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Abstract

Energy Efficiency is a key concern for future fog-enabled Internet of Things

(IoT). Since Fog Nodes (FNs) are energy-constrained devices, task offloading

techniques must consider the energy consumption of the FNs to maximize the

performance of IoT applications. In this context, accurate energy prediction can

enable the development of intelligent energy-aware task offloading techniques.

In this paper, we present two energy prediction techniques, the first one is based

on the Recursive Least Square (RLS) filter and the second one uses the Artificial

Neural Network (ANN). Both techniques use inputs such as the number of tasks

and size of the tasks to predict the energy consumption at different fog nodes.

Simulation results show that both techniques have a root mean square error of

less than 3%. However, the ANN-based technique shows up to 20% less root

mean square error as compared to the RLS-based technique.

Keywords: Fog computing, Artificial Neural Network, Energy Prediction.

1. Introduction

Electronic devices having the ability to connect with the Internet is prevalent

in the current era. A huge number of devices will be connected to the Internet in

the near future. These devices are monitored, controlled, and accessed via the
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Internet, and thus form an Internet of Things (IoT) network. It has a range of5

applications in areas such as health care, transportation, agriculture, industrial

automation, and security [1, 2, 3, 4].

As the IoT devices are rapidly increasing in number, they are generating a

huge amount of data. To process this large data, nodes with high computational

capacity such as cloud servers are needed [5, 6, 7, 8, 9, 10, 11, 12, 13]. Cloud10

computing can reduce the computation burden on the IoT nodes, however,

the latency of the computation tasks may be increased due to long-distance

transmission of tasks between the IoT devices and the cloud. Since various

applications such as industrial automation require short computation delay to

meet the Quality of Service (QoS) requirement [14].15

A potential solution to the above disadvantage of cloud computing is the

use of a fog computing paradigm where several fog nodes (with relatively less

computational capacity than the cloud) are placed near to the IoT devices [15,

16, 17, 18, 19, 20, 21, 22, 23, 24]. As the tasks can easily be transmitted by

the IoT devices to the nearby fog nodes, task computation time is significantly20

reduced. Moreover, the computational load can be efficiently distributed among

the fog nodes, resulting in a decentralized computation model [25, 26].

Energy is a major challenge in IoT enabled fog computing [27, 28, 29, 30, 31].

As both IoT devices and fog nodes have energy limitations [32], it is critical to

devise techniques that can enhance the energy efficiency of these nodes. At IoT25

nodes, all tasks can not be processed efficiently because of limited computation

capacity and energy constraints. Similarly, the battery of the fog nodes needs

to be managed well so that lifetime of fog nodes can be increased [33].

To improve the energy efficiency of fog nodes, techniques such as energy-

aware task offloading, load balancing, transmit power optimization, etc. are30

used. All these techniques rely on either the real-time energy consumption val-

ues to make decisions or use predicted energy consumption values to develop the

optimal task offloading scheme. Thus, accurate prediction of energy consump-

tion of fog nodes is vital to plan the computational resources. Currently, there

is very little work related to energy prediction in the context of fog networks.35

2



In this paper, we develop two energy prediction techniques for FNs based on

RLS and ANN algorithms respectively. The key idea is to use data such as the

number of tasks and size of tasks to predict the future energy consumption at

different FNs. The major motivation of such a prediction is to develop energy-

aware task offloading algorithms in the future. Simulation results show the40

prediction accuracy of both techniques. Finally, ANN shows a better prediction

performance as compared to the RLS algorithm.

The rest of the paper is organized as follows. Section 2 presents a literature

review related to energy prediction and energy-aware offloading techniques. Sec-

tion 3 presents the system model followed by proposed techniques in Section 4.45

Section 5 presents the simulation results. Finally, conclusions are presented in

Section 6.

2. Related Work

In this section, we provide an overview of energy prediction techniques in

fog computing and other wireless networks. We also provide the recent work50

done related to energy-aware task offloading in fog computing networks.

2.1. Intelligent Energy Predication Techniques

Intelligent energy prediction techniques have been proposed in the litera-

ture related to different electrical and wireless systems such as solar systems,

electrical grids, and wireless sensor networks. Authors in [34] proposed energy55

prediction of different devices for smart homes. Devices send data to the fog

nodes for quick real-time analysis. A novel incremental learning algorithm based

on decision trees is proposed to predict energy. Based on the input data, a de-

cision table is constructed. The algorithm has three parts, the first works on

feature selection, the second selects appropriate rules for decision trees, and the60

last part works on the development of a decision table. Results show increased

accuracy of prediction and reduced time consumption.

In [35], authors considered a wind-powered energy harvesting scenario for

wireless sensor networks. The amount of harvested energy varies with time and
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Table 1: Recent work related to intelligent energy prediction techniques

Scenario Key Idea Results

Fog computing en-

abled Smart homes

[34]

Device energy prediction in smart home

Fog nodes collect and analyse data

Learning algorithm using decision trees

Increased accuracy

Reduced time consumption

Wind harvested en-

ergy based sensor

networks [35]

Wind harvesting for sensor networks

Harvested energy varies with time

Current and past data considered

Energy profile matching

Increased accuracy

Routing in mobile

edge computing

[36]

Routing in mobile edge computing

Low energy nodes can not discover routes

Routing based on link connectivity and energy

Reduced energy consumption

Reduced end-to-end delay

RF harvested en-

ergy [37]

Learning based RF energy prediction

First technique is linear regression based

Second technique is decision tree based

Received power experimentally evaluated

Improved results by regression

availability of sources. The proposed algorithm predicts the energy consumption65

for the future based on current as well as past energy conditions. The algorithm

stores past energy profiles and based on the current energy condition it finds the

most matching profile. Results show increased accuracy of energy prediction.

The work in [36] proposes an efficient routing algorithm for mobile edge com-

puting networks. As energy is consumed in the route discovery process, nodes70

with low energy values do not take part in the route discovery process. The

proposed algorithm performs routing based on the routing link lifetime connec-

tivity and its energy consumption. The algorithm reduces energy consumption

and end-to-end delay.

In [37], the authors propose a machine learning-based RF harvested energy75

prediction algorithm. Two techniques have been proposed for energy prediction.

The first technique is based on a linear regression algorithm whereas the second

technique uses decision trees. Authors experimentally evaluate RF received

power in different scenarios and use it for energy prediction with the help of
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the two learning algorithms. Results show improved prediction accuracy for the80

linear regression algorithm.

Table 2: Recent work related to energy-aware task offloading

Scenario Key Idea Results

Internet of Things

in health care [38]

Health related data offloading

URLLC used for transmission

Multi-armed bandit learning algorithm used

URLLC constraints considered in task offloading

Reduced energy consumption

Reduced delay

D2D based mobile

edge computing

[39]

Task and power allocation optimized

Energy, task delay and mobility considered

Genetic and heuristic scheduling used

Reduced latency

Improved energy consumption

IoT based mobile

edge computing

[40]

Minimize energy to meet delay constraints

Deep reinforcement learning technique used

Selection of best edge node to offload

Computational resource allocation optimized

Reward based on task delay and energy

Improved energy consumption

Reduced latency

Mobile edge com-

puting networks

[41]

multi-level edge computing system considered

offloading based on combinatorial optimization

Tasks partitioned based on component call graphs

Goal is to minimize the complexity of task partition

Reliability by duplicate tasks computed at low speed

Improved reliability

Improved energy consumption

2.2. Energy-Aware Task Offloading

Task offloading is a major application of fog computing. It is vital to consider

energy while making task offloading decisions. Several works in the literature

have developed energy-aware task offloading algorithms. In [38], health-related85

data is offloaded by sensors to the edge nodes. Ultra-Reliable Low Latency

Communications (URLLC) is used for transmitting the tasks from sensors to

the edge nodes. The proposed algorithm uses a multi-armed bandit learning

algorithm for efficient offloading decisions. URLLC constraints are also consid-

ered in task offloading decisions. Results highlight reduced latency and improved90

energy consumption.

The work in [39] considers Device to Device (D2D) communications based

mobile edge computing scenario. The goal of the proposed technique is to
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optimize task allocation and power allocation. Factors such as energy, task

delay, and mobility are considered while making allocation decisions. A genetic95

algorithm and heuristic energy-aware scheduling are used. Results show reduced

latency and improved energy consumption.

In [40], authors aim to minimize the energy consumption of IoT-based mo-

bile edge computing networks while meeting the task delay constraints. The

deep reinforcement learning technique is used to select the best edge node for100

offloading. Furthermore, Computational resource allocation at edge nodes is

also optimized. The reward function proposed in the paper is a utility function

based on task delay and energy. Results show improved energy consumption

and reduced latency.

The work in [41] considers a multi-level edge computing system. The prob-105

lem of task allocation from multiple users to multiple edge nodes is solved using

combinatorial optimization. Tasks are also partitioned and allocated to different

edge servers based on component call graphs. The goal of the proposed tech-

nique is to minimize the complexity of task partition. The proposed algorithms

also improve reliability by using a shadowing scheme where the same copy of110

the task is stored at a nearby edge node and computed at a low speed. Results

show improved reliability and energy consumption.

To cope with the resource limitations of mobile devices, the authors in [42]

proposed a lightweight process migration-based computational offloading frame-

work for IoT-supported mobile edge cloud computing (MECC). To improve115

cognitive ability of edge intelligent industrial IoT, a machine learning-based

framework and methods are proposed in [43]. Although the proposed frame-

work takes into account resource constraints, however, they do not specifically

consider energy prediction aspects of fog networks. To enable device-centric

adaptive data management and offloading, an adaptive execution model for120

mobile data stream mining applications in context of MECC is proposed in

[44]. The proposed model considers multiple factors such as choice of learning

models, learning rates, learning modes, and limited computational resources.

However, it does not make any energy predictions about fog networks.
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2.3. Motivation of our work125

Energy prediction of fog nodes is vital to design robust task offloading and

caching algorithms. As highlighted in Section II-A, there has been very little

work related to energy prediction for fog computing networks. The goal of this

paper is to propose energy prediction techniques for fog nodes and evaluate their

performance in a task offloading scenario.130

The main contributions of this paper are as follows:

• We propose a Recursive Least Square (RLS) based energy prediction tech-

nique for fog nodes that uses time-series data

• We propose a Artificial Neural Network (ANN) based energy prediction

technique for fog nodes that uses the number of tasks and the task size as135

inputs

• We provide detailed energy prediction simulation results for a realistic fog

scenario and show that ANN-based energy prediction outperforms RLS-

based energy prediction.

3. System Model140

An illustration of IoTs based fog enabled network used in this paper is given

in Figure 1. We consider a central controller which is controlling n number of

FNs where n = {1, 2, 3...N}. Each FN assists the IoTs nodes or end-users ineffi-

cient task computation. IoT nodes are connected to the FNs only and the central

controller manages these FNs. Although the FNs have much higher computa-145

tion capacity than the IoT nodes, they still have limited computation capability,

storage capacity, and available power. The central controller performs two ma-

jor tasks, first is to collect network information such as the number of upcoming

task offloading requests and current computation load at each FNs. The second

task performed by the controller is to make efficient decisions about offloading150

and load distribution among the FNs.

7



We present the task offloading, delay, and energy consumption model con-

sidered in this paper in the following subsections.

Figure 1: System Model

3.1. Task offloading Model

The number of tasks offloaded by the users to the FNs for computation is155

denoted by Km and the size of each task in bits is given by lm. Furthermore,

the number of CPU cycles needed to operate or process each task at the fog

node and end-user is given by ηm and ηu. It is assumed that the FNs compute

tasks one by one on First Come First Serve (FCFS) basis. We assume that the

number of requests at FN follows a Poisson distribution [45] with the average160

rate of λ.

3.2. Delay Model

The task delay model incorporates two parts, first is the total computation

delay (for all tasks) at a FNs denoted as dm [46] and second is the queuing
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delay faced by the tasks, denoted as as qm. The queuing delay considers the165

time when the fog node is busy in other task computation. The total delay for

tasks at a FNs, denoted by dFN can be computed as follows:

dFN = dm + qm (1)

where dm is given as:

dm =
lmηm
fm

+
lm

WBm
(2)

Here fm is the CPU frequency of FN, W is the spectrum bandwidth for offload-

ing, and Bm is the spectral efficiency of the established wireless link between the

user and the FN. Moreover, lmηm cycles are needed for the computation of of-170

floaded tasks. Once the tasks are processed by the FN, the result is transmitted

back to the users and this can further increase the total offloading delay.

3.3. Energy Consumption Model

We assume that the total energy consumption to process a task at FNs is

given by Em. We can compute Em as follows [46]:175

Em = ηmlmθm (3)

Here ηm is the computing energy requirement at FNs with CPU cycles, lm is

the task size, and θm is the energy consumed per CPU cycle of FNs.

In this paper, we do not consider the energy required for receiving a task

and energy for transmitting the task output back to the IoT nodes [45].

4. Proposed Energy Prediction Techniques180

In this section, we present the proposed energy prediction techniques based

on RLS Adaptive Filter and ANN.
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4.1. RLS Adaptive Filters

Adoptive RLS is widely used in the area of adaptive Digital Signal Processing

(DSP). The domain adaptive DSP is accelerating rapidly, these filters with little185

variation and remodeling are abundantly used in various real-world applications.

Generally, adaptive filters are used for unspecified conditions and environments

but with the help of finite or infinite impulse response along with their adaptive

coefficients are utilize and these coefficients are varying with time. RLS and

least mean square are the most famous algorithm used in time series prediction.190

RLS is used in this paper for the prediction of energy and delay of task re-

quests at FNs. The coefficients of RLS are adjusted recursively throughout the

process according to input data. It has high computation cost and rapid con-

vergences, the main focus of RLS is to minimize the objective function i.e. sum

of squared error. For efficient exploitation of input data in the non-stationary

environment the weight factor is also introduced which makes certain that min-

imum weight is allocated to earlier error values. For the execution of the RLS

algorithm following equations are used [47] :

RLS filter final output is calculated by Eq. 4

yi−1(i) = wT (i− 1)x(i) (4)

where the wT and xi represents the weights and input of RLS filter respectively.

Furthermore the mean gain of RLS filter is given by Eqs. 5 and 6

u(i) = ψ−1λ (i− 1)x(i) (5)

K(i) =
u(i)

(λ+ xT (i)u(i))
(6)

Calculation of error estimation is performed by using Eq. 7 which is defined as

difference of desired output to output of filter.

ei−1(n) = d(i)− yi−1(i) (7)

Additionally the weights vector of filter is updated by following Eq. 8

w(i) = wT (i− 1) +K(i)ei−1(i) (8)
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and the calculation of inverse matrix performed by Eq. 9

ψ−1λ (i) = λ−1(ψ−1λ (i− 1)−K(i)
[
xT (i)ψ−1λ (i− 1)

]
) (9)

The λ is described as the forgetting factor,whose value is from 0 to 1. Eqs. 4-

9 are applied in adoptive filter to get our desired target.

4.2. ANN based energy prediction

ANN is a commonly used technique in AI that facilitates models to learn how195

to solve complex problems using the available data. ANN consist of a function

signal and an error signal, the function signal is an input that propagates from

several nodes (neurons) to reach the output layer. The error signal emerges as

an output of each node which circulates backward layer by layer [48]. As shown

in Figure 2, the model in ANN is fed with the input parameters. These inputs200

are passed through a different number of hidden layers and in each hidden layer,

output data is the weighted sum of inputs based on some logic. ANN learns the

values of weights using training data. As the amount of training data increases,

the performance of ANN becomes better.

In our proposed energy prediction technique, we use ANN based on two205

inputs as follows:

• Number of tasks at a FN: The first input variable of ANN is the

number of tasks received by the FNs for computation. The reason to take

this as an input variable is that the energy consumed by the FNs is directly

proportional to the number of tasks.210

• Task Size: The second input used for ANN is the task size. As in a fog

network, different number tasks are served by the FNs and each task has a

different size, therefore energy consumed by the FNs also depends on the

task size. As an example, tasks such as web browsing and node position

computation are of less size (require low computation time) as compared215

to the multimedia tasks such as streaming High-Quality videos.
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Figure 2: Structure of ANN

The model has a single output which is energy consumption at an FNs.

Generally, the internal parameters of fog devices such as voltage and processing

frequency of CPU per bit task size are kept constant. However, few works such

as [45, 49] dynamically adapt these parameters for improving the performance220

of fog devices and the overall network.

The internal ANN structure used for energy prediction is a three-layer and

two-input ANN. One of the most important tasks is to find the appropriate

number of neurons in the hidden layers for which our prediction results become

accurate depending on the complexity of the scenario and input data set. The

multiple inputs given to the model are defined as xi and these inputs are mul-

tiplied with weights wij . Here wij represents the weights between node i of the

input layer of the model to the node j in the hidden layer. The bias bj is also

added to acquire net input as given in Eq. 10, which is then provided to the

hidden layer by the Rectified Linear Unit (ReLU) function f(V ) as stated in
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Eq. 11 to get the desired output yj as in Eq. 12 [48, 50].

Vj =

m∑
i=1

xiwij + bj (10)

f(V ) = max(0, a) (11)

yj = f(Vj) (12)

The ReLU function provides an output a, if the input is positive, otherwise,

the output is zero. The nature of the ReLU function is non-linear and it is used

at each layer to get the desired output. The output from the hidden layer is

then passed on to the output layer where we have a k number of neurons.225

Z ′k =

h∑
j=1

yjw
′
jk + b′k (13)

Eq. 13 computes input of k neurons of output layer where b′k is the bias and

w′jk are the weights between j neurons of hidden layer to k neurons of output

layer. The output Zk is given by passing through the activation function by

feed-forward (FF) propagation.

Zk = f(Z ′k) (14)

After calculating the output of model Zk, it is then compared to the target

output Tk. ek is calculated for all targets and measures outputs until the values

of error are reduced to the desired value [50].

ek =
1

2

K∑
k=1

(Tk − Zk) (15)

After finding ek, using Eq. 15, the gradient error at the output layer is

specified by Eq. 16. Furthermore, we also used the Backpropagation (BP)

algorithm with the learning rate η as well as momentum α as given in Eq. 17. η

and α indicate the stability of the overall network. If we change η to a smaller
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value, the network becomes stable and convergence is slow. On the other hand,230

for larger η, the system becomes unstable with faster convergence [48].

δk = (Tk − Zk)f ′(Z ′k) (16)

w′jk(T + 1) = w′jk(T ) + ηδkyj + α
(
w′jk(T )w′jk(T − 1)

)
(17)

Equations given in Eqs. 18a and 18b are used for computation of updated

weights and biases from hidden layer to output layer for BP in Eq. 17 as well

as the calculation of hidden layer gradient error for Eq. 19 [50].

∆w′jk = ηδkyj (18a)

∆b′k = ηδk (18b)

δj =

K∑
k=1

δkw
′
jkf
′(Z ′k) (19)

wij and bj are updated for input to hidden layer with the help of following

Eqs. 20a and 20b. So it is deduced that the BP Eq. 17 is a generalized form,

which is used for updating the input to the hidden layer and hidden to output

layer weights and bias.

∆wij = ηδjxi (20a)

∆bj = ηδj (20b)

The proposed algorithm summarizes the steps which are followed by us.

After initialization of training samples and testing samples. We set the number

of testing and training samples in the overall data. In the third step, random

initialization of weights and biases is done after that in the fourth step number235

of epochs are selected. The algorithm consists of two portions FF and BP, the

FF pass is performed by using Eqs. 10 - 14. BP pass is performed by Eq. 17

and weights and baises are updated with the help of Eqs. 18a - 20b. This whole

process from steps 5-7 will be repeated until error ek converges.
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Algorithm 1: Proposed ANN based energy prediction algorithm

Input: Training Data, weights, biases

1 Initialization of Training and Testing data.

2 Initialization of random weights and biases.

3 while ek converges to desired value do

4 Set number of epochs

5 Ouput Computation using FF given by Eqs. 10 - 14.

6 Calculation of ek with the help of Eq.15.

7 Implementation of BP Eq. 17 using Eqs. 18a - 20b.

8 end

9 Testing of training ANN on given data

5. Results and Discussion240

5.1. Simulation Parameters

The input parameters as explained in Section 4.2 are the number of tasks

and size of tasks given on a particular time slot t = 1, 2, 3.... ki i.e. number of

tasks is following the Poisson distribution with an average rate of λ, we have

assumed that an FNs at a particular interval can serve (50-100) requests. To245

make a fog environment as realistic as possible, the task size is taken as the

sum of individual requests per time slot. For instance, at a particular slot

t = 1 there could be a possibility that an FNs can serve tasks with a different

variation like fewer tasks having larger size or excess of requests with smaller

size or combination of both. Therefore the task size assumed here is in the range250

of (0.5Mb - 16Mb).

The energy consumption Em at FNs depends on lm task size, ηm CPU cycles

and energy consumption per CPU cycle θm. These internal parameters values

have different ranges, ηm is ranging from (200-2000) cycle/bit and value of θm is

taken as (10−10) J/cycle. Noticing the smaller values of the internal parameters255

the energy consumption is measured in mJ . Before moving forward to perfor-

mance analysis of the proposed algorithm, we define the different evaluation

15



procedures applied [50]. n is the total number of observations and Xi and X ′i

are actual and predicted data respectively.

RMSE =

√√√√ 1

n

n∑
i=1

(Xi −X ′i)2 (21)

MAPE =
1

n

n∑
i=1

|Xi −X ′i|
Xi

× 100 (22)

MABE =

n∑
i=1

|Xi −X ′i|
n

(23)

R2 = 1−
∑n
i=1 (Xi −X ′i)2∑n

i=1Xi
(24)

260

The first evaluation approach used is Root mean square error (RMSE), also

called statistical error, where the value of RMSE is positive all the time and

zero for an ideal case. Next is the mean absolute percentage error (MAPE)

which is used for measuring the accuracy of the model and a model will be265

considered highly accurate with a minimum MAPE value. Mean absolute bias

error (MABE) another standard employed for checking the accuracy of measured

and predicted values. The last is the R2 coefficient of determination, the range

of R2 is from 0-1 and it tells us about how the variation of one variable is related

to the other or goodness of fit.270

5.2. Performance of RLS

The first prediction technique applied is adaptive RLS filter, like explain in

Section 4.2 inputs ( No. of task & task size ) are fed into adoptive RLS, and

prediction graphs are shown in Figures (3-5). The number of testing samples is

on the x-axis whereas the y-axis shows the energy consumption in mJ. We tested275

the RLS filter with 5000 samples and the variation of energy prediction is noted

on one, three, and five seconds respectively. Figure 3 shows the prediction of
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one second ahead and as prediction time is changed from three to five seconds as

depicted in Figures (4 & 5) respectively, the error results are degrading as well.

A point should be added here that the trend of all graphs on 1-1000 sample is280

more disrupted because at the initial point the model’s weights are not fully

trained so as the model becomes more trained with these adoptive weights the

behavior of error results is much better as we can see in from 2000-5000 samples.

Figure 3: 1 Second ahead prediction based on RLS filter

Figure 4: 3 Second ahead prediction based on RLS filter

17



Figure 5: 5 Second ahead prediction based on RLS filter

5.3. Performance of ANN

5.3.1. Training Phase for ANN285

The ANN algorithm implemented here is BP with learning rate and momen-

tum. Comprehensive and detailed simulations are carried out for calculations

of errors as shown in the latter part of this subsection. Selection of a suitable

data set is one of the challenging tasks, along with the internal specifications of

ANN algorithm like appropriate values for learning rate, number of neurons in290

the hidden layers. To do so ANN is applied to the set of changing factors, we

have constructed three sets of models here according to the increasing number

of input samples for training purposes. The Table (3) is associated with 20, 000

samples, the second is 50, 000 and the third has 100, 000 training samples. In

the first table, the accuracy and error scores are generated for learning rates295

0.01, 0.05, and 0.1 and we kept the fixed value of momentum i.e. 0.9 to get

the best results. Another specification is selecting the number of hidden layers

for the best performance of the model, hence the number of hidden layers is

varied for individual learning rates. A similar pattern is followed for the Table 4

and Table 5 of 50, 000 and 100, 000 training samples respectively. By using the300

Eqs. 21 - 24 RMSE, MABE, MAPE, AND R2 is calculated for training of data.

The best model is recognized with the help of the above-mentioned performance

evaluation parameters. .
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Let’s have a discussion on the accuracy and error scores of Model:1 as given in

Table (3), the samples we used for training purposes are 20,000. These samples305

are counter to each learning rate and then each learning rate is subjected to a

different number of hidden layer neurons.

Different error scores are mentioned in sub-section 5.1, as the hidden layers

are differ from [10 5 1],[20 10 1] and [20 20 1] while keeping the learning rate 0.1

and momentum 0.9, the behaviors of RMSE, MABE, MAPE and R2 error310

scores also change. Similarly for learning rates of 0.05 and 0.01 same trend is

followed with minor abnormalities. At last, based on these scores the best model

is ranked, so the rank 1 model is with hidden layer [20 20 1] and learning rate

0.01 and R2 =0.9796 and RMSE = 0.8432 as given in Table (3). The model

just above our first ranked is very closed, given with hidden layer [20 10 1] which315

has R2 = 9800 but when we compare RMSE errors of both model its value is

larger as compared to first ranked model.

Table 3: Model 1 Training error with 20,000 samples

Learning Rate = 0.1 Samples = 20000

Layers RMSE MABE MAPE Rˆ2

[10 5 1] 1.2435 0.8133 13.8944 0.9578

[20 10 1] 1.0324 0.6657 13.5498 0.9709

[20 20 1] 0.8829 0.5415 12.1813 0.9787

Learning Rate = 0.05

Layers RMSE MABE MAPE Rˆ2

[10 5 1] 0.9271 0.5765 12.6247 0.9765

[20 10 1] 0.9294 0.5716 11.9687 0.9764

[20 20 1] 0.8622 0.5129 11.3821 0.9797

Learning Rate = 0.01

Layers RMSE MABE MAPE Rˆ2

[10 5 1] 0.8739 0.5259 12.2456 0.9792

[20 10 1] 0.8548 0.5145 11.4708 0.9800

[20 20 1] 0.8432 0.5123 10.8221 0.9796

Further moving onto Model:2 in the Table (4), here 50,000 training samples

are passed through ANN with different learning rates, and their respective error

results are generated. After analyzing and comparing different error scores we320
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have ranked the second last Model with specifications of learning rate= 0.01,

hidden layers= [20 10 1] and error scores of the model given by R2 = 0.9842

and RMSE = 0.8610 is best among all the errors given in Table 4 by 50,000

samples.

Table 4: Model 2 Training error scores with 50,000 samples

Learning Rate = 0.1 Samples = 50000

Layers RMSE MABE MAPE Rˆ2

[10 5 1] 1.0531 0.6886 12.2191 0.9765

[20 10 1] 0.9660 0.5847 10.6278 0.9802

[20 20 1] 0.8611 0.4858 9.6795 0.9842

Learning Rate = 0.05

Layers RMSE MABE MAPE Rˆ2

[10 5 1] 0.9191 0.5577 10.4641 0.9821

[20 10 1] 0.8711 0.4887 8.4690 0.9839

[20 20 1] 0.8649 0.4893 9.1647 0.9841

Learning Rate = 0.01

Layers RMSE MABE MAPE Rˆ2

[10 5 1] 0.8862 0.5205 10.7573 0.9833

[20 10 1] 0.8610 0.4856 9.5153 0.9842

[20 20 1] 0.8826 0.5023 8.8906 0.9835

Table 5 gives a demonstration of the model with 100,000 training samples,325

and on the indication of various values of errors, we select the best one, which

is with [20 10 1] hidden layers, and learning rate 0.01. The values of RMSE=

0.8838 and R2 = 0.9856 score are best among all the other models in 100,000

samples. After the selection of the best individual ranking of models of 20,000,

50,000, and 100,000 respectively. These selected models are then put through330

the testing phase and at the end, the model with 100,000 samples gives us the

most accurate results.

We have selected the hidden layers [10 5 1], [20 10 1], and [20 20 1] while

performing a series of simulations on training data. The same is the case for

learning rates which are adjusted along with momentum values. Every factor335

is important so far in the training phase after the thorough analysis of the

error scores of each table, we concluded that as the number of input samples is

20



Table 5: Model 3 Training error scores with 100,000 samples

Learning Rate = 0.1 Samples = 100000

Layers RMSE MABE MAPE Rˆ2

[10 5 1] 0.9025 0.5114 9.2797 0.9850

[20 10 1] 0.8990 0.4982 8.9407 0.9852

[20 20 1] 0.903 0.5581 13.9615 0.9850

Learning Rate = 0.05

Layers RMSE MABE MAPE Rˆ2

[10 5 1] 0.9012 0.5129 9.8034 0.9851

[20 10 1] 0.8887 0.5024 9.5128 0.9855

[20 20 1] 0.9049 0.5218 9.5265 0.9849

Learning Rate = 0.01

Layers RMSE MABE MAPE Rˆ2

[10 5 1] 0.8948 0.5180 10.9364 0.9853

[20 10 1] 0.8838 0.4842 8.5535 0.9856

[20 20 1] 0.8968 0.5206 10.6453 0.9852

increasing the accuracy score of the model is also improving but with changing

hidden layers and learning rate.

5.3.2. Testing Phase for ANN340

After doing the comprehensive analysis of each training set and selecting

the best model in the training phase, now in the testing phase the best model

is subjected to testing samples. Energy consumption prediction for fog envi-

ronment on a one second, three seconds, and five seconds is performed. One

second ahead energy prediction is given in Figure. 6. On the x-axis, we have345

5000 testing samples and on the y-axis energy in millijoule (mJ). Actual and

ANN-based predicted energy is differentiated by different colors. The behavior

of the graph emphasizes that the model is well trained and upon testing up

to 100,000 samples error results are satisfactory and show a good resemblance

between predicted and actual energy values.350

Now as explained earlier in this section to make the fog environment as real

as possible we have generated the number of requests with Poisson distribution

and along with that size of the task is also generated randomly. Moreover, the
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random inclination of energy is justified by our input data. The prediction on

three seconds and five seconds is in the given Figures. 7 and 8 respectively.355

These prediction graphs follow a similar trend but moving toward a larger pre-

diction time the results are also degrading which is very natural.

Figure 6: 1 Second ahead prediction based on ANN

Figure 7: 3 Second ahead prediction based on ANN

5.4. Comparison between RLS and ANN

A comparison between ANN and RLS is given in Table (6). Accuracy scores

are generated for both techniques for one second, three seconds, and five seconds360

respectively for the same number of samples. For one-second energy prediction,
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Figure 8: 5 Second ahead prediction based on ANN

the accuracy of ANN is better than RLS. Each individual score of ANN (RMSE,

MABE, R2 and MAPE) is better than RLS. Similarly for three seconds and five

seconds prediction accuracy values of both approach increases (in a degrading

manner) but following the same trend as in one-second testing. A major limita-365

tion of RLS is that it only considers time series data for prediction. On the other

hand, ANN uses inputs such as the number of tasks and task size to predict

energy consumption at fog nodes.

Table 6: Comparison of ANN and RLS Techniques

1 Second Prediction 3 Second Prediction 5 Second Prediction

Errors ANN RLS Filter ANN RLS Filter ANN RLS Filter

RMSE 1.2144 1.5331 2.2773 2.5562 2.9593 2.9647

MABE 0.6870 0.9353 1.3758 1.6587 1.8961 1.9921

Rˆ2 0.9752 0.9604 0.9128 0.8901 0.8527 0.8522

MAPE 7.7247 12.1923 20.63 22.4640 25.9989 26.8050

6. Conclusion

In this paper, we present two energy prediction techniques for fog computing-370

based IoT networks. The first technique uses the RLS algorithm to predict the

energy consumption at different fog nodes. The second technique relies on the
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ANN algorithm and uses the number of tasks and size of tasks to train an

optimal learning model. Simulation results show that the ANN-based energy

prediction technique outperforms RLS based technique by 20% in terms of root375

mean square error. In the future, we aim to use the proposed energy prediction

to develop efficient energy-aware task offloading algorithms.
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