives (f1, f2).

Preliminary work of this paper has been published in a conference [19].
This paper differs significantly from the conference version in the following
aspects.

• In this paper, the decomposition method is generalized to all the sum-
of-the-parts COPs. Besides the TSP, the UBQP is also used as testbed.

• A method to control the correlation between the sub-objectives f1 and
f2 is proposed.

• Systematic experiments are carried out to analyze the neighborhood
non-dominance hypothesis.

• A new multi-objectivization inspired technique, NDE, is proposed for
local search metaheuristics with varied neighborhood structure.

The rest of the paper is organized as follows. Section 2 presents the
related work. Section 3 formalizes the sum-of-the-parts COP and introduces
the proposed objective decomposition method. The TSP and the UBQP are
used to illustrate the procedure of the decomposition method. In Section 4,
two new multi-objectivization inspired techniques, NDS and NDE, based
on the proposed objective decomposition method, are presented. Section 5
presents the empirical study on the neighborhood non-dominance hypothesis.
Experimental results of the proposed methods for the TSP and the UBQP
instances are also presented in Section 5. Section 6 concludes the paper and
discusses future work.
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2. Related Work

The study of multi-objectivization can be dated back to 2001 when
Knowles et al. [1] first invented the term “multi-objectivization”. In their
work, a continuous optimization problem and the TSP were used as the
testbeds. The authors proposed to decompose the objective function of the
TSP by cutting a tour into two sub-tours. Their experimental results showed
that the multi-objective algorithm can return better solutions compared to
a broadly equivalent single-objective algorithm. The authors claimed that
this is because the multi-objectivization technique reduced the number of
local optima in the search space. Ishibuchi and Nojima [3] focused on
single-objective problems which are in the form of a scalarizing function.
They decomposed the original objective into sub-objectives that are similar
to the scalarizing function and found that Evolutionary Multi-objective
Optimization (EMO) helps a local solver escape from local optima.

The aforementioned work found that multi-objectivization is beneficial to
single-objective optimization. However, Handl et al. [4] argued that multi-
objectivization through decomposition can equally render a single-objective
optimization problem easier or harder, since the incomparable nature of
multiple objectives creates plateaus in the fitness landscape which may
reduce the number of local optima, but may hinder the search. Jähne et
al. [20] proposed the so-called Multi-Objectivization via Segmentation (MOS)
method for the TSP. In MOS, the original objective is decomposed into
two sub-objectives by defining two sets of cities. The decomposition multi-
objectivization method has also been successfully applied to logic circuit
design [21], sorting and shortest paths problem [22], robotic control [5],
protein structure prediction [6] and others.

Compared to the decomposition-based multi-objectivization methods,
much work have been carried out on using helper objectives to multi-
objectivize a single-objective problem. Helper objectives are additional
objectives that are optimized simultaneously with the original objective to
“maintain diversity in the population, guide the search away from local
optima, or help the creation of good building blocks” [7]. For constrained
optimization problems, it is a common practice to transform the constraints
into a helper objective. There has an extensive study of constrained
optimization using EMO, see e.g. [23, 24, 25, 26, 27, 28, 29].

For continuous problems, the helper objectives are usually related to the
properties of the solution population or the properties of the problem. For
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example, Abbass and Deb [30] used the age of individual solution as an
additional objective to maintain the population diversity and to slow down
the selection pressure. Jiao et al. [31] converted a single-objective problem to
a dynamic multi-objective problem by considering a niche-count objective to
maintain the diversity. Deb and Saha [32] converted a multi-modal problem
into a bi-objective problem by considering the gradient or neighborhood
information as the second objective.

For COPs, some studies defined the helper objectives based on the
segments of the original objective. For the Job Shop Scheduling Problem
(JSSP), Jensen [7, 33] used the flow-times of individual jobs as the helper
objectives which are designed to dynamically change during the search in
a random order. Experimental results showed that using NSGA-II [34]
to optimize the generated multi-objective problem significantly outperforms
using a traditional GA. Syberfeldt and Rogstrom [35] proposed a two-step
multi-objectivization method. In the first step, the helper objective was
set to conflict with the original objective and in the second step the helper
objective was in harmony with the original objective. Alsheddy [36] proposed
a helper objective by a penalty-based approach. Bleuler et al. [37] tried to
reduce the ‘bloat’ phenomenon in genetic programming by considering the
program size as a second objective.

Lochtefeld and Ciarallo [38, 39, 40, 41, 42] conducted a series of
studies on helper objective based and decomposition-based methods. They
found that problem-specific knowledge should be incorporated for a good
helper objective sequence. In a recent study [42], they showed that the
decomposition-based method has a better on-average performance compared
to the helper objective method on their tested JSSP instances. Brockhoff
et al. [43, 44] showed that a multi-objectivized problem can become either
harder or easier depending on the definitions of the helper objectives.

In addition to the previous studies, multi-objectivization has been proved
to be helpful for dealing with the timetabling problem [45], dynamic
environment problem [46], minimum spanning tree problem [47, 48],
computational mechanics design problem [49], chemical phase-equilibrium
detection problem [50], short-term unit commitment problem [51], compliant
mechanism design problem [52] and other problems.

From the above literature review we observe that (1) few studies have been
tried to develop a universal multi-objectivization method for a wide range of
problems, and (2) existing EMO algorithms are applied in most studies. In
this paper, we propose a universal objective decomposition method which is
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suitable for the sum-of-the-parts COPs. Further, based on the decomposition
method, we propose two new techniques which can improve the global
search ability of local-search-based metaheuristics. The well-known local-
search-based metaheuristics includes ILS [15], ITS [16], VNS [13], Guided
Local Search (GLS) [53, 54], etc. Generally speaking, those metaheuristics
alternately execute a local search process and an escaping process. The basic
procedure of ILS is shown in Algorithm 1, in which LocalSearch(x) means
starting a local search process from x until a local optimum is encountered
and output this local optimum. Perturbation(x∗) means perturbing some
parts of a local optimum x∗ so that the resulting solution is no longer in the
attraction basin of the original local optimum. The basic procedure of ITS is
shown in Algorithm 2. The framework of ITS is similar to that of ILS, except
that in ITS the local search heuristic is replaced by the tabu search heuristic.
VNS escapes from local optima by changing the neighborhood structure of
the search (usually changing to a larger neighborhood) so that the original
local optimum is no longer locally optimal in the new neighborhood structure.
In GLS, when the agent is in a local optimum, some features that appear in
the local optimum are selected and penalized. Then the objective function is
augmented by the accumulated penalties and guides the agent to move out
of the attraction basin of this local optimum.

Algorithm 1: Iterated Local Search (ILS)

1 x′0 ← randomly or heuristically generated solution;
2 set xbest ← x′0 and j ← 0;
3 while stopping criterion is not met do

4 xj ← LocalSearch(x′j);

5 if f(xj) < f(xbest) then
6 xbest ← xj;

7 x′j+1 ← Perturbation(xj);

8 j ← j + 1;

9 return the historical best solution xbest
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Algorithm 2: Iterated Tabu Search (ITS)

1 x′0 ← randomly or heuristically generated solution;
2 set xbest ← x′0 and j ← 0;
3 while stopping criterion is not met do

4 xj ← TabuSearch(x′j);

5 if f(xj) < f(xbest) then
6 xbest ← xj;

7 x′j+1 ← Perturbation(xj);

8 j ← j + 1;

9 return the historical best solution xbest

3. Objective Decomposition

A Combinatorial Optimization Problem (COP) is defined as

minimize / maximize f(x)
subject to x ∈ S, (1)

where f : S → R is the objective function and S is the solution space which is
a finite discrete set, e.g., an n-dimensional binary vector space {0, 1}n for the
UBQP or an n-dimensional permutation space Pn for the TSP. In this paper
we focus on the sum-of-the-parts COPs. A sum-of-the-parts COP satisfies
the following constraints:

(i) The problem is uniquely determined by a finite discrete set of units
U = {ui | i = 1, 2, . . . , |U |} and each unit ui has a fixed cost ci;

(ii) A feasible solution x is a subset of U and satisfies certain rules of
composition;

(iii) The objective function f(x) is the summation (or weighted summation)
of the costs of units in x.

Formally, the sum-of-the-parts COP can be expressed as

minimize / maximize f(x) =
∑

i∈{j|uj∈x}
ci,

subject to x ⊂ U,
x satisfies certain composition rules,

(2)
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where ci is the cost associated with ui.
The well-known TSP belongs to the sum-of-the-parts COPs. In a TSP,

the edges between any two cities form a finite set and each edge has a fixed
travel cost. A TSP solution is a subset of edges that forms a tour visiting
every city exactly once, then returning to the first city. The function value of
a TSP solution is the total cost of the edges in the tour. Hence, in the TSP,
the total edge set can be seen as the unit set U and the edge costs can be
seen as the unit costs. Besides the TSP, we can deduce that the UBQP, the
quadratic assignment problem, the vehicle routing problem and the knapsack
problem all belong to the sum-of-the-parts COPs.

For the sum-of-the-parts COPs, we propose a new method to decompose
the original objective function f into two sub-objective functions f1 and f2
such that f(x) = f1(x) + f2(x) for any solution x in the solution space.
The proposed decomposition method is quite simple. For each unit ui in the
finite set, the method splits its cost into two new values c

(1)
i and c

(2)
i such that

ci = c
(1)
i + c

(2)
i following a probability distribution p. The decomposition is

independent of the unit set, i.e., the splitting of all the unit costs follows the
same probability distribution. As a result, f1 and f2 are defined by the new
unit costs {c(1)i | i = 1, 2, . . . , |U |} and {c(2)i | i = 1, 2, . . . , |U |}, respectively:

f1(x) =
∑

i∈{j|uj∈x}
c
(1)
i , and (3)

f2(x) =
∑

i∈{j|uj∈x}
c
(2)
i . (4)

It is obvious that f(x) = f1(x) + f2(x) for any x ∈ U .
The relationship between the original objective function f and the two

sub-objective functions (f1, f2) can be illustrated in Figure 1. In Figure 1, we
plot a new axis in the middle of the f1 and f2 axis. For any point (f1(x), f2(x))
in the bi-objective space, its projection on the middle axis is denoted as
(d1, d2). Then we can have d1 = d2 and f1(x) + f2(x) = d1 + d2 = 2d1.
The distance between (d1, d2) and (0, 0) is

√

(d1 − 0)2 + (d2 − 0)2 =
√

2(d1)2

=
√
2|d1| = 1√

2
· 2|d1| = 1√

2
|d1 + d2| = 1√

2
|f1(x) + f2(x)| = 1√

2
|f(x)|, which

means the middle axis measures 1√
2
f(x).

From Eq. 3 and Eq. 4, it is seen that f1(x) and f2(x) are different only by

their unit costs {c(1)i | i = 1, 2, . . . , |U |} and {c(2)i | i = 1, 2, . . . , |U |}. We thus
use their Pearson correlation coefficient to measure the correlation between
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Figure 1: The relationship between f , f1 and f2.

the sub-objectives f1(x) and f2(x). The correlation coefficient is defined as:

ρ =
cov({c(1)i }, {c(2)i })
σ({c(1)i }) · σ({c(2)i })

, (5)

where cov({c(1)i }, {c(2)i }) is the covariance between the weight sets {c(1)i | i =
1, 2, . . . , |U |} and {c(2)i | i = 1, 2, . . . , |U |} which is calculated by

cov({c(1)i }, {c(2)i }) =
1

|U | − 1

|U |
∑

j=1

(c
(1)
j − µ(1))(c

(2)
j − µ(2)),

and σ({c(k)i }), k = 1, 2 is the standard deviation which is calculated by

σ({c(k)i }) =

√

√

√

√

1

|U | − 1

|U |
∑

j=1

|c(k)j − µ(k)|2 , k = 1, 2,

where µ(k) = 1
|U |

∑|U |
j=1 c

(k)
j , k = 1, 2, is the average value of {c(k)i | i =

1, 2, . . . , |U |}, k = 1, 2.

If c
(1)
i = c

(2)
i = ci/2 for all i ∈ {1, 2, . . . , |U |}, then we have f1(x) =

f2(x) = f(x)/2 for any x in the solution space and ρ = 1. Conversely, if

|c(1)i − c
(2)
i | ≫ 0 for all i ∈ {1, 2, . . . , |U |}, then the probability that |f1(x)−

f2(x)| ≫ 0 becomes relatively high and ρ → −1. Hence, by controlling the

ratio between c
(1)
i and c

(2)
i , we can control the correlation between f1 and f2.

In the following, we show how to apply the proposed decomposition
method to the TSP and the UBQP respectively.
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3.1. Decomposition of the TSP

Given n cities and travel costs between every pair of cities, the TSP is
to find the most cost-effective tour that visits every city exactly once and
returns to the first city. Formally, let G = (V, E) be a fully connected graph
with cities as vertexes, where V is the vertex set and E the edge set. Denote
ci,j > 0 the cost of the edge (i, j) between vertex i and vertex j, the objective
function of a TSP is defined as

minimize f(x) =
∑

(i,j)∈x
ci,j ,

subject to x = {(yn, y1), (y1, y2), (y2, y3), . . . , (yn−1, yn)} ⊂ E ,
y = (y1, y2, . . . , yn) ∈ Pn,

(6)

where a feasible solution x is a set of edges defined by a permutation
y = (y1, y2, . . . , yn) in the permutation space of {1, 2, · · · , n}, i.e., Pn.
In this paper we focus on the symmetric TSPs, i.e., ci,j = cj,i for all
i, j ∈ {1, 2, . . . , n}.

As mentioned above, the TSP belongs to the sum-of-the-parts COP. In
the TSP, the edge set E can be seen as the finite unit set U in Eq. 2 with
the edge costs as the unit costs. A TSP solution x is a subset of E and
the function value of x is the summation of the edge costs in x. Hence the
proposed objective decomposition method can be directly applied to the TSP.

To decompose a TSP, for each edge (i, j), first c
(1)
i,j is randomly sampled

from a pre-defined probability distribution p in (0, ci,j), where ci,j is the

original edge cost, then c
(2)
i,j = ci,j − c

(1)
i,j . It is obvious that c

(1)
i,j >

0, c
(2)
i,j > 0 and c

(1)
i,j + c

(2)
i,j = ci,j for any i, j ∈ {1, 2, . . . , n}, hence

{

c
(1)
i,j | i, j ∈ {1, 2, . . . , n}

}

and
{

c
(2)
i,j | i, j ∈ {1, 2, . . . , n}

}

define two legal

TSPs f1 and f2 and f(x) = f1(x) + f2(x) for any x in the solution space.
Note here that, the generated TSPs f1 and f2 are both non-Euclidean TSP,
i.e., the edge costs in f1 and f2 are not Euclidean distances in the 2D space.

We find that the correlation between f1 and f2 by such a decomposition
can be controlled by the shape of p. In Figure 2, we show three examples of
p with different shapes, namely “bell”, “valley” and “line”.

When p is of the shape of a “bell” (Figure 2(a)), the greatest probability

is obtained in the middle of (0, cij). Sampling c
(1)
i,j from the bell distribution

is therefore of high probability to be ≈ ci,j/2. Since c
(2)
i,j = ci,j − c

(1)
i,j ≈ ci,j/2,

11
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,

1

i j
c

(c) “line”

Figure 2: Examples of probability distribution p used to decompose each edge in the TSP.

it means that the probability that c
(1)
i,j ≈ c

(2)
i,j is very high and the correlation

coefficient ρ will be roughly 1.
When p is of the shape of a “valley” (Figure 2(b)), the probability that

c
(1)
i,j ≈ 0 or c

(1)
i,j ≈ ci,j is very high. Hence it is very likely that the difference

between c
(1)
i,j and c

(2)
i,j is relatively large, which means ρ is close to −1.

When p is of the shape of a “line”, it is actually the uniform distribution
(Figure 2(c)). c

(1)
i,j takes any value in (0, ci,j) with equal probability, so does

c
(2)
i,j . As a result, the correlation coefficient ρ ≈ 0.

In summary, it is seen that with different p distributions, positively
correlated, negatively correlated or nearly independent sub-TSPs can be
obtained after decomposition. To illustrate how the two sub-objectives
behave w.r.t. ρ, we carried out the following experiment taking the TSP
instance eil51 from the TSPLIB as an example. First the objective of eil51 is
decomposed according to different p distributions, and eight pairs of (f1, f2)
with different ρ values evenly ranging from −0.5657 to 0.9330 are selected.
The details of the generation method of the eight pairs of (f1, f2) can be
found in Section 5.1. Then 1000 solutions of eil51 are randomly generated.
The (f1, f2) values of the 1000 solutions for each pair are shown in each
subplot of Figure 3.

The maximum and minimum objective value, denoted as f(xmax) and
f(xmin), respectively, of the 1000 solutions are also shown in Figure 3 in red
lines. From Figure 3, it is seen that along the increasing of ρ, the solutions
become more and more concentrated along the middle axis.
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Figure 3: Examples of the decomposition effect with different ρ values on the TSP instance
eil51, in which the same 1000 random solutions are plotted in the eight sub-figures.

3.2. Decomposition of the UBQP

The UBQP is defined as follows:

maximize f(z) = zTQz =

n
∑

i=1

n
∑

j=1

qi,jzizj

subject to z = (z1, . . . , zn) ∈ {0, 1}n,
(7)

where a solution z = (z1, . . . , zn) is a vector of n binary variables and
Q = [qi,j] is a n × n matrix. The UBQP is NP-hard and has been widely
studied [10].

The UBQP belongs to the sum-of-the-parts COP. In the UBQP, Q can
be seen as the finite set U with qi,j as the unit costs. A UBQP solution z
uniquely defines a subset x = {qk,l | zk = 1 ∧ zl = 1} and the function value
of z is the summation of the members in the subset x. Then we can treat
the UBQP function as a function of x and the UBQP can be reformulated
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as

maximize f(x) =
∑

qi,j∈x
qi,j,

subject to x = {qk,l | zk = 1 ∧ zl = 1},
z = (z1, . . . , zn) ∈ {0, 1}n.

(8)

Hence, the proposed objective decomposition method can be applied to the
UBQP.

Different from the positiveness of the edge cost in the TSP, the element
values in Q is mixed by positive values, negative values and zeros. The
decomposition method proposed for the TSP is thus not entirely applicable
for the UBQP, but a similar idea can be used.

For each pair (i, j), we propose to sample q
(1)
i,j from a pre-defined

probability distribution p defined in the interval (
qi,j
2
−q′, qi,j

2
+q′) where q′ > 0

is a pre-defined positive constant. Similarly, we can control the correlation
coefficient ρ by choosing a bell-like, valley-like or uniform p. After the value
of q

(1)
i,j is generated, we let q

(2)
i,j = qi,j−q(1)i,j . Eventually, we get two sub-UBQPs

f1 and f2 based on {q(1)i,j | i, j ∈ {1, 2, . . . , n}} and {q(2)i,j | i, j ∈ {1, 2, . . . , n}}
and we have f(x) = f1(x)+ f2(x) for any solution in the solution space. The
correlation coefficient ρ between f1 and f2 is

ρ =
cov({q(1)i,j }, {q(2)i,j })
σ({q(1)i,j }) · σ({q(2)i,j })

. (9)

3.3. Decomposition of Other Similar Problems

Decomposing other sum-of-the-parts COPs can refer to the decomposition
methods of the TSP and the UBQP. The key is defining the unit set and unit
cost properly. For example, for the vehicle routing problem, since it is similar
to the TSP, all the possible edges in the graph of the vehicle routing problem
can be seen as the finite unit set with the edge costs as the unit costs. For
the quadratic assignment problem, either the cost per unit distance between
facilities or the distance between sites can be seen as the unit cost. For
the knapsack problem, naturally the item set can be seen as the unit set
with the item values as the unit costs. Note here that, our decomposition
method only decomposes the objective function. It does not decompose the
constraint functions, hence it will not change the fact whether a solution
meets the constraints or not. In the knapsack problem, the weights of items
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are not decomposed and the total weight of a knapsack problem solution will
not change after the decomposition.

4. The Proposed Multi-Objectivization Inspired Techniques

Based on the proposed objective decomposition method, we propose two
new multi-objectivization inspired techniques, named as Non-Dominance
Search (NDS) and Non-Dominance Exploitation (NDE), respectively. They
can be used to improve the global search ability of local-search-based
metaheuristics. Particularly, NDS is applicable for metaheuristics with
fixed neighborhood structure, while NDE works with varied neighborhood
structure.

4.1. Non-Dominance Search (NDS)

Given a neighborhood definition in the solution space, a local search
process iteratively evaluates the neighborhood of the current solution and
moves to a better neighboring solution. Local search usually stops at a
solution that is not worse than its neighbors but not necessarily than all
other solutions in the solution space, i.e., a local optimum. To escape from
the local optimum, a possible strategy is to enlarge the neighborhood size.
For example, in Variable Neighborhood Search (VNS), once the search is
trapped in a local optimum, the neighborhood size is enlarged until a better
solution in the enlarged neighborhood is found.

However, enlarging the neighborhood size can result in high computa-
tional complexity if all the solutions in the enlarged neighborhood are all to
be evaluated. The proposed NDS can reduce the computational complexity
by only selecting the neighboring solutions of the local optimum that are
non-dominated to the current local optimum with regard to (f1, f2) and only
evaluating the neighborhood of the selected neighboring solutions.

Below we first give the definition of dominance and non-dominance in the
multi-objective minimization case and then present the NDS procedure.

Definition 4.1. Dominance: A vector u = (u1, . . . , um) is said to dominate
a vector v = (v1, . . . , vm), if and only if uk ≤ vk, ∀k ∈ {1, . . . , m} ∧ ∃k ∈
{1, . . . , m} : uk < vk, denoted as u ≺ v

Definition 4.2. Non-dominance: If u is not dominated by v and v is not
dominated by u, we say that u and v are non-dominated to each other,
denoted as u ⊀ v or v ⊀ u.
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Figure 4: Assume the local optimum x∗ has six neighboring solutions. The neighborhood
of x′

2
are more likely to break through the contour of f(x∗)/

√
2 than the neighborhood of

x′

1
since x′

2
is non-dominated to x∗.

The idea behind NDS is presented in Figure 4 in which we assume
that a local optimum x∗ has six neighboring solutions for a minimization
problem with the objective function f(x). All the neighboring solutions are
located above the f(x∗)/

√
2 contour (red line in Figure 4) since x∗ is a local

optimum. NDS intends to find a neighboring solution whose neighborhood
can break through the contour of f(x∗)/

√
2. From Figure 4 we can see that

the neighboring solutions that are not dominated by x∗ (e.g. x′
2) are more

likely to be close to the contour of f(x∗)/
√
2, compared to the solutions that

are dominated by x∗ (e.g. x′
1). Hence the neighborhood of x′

2 is more likely
to contain a solution that can break through the f(x∗)/

√
2 contour than the

neighborhood of x′
1.

The detailed procedure of NDS in a minimization case is shown in
Algorithm 3, in which the first-improvement strategy is used. The input of
NDS is a local optimum x∗. If a solution x′ in the neighborhood of x∗ is non-
dominated w.r.t. the decomposed sub-objectives (line 3), the neighborhood
of x′ is to be explored. Once a better solution is found (line 5), NDS will
immediately terminate and return the better solution (line 6). If no better
solution can be found, NDS will return the original local optimum x∗.

NDS cannot be used as a standalone COP solver. Rather, it can be
embedded within a metaheuristic with fixed neighborhood structure. As
a case study, we combine NDS with the basic Iterated Local Search (ILS)
procedure and the resultant algorithm is called ILS+NDS. The procedures of
the original ILS and the proposed ILS+NDS are shown in Algorithm 1 and
Algorithm 4, respectively. The key difference of ILS+NDS to ILS is that the
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Algorithm 3: Non-Dominance Search (NDS)

Input: x∗, f , f1, f2
1 xoutput ← x∗;
2 for each x′ ∈Neighborhood(x∗) do

3 if (f1(x∗), f2(x∗)) ⊀ (f1(x
′), f2(x′)) then

4 for each x′′ ∈Neighborhood(x′) do

5 if f(x′′) < f(x∗) then
6 xoutput ← x′′;
7 exit;

8 return xoutput

perturbation process in ILS (line 7 in Algorithm 1) is replaced by the NDS
process in ILS+NDS (line 8 in Algorithm 4) to obtain a better restarting
point. If the NDS procedure fails, ILS+NDS will conduct a perturbation
process to escape from the current local optimum (line 10 in Algorithm 4).

Algorithm 4: ILS+NDS

1 Decompose f into f1 and f2;
2 x′0 ← random or heuristically generated solution;
3 set xbest ← x′0 and j ← 0;
4 while stopping criterion is not met do

5 xj ← LocalSearch(x′j);

6 if f(xj) < f(xbest) then
7 xbest ← xj;

8 x′j+1 ← NDS(xj | f, f1, f2);
9 if x′j+1 = xj then

10 x′j+1 ← Perturbation(xj);

11 j ← j + 1;

12 return the historical best solution xbest

We do not claim that ILS+NDS is competitive to the state-of-the-art
metaheuristics for COPs. The aim of designing ILS+NDS is to show
that the proposed multi-objectivization inspired method is beneficial to
metaheuristics like ILS.

17



Figure 5: An example of the double bridge perturbation on the TSP

4.2. Non-Dominance Exploitation (NDE)

In the previous subsection, we proposed the NDS technique to enhance
local-search-based metaheuristics. To apply NDS, the neighborhood
structure in the local search method should be fixed during the search.

However, in some metaheuristics, the neighborhood structure is varying
during the search. For example, in the LK local search for the TSP, a
fine-grained edge exchange strategy is used at each move. The number of
exchanged edges is not fixed among moves. The neighborhood structure is
thus varied during the LK search.

Though NDS is not able to be embedded within the LK, this does
not mean that the proposed multi-objectivization inspired method cannot
benefit the LK local search. In this section, we propose to embed
the decomposition method within the Iterated Lin-Kernighan local search
(ILK) [17]. The proposed algorithm is called ILK with Non-Dominated
Exploitation (ILK+NDE). ILK is a variant of ILS, in which a LK local
search and a double bridge perturbation (please see Figure 5 for a demo)
are iteratively executed.

Different to NDS which finds promising neighboring solutions in the
neighborhood of local optima, ILK+NDE explores promising LK local optima
based on the non-dominance relationship of (f1, f2). The detailed procedure
of ILK+NDE is shown in Algorithm 5. In Algorithm 5, the original objective
f is first decomposed into two sub-objectives (line 1). A current best solution
xbest is found by applying the LK search (lines 2 to 3). At each iteration j, if
the current solution xj is non-dominated to xbest with regard to (f1, f2), the
region close to x∗ in the search space will be further exploited (line 8) and
xj+1 is returned. The exploitation procedure is summarized in Algorithm 6.
In ILK+NDE, if the exploitation procedure is failed (i.e., xj+1 = xj), a
perturbation method is applied (lines 9 to 11). The algorithm terminates
when the stop criterion is met.

In the exploitation procedure (Algorithm 6), at each round of the
exploitation, first k edges are randomly selected from x∗ and a penalty
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cost c̃ will be added to the selected edges (line 4 in Algorithm 6) by
AddRandomPenalty(x∗,f ,k,c̃) (Algorithm 7). This will result in a new TSP
instance with the objective f ′. An LK local search is started from x∗ on f ′

and returns x′ (line 5 in Algorithm 6). A new LK local search then applies
from x′ on the original objective f and returns x′′ (line 6 in Algorithm 6).
If f(x′′) < f(x∗), then the exploitation procedure will immediately stop and
output x′′. Otherwise, a new round of random penalization will be executed
on x∗ and f . If after T rounds of penalization the procedure still cannot find
a better x′′ than x∗, Algorithm 6 terminates and returns x∗.

Algorithm 5: ILK+NDE
Input: f , T , k, c̃

1 Decompose f into f1 and f2 such that f(x) = f1(x) + f2(x);
2 x′0 ← random or heuristically generated solution;
3 x0 ← LK(x′0 | f);
4 xbest ← x0;
5 j ← 0;
6 while stopping criterion is not met do

7 if (f1(xbest), f2(xbest)) ⊀ (f1(xj), f2(xj)) then
8 xj+1 ← FurtherExploit(xj | T, k, c̃);
9 if xj+1 = xj then

10 x′j+1 ← Perturbation(xj);

11 xj+1 ← LK(x′j+1 | f);

12 else

13 x′j+1 ← Perturbation(xj);

14 xj+1 ← LK(x′j+1 | f);
15 if f(xj+1) < f(xbest) then
16 xbest ← xj+1;

17 j ← j + 1;

18 return the historical best solution xbest

4.3. Discussions

The similarity between NDS and NDE is that they both use the non-
dominance relationship introduced by the decomposed sub-objectives (f1, f2)
to judge whether a solution is “promising” (i.e., worth further exploitation).
In NDS, the neighboring solutions of a local optimum are checked, while in
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Algorithm 6: FurtherExploit(x∗ | T, k, c̃)
1 xbest ← x∗;
2 j ← 1;
3 while j ≤ T do

4 f ′ ← AddRandomPenalty(x∗,f ,k,c̃);
5 x′ ← LK(x∗ | f ′);
6 x′′ ← LK(x′ | f);
7 if f(x′′) < f(xbest) then
8 xbest ← x′′;
9 exit;

10 j ← j + 1;

11 return xbest

Algorithm 7: AddRandomPenalty(x∗, f, k, c̃)

1 Ẽ ← randomly select k edges from x∗;
2 for each edge (i, j) in the TSP f do

3 if edge (i, j) ∈ Ẽ then

4 c′i,j ← ci,j + c̃

5 else

6 c′i,j ← ci,j

7 return f ′: the TSP based on {c′}
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NDE, the local optima encountered during the search are judged based on
(f1, f2). One may argue that a reasonable and easy way to judge the potential
of the neighboring solutions is to set a threshold and exclude solutions that
are with objective function values worse than the threshold. However, since
the objective functions of different problem instances have different value
ranges, it is not easy to find a general method to properly set the threshold for
different problem instances. Using the sub-objectives (f1, f2) as the judging
criterion is relatively less subjective since the decomposition is conducted in
a stochastic way. In addition, the proposed objective decomposition method
can be easily applied to different problem instances.

5. Experimental Studies and Results

In this section, we first investigate the neighborhood non-dominance
hypothesis, then conduct systematic experiments to test the performance of
ILS+NDS and ILK+NDE. In the end, we combine the proposed NDS with
Iterated Tabu Search (ITS) [16] and test the performance of the resulting
algorithm. All the compared algorithms are implemented by the authors
using C++.

5.1. The Neighborhood Non-dominance Hypothesis

In the first experiment, we verify the hypothesis of NDS, i.e., the
neighborhood of the non-dominated neighbors of a local optimum is more
likely to contain a better solution. We select five TSP instances from the
TSPLIB [55] and five UBQP instances form the OR-Library [56]. For the
TSP instances, we use the 2-Opt neighborhood structure, i.e., a neighboring
solution is obtained by replacing two edges of the current solution by another
two edges, as illustrated in Figure 6. For an n-city TSP, the size of the 2-
Opt neighborhood is n(n − 3)/2 [57]. For the UBQP instances, we use the
1-bit-flip neighborhood structure, i.e., a neighboring solution is obtained by
flipping a bit of the current solution. For an n-bit UBQP, the size of the 1-
bit-flip neighborhood is n. Features of the selected TSP and UBQP instances
are shown in Table 1.

To decompose the objective functions of the TSP instances, we first define
a function p′(t) in the interval (0, ci,j) for each edge (i, j):

p′(t) =

{

(
ci,j
2
− sign(a)(

ci,j
2
− t))|a| if 0 < t ≤ ci,j

2
,

(
ci,j
2

+ sign(a)(
ci,j
2
− t))|a| if

ci,j
2

< t < ci,j,
(10)
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Figure 6: An example of the 2-Opt neighborhood in the TSP

Table 1: The selected TSP and UBQP instances
TSP instance eil51 st70 pr76 rat99 rd100
Problem size 51 70 76 99 100
2-Opt neighborhood size 1224 2345 2774 4752 4850

UBQP instance bqp1000.1 bqp2500.1 p3000.1 p4000.1 p5000.1
Problem size 1000 2500 3000 4000 5000
1-bit-flip neighborhood size 1000 2500 3000 4000 5000

where a is a pre-defined parameter and sign(·) is the signum function. From
the definition of p′(t) we can see that the signum of a controls whether p′(t)
is of a shape of “bell”, “valley” or “line” and |a| controls how steep of the
“bell” or “valley”. Then the probability distribution function p(t) for each
edge (i, j) is defined by

p(t) =
p′(t)

∫ ci,j

0
p′(t)dt

. (11)

For example, if ci,j = 1000, Figure 7 shows the probability distribution
function p(t) when a = −10, −5, 0, 5 and 10, respectively.

On each TSP instance, we test different a values ranging from −15 to 15
and calculate the ρ values of the generated (f1, f2) pairs. Then, eight pairs
of (f1, f2) with the ρ value ranging from about −0.5 to about 0.9 are selected
for the following experiments. The ρ values of the selected eight pairs of
(f1, f2) on each TSP instance are listed in Table 2. For the decomposition
of the UBQP instances, the probability distribution function p(t) is defined
in the interval (

qi,j
2
− q′,

qi,j
2

+ q′) (see Section 3.2). We set q′ = 100 and
use the similar method to generate p(t) and decompose each UBQP instance
into eight sub-objective pairs. Specially, if qi,j = 0 in the original UBQP f ,

then we directly let q
(1)
i,j = 0 in the sub-objective f1 and q

(2)
i,j = 0 in f2. The

sub-objective pairs of the UBQP instances are listed in Table 3.
On each TSP or UBQP instance, we collect 10,000 locally optimal

solutions by executing 10,000 rounds of local search from different randomly
generated solutions. The optimization objective of local search is the original
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Figure 7: Examples of probability distribution p(t) when ci,j = 1000.

objective f . For the TSP instances, the 2-Opt local search is applied and
for the UBQP instances, the 1-bit-flip local search is applied. Both local
search methods use the first-improvement strategy. Each round of local
search starts from a random solution and ends in a local optimum. Then
the neighborhood and the neighborhood’s neighborhood of these 10,000 local
optima are evaluated exhaustively, based on the original objective function
f and the eight sub-objective function pairs.

Assume that x′ is a neighboring solution of a local optimum x∗, if x′

satisfies that ∃x′′ ∈ Neighborhood(x′), f(x′′) < f(x∗) (in a maximization
case, f(x′′) > f(x∗)), then we denote that x′ is a promising neighboring
solution (P) of the local optimum x∗. Otherwise, x′ is a non-promising
neighboring solution (NP) of x∗. On the other hand, given a sub-objective
pair (f1, f2), if (f1(x

′), f2(x
′)) is dominated by (f1(x∗), f2(x∗)), then we denote

that x′ is a dominated neighboring solution (D) of x∗. Otherwise, x′ is a non-
dominated neighboring solution (ND) of x∗.

In our experiment, for each local optimum, we count the proportion of
P (NP) neighboring solutions and the proportion of D (ND) neighboring
solutions based on each pair of (f1, f2). Then, we average the counting
results of the 10,000 local optima. Table 2 and Table 3 list the average
proportion of each type of neighboring solution on the TSP instances and
the UBQP instances, respectively. In Table 2 and Table 3, we also list
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Table 2: Local Optimum Neighborhood Investigate Results on 5 TSP Instances

Instance
Sub-objective
pairs

Correlation
coefficient

Neighboring solution type Cross neighboring solution type Relative ratio

NP P D ND NP&D NP&ND P&D P&ND P&D
D

P&ND
ND

eil51

(f1, f2)1 ρ = −0.5657

98.86% 1.14%

66.06% 33.94% 65.72% 33.14% 0.34% 0.81% 0.51% 2.37%
(f1, f2)2 ρ = −0.3586 82.85% 17.15% 82.42% 16.43% 0.42% 0.72% 0.51% 4.19%
(f1, f2)3 ρ = −0.2271 88.20% 11.80% 87.75% 11.11% 0.46% 0.69% 0.52% 5.82%
(f1, f2)4 ρ = −0.1087 91.14% 8.86% 90.59% 8.27% 0.55% 0.59% 0.60% 6.71%
(f1, f2)5 ρ = 0.3122 97.53% 2.47% 96.78% 2.08% 0.75% 0.40% 0.76% 16.07%
(f1, f2)6 ρ = 0.4789 98.12% 1.88% 97.30% 1.56% 0.81% 0.33% 0.83% 17.43%
(f1, f2)7 ρ = 0.7482 99.33% 0.67% 98.35% 0.50% 0.98% 0.16% 0.98% 24.58%
(f1, f2)8 ρ = 0.9339 99.67% 0.33% 98.60% 0.26% 1.07% 0.07% 1.07% 21.73%

st70

(f1, f2)1 ρ = −0.5847

99.21% 0.79%

71.96% 28.04% 71.75% 27.46% 0.22% 0.57% 0.30% 2.05%
(f1, f2)2 ρ = −0.3876 86.72% 13.28% 86.45% 12.76% 0.27% 0.52% 0.31% 3.92%
(f1, f2)3 ρ = −0.2535 91.21% 8.79% 90.94% 8.27% 0.28% 0.51% 0.30% 5.83%
(f1, f2)4 ρ = −0.1130 93.99% 6.01% 93.69% 5.52% 0.30% 0.49% 0.32% 8.15%
(f1, f2)5 ρ = 0.3392 97.58% 2.42% 97.12% 2.09% 0.46% 0.33% 0.47% 13.76%
(f1, f2)6 ρ = 0.4846 98.28% 1.72% 97.81% 1.40% 0.47% 0.32% 0.48% 18.39%
(f1, f2)7 ρ = 0.7441 99.29% 0.71% 98.67% 0.54% 0.62% 0.17% 0.63% 23.48%
(f1, f2)8 ρ = 0.9334 99.64% 0.36% 98.93% 0.28% 0.71% 0.08% 0.71% 22.17%

pr76

(f1, f2)1 ρ = −0.5462

99.24% 0.76%

68.27% 31.73% 68.09% 31.15% 0.19% 0.58% 0.27% 1.83%
(f1, f2)2 ρ = −0.3412 84.96% 15.04% 84.72% 14.52% 0.24% 0.52% 0.29% 3.46%
(f1, f2)3 ρ = −0.1811 90.25% 9.75% 89.94% 9.29% 0.31% 0.46% 0.34% 4.68%
(f1, f2)4 ρ = −0.0223 94.57% 5.43% 94.23% 5.00% 0.34% 0.43% 0.36% 7.89%
(f1, f2)5 ρ = 0.3535 98.00% 2.00% 97.54% 1.69% 0.45% 0.31% 0.46% 15.55%
(f1, f2)6 ρ = 0.5442 98.31% 1.69% 97.83% 1.40% 0.48% 0.29% 0.48% 17.11%
(f1, f2)7 ρ = 0.7753 99.12% 0.88% 98.54% 0.70% 0.59% 0.18% 0.59% 20.37%
(f1, f2)8 ρ = 0.9371 99.61% 0.39% 98.93% 0.30% 0.67% 0.09% 0.68% 23.10%

rat99

(f1, f2)1 ρ = −0.5066

99.39% 0.61%

73.14% 26.86% 72.96% 26.43% 0.17% 0.44% 0.23% 1.63%
(f1, f2)2 ρ = −0.2872 88.94% 11.06% 88.73% 10.66% 0.21% 0.40% 0.23% 3.63%
(f1, f2)3 ρ = −0.1518 93.15% 6.85% 92.93% 6.46% 0.22% 0.39% 0.24% 5.67%
(f1, f2)4 ρ = 0.0350 95.67% 4.33% 95.39% 4.00% 0.28% 0.33% 0.29% 7.63%
(f1, f2)5 ρ = 0.3819 98.60% 1.40% 98.24% 1.15% 0.36% 0.25% 0.37% 17.54%
(f1, f2)6 ρ = 0.5717 99.04% 0.96% 98.64% 0.75% 0.40% 0.21% 0.40% 22.11%
(f1, f2)7 ρ = 0.7940 99.56% 0.44% 99.06% 0.33% 0.49% 0.12% 0.50% 26.06%
(f1, f2)8 ρ = 0.9476 99.90% 0.10% 99.33% 0.06% 0.57% 0.04% 0.57% 37.97%

rd100

(f1, f2)1 ρ = −0.5940

99.46% 0.54%

72.94% 27.06% 72.81% 26.65% 0.14% 0.41% 0.19% 1.51%
(f1, f2)2 ρ = −0.4017 88.79% 11.21% 88.65% 10.80% 0.14% 0.40% 0.16% 3.59%
(f1, f2)3 ρ = −0.2770 92.30% 7.70% 92.13% 7.33% 0.17% 0.37% 0.19% 4.82%
(f1, f2)4 ρ = −0.0821 95.34% 4.66% 95.14% 4.31% 0.20% 0.35% 0.21% 7.43%
(f1, f2)5 ρ = 0.3106 98.15% 1.85% 97.88% 1.57% 0.27% 0.27% 0.28% 14.80%
(f1, f2)6 ρ = 0.4873 98.64% 1.36% 98.33% 1.13% 0.31% 0.23% 0.32% 17.01%
(f1, f2)7 ρ = 0.7526 99.31% 0.69% 98.91% 0.54% 0.39% 0.15% 0.40% 21.71%
(f1, f2)8 ρ = 0.9374 99.82% 0.18% 99.34% 0.12% 0.48% 0.06% 0.48% 35.42%

*P: promising neighboring solution. NP: non-promising neighboring solution. D: dominated neighboring solution. ND: non-dominated
neighboring solution.

the average proportion of the cross type of neighboring solutions, e.g.,
NP&D indicates the neighboring solutions that are both non-promising and
dominated. The last two columns in Table 2 and Table 3 give the proportion

of promising solutions in all the dominated neighboring solution
(

P&D
D

)

and

the proportion of promising solutions in all of the non-dominated neighboring

solutions
(

P&ND
ND

)

.

Based on the results in Table 2 and Table 3, we have the following
observations.

First, by comparing column “NP” and column “P” in Table 2 and Table 3
we can see that on all the TSP/UBQP instances, in all the neighboring
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Table 3: Local Optimum Neighborhood Investigate Results on 5 UBQP Instances

Instance
Sub-objective
pairs

Correlation
coefficient

Neighboring solution type Cross neighboring solution type Relative ratio

NP P D ND NP&D NP&ND P&D P&ND P&D
D

P&ND
ND

bqp1000.1

(f1, f2)1 ρ = −0.4162

99.25% 0.75%

48.11% 51.89% 48.08% 51.17% 0.02% 0.73% 0.05% 1.40%
(f1, f2)2 ρ = −0.2055 55.08% 44.92% 55.05% 44.20% 0.03% 0.72% 0.05% 1.60%
(f1, f2)3 ρ = −0.0112 63.90% 36.10% 63.86% 35.39% 0.04% 0.71% 0.06% 1.97%
(f1, f2)4 ρ = 0.1716 69.87% 30.13% 69.82% 29.43% 0.05% 0.70% 0.07% 2.33%
(f1, f2)5 ρ = 0.3194 75.87% 24.13% 75.82% 23.43% 0.05% 0.70% 0.07% 2.89%
(f1, f2)6 ρ = 0.5270 81.52% 18.48% 81.45% 17.80% 0.07% 0.68% 0.08% 3.69%
(f1, f2)7 ρ = 0.7417 88.95% 11.05% 88.86% 10.39% 0.09% 0.66% 0.10% 5.97%
(f1, f2)8 ρ = 0.9231 95.62% 4.38% 95.45% 3.80% 0.18% 0.57% 0.19% 13.06%

bqp2500.1

(f1, f2)1 ρ = −0.4128

99.64% 0.36%

48.41% 51.59% 48.40% 51.23% 0.01% 0.36% 0.02% 0.69%
(f1, f2)2 ρ = −0.2008 57.17% 42.83% 57.16% 42.48% 0.01% 0.35% 0.02% 0.83%
(f1, f2)3 ρ = −0.0073 64.30% 35.70% 64.29% 35.35% 0.01% 0.35% 0.02% 0.99%
(f1, f2)4 ρ = 0.1726 70.49% 29.51% 70.47% 29.16% 0.01% 0.35% 0.02% 1.18%
(f1, f2)5 ρ = 0.3225 75.34% 24.66% 75.32% 24.31% 0.02% 0.35% 0.02% 1.41%
(f1, f2)6 ρ = 0.5289 82.52% 17.48% 82.49% 17.14% 0.02% 0.34% 0.03% 1.96%
(f1, f2)7 ρ = 0.7451 88.87% 11.13% 88.84% 10.79% 0.03% 0.33% 0.04% 2.99%
(f1, f2)8 ρ = 0.9241 95.82% 4.18% 95.76% 3.88% 0.06% 0.31% 0.06% 7.32%

p3000.1

(f1, f2)1 ρ = −0.4087

99.90% 0.10%

48.30% 51.70% 48.30% 51.60% 0.00% 0.10% 0.00% 0.19%
(f1, f2)2 ρ = −0.1957 56.05% 43.95% 56.05% 43.85% 0.00% 0.10% 0.00% 0.23%
(f1, f2)3 ρ = −0.0024 64.48% 35.52% 64.48% 35.42% 0.00% 0.10% 0.00% 0.28%
(f1, f2)4 ρ = 0.1797 70.02% 29.98% 70.02% 29.88% 0.00% 0.10% 0.00% 0.33%
(f1, f2)5 ρ = 0.3273 75.43% 24.57% 75.43% 24.47% 0.00% 0.10% 0.00% 0.41%
(f1, f2)6 ρ = 0.5328 82.47% 17.53% 82.47% 17.43% 0.00% 0.10% 0.00% 0.56%
(f1, f2)7 ρ = 0.7466 89.54% 10.46% 89.53% 10.36% 0.00% 0.10% 0.00% 0.94%
(f1, f2)8 ρ = 0.9248 96.14% 3.86% 96.13% 3.77% 0.01% 0.09% 0.01% 2.45%

p4000.1

(f1, f2)1 ρ = −0.4087

99.92% 0.08%

48.39% 51.61% 48.39% 51.53% 0.00% 0.08% 0.00% 0.15%
(f1, f2)2 ρ = −0.1955 58.16% 41.84% 58.16% 41.76% 0.00% 0.08% 0.00% 0.19%
(f1, f2)3 ρ = −0.0027 63.73% 36.27% 63.73% 36.19% 0.00% 0.08% 0.00% 0.22%
(f1, f2)4 ρ = 0.1793 70.35% 29.65% 70.35% 29.57% 0.00% 0.08% 0.00% 0.27%
(f1, f2)5 ρ = 0.3264 75.81% 24.19% 75.81% 24.11% 0.00% 0.08% 0.00% 0.33%
(f1, f2)6 ρ = 0.5335 82.88% 17.12% 82.88% 17.04% 0.00% 0.08% 0.00% 0.46%
(f1, f2)7 ρ = 0.7466 89.93% 10.07% 89.93% 9.99% 0.00% 0.08% 0.00% 0.77%
(f1, f2)8 ρ = 0.9248 96.56% 3.44% 96.56% 3.36% 0.01% 0.08% 0.01% 2.18%

p5000.1

(f1, f2)1 ρ = −0.4085

99.94% 0.06%

48.65% 51.35% 48.65% 51.29% 0.00% 0.06% 0.00% 0.12%
(f1, f2)2 ρ = −0.1949 57.69% 42.31% 57.69% 42.24% 0.00% 0.06% 0.00% 0.15%
(f1, f2)3 ρ = −0.0025 64.50% 35.50% 64.50% 35.44% 0.00% 0.06% 0.00% 0.18%
(f1, f2)4 ρ = 0.1801 70.28% 29.72% 70.28% 29.65% 0.00% 0.06% 0.00% 0.21%
(f1, f2)5 ρ = 0.3267 75.33% 24.67% 75.33% 24.61% 0.00% 0.06% 0.00% 0.26%
(f1, f2)6 ρ = 0.5330 82.50% 17.50% 82.50% 17.43% 0.00% 0.06% 0.00% 0.36%
(f1, f2)7 ρ = 0.7467 89.48% 10.52% 89.47% 10.46% 0.00% 0.06% 0.00% 0.60%
(f1, f2)8 ρ = 0.9247 96.46% 3.54% 96.45% 3.48% 0.00% 0.06% 0.00% 1.72%

*P: promising neighboring solution. NP: non-promising neighboring solution. D: dominated neighboring solution. ND: non-dominated
neighboring solution.
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solutions of a local optimum, the proportion of the promising neighboring
solutions is quite low. The proportion decreases further as the problem size
increases. This indicates that it is quite hard to find a promising neighboring
solution.

Second, by observing column “D” and column “ND” in Table 2 and
Table 3 we can see that in most cases, the proportion of the non-dominated
neighboring solutions is significantly lower than that of the dominated
neighboring solutions, except when ρ is very small (e.g. when ρ = −0.4162
for the UBQP instance bqp1000.1 in Table 3). In addition, by increasing ρ,
the proportion of the non-dominated neighboring solutions further decreases.
This is intuitive since when ρ→ 1, (f1(x), f2(x)) ≈ (f(x)/2, f(x)/2) for any
solution in the solution space (as shown in Figure 3) and (f(x′)/2, f(x′)/2) ≺
(f(x∗)/2, f(x∗)/2) if x∗ is a local optimum and x′ is one of its neighboring
solutions.

Third, by observing columns “NP&D”, “NP&ND”, “P&D” and “P&ND”
in Table 2 and Table 3 we can see that in most cases, the proportion of the
both non-promising and dominated neighboring solutions (NP&D) is the
highest among the four cross types of neighboring solutions. The proportion
of the intersection of the promising and dominated neighboring solutions
(P&D) is very small in most cases. This means that if a neighboring solution
is dominated by the original local optimum, then it is very likely that this
solution is non-promising.

Fourth, in the last two columns we list the ratios “P&D
D ” and

“P&ND
ND ”. The ratios reflect the probability to find a promising neighboring

solution in the dominated neighboring solutions and in the non-dominated
neighboring solutions, respectively. We can see that the chance to find a
promising neighboring solution in the non-dominated neighboring solutions
is significantly higher than that in the dominated neighboring solution. It
is also higher than the probability to find a promising solution in all the
neighboring solutions (column “P”). This supports the neighborhood non-
dominance hypothesis that the non-dominated neighboring solutions of a
local optimum are more likely to contain a neighboring solution that improves
the local optimum.

Fifth, from Table 2 and Table 3, we see that the correlation between

the sub-objectives have a significant influence on the ratio P&ND
ND (see

Figure 8). On most test instances, we observed that the ratio increases
along the increasing of ρ. However, the correlation should not be too large,
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Figure 8: P&ND
ND versus correlation coefficient ρ in Table 2 and Table 3.

since when ρ = 1 the bi-objective problem with the objectives (f1, f2) will
degenerate into a single-objective problem (because f1 = f2) and there will
be no non-dominated neighboring solution. On the small size TSP instances

eil51 and st70, we observed the decrease of the ratio P&ND
ND when ρ increases

from about 0.7 to about 0.9.
Particularly, in Table 3, an interesting phenomenon is that on the UBQP

instances the proportion of the intersection of the promising and dominated
neighboring solutions (P&D) is extremely low, especially on large UBQP
instances. For example, on the UBQP instance p5000.1, the P&D proportion
is 0 for all the eight sub-objective pairs.

To better illustrate the results of the neighborhood investigate, Figure 9
and Figure 10 show all the neighboring solutions of example local optima in
the TSP instance eil51 and in the UBQP instance bqp1000.1 respectively. In
Figure 9 and Figure 10, eight pairs of sub-objectives with different correlation
coefficients are shown. Note here that the UBQP is a maximization problem
hence the dominance definition in the UBQP is opposite to that in the
TSP. In Figure 9 and Figure 10 the local optimum is marked by green
dots, the dominated neighboring solutions are in red color while the non-
dominated ones are in blue color; the promising neighboring solutions are
marked by triangles while the non-promising ones are marked by dots. Hence,
in Figure 9 and Figure 10 a blue triangle means a solution is both non-
dominated and promising. From Figure 9 and Figure 10 we can see that most
of the promising neighboring solutions are non-dominated to the original local
optimum.
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Figure 9: The layout of different types of neighboring solutions of a 2-Opt local optimum
of the TSP instance eil51. The neighboring solutions are plotted on 8 sub-objective pairs
with different correlation coefficients.
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Figure 10: The layout of different types of neighboring solutions of a 1-bit-flip local
optimum of the UBQP instance bqp1000.1. The neighboring solutions are plotted on
8 sub-objective pairs with different correlation coefficients.
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Based on the neighborhood exploration results in Table 2 and Table 3,
we can estimate the expected number of function evaluations until finding a
promising neighboring solution (i.e., improving the current local optimum)
in NDS, which can be calculated by

E(#FENDS) =
ND×N +D

P&ND
, (12)

where N is the neighborhood size. Eq. 12 can also be expressed as

E(#FENDS) =
N + D

ND
P&ND
ND

. (13)

From Eq. 13 we can deduce that a too large correlation coefficient ρ is
unwanted, because the proportion of non-dominated neighboring solutions

“ND” decreases with the increasing of ρ and when ND→ 0, D
ND → +∞. In

this case, even if all the non-dominated neighboring solutions are promising

neighboring solutions, i.e., P&ND
ND = 1, the expected function evaluation

number will be very large.
Without the filtering of NDS, finding a promising neighboring solution

requires searching the neighborhood’s neighborhood exhaustively. Hence,
without NDS, the expected number of function evaluations until finding a
promising neighboring solution is

E(#FE) =
N2

P
. (14)

Figure 11 shows the estimation of expected number of function
evaluations until finding a promising neighboring solution with and without
NDS on the 10,000 local optima. From Figure 11 we can see that the expected
number of function evaluations with NDS is significantly lower than that
without NDS, which implies that NDS may be a desirable method to help an
algorithm escape from local optima. In the previous analysis, we state that
a too large value of ρ will cause the expected function evaluation number
increases, however, in Figure 11, on most instances the inflection point does
not appear. The reason is that the neighborhood size N is significantly

larger than D
ND in most settings of ρ, as shown in Table 2 and Table 3. For

example, on the UBQP instance p5000.1, the 1-bit-flip neighborhood size

is 5000 and when ρ = 0.9247, D
ND = 96.46%/3.54% = 27.2486. Based on
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Eq. 13, when N ≫ D
ND, E(#FENDS) ≈ N

P&ND
ND

, which means that the

expected function evaluation number is mostly determined by the value of
P&ND
ND . From Table 3 we can see that on the UBQP instance p5000.1, when

ρ = 0.9247, P&ND
ND

= 1.72%, which is the largest. Hence the expected
function evaluation number is the lowest when ρ = 0.9247 on p5000.1. From
Figure 11 we can also see that, on two TSP instances, eli51 and st70, the
expected function evaluation slightly increases when ρ increases from about
0.7 to about 0.9. Considering that on these two instances the neighborhood

size is not very large while the ratio D
ND is relatively large, this phenomenon

is consistent with the aforementioned explanations.
In a word, the experimental results in this sub-section support the

motivation of NDS, i.e., the neighborhood of the non-dominated neighbors
of a local optimum is more likely to contain a better solution.

5.2. The Performance of ILS+NDS

In this subsection, we compare ILS+NDS against the original ILS, and
an ILS variant called ILS with Exhaustive Neighborhood Search (ILS+ENS).
ILS+ENS is similar to ILS+NDS, except that in ILS+ENS the NDS
procedure is replaced by the ENS procedure. The ENS procedure can be seen
as a NDS procedure without the guidance of the sub-objectives (f1, f2), which
is shown in Algorithm 8. By comparing ILS+NDS against ILS+ENS, we
should know whether the sub-objectives can truly improve the performance
of ILS.

Algorithm 8: Exhaustive Neighborhood Search (ENS)

Input: x∗, f
1 xoutput ← x∗;
2 for each x′ ∈Neighborhood(x∗) do

3 for each x′′ ∈Neighborhood(x′) do

4 if f(x′′) < f(x∗) then
5 xoutput ← x′′;
6 exit;

7 return xoutput

The test instances in Table 1 are also used as benchmark. For the TSP
instances, the 2-Opt neighborhood and the double bridge perturbation are
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Figure 11: The expected number of function evaluations until finding a promising
neighboring solution

31



applied in the implementations of ILS, ILS+ENS and ILS+NDS. For the
UBQP instances, the 1-bit-flip neighborhood and a random flip perturbation
strategy are applied. In the random flip perturbation, 25% of the total bits
in the current solution are randomly selected and flipped. This perturbation
strength is based on the experimental studies in [58]. On each instance,
the implementation of ILS+NDS uses the same eight sub-objective pairs
in Table 2 and Table 3. Hence, on each test instance, we have ten
test algorithms: ILS, ILS+ENS, ILS+NDS with (f1, f2)1, ILS+NDS with
(f1, f2)2, . . . , ILS+NDS with (f1, f2)8. Each algorithm is executed 50 times
from different random initial solutions and stops when the globally optimal
function value is reached or after 1010 function evaluations. The globally
optimal function values of the UBQP instances are available from [58]. The
globally optimal function values of the TSP instances are available from
TSPLIB [55]. The code is implemented in GNU C++ with O2 optimizing
compilation. The computing platform has two 6-core 2.00GHz Intel Xeon
E5-2620 CPUs (24 logical processors) under Ubuntu OS.

To measure the quality of the solutions found by different algorithms, we
use the metric excess which is defined by

excess(x) =
|f(x)− f(xopt)|

f(xopt)
, (15)

where xopt is the global optimum. The lower the excess, the better. Figure 12
and Figure 13 show the mean excess achieved by the compared algorithms
against time on the 5 TSP instances and 5 UBQP instances respectively. In
the figures, the mean excess curves are in a base 10 logarithmic scale. If a
curve terminates before the final time it means that all the runs have found
the global optimum before the final time. Table 4 list the mean value and
standard deviation of the final excess achieved by the ILS, ILS+ENS and
ILS+NDS, in which the excess result of ILS+NDS is the best excess selected
from the eight settings of ρ. The last two columns in Table 4 list the best ρ
values of ILS+NDS and the corresponding a values (if there are multiple best
ρ values, the first one is listed). In the ILS column and ILS+ENS column,
“−” means the final excess achieved by ILS and ILS+ENS is significantly
worse than that achieved by ILS+NDS based on a Mann-Whitney U-test at
the 0.05 significance level and “=” means the performance is the same.

From Figure 12 and Figure 13 we can see that on all the test instances, the
best performance is achieved by ILS+NDS. In addition, at most setups of ρ,
ILS+NDS performs better than ILS and ILS+ENS. On some instances (e.g.
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UBQP instance bqp1000.1), ILS+ENS performs better than ILS. However,
on most instances, ILS+ENS performs worse than ILS. This indicates that
without the guidance of the sub-objectives, the search efficiency of ILS+ENS
decreases significantly. From Table 4 we can see that the results of the
Mann-Whitney U-test suggest that ILS+NDS performs significantly better
than ILS and ILS+ENS on most instances. In the end ILS+NDS successfully
finds the global optima of all TSP instances (i.e. the mean final excess is 0),
while ILS only finds the global optima of two TSP instances and ILS+ENS
finds the global optima of three TSP instances.

By comparing different ILS+NDS setups, we can observe that the sub-
objective correlation significantly influences the performance of ILS+NDS.
In the pervious neighborhood exploration experiment in Section 5.1, we
observed that the higher the correlation, the lower the time taken to find
a promising neighboring solution. However, in this experiment, it shows that
a too high sub-objective correlation can reduce the efficiency of the algorithm.
For example, on the TSP instance rd100, the results on Section 5.1 show that
when ρ = 0.9374, the expected function evaluation number is the lowest.
However, here the ILS+NDS implementation with ρ = 0.9374 performs
significantly worse than the ILS+NDS implementation with ρ = 0.3106. A
possible explanation is that, the neighborhood exploration experiment in
Section 5.1 only measures the average properties of the 10,000 randomly
collected local optima. It does not consider the quality of local optimum.
During the ILS, the goal is to improve the current best local optimum. Many
other factors could influence its performance. For example, the quality of the
current best local optimum and the hardness to improve it. Although a too
high correlation is not preferred, the results show that a positive correlation
coefficient is better than a negative one on most test instances.

Beside the previous experiment, we conduct an additional comparison
experiment on 12 TSP instances and 10 UBQP instances. In this experiment
we also compare ILS, ILS+ENS and ILS+NDE. The difference to the
previous experiment is that here we only test one setting of ρ in the ILS+NDS
implementation on each instance. Table 5 lists the mean value and standard
deviation of the final excess achieved by the ILS, ILS+ENS and ILS+NDS.
The last two columns in Table 5 list the ρ values in ILS+NDS and the
corresponding a values. In the ILS column and ILS+ENS column, “−”
means the final excess achieved by ILS and ILS+ENS is significantly worse
than that achieved by ILS+NDS based on a Mann-Whitney U-test at the
0.05 significance level and “=” means the performance is the same. From
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Figure 12: Excess vs. function evaluations on 5 TSP instances
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Figure 13: Excess vs. function evaluations on 5 UBQP instances
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Table 4: Final excess of ILS, ILS+ENS and ILS+NDS on 5 TSP instances and 5 UBQP
instances.
Instance

Mean final excess (standard deviation)
best ρ in ILS+NDS corresponding a

ILS ILS+ENS ILS+NDS
TSP:eil51 0.00000(0.00000) = 0.00000(0.00000) = 0.00000(0.00000) −0.5657 −12
TSP:st70 0.00000(0.00000) = 0.00000(0.00000) = 0.00000(0.00000) −0.5847 −12
TSP:pr76 0.00002(0.00008) = 0.00000(0.00000) = 0.00000(0.00000) −0.5462 −12
TSP:rat99 0.00112(0.00118) − 0.00063(0.00098) − 0.00000(0.00000) 0.3819 2
TSP:rd100 0.00083(0.00129) − 0.00050(0.00168) − 0.00000(0.00000) −0.5940 −12
UBQP:bqp1000.1 0.00013(0.00012) − 0.00005(0.00003) − 0.00000(0.00001) 0.9231 10
UBQP:bqp2500.1 0.00129(0.00026) − 0.00098(0.00025) − 0.00055(0.00019) 0.9241 10
UBQP:p3000.1 0.00246(0.00051) − 0.00281(0.00061) − 0.00221(0.00057) 0.7466 4
UBQP:p4000.1 0.00205(0.00031) − 0.00218(0.00041) − 0.00184(0.00038) 0.5335 2
UBQP:p5000.1 0.00238(0.00031) = 0.00261(0.00041) − 0.00225(0.00039) 0.9247 10
*In the last two columns, if there are multiple best ρ values, the first one is listed. “−” means the final excess achieved by
ILS and ILS+ENS is significantly worse than that achieved by ILS+NDS based on a Mann-Whitney U-test at the 0.05
significance level and “=” means the performance is the same.

Table 4 we can see that the results of the Mann-Whitney U-test suggest that
ILS+NDS performs significantly better than ILS and ILS+ENS on most
instances.

Based the above experimental study, we can conclude that the proposed
NDS method can truly improve the original version of ILS.

5.3. The Performance of ILK+NDE

In this section, we test the performance of ILK+NDE on six middle-
size and large-size TSP instances. To verify the effect of the proposed NDE
technique, we compare ILK+NDE against the original ILK and a variant of
ILK+NDE in which the guidance of the sub-objectives is removed which
is named as Iterated Lin-Kernighan algorithm with further Exploitation
(ILK+E). ILK+E is summarized in Algorithm 9, in which we can see that
ILK+E conducts further exploitation on all the encountered LK local optima.
By comparing ILK+E against ILK+NDE, we can verify whether the sub-
objectives (f1, f2) can truly improve the algorithm performance.

In the following experiment, we compare ILK+NDE against ILK and
ILK+E on ten middle-size and large-size TSP instances from the TSPLIB:
{vm1748, u1817, d2103, pr2392, pcb3038, fnl4461, pla7397, rl11849,
usa13509, d18512}. In the experiments, the implementation of the LK local
search is based on the Concorde software package 2. Following [59], the edge
exchange in the LK implementation is restricted in a sub-graph of the original
TSP graph G. In the sub-graph, each vertex (city) only connects with its 20

2http://www.math.uwaterloo.ca/tsp/concorde/
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Table 5: Final excess of ILS, ILS+ENS and ILS+NDS on 12 TSP instances and 10 UBQP
instances.
Instance

Mean final excess (standard deviation)
ρ in ILS+NDS corresponding a

ILS ILS+ENS ILS+NDS
TSP:eil101 0.00712(0.00237) − 0.00474(0.00368) − 0.00064(0.00079) 0.4864 3
TSP:pr107 0.00189(0.00115) − 0.00150(0.00147) − 0.00000(0.00000) 0.5948 3
TSP:bier127 0.00271(0.00131) − 0.00339(0.00353) − 0.00003(0.00008) 0.6112 3
TSP:ch130 0.00569(0.00146) − 0.00478(0.00337) − 0.00014(0.00058) 0.4922 3
TSP:kroA150 0.00636(0.00246) − 0.00606(0.00485) − 0.00002(0.00014) 0.5404 3
TSP:u159 0.00549(0.00305) − 0.00478(0.00593) − 0.00000(0.00000) 0.5448 3
TSP:rat195 0.02318(0.00359) − 0.02462(0.00893) − 0.00694(0.00231) 0.5620 3
TSP:d198 0.00987(0.00140) − 0.00676(0.00310) − 0.00170(0.00086) 0.7246 3
TSP:ts225 0.00522(0.00108) − 0.01237(0.01722) = 0.00050(0.00036) 0.4690 3
TSP:gil262 0.02692(0.00413) − 0.03832(0.01049) − 0.00982(0.00246) 0.4805 3
TSP:a280 0.02418(0.00330) − 0.04927(0.01974) − 0.00389(0.00168) 0.5213 3
TSP:lin318 0.02739(0.00304) − 0.04248(0.01226) − 0.01265(0.00298) 0.4927 3
UBQP:p3000.2 0.00160(0.00028) − 0.00165(0.00035) − 0.00131(0.00033) 0.9247 2
UBQP:p3000.5 0.00153(0.00024) = 0.00180(0.00029) − 0.00156(0.00028) 0.9248 2
UBQP:p4000.2 0.00200(0.00032) = 0.00215(0.00029) − 0.00195(0.00028) 0.9248 2
UBQP:p4000.5 0.00244(0.00033) − 0.00260(0.00042) − 0.00229(0.00023) 0.9247 2
UBQP:p5000.2 0.00239(0.00029) − 0.00259(0.00033) − 0.00227(0.00025) 0.9247 2
UBQP:p5000.5 0.00244(0.00035) − 0.00260(0.00030) − 0.00231(0.00028) 0.9247 2
UBQP:p6000.2 0.00318(0.00029) − 0.00325(0.00039) − 0.00298(0.00032) 0.9247 2
UBQP:p6000.3 0.00301(0.00035) = 0.00304(0.00035) − 0.00284(0.00039) 0.9248 2
UBQP:p7000.2 0.00286(0.00025) − 0.00305(0.00026) − 0.00277(0.00024) 0.9247 2
UBQP:p7000.3 0.00338(0.00032) = 0.00348(0.00040) − 0.00331(0.00030) 0.9248 2
*“−” means the final excess achieved by ILS and ILS+ENS is significantly worse than that achieved by ILS+NDS
based on a Mann-Whitney U-test at the 0.05 significance level and “=” means the performance is the same.

Algorithm 9: ILK+E
Input: f , T , k, c̃

1 Decompose f into f1 and f2;
2 x′0 ← randomly or heuristically generated solution;
3 x0 ← LK(x′0 | f);
4 xbest ← x0;
5 j ← 0;
6 while stopping criterion is not met do

7 xj+1 ← FurtherExploit(xj | T, k, c̃);
8 if xj+1 = xj then

9 x′j+1 ← Perturbation(xj);

10 xj+1 ← LK(x′j+1 | f);
11 if f(xj+1) < f(xbest) then
12 xbest ← xj+1;

13 j ← j + 1;

14 return the historical best solution xbest
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nearest vertexes (cities). Following [17], a double bridge kick is used in the
perturbation phases of the implementations of ILK, ILK+E and ILK+NDE.
For ILK+E and ILK+NDE, we set T = 1000, k = 5 and the penalty c̃ is
equal to the largest edge cost in each test instance. In the ILK+NDE, first
the original TSP is decomposed into two sub-objectives (f1, f2) based on the
decomposition introduced in Section 5.1. Since the LK local search only
focuses on the edges in the nearest sub-graph of the TSP, we only decompose
the edges in the sub-graph.

With different probability distributions (see Eq. 10 and Eq. 11), we
decompose each TSP instance into five pairs of (f1, f2) by defining a =
−1, 0, 1, 2, 3. The resulting ρ values ranging from about −0.5 to about
0.6. It is very hard to count the function evaluation number in the LK
local search, hence we use the CPU runtime as the stopping criterion for
the compared algorithms. The max runtime on the test instances are
{vm1748: 400s, u1817: 400s, d2103: 500s, pr2392: 500s, pcb3038: 600s,
fnl4461: 900s, pla7397: 1500s, rl11849: 2400s, usa13509: 2700s, d18512:
3700s}. In the ILK+E and ILK+NDE implementations, in the first 1/5
runtime the ILK procedure is applied; while in the last 4/5 runtime it is the
ILK+E/ILK+NDE procedure. On each instance, each algorithm is run 50
times from different random initial solutions.

Figure 14 shows the mean excess achieved by different algorithms against
time. Table 6 shows the obtained final excess values. From Figure 14 and
Table 6 we can see that on all test instances, ILK+NDE performs the best. In
Table 6, the superiority of ILK+NDE is confirmed by the Mann-Whitney U-
test at a significance level of 0.05. This results show that the LK local search
can benefit from the sub-objectives (f1, f2) on middle-size and large-size TSP
instances.

Based the above experimental study, we can conclude that the proposed
NDE method can truly improve the original version of ILK.

5.4. The Performance of ITS+NDS

In this section we apply the proposed NDS method to the Iterated
Tabu Search (ITS) algorithm [16]. The basic procedure of ITS is shown in
Algorithm 2. The ITS variant that enhanced by the NDS method is named
ITS+NDS, and its procedure is shown in Algorithm 10. In Algorithm 2 and
Algorithm 10, TabuSearch(x) means executing a tabu search process from
x until a pre-defined stopping criteria is met and output the best solution
during the tabu search.
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Figure 14: Excess vs time on 10 middle-size and large-size large TSP instances

39



Table 6: Final excess of ILK, ILK+E and ILK+NDE on 10 middle-size and large-size TSP
instances.
Instance

Mean final excess (standard deviation)
best ρ in ILK+NDE corresponding a

ILK ILK+E ILK+NDE
TSP:vm1748 0.00191(0.00041) − 0.00121(0.00051) = 0.00115(0.00056) 0.4619 2
TSP:u1817 0.00438(0.00061) − 0.00362(0.00103) − 0.00312(0.00102) 0.4009 3
TSP:d2103 0.00416(0.00189) − 0.00365(0.00293) − 0.00204(0.00167) 0.5897 3
TSP:pr2392 0.00070(0.00026) − 0.00074(0.00071) = 0.00059(0.00057) 0.4307 3
TSP:pcb3038 0.00433(0.00049) − 0.00271(0.00084) − 0.00235(0.00073) 0.3534 3
TSP:fnl4461 0.00512(0.00034) − 0.00234(0.00051) − 0.00215(0.00042) 0.0782 2
TSP:pla7397 0.00457(0.00071) − 0.00443(0.00172) − 0.00353(0.00101) 0.4883 1
TSP:rl11849 0.00858(0.00106) − 0.00820(0.00387) − 0.00596(0.00169) 0.4552 3
TSP:usa13509 0.00649(0.00042) − 0.00454(0.00133) − 0.00387(0.00052) 0.5868 2
TSP:d18512 0.00656(0.00022) − 0.00424(0.00060) − 0.00401(0.00031) −0.5003 −1
*If there are multiple best ρ values, the first one is listed. “−” means the final excess achieved by ILK and ILK+E
is significantly worse than that achieved by ILK+NDE based on a Mann-Whitney U-test at the 0.05 significance
level and “=” means the performance is the same.

Algorithm 10: ITS+NDS

1 Decompose f into f1 and f2;
2 x′0 ← random or heuristically generated solution;
3 set xbest ← x′0 and j ← 0;
4 while stopping criterion is not met do

5 xj ← TabuSearch(x′j);

6 if f(xj) < f(xbest) then
7 xbest ← xj;

8 x′j+1 ← NDS(xj | f, f1, f2);
9 if x′j+1 = xj then

10 x′j+1 ← Perturbation(xj);

11 j ← j + 1;

12 return the historical best solution xbest
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In this section, we compare ITS+NDS against ITS on 5 UBQP
instances:{bqp1000.1, bqp2500.1, p3000.1, p4000.1, p5000.1}, which are
same to the UBQP instances in Figure 13. In our experiment, the TS
procedure is based on 1-bit-flip moves. At each move, TS checks the flip
of variables that are not contained in the tabu list, and selects the move
that leads to the best neighboring solution. The flipped variable in the
selected neighboring solution is used to update the tabu list, and is forbidden
to be flipped until a number of K moves have elapsed. Following [58], in
our experiment, K is sampled from the uniform distribution over [n/100 +
1, n/100 + 10], and the TS process stops when the best solution cannot be
improved within 20n moves, where n is the problem size. For the ITS+NDS
implementation, on each UBQP instance, we still use the eight pairs of (f1, f2)
listed in Table 3. The repeated run number for each algorithm is 50 and the
maximum function evaluation number is 1010 for each run. The other settings
are the same to the settings in the experiment of Figure 13 in Section 5.2.

Figure 15 shows the mean excess achieved by ITS and ITS+NDS against
time. Table 7 lists the mean value and standard deviation of the final excess
achieved by ITS and ITS+NDS, in which the excess result of ITS+NDS is
the best excess selected from the eight settings of ρ. From Figure 15 we can
see that on all the test instances, the best anytime performance is achieved
by ILS+NDS. At most setups of ρ, ITS+NDS performs better than ITS.
From Table 7 we can see that in the end the excess achieved by ITS+NDS is
significantly better than that of ITS on one UBQP instance, p3000.1. On the
other UBQP instances, the statistical test suggests that the two algorithms
perform the same. However, Table 7 only considers the final excess values.
From Figure 15 we can see that on bqp1000.1 and p4000.1 most curves of
ITS+NDS terminate early than that of ITS, which means that ITS+NDS
finds the global optima of bqp1000.1 and p4000.1 early than ITS. Hence, we
can state that ITS+NDS performs better than ITS on three UBQP instances
and in the rest two instances they perform the same.

Based the above experimental study, we can conclude that the proposed
NDS method can truly improve the original version of ITS.

6. Conclusions

In this paper, we proposed a new objective decomposition method which
is suitable for a certain subclass of COPs, which we called the sum-of-the-
parts COPs. We gave the formalization of the sum-of-the-parts COP and
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Figure 15: ITS vs. ITS+NDS on 5 UBQP instances

Table 7: Final excess of ITS and ITS+NDS on 5 UBQP instances.

Instance
Mean final excess (standard deviation)

best ρ in ITS+NDS corresponding a
ILS ILS+NDS

UBQP:bqp1000.1 0.00000(0.00000) = 0.00000(0.00000) −0.4162 −15
UBQP:bqp2500.1 0.00005(0.00025) = 0.00002(0.00018) 0.1726 0.5
UBQP:p3000.1 0.00039(0.00044) − 0.00018(0.00039) 0.5328 2
UBQP:p4000.1 0.00000(0.00000) = 0.00000(0.00000) −0.4087 −15
UBQP:p5000.1 0.00019(0.00021) = 0.00014(0.00014) −0.1949 −3
*If there are multiple best ρ values, the first one is listed. “−” means the final excess achieved by
ITS is significantly worse than that achieved by ITS+NDS based on a Mann-Whitney U-test at
the 0.05 significance level and “=” means the performance is the same.
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showed that the TSP and the UBQP belong to this class. The proposed
method decomposes the objective function of a sum-of-the-parts COP into
two sub-objectives by splitting the unit costs following a certain probability
distribution. It was shown that the correlation between the decomposed
sub-objectives can be controlled by the use of the probability distribution.

Based on the non-dominance relationship introduced by the decomposed
sub-objectives, we proposed two new multi-objectivization inspired tech-
niques.

The first was called Non-Dominance Search (NDS). NDS can be
used as an escaping scheme from local optima for metaheuristics with
fixed neighborhood structure. NDS is based on our neighborhood non-
dominance hypothesis which states that the neighborhood of a non-
dominated neighboring solution of a local optimum is more likely to
improve the local optimum. Empirical studies on some selected TSP and
UBQP instances confirm that the hypothesis holds. NDS was combined
within the Iterated Local Search and Iterated Tabu Search. The resultant
metaheuristics are called ILS+NDS and ITS+NDS. Experimental results
on some TSP and UBQP instances showed that ILS+NDS and ITS+NDS
outperform their counterparts in most cases.

The second is called Non-Dominance Exploitation (NDE), which is
applicable for metaheuristics with varied neighborhood structure, such as
the Lin-Kernighan (LK) heuristic for the TSP. NDE is proposed to exploit
promising local optima based on the non-dominance relationship. NDE
was combined with the Iterated Lin-Kernighan algorithm (ILK), called
ILK+NDE. Experimental results on middle-size and large-size TSP instances
showed that ILK+NDE significantly outperform the original ILK and
ILK+E.

In the future, we intend to test the performance of the proposed objective
decomposition method on other sum-of-the-parts COPs.
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