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Abstract

Deep Reinforcement Learning (DRL) has recently obtained considerable atten-

tions. It empowers Reinforcement Learning (RL) with Deep Learning (DL)

techniques to address various difficult tasks. In this paper, a novel approach

called the Genetic Algorithm of Neuron Coverage (GANC) is proposed. It is

motivated for improving the robustness and performance of a DRL network.

The GANC uses Genetic Algorithm (GA) to maximise the Neuron Coverage

(NC) of a DRL network by producing augmented inputs. We apply this method

in the self-driving car applications, where it is crucial to accurately provide a

correct decision for different road tracking views. We evaluate our method on

the SYNTHIA-SEQS-05 databases in four different driving environments. Our

outcomes are very promising - the best driving accuracy reached 97.75% - and

are superior to the state-of-the-art results.

Keywords: Deep Reinforcement Learning, Genetic Algorithm, Neuron

Coverage, Road Tracking

1. Introduction

Deep Reinforcement Learning (DRL) is a type of Machine Learning (ML). It

is essentially a combination between the Reinforcement Learning (RL) concept

and Deep Learning (DL) network [1]. In other words, DL is structured within
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the RL to address Markov Decision Process (MDP) issues [2]. DL network is5

an advanced version of Artificial Neural Networks (ANN). It is currently widely

exploited in different fields such as image processing [3, 4], signal processing [5]

and object tracking [6].

For safety-critical application of autonomous driving, it is extremely impor-

tant to have a robust model or method, as any inappropriate behaviours can10

cause serious risks, damages or even catastrophes [7]. A highly accurate model

may still fail easily - a slight modification in the image (e.g., colour change to a

few pixels) may sometimes cause completely different classification results. For

example, in self-driving cars, if a car “sees” a stop sign, it should recognise it

and stop. But even a small black and white sticker on the sign could “fool” the15

artificial network model and prevent the car from stopping [8].

As a result, when evaluating the quality of a model, we should not only

condier performance, but also robustness. Performance measures the overall

accuracy of a model (accuracy being ration between the number of correctly

classified cases and total number of cases), while the robustness is the ability to20

accept wide range of testing cases.

In this paper, we propose to increase the performance and robustness of a

Deep Reinforcement Learning for Road Tracking (DRL-RT) [6] in different self-

driving car environments. The robustness is enhanced by establishing new input

samples that can correct wrong (or faulty) tracking predictions. Technically, the25

robustness is measured by the neuron coverage (NC) - the ratio of the activated

neurons in a network [9]. The increasing NC in principle implies the increasing

number of activated neurons in a network and it would produce high outcome

values and enhance the performance of the network in general. In short, we

would like to have a highly accurate model which would work well on faulty30

cases.

Genetic Algoritm GA is a method for solving both constrained and uncon-

strained optimisation problems. GA simulates the behaviour of human genes

(selection, crossover and mutation of individual chromosomes) to optimise a

specific fitness function. A fitness function evaluates how close a given solu-35

2



tion is to the optimal solution of the desired problem. GA tries to search the

neighbourhood for the initial solutions by heuristics method to get an optimal

solution for the problem. The crossover and mutation operators guarantee that

one can improve the initial solutions to get a global optimal solution [10, 11, 12].

It is suggested that the GA technique can play an effective role to optimise the40

NC value of the employed DRL network.

To apply the GA to our setting, we make the NC metric to be a fitness

function and try to maximise its value, and then enhance the performance as a

result. In the GA process, the mutation and crossover operations will produce

more training samples as augmented inputs. Those training inputs will identify45

the incorrectly trained test cases and have very high NC value and thus will

increase the robustness of the model. The newly generated training inputs

are used together with the original training set in our proposed road tracking

model. It has been observed that significant enhancements in performance could

be obtained in the testing phase.50

To wrap up, we are presenting the Genetic Algorithm of Neuron Coverage

(GANC) approach which can enhance the performance and robustness of a DRL

network. As a case study, we applied the GANC to a DRL-RT network [6] in

autonomous driving scenarios.

After the introduction, the remaining sections in this paper are organised as55

follows: Section 2 highlights prior studies that are related to our work. Section

3 provides the theoretical background of the GANC. Section 4 illustrates the

results and Section 5 concludes the main observations in this work.

2. Literature Review

Different metrics existed in several studies to measure performance and/or60

robustness of deep networks. We summarised these studies into two categories

- those using NC as (part of) their metrics or those without. In addition, their

criteria of applying the robustness and/or performance are illustrated as briefly

highlighted in Table 1. Moreover, GA strategies are also surveyed this section.
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Table 1: The different definitions of robustness and/or performance in literature work

Reference Performance Criterion Robustness Criterion

Without NC

Sun et al. [13]
Percentage of covered neuron

pairs
Coverage testing and adversarial percentage

Ma et al. [14] Percentage of accuracy

Applying mutation techniques and analysing the

relationships between the testing data and decision

boundary

Bai et al. [15]
Accuracy under various training

times
—

With NC

Pei et al. [9]

Execution time for producing

difference-inducing inputs and

NCs of the produced tests

DeepXplore

Pei et al. [16] Time
Employing various transformation functions, then

retraining the transformed images

Ma et al. [17] — Applying a comprehensive set of coverage criteria

Tian et al. [18] —
Employing various transformation functions, then

retraining the transformed images

Sun et al. [7] — Robustness oracle

2.1. Literature without neuron coverage65

Sun et al. suggested four DL network measurement criteria based on the

Modified Condition/Decision Coverage (MC/DC) [19], these are sign-sign cover,

distance-sign cover, sign-value cover and distance-value cover. A large dataset

was suggested to be used for calculating the percentage of covered neuron pairs

as performance. Whereas, the robustness was measured by the coverage testing70

and adversarial percentage [13].

Ma et al. proposed DeepMutation method for DL network mutation testing.

This work focused on applying different types of mutations on a DL network.

The percentage of accuracy was used to evaluate the performance. Whilst, ap-

plying mutation techniques and analysing the relationships between the testing75

data and decision boundary were utilised to assess the robustness [14].

Bai et al. generated adversarial samples for white-box Deep Q Network

(DQN) in terms of pathfinding training. The authors exploited a DQN to auto-

matically find paths of a robot by searching for an optimal (shortest) path. In

addition, noise obstacles were constructed and tested for the pathfinding. The80

robot could not follow the optimal path as the training efficiency was reduced.
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Only performance was considered here by computing the accuracy under various

training times [15].

2.2. Literature with neuron coverage

Pei et al. established Deepxplore method for automatic whitebox testing.85

The DeepXplore has complicated architecture as multiple DL networks have to

be used. Seeds of inputs were required from the testing samples. Determined

threshold was suggested to detect the active neurons. The performance was

evaluated for the DeepXplore by exploiting two metrics: the execution time for

producing difference-inducing inputs and the NCs of the produced tests. On90

the other hand, the DeepXplore itself was proposed as a robustness method [9].

Similarly, Pei et al. employed fixed threshold to explore the effective DL neu-

rons. In this work a VERIVIS framework was adopted as a blackbox model. The

authors described the ability of determining safety DL properties from various

attackers. This work was focused on a blackbox testing. Time was considered as95

a performance metric. In contrast, the robustness was enhanced by employing

various transformation functions, and then retraining the transformed images

[16].

Ma et al. presented a DeepGauge model for thorough gauging the robust-

ness of DL networks. This method considers two levels of coverage criteria - at100

neuron-level and at layer-level. For the neuron-level coverage criteria, various

coverages were denoted: the k-multisection coverage, the strong neuron activa-

tion coverage and the neuron boundary coverage. For the layer-level coverage

criteria, multiple coverages were defined: the Top-k NC and the Top-k neuron

patterns. Testing samples were considered for all the above criteria. Only the105

robustness was considered in this paper [17].

Tian et al. proposed Deeptest model as an automatic DL network testing

method for autonomous driven cars. In this study it has been illustrated that

increasing NCs would increase the safety-critical of the DL system. DeepTest

investigated many erroneous cases that could lead to series driving cars colli-110

sions. In this paper, only robustness was considered, which can be enhanced by
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applying different types of image transformation functions, then retraining the

resulted transformed images [18]. In this way, different corner cases would be

accepted.

Sun et al. explained Concolic testing for DL systems called DeepConcolic.115

It is capable to collect coverage requirements as inputs with the heuristic execu-

tions. Different types of coverage areas were employed. These are the activation

patterns to determine the activation ReLU nodes, formalising test coverage cri-

teria by exploiting a fragment of Quantified Linear Arithmetic over Rationals

(QLAR) and test coverage metrics to be utilised as a proxy metric for the safety120

confidence. Furthermore, five different specific coverage requirements were ap-

plied. These are the Lipschitz continuity [20], NC [9], MC/DC [19] and neuron

boundary coverage [17]. The DeepConcolic also provided adversarial testing

samples. A robustness oracle was suggested in this work as a defensive method

for checking the robustness [7].125

2.3. Literature with genetic algorithm

Mangano provided fundamentals of the GA and in addition illustrated the

history, theory, application, implementation and future expectations of GAs

[21].

Mishra et al. reviewed another version of the GA known as Multi-Objective130

Genetic Algorithm (MOGA). The MOGA concentrates on employing more than

one fitness function - at least two fitness functions are required. The GA here

can deal with more than a single search space at a time [22].

Vuolio et al. explained a GA based model selection for the recognition

of carbide-based hot metal desulfurisation. A single hidden layer feedforward135

neural network was utilised. A simultaneous variable optimisation and selection

for the number hidden neurons was applied in the GA [23].

Po lap suggested an adaptive method for the combinations between a cascade

of the convolutional classifiers and GA. Analyses of microscopy images were

focused. GA was exploited as an indicator for the classifier selection of a neural140

network [24].
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Leonori et al. illustrated optimization strategies by GAs. Microgrid en-

ergy management systems were studied. In fact, a microgrid fuzzy logic is

approached. A combination between the GA and Fuzzy Inference System (FIS)

was investigated in terms of optimization [25].145

2.4. Contribution of this paper

From the literature review, it can be seen that there is no study yet on the

DRL that can measure the robustness and then enhance the performance. In

this paper, a novel approach termed the GANC is designed based on the GA

and NC of a DRL. The proposed GANC optimises a robustness measurement150

called the NC by applying the GA. The outcomes are generating new augmented

input images, which are used to enhance the DRL performances of faulty input

samples.

3. Theoretical Background

First of all, a graphical abstract that can clearly describe the general sug-155

gested structure of this work is given in Fig. 1. In this section we introduce the

theoretical background of the DRL, NC and GA.

 

Switch 
Input 
States 

1st  
DRL 

Rewards  Switch 

2nd  
DRL 

New 
States 

GANC 
Samples 

Figure 1: A graphical abstract that can clearly describe the general suggested structure of

this work
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3.1. Deep Reinforcement Learning

The DRL is a combination between the RL and DL network. Principally,

there are two essential types of RL methods - policy search and value function.

The first type refers to methods that consider searching for the optimal policy

π∗. The second type refers to methods that consider investigating the optimal

value-state function V ∗(s) [2]. In this work, the employed DRL networks are

based on the policy search. According to the MDP concept, the DRL collects

input images as current states St and by taking the rewards R, it generates

actions A which predict new states St+1. Consequently, the new states can be

transitioned again in the inputs as current states.

The essential equation of the policy search is demonstrated as:

π∗ = argmax
π

E[R | π] (1)

where π is the policy and E is the expected return value [26].

3.2. Neuron Coverage160

ANNs compose of small units called neurons or nodes [27]. Each neuron can

be considered as an artificial node. It analyses input values and produces an

output decision [28].

In a neuron network, given a threshold thr and a testing set T , if the output

of a neuron for any determined input is greater than thr, the neuron is considered165

as activated, and vice versa. Formally, a neuron n is activated, if out(n,x) > thr

for any testing input x ∈ T , where out(n,x) is a function that returns the

outcome value of a neuron n given the input x.

Intuitively, the NC is defined as the ratio between the number of activated

neurons and the number of all employed neurons [18]. Specifically,

NCov(T ) =
|{n ∈ N | ∀x ∈ T. out(n,x) > thr}|

|N |
(2)

where N = {n1, n2, ...} is a set of neurons in the DL network and NCov(T )

represents the NC for the given set of test inputs T = {x1,x2, ...} [9]. Conven-170

tionally, | · | stands for the cardinality of a set, i.e., the number of members in
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the set and the boldface x means it is a vector. This function will be used later

as the fitness function for the GA.

We will use the NC to measure robustness. By maximising the NC, both

robustness and performance can be enhanced. This type of work has not been175

studied before for DRL networks and we will consider the DL network as a

closest network type.

A DL network would be more robust if the overall network is more activated.

The performance or the overall accuracy of a DL network can be enhanced

by increasing the NC [18]. Similar method of employing a fixed threshold to180

explore the effective DL network neurons is used in [16]. We will explore how

to maximise the NC using GAs in the following section.

3.3. NC as a fitness function for the GA

GA is an intelligent optimisation technique that simulates human gene be-

haviours and seeks the best solution for a certain fitness function. GA first185

selects two sets of numbers (mimicking personal chromosomes) called genera-

tions and considers them as parents. It then performs operations of crossover

and/or mutation, with the generated coded numbers as children. The children

that are closest to the fitness function are selected as the new parents. The

algorithm repeats until it converges.190

One of our contributions is to adapt the definition of NC as Eq. (3) so that

it also takes small embedded values pi,j,k into consideration. These values are

added to the original input vector and make slight change to the original image

view. The new input has higher NC value than the original input as the GA

will maximise the NC of the new input.

NewCov(T, P ) =
|{n ∈ N | ∀x ∈ T,p ∈ P. out(n,x + p) > thr}|

|N |
(3)

where NewCov represents the new coverage value, T , N , thr are as before and

P is the set of embedded inputs. x ∈ T is a test input vector (sample) and

p ∈ P is an embedded vector.
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The GA is to maximise the fitness function of Eq. (3) and get the embedded

pi,j,k values to be added to the DRL inputs.195

3.4. GA to generate more training samples

We have a set of training samples Xtrain = {x1train, x2train, ..., xntrain} and a

set of testing data samples Xtest = {x1test, x2test, ..., xmtest} to begin with. It is

worth mentioning that the desired output values can easily be collected from

the original training and testing information.200

After training the DRL, the testing data are evaluated. We call it a faulted

testing sample if the predicted output is different from the desired output.

Faulted testing samples are crucial as they pick out the weakness of the ex-

isting training samples and model. To enhance a DRL’s performance, we have

to focus on the faulted test samples, as the testing faults are mainly caused by205

the lack of representation in the training set.

In this paper, we will use the GA to generate augmented training samples

that can correct faulty testing outcomes. Thus, a relationship between origi-

nal training samples and faulted testing cases is required in order to produce

more effective training vectors. Some training samples could not enforce a DL210

network to obtain desired testing outputs. In other words, there is a potential

relationship between the failed training samples and their desired testing out-

puts. We first need to detect this relationship and determine the failed training

inputs, then, we need to establish other training vectors that can effectively

enforce the DL network during the testing phase.215

We call training samples effective if without these samples the model would

make wrong predicted outputs in the testing phase. Those new effective training

samples add diversity to the model and decrease the generalisation error.

In [29], Zhang et al. defined the “similarity” between training data set and

and a testing sample by the following distance metric.220

D(xjtest,Xtrain) :=
1

k

k∑
i=1

∥∥∥h(xjtest)− h(x
πj(i)
train)

∥∥∥ (4)
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where k represents the k-nearest neighbour, xjtest is the j-th testing data, ||.||p is

the p-norm, h(x) is the employed DL network and πj : [n]→ [n] is a permutation

that {πj(1), πj(2), ..., πj(n)} is an ascending ordering of training samples based

on the Minkowski norms distance between a training data sample and the j-th

testing data sample in the `p space [29].225

This inspires the idea of investigating the relationships between faulted test-

ing inputs and their nearest training inputs which have same targets or desired

outputs. We further narrow down the relationship between faulted testing in-

puts and their nearest training inputs if they have the same outputs. As a

result, we modified Eq. (4), by adding a condition that the nearest training and

testing samples have the same targeted values as shown below:

D(xjtest,Xtrain) := {1

k

k∑
i=1

∥∥∥h(xjtest)− h(x
πj(i)
train)

∥∥∥ | xjtestand xπj

train ⇒ tj} (5)

where tj represents the target of the faulted j-th testing.

It is important to consider such distance to assign nearest training vectors

to the testing inputs that caused faulted outcomes. These training vectors are

then modified in order to improve the accuracy of overall system.

3.5. How GA works in our setting230

In our work, the GA is adapted to find new training inputs by searching

for embedded input values that can maximise the NC of the network. Thus,

we choose gene (or chromosomes) size to be the number of input training sam-

ples. As each chromosome is a combination between a known training sample

and additional embedded values, the embedded values are initialized by random235

numbers of zeros and ones. Then, the GA algorithm iterates until it converges

to the optimum, that is, augmented input sample is produced. All new input

chromosomes are assessed by the NC fitness function. The results are ranked

from highest to lowest NC fitness function values. We select the two input chro-

mosomes that have the highest NC values to be parents, as those two chromo-240

somes are closer to the optimum solution than others. Consequently, crossover
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and mutation processes can be implemented in each iteration. Following the be-

haviour of human genes, the probability of implementing the crossover process

is high, whilst the probability of performing the mutation process is low. Scatter

crossover method is applied between the two chromosome parents, and random245

binary numbers are generated to determine the genes exchanging locations. An

example of the employed scatter crossover is given in Fig. 2.

 

 

 

 

 

 

21 73 98 67 90 

223 54 49 3 105 

165 30 47 107 211 

251 140 233 209 210 

254 40 6 85 77 

 

71 73 98 203 104 

125 176 31 59 200 

43 56 88 107 211 

65 109 233 46 210 

12 11 6 234 249 

 

71 55 60 203 104 

125 176 31 59 200 

43 56 88 98 140 

65 109 13 46 100 

12 11 22 234 249 

 

21 55 60 67 90 

223 54 49 3 105 

165 30 47 98 140 

251 140 13 209 100 

254 40 22 85 77 

 

0 1 1 0 0 
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0 0 0 1 1 

0 0 1 0 1 

0 0 1 0 0 

 

Parent 1 

Parent 2 

Child 1 

Child 2 

Scatter mask 

Crossover Process 

Figure 2: An example of the employed scatter crossover method, where two parent chro-

mosomes exchanging their values according to a scatter mask and producing two offspring

children

Fundamentally, the two parent chromosomes are exchanging their values ac-

cording to a scatter mask of random binary numbers. That is, first chromosome

child is produced from positioning Parent 1’s values in the locations of logic ‘1’250

and Parent 2’s values in the locations of logic ‘0’. Similarly, the second chro-

mosome child is produced from positioning Parent 2’s values in the locations

of logic ‘1’ and Parent 1’s values in the locations of logic ‘0’. This process is

repeated with different scatter masks to establish another offspring population

of children.255

Uniform mutation process is also performed by establishing a mask of ran-

dom binary numbers. Because the first parent chromosome is closer to the goal
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than the second chromosome, the mutation process is applied to the second par-

ent chromosome to enhance its outcome. An example of the employed uniform

mutation is given in Fig. 3.

 

 

 

 

 

 

Mutation Process 

Parent 2 Child 2 

1 112 97 194 9 

47 60 111 1 176 

186 68 166 160 40 

29 120 161 82 139 

53 177 101 118 163 

 

0 112 97 194 9 

47 60 111 0 176 

186 68 166 160 40 

29 120 161 82 139 

53 177 100 118 163 

 

1 0 0 0 0 

0 0 0 1 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 1 0 0 

 Mutation mask 

Figure 3: An example of the employed uniform mutation method, where the second parent

chromosome adjusting some values according to a mask of random numbers and producing a

new chromosome child

260

Principally, Parent 2 adjusts some of its values according to the random

binary mutation mask. The logical ‘1’ assigned locations in a mutation mask

refers the values that have corresponding positions in Parent 2. These values

are slightly adjusted, increased by 1, as these adjustment in pixel values may

increase the number of activated neurons and then optimise the NC function.265

The generated chromosome children are evaluated for the fitness function

again. Repeatedly, the full process of selecting new parents, implementing

crossover between determined chromosomes and performing mutations for the

second parents is iterated to obtain the maximum NC function value and collect

new input sample(s).270

3.6. The GANC Algorithm

In this work, the GANC algorithm is adopted. The visualization of the

algorithm is shown in Fig. 4. A pseudo code of overall GANC process can be

expressed as given in Algorithm 1.

The first round starts with the train samples from which the first DRL275

(1st DRL or DRL1) is derived. It then evaluating the testing samples and

compares the output results with the desired targets. Subsequently, the fault
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Figure 4: The visualization of the GANC algorithm

Algorithm 1 : The GANC Process

Round 1:

1. Train DRL1 from the training samples Xtrain

2. Evaluate DRL1 by the testing samples Xtest

3. Identify the faulted samples Xfault according to [29]:

D(xjtest,Xtrain) := {1

k

k∑
i=1

∥∥∥h(xjtest)− h(x
πj(i)
train)

∥∥∥ | xjtest and xπj

train ⇒ tj}

4. Apply the GA to produce new inputs Xnew for the faulted samples by

optimising the NC function:

NewCov(T, P ) :=
|{n ∈ N | ∀x ∈ T,p ∈ P. out(n,x + p) > thr}|

|N |

Round 2:

5. Train DRL2 for the newly generated inputs Xnew

6. Re-evaluate Xfault with DRL2

14



tested inputs are identified and their nearest training samples with the same

targets are found. The algorithm then applies the GA approach to generate

new input (augmented) samples.280

The second round starts by training a second DRL by the newly generated

(augmented) inputs for only the faulted cases. It re-evaluates the faulted tested

samples.

The purpose of the second DRL (2nd DRL or DRL2) is to focus on the

faulted cases only. It will enhance the performance of the 1st DRL. This has been285

confirmed by all the experiments in Section IV. In the testing phase the 1st DRL

produces the output according to the provided input. It collects the reward,

which could be positive or negative (for a correct or an incorrect outcome,

respectively). When a negative reward is received, the 2nd DRL will be trained

and carries out the testing process again and tries to produce the correct output.290

Advantages: The GANC approach will construct new training input pat-

terns that can provide maximum NC values in the network. Generally, it has

the following advantages:

1. Maximising the NC of the DRL, which can enhance the performance [18].

2. Generating many different inputs (xi,j,k+pi,j,k) after each time of running295

the GA. It can be guaranteed that the new inputs have higher NC values

than the original inputs. In other words, the new inputs have higher

numbers of activated neurons than the original inputs. Therefore, the

new inputs can be more effective than the original inputs.

3. Training vectors can be used instead of testing vectors, the latter might be300

not available to provide comprehensive measuring. This overcomes previ-

ous studies, where the robustness of a DL network was always measured

based on the testing inputs only.

4. Other than the DRL, this approach can also be applied to any multi-layer

neural network such as Multi-Layer Perceptron (MLP) [30], Convolution305

Neural Network (CNN) [3, 4] and Auto-Encoder Network (AEN) [5].

Principally, the GA can effectively be applied for the proposed GANC ap-
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proach. There are other newest optimisation methods such as the Whale Opti-

mization Algorithm (WOA) [31], Polar Bear Optimization Algorithm (PBOA)

[32] and Red Fox Optimization Algorithm (RFOA) [33]. These methods can310

work well with the small data sizes and they are still be under the development

[31, 32, 33]. The WOA was utilized for producing augmentation inputs as in

the GA. Unfortunately, the WOA failed on generating the new inputs because

of the required big data size. On the other hand, the GA is more flexible and

applicable even with a large-scale size of data.315

3.7. Exploited DRL-RT Model:

In this paper, we used the DRL-RT which was proposed in [6] by the same

authors. This approach can produce road tracking actions by analysing the

road state and getting advantages from the tracking rewards. Fig. 5 shows the

DRL-RT approach.320

 

Input 

State 

Action 

New 
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Conv 
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ReLU
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2 

ReLU
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(Max) 
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Figure 5: The DRL-RT network as approached in [6]. It composes of convolution layers, two

ReLU layers, a maxpooling layer, a fully connected layer, a regression layer and an action or

classification layer

The theoretical concepts of the main analysis layers (convolution, ReLU,

pooling and fully connected) in the DRL-RT network were stated in [34].

In the first and third layers, the collected information will be converted to

feature maps. The feature map is defined as a convoluted 2D image with a

kernel of weights. The following general equation represents the operations in a
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convolution layer:

zu,v,cl = Bcl +

kl
h∑

i=−kl
h

kl
w∑

j=−kl
w

Cl−1∑
cl−1=1

W cl

i+kl
h
,j+kl

w,cl−1zu+i,v+j,cl−1 (6)

where zu,v,cl is a convolution layer outcome, (u, v) is the assigned pixel, cl is

the channel number of the convolution layer, W cl

i,j,cl−1 is the components of the

kernel weights, Bcl is the channel bias of the convolution layer, klh and klw are325

respectively the height and width of the kernel weights of the convolution layer,

C is the number of channels and it is here equal to 3 as we are using three

channels of coloured images, l−1 is the previous layer, and l is the current layer

(the convolution layer) [35].

A ReLU activation function is applied in the second and fourth layers. Equa-

tion (7) can represent the ReLU function:

ou,v,cl = f(zu,v,cl) = max(0, zu,v,cl) (7)

where ou,v,cl is a ReLU layer outcome and max is the maximum operation [36].330

A pooling layer is used in the fifth part of the DRL-RT. In general, the

pooling layer can be applied according to the following equation:

qal,bl,c = max
0≤a<ph,0≤b<pw

oal×ph+a, bl×pw+b, c (8)

where qal,bl,c is a pooling layer outcome, 0 ≤ al < plh, plh is the height of the

resulting feature maps, 0 ≤ bl < plw, plw is the width of the resulting feature

maps, 0 ≤ c < Cl = Cl−1, ph and pw are respectively the width and height of

the feature map sub-areas that require pooling [37].

Subsequently, the fully connected layer is used to match between the de-

signed number of subjects and the data of the pooling layer. Equation (10)

demonstrates the fully connected layer processes:

gr =
ml−1

1∑
a=1

ml−1
2∑

b=1

ml−1
3∑

c=1

W l
a,b,c,r(Qc)a,b , ∀1 ≤ r ≤ ml (9)

where gr is a fully connected layer outcome, ml−1
1 and ml−1

2 are the width and335

height of a feature map in the previous layer (the pooling layer) respectively,

17



ml−1
3 is the number of produced feature maps in the pooling layer, W l

a,b,c,r is

the connection weights between the fully connected layer and the pooling layer,

Qc are the pooling layer outputs, and ml is the number of designed subjects

[38].340

The computations of the regression layer in the suggested DRL-RT network

are based on the Mean Squared Error (MSE). The main MSE equation is illus-

trated as:

MSE =
1

n

n∑
r=1

(tr − gr)2 (10)

where n is the number of computed values and t is the desired output values

[39]. If the regression output values close to the desired code values, positive

rewards are produced. Otherwise, negative rewards are generated.

Finally, the classification layer translates the regression information into ac-

tions by converting the obtained values into their assigned classes.345

4. Results

4.1. General Parameters:

Four databases from SYNTHIA [40] are used. The selected databases are

constructed under different environment conditions: (1) spring, (2) fog, (3) rain

and (4) heavy-rain. Moreover, their segmented images, which are provided350

by the same database, are found to be useful for manually determining the

appropriate code of each track.

The input of the DRL-RT network is an image of a car facing view, and

it is considered as a current state. The input image size has been prepared as

254×427×3 pixels. Then, the next layers are arranged as follows: a convolution355

layer of 5 filters with a filter size of 10× 10 pixels, a ReLU layer, a convolution

layer of 5 filters with a filter size of 5 × 5 pixels, a ReLU layer, a maximum

pooling layer of a filter size equal to 3× 3 pixels with a stride of 3 pixels, a fully

connected layer, a regression layer and a classification layer [6]. In the regression

layer, a series of directional road tracking codes are generated. Successful codes360

in this layer produce positive rewards, whereas, unsuccessful codes generate
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negative rewards. That is, the correct tracking is considered as (+1) and the

incorrect tracking is considered as (1). Correct and incorrect tracks are specified

by comparing the regression layer outputs with the desired tracking codes as

illustrated in [6]. The network is propagated, forwarded and backwarded the365

information for updating the network weights, during the training phase till

obtaining as many positive rewards as possible. Given the codes in the regression

layer, it is the classification layer’s task to generate a new action. The employed

DRL-RT network is based on the policy search as highlighted in [6].

4.2. Practical Experiments:370

Following [6], the number of employed frames in each environments are: 264,

284, 268 and 248 images for the environments of spring, fog, rain and heavy-rain,

respectively. Two scenarios were considered in [6]:

(1) Exploiting the four environments altogether. The frames are randomly

partitioned to the 2/3 of all the frames for training, and the remaining375

1/3 frames were used for testing.

(2) Separately training and testing each environment, where the odd-indexed

images are utilised for the training phase and the even-indexed images are

utilised for the testing phase.

The number of training steps can be computed from the number of targets,380

which refer to the positive rewards. To clarify, the number of training steps in

the 1st DRL and 2nd DRL are equal to the number of their targets, where these

targets are already lead to the positive rewards of the new RL states. Achieving

all targets in the training phase mean collecting the highest number of rewards.

The number of training steps in the 1st DRL that are required for collecting385

positive rewards can be considered for the experiment of scenario 1 as 709 steps

and for the experiments of scenario 2 as 132, 142, 134 and 124 steps for the

environments of spring, fog, rain and heavy-rain, respectively. The number of

training steps in the 2nd DRL that are required for collecting positive rewards

can be considered for the experiment of scenario 1 as 1120 steps and for the390
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experiments of scenario 2 as 150, 210, 340 and 270 steps for the environments

of spring, fog, rain and heavy-rain, respectively. In each experiment, trainings

were mainly implemented two times, for the 1st DRL and 2nd DRL, and they

were repeated offline many times until correct actions were provided for road

tracking.395

In training phases, the following training parameters are utilized: Adap-

tive Moment Estimation (ADAM) optimizer [41], mini batch size equal to 128,

squared gradient decay factor (β2) equal to 0.99, gradient decay factor (β1)

equal to 0.9 and learning rate equal to 0.0003.

As mentioned, in the testing phase the original DRL-RT generates its output400

according to the afforded input. It receives the testing rewards. The positive

reward indicates the correct tracking, whilst, the negative reward signifies the

incorrect tracking. The supported DRL carries out the testing process when

negative rewards are collected.

4.3. Prior Results:405

The prior results of testing the original DRL-RT are quite interesting, but

reasonable. The driving accuracy attained its highest value of 93.94% by using

the spring environment database, which is expected, as the spring images are

the clearest. The fog environment database obtained a high driving accuracy

of 93.66%. Although the overall views are blurred, the road tracking can still410

be recognised and decided based on the views, with slightly lower accuracy

than the spring views. As for the rain environment, the accuracy was 89.55%

and this was due to the noise effects of rain drops on image views. Finally, the

inferior driving accuracy of 84.68% was recorded for the heavy-rain environment

database as the amount of rain drops (or noise) significantly increased here.415

4.4. GANC Parameters and NC Results:

Our suggested GANC method is applied to the DRL-RT with the following

specifications:

1. Population size equal to 10.
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2. Gene size is similar to the network input size (254× 427× 3 pixels).420

3. Rank selection.

4. Scatter crossover with the probability Pc < 0.8.

5. Uniform mutation with the probability Pm < 0.3.

6. Number of iterations equal to 20.

GANC parameters are reasonably chosen, in addition of considering the425

limitations of the employed computer which has the following facilities: laptop

of type Hewlett-Packard (HP), processor of type Intel Core i7-2620M, processor

speed of 2.70 GHz and Random Access Memory (RAM) of 8GB RAM. To

illustrate, GANC parameters are selected as follows: increasing the population

size to more than 10 required more memory to be implemented, the gene size430

fixed to the similar network input size of 254×427×3 pixels, the rank selection

was found to be operative as it considers nearest samples in addressing the

fitness function, the scatter crossover with a high probability could provide

the effective implementations (it was even the default type in the employed

software program), the uniform mutation with a low probability could also offer435

the effective execution and appropriate number of iterations was found to be

20 as increasing this number would resulted in further increasing the execution

time.

Uncertain environments with a large-scale number of images (total of 2,184

images) have been considered in Scenario 1 experiments.440

Fig. 6 shows the progress of NCs along the number of iterations for the dif-

ferent databases and experiments in the GANC. In all cases the NC increases

during the GANC implementations, because GANC aims to maximise the NC,

which is the fitness function (Eq. (3)). The results confirm the GANC’s capa-

bility of increasing the NCs.445

This figure also shows that all the NCs started in relatively small values (0.44

- 0.56). As the DRL network has a huge number of neurons, the NC always

stayed as small values even if the number of activated neurons is reasonably big.

Fig. 7 shows an example of a new input image that generated by the GANC
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Figure 6: Examples of the NC progress in the GANC for the: (a) spring, (b) fog, (c) rain and

(d) heavy-rain environment and (e) all environments
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Figure 7: An example of a new input image generated by the GANC method, where the

leftmost one is an original training input image, the middle three are a produced embedded

input image for red, green and blue channel (N.B., images have been adjusted to be clearer),

respectively, and the rightmost one is a resulted new input sample.

method. In this figure, the established embedded values for each coloured chan-450

nel are added to a training frame. Consequently, a new input image is gener-

ated. The new produced images are exploited later to address faulted testing

outcomes.

Moreover, multiple measurements have been applied between the generated

augmented images and their original images. These measurements are the Struc-455

tural SIMilarity (SSIM) Index [42], Mean Absolute Percentage Error (MAPE)

[? ] and Difference Entropy (DE) [43]. The obtained average results are given

in Table 2.

All results in this table yield that the generated augmented images have the

same characteristics of their original images as the recorded average results of460

SSIM, MAPE and DE measurements show small differences between the aug-

mented and original images. The augmented images have slightly changing pixel

values compared to the original images and these values have been produced by

increasing the NC values of the employed network. Increasing the NC values
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Table 2: The average results of multiple measurements between the generated augmented

images and their original images

Measurement Results for Scenario 1
Results for Scenario 2

SPRING FOG RAIN HEAVY-RAIN

SSIM 0.29 0.15 0.45 0.47 0.27

MAPE 0.15 0.26 0.18 0.1 0.13

DE 3.85 3.74 4.37 3.38 3.81

principally means increasing the activated neurons in the network and this can465

lead to enhance its performance.

Fig. 8 shows the relationships between the number of activated and deacti-

vated neurons for different threshold values. The effects of the threshold values

are evaluated for the first convolution layer, first ReLU layer, second convolu-

tion layer, second ReLU layer and maxpooling layer of the DRL-RT. It can be470

argued that using a threshold for determining the activated neurons cannot be

justified as a good basis as explained in [17].
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Figure 8: The relationships between the number of activated and deactivated neurons for

certain threshold values thr that are employed in [17]: (a) thr = 0, (b) thr = 0.2, (c) thr = 0.5

and (d) thr = 0.75

To overcome the confusion of selecting the best threshold and to provide a

good basis for determining the activated neurons, the threshold value has been
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assigned to zero in this work. This makes more sense because the deactivated475

neurons generate zero or negative values and the activated neurons produce

other values. Any positive value more than zero may affect the output decision

of the DL network, while he zeros and negative values are usually be excluded

by the ReLU and Maxpooling layers.

Fig. 8 shows that for the first convolution, ReLU and maxpooling layer480

(C/R/M, for short) of the DRL-RT, the effects of threshold values are very

small. Whereas for the second C/R/M layer, the effects of threshold values are

very obvious. This means the later layers are more sensitive to the number of

activated and deactivated neurons than the earlier layers. It is because that the

earlier layers are mainly doing early processing of filtering and rectifying the485

internal informations. Using a zero threshold value produces reasonable rela-

tionships between the activated and deactivated neurons. On the other hand,

using other threshold values generates bigger numbers of deactivated neurons

than activated neurons and this is not feasible for any DL network.

4.5. Enhanced Performances:490

After applying the proposed GANC to the employed databases, the driving

accuracies have been enhanced in all the applied experiments as given in Fig. 9.

That is, the driving accuracy is increased from 93.94% to 97.73% for the spring

environment, from 93.66% to 95.07% for the fog environment, from 89.55% to

93.28% for the rain environment, from 84.68% to 88.71% for the heavy-rain495

environment and from 95.49% to 97.75% for all the environments. The attained

results are clearly indicating that the GANC approach can successfully enhance

the DRL outcomes.

4.6. Comparisons:

For comparison purposes, recent augmentation suggestions with their em-500

ployed networks have been explored and simulated. The databases of the two

scenarios, which has been explained in the Practical Experiments subsection,
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Figure 9: The results of driving accuracies before and after using the GANC approach

have been applied to the road tracking application by using similar characteris-

tics to the compared augmentation studies. Such interesting results have been

obtained as shown in Table 3.

Table 3: Comparisons with different augmentation methods

Reference Augmentation Method

Accuracy

for

Scenario 1

Accuracy for Scenario 2

SPRING FOG RAIN HEAVY-

RAIN

Wang and Perez (2017) [44]
Augmentation network 14.08% 11.36% 13.38% 11.94% 17.74%

Traditional methods 80.28% 88.64% 89.44% 91.79% 62.90%

Marcus et al. (2017) [45] Augmentor 84.79% 93.94% 93.66% 90.30% 87.10%

Taylor and Nitschke (2017) [46] Cropping 66.20% 75.76% 62.68% 67.91% 63.71%

Lu (2019) [47] Random transformations 21.69% 91.67% 90.14% 83.58% 87.90%

Andriyanov and Andriyanov (2020) [48] Various transformations 81.69% 84.09% 83.80% 81.34% 78.23%

Our Approach GANC 97.75% 97.73% 95.07% 93.28% 88.71%

505

From this table, it can be observed that inferior performances have been

reported for [44] with its suggested augmentation and classification networks.

This is expected as the augmentation network produces augmentation images by

randomly selecting two different samples of inputs from each class. Since, road

tracking images are dependent on training certain views, randomly choosing510

two different views as inputs reduces the accuracy of road tracking decision. On

26



the other hand, using traditional augmentation methods of (shifting, zooming

in/out, rotating, flipping, distorting and shading with a hue) and classification

network that are employed in [44] generates reasonable driving accuracy results.

Similarly, the proposed augmentor method with the CNN in [45] could produce515

reasonable deriving accuracy performances. Because this method probabilisti-

cally employs elastic transforms and rotation process to generate the augmen-

tation images. The cropping augmentation method with the CNN which was

exploited in [46] attained moderate performances. This method works based

on cropping parts of images and this could accordingly affect the road tracking520

processes. The random transformations of (rotation, translation and scaling)

with the DL that are suggested in [47] have reported a bad result for scenario 1

and good results for scenario 2. This is due to the number of employed samples

in scenario 1 and scenario 2. That is, the influence of random transformations

is negatively increased when the number of samples is increased. Various trans-525

formations (such as changing colour and adding noises) with the network that

were utilized in [48] recorded analysable driving performances. That is, the clear

environment of spring attains the best percentage and this result reasonably de-

creases according to the applied noisy environments of fog, rain and heavy-rain.

Also, all environments in Scenario 1 could reach comparable results to spring,530

fog and rain in Scenario 2. Obviously, best results have been benchmarked

for our proposed GANC approach, where highest driving accuracies have been

recorded for all employed databases.

The times of compared augmentation methods are also be considered. As

mentioned, the employed computer has the characteristics of (HP laptop, Intel535

Core i7-2620M processor, 2.70 GHz processor speed and RAM of 8GB). Fur-

thermore, spring environment has been selected as a basis for constructing the

time comparisons. Classical augmentations of traditional methods [44], augmen-

tor [45], cropping [46], random transformations [47] and various transformations

[48] attained around 2.22, 14.80, 5.06, 4.58 and 4.57 seconds, respectively. These540

small time values are expected as they use classical augmentation methods. On

the other hand, the complex augmentations of the augmentation network [44]
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and proposed GANC obtained around 143.85 and 2440.75, respectively. These

high time values are also expected as they use complex augmentation methods

by exploiting DL techniques. This can be considered as the main drawback of545

our GANC approach as it requires observing and collecting the number of active

neurons inside a DRL network for the NC calculations.

Testing demo examples from the four databases are given in Fig. 10.
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Figure 10: Testing demo examples from the four employed environments where: the first row

represents the spring environments, the second, third and fourth row represents the fog, rain,

and heavy-rain environments

5. Conclusion

In this paper, a novel approach named the GANC was presented based on550

the GA, NC and DRL. GANC optimises the NC by establishing embedded

information within the inputs. The new inputs will as a result increase the NC

of a DRL network. Then these inputs were used to enhance the performance

of faulty testing samples. Road tracking for self-driving car applications with

28



different experiments and environments was employed to evaluate the suggested555

approach. The driving accuracies were benchmarked to 93.94%, 93.66%, 84.68%

and 95.49% by using the DRL-RT for the spring, fog, rain, heavy-rain and

all the environments, respectively. The performances have been enhanced to

97.73%, 95.07%, 93.28%, 88.71% and 97.75% after applying the GANC for

the spring, fog, rain, heavy-rain and all the environments, respectively. The560

proposed approach has successfully improved the robustness and performance

of the employed DRL for various environments and experiments.
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