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Abstract

In sparse representation problem, there is always interest to re-
duce the solution space by introducing additional constraints. This
can lead to efficient application-specific algorithms. Despite known
advantages of sparsity and non-negativity for image data represen-
tation, limited studies have addressed these characteristics simultane-
ously, due to the challenges involved. In this paper, we propose a novel
inexpensive sparse non-negative reconstruction method. We utilise a
non-negativity penalty term within a convex function while impos-
ing sparsity at the same time. Our method, termed as SnSA (smooth
non-negative sparse approximation) applies a novel thresholding strat-
egy on the sparse coefficients during the minimisation of the proposed
convex function. The main advantage of SnSA algorithm is that hard
zeroing the negative samples which leads to unstable and non-optimal
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sparse solution is avoided. Instead, a differentiable smoothing func-
tion is proposed that allows gradual suppression of negative samples
leading to a sparse non-negative solution. This way, the algorithm is
driven toward a solution with a balance in maximising the sparsity and
minimising the reconstruction error. Our numerical and experimental
results on both synthetic signals and well-established face and hand-
written image databases, indicate higher classification performance of
the proposed method compared to the state-of-the-art techniques.

Keywords— Non-negative sparse representation, Gradient descent, Smooth-
ing function, face recognition, handwritten recognition.

1 Introduction1

Sparse representation problem is one of the most attractive and demanding topics2

in signal processing, image processing, computer vision and pattern classification3

research [1, 2, 3]. It is now explicitly observed that one can represent variety4

of signals/images/patterns with only few non-zero samples using an overcomplete5

matrix, the so-called dictionary. In fact, the input data, e.g. face images, can be6

represented as a linear combination of few (sparse) coefficients with respect to a7

predefined or learned dictionary. This image representation scheme can then be8

used for various purposes from image denoising, to image classification and object9

tracking. There are many different data types in the world with underlying sparse10

structure which make the sparse analysis meaningful.11

Original sparse recovery problem can be defined as follows12

min ‖s‖0 s.t. y = As (1)

where s ∈ Rn is sparse coefficients vector having at most k non-zero elements13

(k � n), A ∈ Rm×n is called dictionary, and y ∈ Rm is the corresponding non-14

sparse-domain vector which can be regarded as input data sample, e.g. face image15

in vectorised form. The dictionary is normally chosen to be overcomplete, i.e.16

m < n. The columns of the dictionary are called atoms. In addition, the term17

‖s‖0 =
∑
s0i is called `0-norm and counts the number of non-zero elements in18

s. It also worth noting that (1) has a unique and exact solution under specific19

conditions on k, m, and structure of dictionary. Depending on the application20

and data of interest, it might be required to impose additional constraint(s) on21

the sparse recovery problem for obtaining desired results. This is when it be-22

comes very important to decide what family of methods to choose in order to23

mitigate the computational and analytical burden of adding new constraint(s) as24
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well as maintaining reconstruction quality. In general, solving (1), which25

is a non-convex problem, is NP-hard. Hence, various approaches have been pro-26

posed to convert it to a feasible problem. Most traditional techniques attempt to27

convexify (1) by replacing `0-norm with `1-norm. The reason is that `1-norm is a28

differentiable function and thus there exist many typical techniques to tackle it.29

However, it normally requires expensive optimisation tools. One of the30

important constraints, widely used in many applications, is non-negativity which is31

of particular interest in applications dealing with non-negative data [4, 5]. In fact,32

since the image pixels are naturally non-negative quantities, they can be used for33

parts-based description of the object of interest in the image. For instance, parts34

of a face image (e.g. eyes, eyebrows, lips) can be represented only by applying35

addition operator on a selection of pixels and hence the non-negativity condition36

is preserved.37

In this paper, we propose a novel approach to solve sparse recovery problem (1)38

with additive non-negative penalty. Motivated by the effectiveness of non-39

negativity constraint in learning parts of objects, particularly in appli-40

cations like face and handwritten recognition [6], we derive and embed41

a mathematical smoothing function to simultaneously exploit sparsity42

and non-negativity. We consider direct minimisation of `0-norm, in-43

stead of `1-norm, to avoid encountering complex optimisation issues.44

To do this, a novel auxiliary function with tunable parameters to con-45

trol smoothness and non-negativity is proposed. The main advantage46

of this function is that it is differentiable and can be directly embedded47

in the optimisation problem. Our proposed approach can find a stable solu-48

tion that avoids rigid weighting function such as those reported in previous works.49

Our sparse reconstruction regime starts by allowing existence of negative50

coefficients but at a high cost. These negative sparse coefficients are gradually51

suppressed by appropriate weight functions to ultimately turn them into52

non-negative (and sparse) components while the reconstruction error53

is minimised simultaneously. In other words, we do not blindly zero-out all54

negative values (unlike traditional techniques), but leave the algorithm to automat-55

ically adjust the reconstructed signal to a non-negative solution. This innovative56

dynamic suppression technique makes a great impact on the reconstructed coef-57

ficients compared to previous works. The mathematical tool we propose for this58

purpose is a smooth differentiable function that forms the proposed cost function.59

Then, a solution based on gradient descent minimisation is proposed. Finally,60

the theoretical contributions achieved in this study are supported by61

presenting a non-negative sparse representation classification utilised in face and62

handwritten image recognition applications.63

The rest of the paper is organised as follows. In section 2, related works and64
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state-of-the-art are reviewed. The proposed method and its associated mathemat-65

ical formulations are described in section 3. Section 4 is devoted to represent the66

numerical experiments and the results. Finally, the paper is concluded in section67

5.68

2 Related works69

One of the well-known sparse recovery methods is called basis pursuit (BP) [7]. In70

BP, the minimisation problem (1) is reformulated to be solved using linear pro-71

gramming. This family of approaches is precise and stable but too complex and72

heavy-run. There has been also reported a family of greedy techniques such as or-73

thogonal matching pursuit (OMP) [8] to solve (1). The main advantages of these74

techniques are simplicity and fast implementation, despite less accuracy compared75

to BP. An alternative family of inexpensive sparse recovery methods, called itera-76

tive shrinkage techniques, has also been proposed in the literature [9, 10]. These77

methods fundamentally use an iterative scheme comprising a multiplication by78

dictionary and its adjoint, and a simple scalar shrinkage step. The shrinkage oper-79

ation, which is a kind of sparsification, sets to zero those elements that fall below80

a threshold and leaves the remaining elements untouched. Among other exist-81

ing methods, Orthogonal Least-Squares (OLS) [11] has drawn attention82

in recent years in several applications. OLS has been proposed for re-83

covery of sparse vectors in both noisy and noiseless scenarios. Unlike84

OMP which performs few linear inversions, OLS performs as many in-85

versions and therefore it is relatively expensive. However, it has shown86

superior performance than OMP as a consequence. Relevance vector87

machine (RVM), as a statistical sparse coding technique, uses Bayesian88

model to obtain the parsimonious solutions for regression and proba-89

bilistic classification [12]. It is also called probabilistic sparse Kernel90

version of support vector machine (SVM) which can be used for sparse91

representation problems and classification.92

Sparsity and non-negativity have been used in areas such as pattern classifica-93

tion [13], particularly for image super-resolution [14], unsupervised feature selec-94

tion [15], spectral clustering [16], and graph matching [17]. Sparse non-negative95

image representation has shown effectiveness in reducing the reconstruction error96

for local features and mitigating the computational cost of sparse coding-based97

image features [18]. There are many applications where transform coefficients98

are encountered to be sparse non-negative, e.g. in spectroscopy, hyperspectral99

imaging, tomography, DNA microarrays, and network monitoring [19, 20, 21].00

This is of significant practical interest in X-ray computed tomography (CT), sin-01
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gle photon emission computed tomography (SPECT), positron emission tomogra-02

phy (PET), and magnetic resonance imaging (MRI). For instance, an accelerated03

proximal-gradient technique for reconstructing non-negative signals being sparse04

in a transform domain from underdetermined measurements has proposed in [22].05

The authors applied `1-norm and non-negativity constraint on the signal and its06

transform coefficients and reported a greater reconstruction performance compared07

to existing works [22]. Given the non-negative nature of sound, automatic music08

transcription using a non-negative sparse algorithm was proposed [23]. Similarly,09

a voice activity detection approach for noisy scenarios has been proposed in [24]10

under the non-negative sparse coding regime.11

Utilising sparsity penalty into the non-negative matrix factorisation (NMF)12

problem has also been extensively studied with many applications from face recog-13

nition, [6, 25, 26] to biomedical engineering [5] and community detection [27]. In14

NMF, the aim is to extract meaningful features from input data matrix by fac-15

torising (approximating) it into two non-negative matrices. The main issue in16

NMF is that it cannot always guarantee sparse and parts-based representation of17

non-negative data. Therefore, enforcing sparsity to the objective function seems18

necessary but challenging. Meanwhile, there are some methods that add extra19

constraints to improve the convergence and speed of NMF [28, 29]. While `0-norm20

induces a natural sparsity measure, most works apply `1-norm constraint due to21

its well-posedness. However, we found one work that applies `0-norm constraint22

for approximate NMF by following an alternating least squares scheme [30, 31].23

Since NMF has not been basically designed for classification problem, it cannot24

be directly suited for this purpose. However, it is encouraging to study how to25

exploit non-negativity and sparsity for classification of non-negative data, e.g. im-26

ages. This idea, which has been rarely explored so far, will be addressed in this27

paper.28

Sparse representation classification (SRC) techniques are among those that29

take advantages of sparsity for classification purposes [32]. Several extensions of30

this family of methods have been presented by adding specific constraints. For31

instance, Yuan et al. proposed a non-negative dictionary based on SRC for ear32

recognition [33]. They attempt to model partial occlusion and design a dictionary33

using Gabor features extracted from ear images. A label orthogonal regularised34

NMF was proposed in [34] for image classification. They combine label consis-35

tency, non-negativity and orthogonality for learning dictionary atoms that are36

discriminative. They evaluate the performance of this technique on digit and face37

databases. In microwave image classification, a method called aspect-aided dy-38

namic non-negative sparse representation was proposed by Zhang et al. [35]. The39

authors attempt to classify active and inactive atoms via establishing a dynamic40

dictionary. Then, they use `1-regularised non-negative sparse representation for41
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final sparse recovery and classification. Several other applications of sparse repre-42

sentations for classification include hyperspectral image classification [36], traffic43

sign classification [37] and plant recognition [38].44

Although direct enforcing of `0-norm into the reconstruction problem is chal-45

lenging, several researchers attempted to find innovative alternatives [30, 39, 40].46

One of the interesting methods of this kind is called smoothed `0 (SL0) where47

`0-norm of a vector is approximated by an exponential smoothing function [39].48

While there are several methods that apply sparsity and smoothness in general49

reconstruction problems [41], very few works have reported its efficacy for non-50

negative problems. Amongst few, Mohammadi et al. added non-negativity penalty51

to SL0, and proposed a method called constrained smoothed L0 (CSL0) [42]. In52

this method, the negative sparse coefficients are severely suppressed by introducing53

some weights against positive ones. The weights are static and cannot change with54

respect to the algorithm progress. In another work, a modification has been pro-55

posed to make orthogonal matching pursuit (OMP) non-negative [43], which was56

later improved in terms of computational complexity [44]. A robust non-negative57

sparse recovery method was proposed in [45] where the authors address recovery58

of non-negative vectors from non-negative compressive measurements. Random59

Bernoulli matrix (with 0/1 values) is considered for this purpose to preserve the60

non-negativity property.61

3 Proposed method62

As stated in previous section, a generic sparse recovery problem can be expressed63

by (1). Here, we add non-negativity penalty to (1) which forms the new cost64

function as follows:65

min ‖s‖0 s.t. y = As, s ≥ 0 (2)

Since `0-norm is not differentiable, minimisation problem (2) cannot be directly66

solved. One traditional solution is to replace `0-norm with `1-norm so that optimisation-67

based techniques, e.g. those based on linear programming, could be used. However,68

as mentioned in previous section, these techniques are computationally expensive69

and researchers are looking for alternatives. Our approach in this paper is70

inspired by SL0 method [39] where a smoothing function was proposed71

to directly minimises the `0-norm in a coarse to fine approach. Their72

proposed function, which symmetrically affects both negative and non-73

negative values, is defined as:74

fσ(s) = 1− exp

(−s2
2σ2

)
(3)
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Figure 1: Sketch of smoothing function fσ(s) with three controller parame-
ters. This function was used in [39] to convert `0-norm into a differentiable
form.

where σ is a scalar parameter to control the degree of smoothness. Fig.75

1 illustrates the shape of this function for three different σ’s. According76

to this figure, as σ decreases the smoothness decreases, and the function77

becomes closer to exact `0-norm. In other words, fσ=0 is equivalent to `0-78

norm problem (1), which is non-convex, and cannot be solved directly.79

The concept of embedding such a smoothing function into the original80

minimisation problem (1) is to relax this dilemma. Hence, taking (3)81

into account, the `0-norm minimisation problem (1) is approximated to:82

min
n∑

i=1

fσ(si) ≈ ‖s‖0 s.t. y = As (4)

which is convex and computationally inexpensive to solve (please refer83

to [39] for details of the minimisation process). While fσ(s) has shown84

to be very effective for solving `0-norm problem, it is not suitable for85

non-negative problems as it does not enforce any non-negative penalty86

(as can be observed from Fig. 1). Here, we design a different function to87

simultaneously apply smoothness and non-negativity, utilisable in (2).88

We aim to propose a differentiable function giving great flexibility to89

optimise the cost function as well as enforcing non-negativity. We start90

by modifying Fig. 1 so that f(·) be boosted for s ≤ 0 while it remains91

unchanged for s > 0. In other words, our desire is to mathematically92

derive a function that can generate proposed curves in Fig. 2. As seen93

from Fig. 2, not only the proposed function incurs a large penalty to94
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Figure 2: Function fα,β(s) behaviour versus different values of s.

negative coefficients but the differentiability should be preserved. To95

do this, we start by reformulating non-negative penalty in (2) using the Lagrange96

method:97

min
∑

i

(|si|+ si)
0 + λ(|si| − si) s.t. y = As, (5)

In order to provide a more precise description of the proposed cost function we98

rewrite it in a different form as follows:99

fα,β(s) =





s2

s2+α
s > 0

0 s = 0

|s|( |s|
β
)p+1

s2+α
s < 0

(6)

where si refers to i-th coefficient of vector s, and the scalar λ is the Lagrange00

multiplier and defines the contribution of negative coefficients penalty to the whole01

cost function. For those coefficients in vector s in (5) that are negative (i.e. si < 0),02

the term λ(|si| − si) turns into 2λ|si|. This means that negative coefficients are03

imposed by a large penalty equal to 2λ. In contrast, if si ≥ 0, then, |si|−si = 0, and04

therefore, no suppression is applied to the positive coefficients. This is desirable,05

as we aim not to impose any penalty rather than sparsity on positive coefficients06

to allow their natural evolution during the reconstruction procedure. However, the07

main challenge is to design a penalty function to simultaneously enforce sparsity08

as well as non-negativity on all coefficients. The term (|si| + si)
0 in (5) has been09
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proposed for this purpose. It merely controls sparsness of positive coefficients and10

does not interfere the non-negativity penalty. If one defines λ =∞ in (5), it turns11

into the non-negative problem (2). However, (|si|+ si)
0 is not differentiable, and12

we cannot use this term directly as a plausible penalty. Instead, we propose13

to add some new terms in form of numerators and a normalisation14

denominator, leading to the following function, which is differentaible15

and can generate our desired penalty function (as sketched in Fig. 2):16

fα,β(s) =
1

2

(|s|+ s)s+ (|s| − s)( |s|β )p+1

s2 + α
(7)

where α, β, and p are positive scalars to control the shape and smoothness of17

this function. Notably, equation (7) presents working principle of the proposed18

penalty and it should be applied to all coefficients si ∈ {s}. Fig. 2, illustrates19

several shapes of fα,β(s) for selected values of α and β. As seen from this figure,20

the proposed function can provide a great flexibility in the amount of penalty that21

can be imposed on negative coefficients, while it does not have any significant22

impact on the positive coefficients.23

As seen in (6), parameter α accounts for defining the sparsity degree. In other24

words, s2

s2+α
is a smoothed version of `0-norm. Moreover, β is equivalent to λ in25

(5). If α tends to zero, then we will have:26

lim
α→0

fα,β(s) =





1 s > 0

0 s = 0

|s|p
βp+1 s < 0

(8)

It is clear from the above equation that if α tends to zero, fα,β(s) would be27

equivalent to `0-norm for positive values. In addition, when β tends to zero, a28

large amount of penalty is applied for negative values. It is important to note that29

parameter p controls the growing rate of the penalty imposing to negative values.30

Now, we apply the defined function fα,β(s) to the vector s and modify the31

optimisation problem (2) to:32

minFα,β(s) = min
∑

i fα,β(si) = (9)

min
∑

i
1
2
(|si|+si)si+(|si|−si)(|si|/β)p+1

s2i+α
s.t. y = As.

In order to solve the above optimisation problem we use the following steps:33

1. Gradient descent algorithm (moving toward opposite direction of ∇Fα,β(s))34

9
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2. Projection onto the constraints; non-negative-sparsity, and feasible set y =35

As.36

These two steps start initially with large values for α and β, and then their values37

are gradually decreased. The initial solution of each step is taken from the result38

of the previous step. This process avoids the procedure to be trapped in local39

minima. On the other hand, small values of α and β in (8) is corresponding to40

(2) and (5). It is important to note that projection onto the three spaces, i.e.41

non-negativity, sparsity and y = As is performed as follows. Values smaller than42

β in the non-negative and sparse domain are set to zero and then the result is43

projected onto the linear domain y = As. In practice, exact equality y = As44

cannot be reachable, instead ‖y −As‖22 ≤ ε is used. In order to impose this45

condition into the proposed cost function, inspired by SL0 method, the projection46

onto the linear space is performed when ‖y −As‖22 ≤ ε does not meet [46]. The47

gradient of Fα,β(s) can be also computed as:48

∇sFα,β(s) = [f ′α,β(si)] ∈ Rm (10)

where f ′ is obtained via (11):

f ′α,β(s) = 0.5((1 + sign(s)s+ (s+ |s|) + (sign(s)− 1)( |s|
β

)p+1 (1

+ (p+1)sign(s)
β

(|s| − s)( |s|
β

)p)(s2 + α)− 2s((|s|+ s)s+ (|s| − s)( |s|
β

)p+1))(s2 + α)−2

49

Table 1 shows the summary of notations and symbols used in this50

paper. The pseudo-code of the proposed method (SnSA) is given in Algorithm51

Table 1: Summary of notations and symbols along with typical se-
lected values.

s ∈ Rn sparse coefficients vector k number of non-zero coefficients

A ∈ Rm×n dictionary matrix n number of sparse coefficients

y ∈ Rm raw input data vector m number of input samples

λ > 0 Lagrange multiplier α > 10−9 smoothness controller scalar

0 < β < 10 penalty controller scalar p = 1 penalty growing rate controller

ρ (0.8 ∼ 1) decreasing factor for α γ = 0.1 non-negative penalty constant

µ = 0.001 Gradient descent step size L = 5 number of iterations

θ = 0.25 estimator’s threshold ε reconstruction error

10
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Algorithm 1 Pseudo-code of the proposed SnSA.

Input: A and y
Initialisation:

1. αmin, ρ (decreasing factor), µ, β0, γ, L, t = 1.

2. ŝ = AT (AAT )−1y

3. α = 2 max |ŝ|

4. β = β0

Output: ŝ
repeat
for i = 1 to L do

(a) Gradient descent: ŝ← ŝ− µ∇sFα,β(ŝ)
(b) Projection:

• if ŝi < β (i = 1, ...m) then ŝi = 0

• if ‖y −As‖22 > ε then
ŝ← ŝ−AT (AAT )−1(Aŝ− y)

end for
α = ρα
β = β0 exp(−γt)
t = t+ 1

until α > αmin

1. During execution of SnSA, β acts as a suppressor of negative si52

coefficients. This can be graphically and mathematically observed by53

referring to Fig. 2 and equation (7), where as β decreases, the shape54

of f(·) is become closer to `0-norm, while preserving only non-negative55

coefficients. We cannot simply zero out negative si coefficients as the56

fidelity approximation, i.e. y ≈ As, would not be met. Instead, we57

aim to gradually reduce β in an iterative manner so that the algorithm58

smoothly converges. To implement this, we vary β using β = β0 exp(−γt)59

in Algorithm 1 to monotonically control the non-negative penalty con-60

tribution. Using this exponential function, β will be large at the initial61

iterations of the algorithm (i.e. small t), but once the iterations pro-62

11
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ceed, it decreases to ultimately gets close to zero. Conceptually, this way,63

the amount of penalty on negative coefficients is increased as the iterations grow.64

4 Experimental results65

In this section, the proposed algorithm is numerically compared with two com-66

mon methods BP [7] and SL0 [39], and their corresponding extended versions,67

i.e. non-negative BP (NNBP) [47] and constrained SL0 (CSL0) [42]. In addition,68

non-negative orthogonal matching pursuit (NNOMP) [43] is included as a greedy69

sparse recovery technique for comparison. Further, two more relevant meth-70

ods, i.e. orthogonal least square (OLS) [11] and Bayesian sparse coding71

known as relevance vector machine (RVM) [12], were included in our72

experiments. Two sets of experiments are conducted in this section. First, syn-73

thetic signals are generated and extensive simulations have been carried out to74

study the performance of the proposed method. Furthermore, two real scenarios,75

i.e., face recognition and handwritten digits recognition, are examined by apply-76

ing the proposed method and related techniques using several well-established77

databases. Finally, a comprehensive comparison and performance evalu-78

ation between the proposed method and several deep learning models79

is provided. All experiments were carried out under the same environmental80

conditions in MATLAB software on a Core(TM)i7-2.6GHz machine with 12GB of81

memory. The parameters for SnSA are empirically selected as follows: β0 = 10,82

ρ = 0.9 γ = 0.1, L = 5, αmin = 10−9, µ = 0.001. Moreover, we set p = 1 in our83

simulations unless specified otherwise.84

4.1 Synthetic data85

In the first experiment, we generated random dictionary ensembles A of size 50×86

150, and applied different reconstruction methods for recovery of sparse vector s87

with k non-zero samples. The experiment was repeated 1000 times (each time88

with a random A and s) for k varying from 1 to 50. The average signal-to-noise-89

ratio (SNR) against k has been illustrated in Fig. 3 with SnSA for p = 1 and90

p = 5, as well as other related methods. It is observed that SnSA outperforms91

other methods especially for severe conditions, i.e. 15 � k � 30. Robustness of92

SnSA against different selection of p is evident from this figure. The second best93

performance belongs to CSL0 yet slightly weaker than SnSA.94

Next, the phase-transition diagrams are evaluated as a very important and well-95

established performance measure for sparse recovery techniques [48, 49]. These96

diagrams are generated for 500 trials for signal length n = 128 while varying97
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Figure 3: Reconstruction performance of different methods with random
dictionary of size 50 × 100 for SnSA with both p = 1 and p = 5 and other
relevant methods. Graphs with markers are associated to relevant methods.

measurement number m from 1 to n/2 and sparsity level k from 1 to n/4. The98

success rate was computed by giving a credit to the trials leading to reconstruction99

error less than 10−5. The average success rates of all 500 independent trials for00

each point on the grid are sketched in Fig. 4. Darker areas correspond to higher01

success score and vice versa. The overlaid curves show the estimate at which the02

reconstruction is successful with probability 1 − θ. θ is the estimator’s threshold03

set to θ = 0.25 according to [50]. Fig. 5 illustrates the reconstruction performance04

among various relevant methods. It is seen from this figure that the performance05

of NNBP, BP, CSL0 and SL0 is comparable with that of SnSA when m and k are06

small. However, SnSA introduces higher success rate among all other techniques07

for larger m and k. This shows greater robustness of the proposed method.08

Another aspect of advantage of SnSA is revealed by considering its perfor-09

mance against number of iterations. In this experiment, we conducted 100 trials10

of random ensembles with A of size 50 × 150 and k = 10. The reconstruction11

errors were then recorded against evolution of iterations. These results are plotted12

in Fig. 6 for three methods, i.e. SL0, CSL0, and SnSA, where all have iterative13

nature. It is seen from this figure that SnSA reaches to the minimum faster than14

other methods. Moreover, MSE of SnSA at iteration number 40 is about 0.0008615

which is much less than that for SL0 and CSL0. It means that SnSA has a better16

convergence rate compared to other techniques.17
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(c) (d)

(e) (f)

Figure 4: Phase transitions for (a) BP, (b) NNBP, (c) NNOMP, (d) SL0, (e)
CSL0, and (f) SnSA. Darker areas correspond to higher success rate.

4.2 Real data18

4.2.1 Face recognition19

Four different face databases are considered here for evaluation of the proposed20

method in real scenarios. Some sample images of each database are given in Fig.21

7. A brief description of these databases are:22

• Yale: it contains 165 GIF images of 15 subjects of size 64 × 64. There are23

11 images per subject, one for each of the following facial expressions or24

configurations: center-light, with glasses, happy, left-light, without glasses,25

14
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Figure 6: Average MSEs of different methods for 100 trials. (Dictionary Size:
50× 100, k = 10, p = 1).

normal, right-light, sad, sleepy, surprised, and wink [51].26

• ORL: it contains 400 images of size 48× 48, 10 different images per person27

for 40 subjects. For some individuals, the images were acquired at different28

times. The facial expressions in these images are different, e.g. open or29

closed eyes and smiling or non-smiling. Other facial details such as glasses30

or no glasses also exist [52].31

15
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Table 2: Comparison of classification accuracy (%) for different methods
using four face databases.

YALE CK+ AR ORL

BP 85.32 84.76 87.10 94.37

NNBP 86.67 88.18 89.54 95.63

NNOMP 85.33 80.00 82.29 93.13

OLS 88.00 85.00 86.57 95.75

RVM 81.33 83.29 85.43 95.63

SL0 86.00 87.29 86.86 94.82

CSL0 86.67 93.33 89.71 95.75

SnSA 91.33 96.67 92.00 96.88

• CK+: it consists of 321 emotion sequences with labels (angry, contempt,32

disgust, fear, happiness, sadness, surprise). Images are of size 128×128 [53].33

• AR: it consists of 4000 images corresponding to 126 people’s faces (70 men34

and 56 women). The images size is 165 × 120. Images feature frontal view35

faces with different facial expressions, illumination conditions, and occlusions36

(sun glasses and scarf) [54]. Here a subset of 50 males and 50 females are37

used.38

For all four databases sparse representation classification (SRC) technique was39

used [32]. Following previous works, we assume for CK+ database that the infor-40

mation of neutral face is provided and subtract from all images both training and41

testing. Also, the preprocessings such as removing background have been applied42

to input images wherever needed prior applying the algorithms.43

The average accuracies of classification of different facial expressions on four44

databases are given in Table 2. As seen from Table 2, SnSA outperforms with45

all databases. Inspection of this table confirms the overall improved performance46

achieved using the proposed method. In addition, non-negative-based methods47

generally give better results confirming the compatibility of these methods for48

non-negative data such as face images.49

In the process of preparing the face images as input for the algorithms, there is50

a conventional stage of eigenface production. In this step, face images are projected51

onto a lower dimensional feature space, performed using principle comment analy-52

sis (PCA) technique [55]. This process greatly reduces the computational burden53

while preserving most important information of the images. However, selecting54

the dimension of lower space is challenging and could influence on the ultimate55

16
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(b) ORL
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(d) AR

Figure 7: Sample images from various databases.
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Figure 8: Average recognition rate of SnSA versus the number of selected
eigenfaces. As seen, the accuracy becomes stable and maximised when the
number of eigenfaces are more than 60.

results. We setup an experiment to illustrate how the reduced dimension was cho-56

sen. Based on observations, if the length of the feature vector to be higher than57

50, the stable and optimal performance is guaranteed. These results are given in58

Fig. 8. We have chosen 80 for the number of eigenfaces in all experiments.59

Next, we conduct an experiment to study the robustness of the proposed ap-60

proach. We evaluated the influence of variation of key parameters, i.e. β0, γ, ρ61

and L on the classification accuracy for AR database. In particular, we recorded62

the recognition accuracy while varying these parameters within a wide range and63

keeping other parameters fixed. The results of this experiment are depicted in Fig.64

9. Following observations can be revealed by inspecting graphs in Fig. 9. SnSA is65

highly robust against variations of γ, β0 and L, as observed from Fig. 9 (d), (e)66

and (f). Most sensitivity occurs where γ and ρ are changing while keeping other67

parameters fixed (Fig. 9 (c)). This is reasonable since γ is exponential index and68

ρ is the step-size of the outer loop (Algorithm 1). Hence, smaller values for ρ leads69

to a higher accuracy (Fig. 9 (c)). Also, inspecting Fig. 9 (a) and (b) implies that70

too small (too large) β0 degrades the accuracy. Therefore, a moderate value for71

β0 (e.g. β0 ≈ 10) would provide the best performance.72

4.2.2 Handwritten Digits Recognition73

In this part, we investigate the effectiveness of SnSA and compare its recognition74

performance with related methods on a different data type, i.e., handwritten dig-75

its. We consider two databases for this purpose, i.e., MNIST and USPS. MNIST76

involves a training set of 60,000, and a test set of 10,000 grayscale image examples77

of digits ‘0’ through ‘9’. It is a subset of a larger set available from NIST. The78

digits have been size-normalised and centered in a fixed-size image [56]. USPS has79
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Figure 9: The classification accuracy of SnSA versus variations of parameters
β0, γ, ρ, and L. We fixed µ = 0.001 and αmin = 10−9 for all trials, and fixed
γ = 0.1 β0 = 10 ρ = 1 and L = 5 where needed at each specific sub-figure
shown above.
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(a) MNIST (b) USPS

Figure 10: Sample grayscale images of handwritten digits. The images have
made negative for ease of representation.

Table 3: Classification accuracy (%) and running time (ms) for different
methods with MNIST and USPS handwritten digits database. The running
time was calculated as the average reconstruction time per image.

BP NNBP NNOMP OLS RVM SL0 CSL0 SnSA

MNIST (%) 93.10 91.32 92.40 94.00 82.67 90.40 91.21 94.52

USPS (%) 95.28 93.11 94.87 95.30 96.50 94.68 95.98 97.49

Time (ms) 3126 1350 76.00 144.4 83.32 75.00 731.0 52.00

7291 train and 2007 test images of digits ‘0’ through ‘9’. The images are 16-by-1680

grayscale pixels [57]. Sample representations of these images for both databases81

are given in Fig. 10. Table 3 represents the classification results of applying sev-82

eral sparse recovery techniques within SRC for these databases. SnSA parameter83

settings were the same as those in the previous experiments. It can be observed84

from the results of Table 3 that the proposed method outperforms all other tech-85

niques. In particular, SnSA performs best among its non-negative competitors i.e.86

NNBP and NNOMP. Table 3 also reports the running times of different sparse87

recovery method per image. It is seen that SnSA is the fastest method among88

others. Furthermore, the running time of RVM and SL0 are comparable89

with that of the proposed method. As expected, BP achieved second highest90

accuracy in the table, however, it is the slowest by far among others due to its91

high computational complexity.92

Finally, we depict the confusion matrix as a result of applying SnSA to MNIST93

20
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and USPS databases in Fig. 11. As seen from Fig. 11 (a), classification accuracy94

is more that 90% in most classes except for digits ‘4’ and ‘9’. Precise inspection95

through the shape of these digits (Fig. 10 (a)) reveals high similarity between96

them which explains the reason of misclassification in Fig. 11 (a). However, this97

is not the case for USPS database as the classification accuracy for all classes are98

very good according to Fig. 11 (b).99
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Figure 11: Confusion matrix for handwritten digits classification using SnSA.

00

4.3 Comparison with Deep learning models01

The fast pacing developments of deep learning techniques has led to02

an increased tendency to embedding them in numerous problems such03

as pattern classification. Since mathematical developments proposed in04

this paper was utilised in face and handwritten recognition as potential05

applications, here we provide a comparison with state-of-the-art deep06

learning methods. To this end, five different architectures have been07

employed in our experiments: three pure convolutional neural networks08

(CNNs) with 1, 2, and 3 convolutional layer(s) under ReLU activation09

function, one LeNet-5 [58] with Sigmoid activation function, and one10

well-established pre-trained deep network, i.e., ResNet [59]. LeNet-511

has a convolution and subsampling layer that are alternated twice. All12

the models except ResNet have been locally trained using the datasets13

of interest in this work. ResNet (with 152 layers) was pre-trained on the14

large well-known ImageNet database and is adopted here using transfer15
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Table 4: Classification accuracy (%) among various deep neural network
architectures and the proposed method with face and handwritten datasets.

CNN-1 CNN-2 CNN-3 LeNet-5 ResNet152 SnSA

YALE 80.74 84.63 85.21 91.32 82.68 91.33

AR 81.73 86.91 92.55 97.88 96.75 92.00

ORL 87.33 88.67 89.53 88.37 92.33 96.88

CK+ 74.88 81.04 73.46 76.30 85.00 96.67

MNIST 97.45 98.33 98.62 97.13 97.86 94.52

USPS 89.78 89.57 89.69 71.10 95.51 97.49

learning technique to work with our datasets. Table 4 depicts the results16

of this experiment with all the face and handwritten datasets used in17

this paper. According to this table, the proposed method has achieved18

highest accuracy with all datasets except with AR and MNIST. We19

reasonably believe that this is mainly dependent on the scale of the20

dataset. In fact, deep learning methods naturally perform weaker on21

small datasets such as YALE, ORL, and CK+. Nevertheless, deep net-22

works present greater performance with large-scale datasets such as AR23

and MNIST. Also, pre-trained network, i.e. ResNet152, has slightly

CNN-1 CNN-2 CNN-3 LeNet-5 ResNet152 SnSA
0

2

4

6

8

10

12

14

R
u

n
n

in
g

 t
im

e
 (

m
in

.s
e

c
)

1.38

2.10

5.00

2.55

12.54

0.14

Figure 12: Comparative analysis of the running time(s) elapsed to
train various deep models and the proposed method with YALE
dataset. Learning rate and number of epochs were 0.001 and 40,
respectively, for deep neural network models.
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improved the performance with ORL, MNIST or USPS, but still per-25

forms weaker than SnSA.26

Unlike deep network models which mainly require high power com-27

puters, our proposed method runs locally and fast on general-purpose28

computers. Figure 12 provides a comparative illustration of the pro-29

cessing time elapsed for training the model with YALE face dataset.30

As seen from this figure, as the depth of neural network increases the31

running time also increases dramatically. Figure 12 shows that com-32

plex networks like ResNet152 takes significantly longer to be trained33

even with datasets like YALE which includes only 165 images of small34

sizes 32 × 32. In contrast, Figure 12 shows that the proposed method35

is ×5 and ×50 faster than CNN-1 and ResNet152, respectively. More-36

over, well-framed deep models require enormous number of parameters37

(e.g. ResNet with 25 million parameters), while the proposed method38

only requires 6 parameters to be fine-tuned. In summary, the proposed39

method is preferred when small datasets and less computing resources40

are available.41

5 Conclusions42

In this paper, a novel technique for non-negative sparse recovery problem was pre-43

sented. A smooth non-negative function was proposed for this purpose. This con-44

vex function allows existence of negative coefficients at initial iterations which are45

gradually suppressed until a non-negative solution is achieved. The main advan-46

tages of proposed SnSA compared to CSL0 are as follows. The penalty term of non-47

negative coefficients in SnSA has the convex form and therefore is differentiable.48

The thresholding step is embedded into the optimisation. These properties result49

in better convergence and higher performance as explored through our extensive50

experiments. In addition, the superiority of the proposed method for real-world51

applications of face recognition and handwritten digits recognition with several52

well-established databases were verified. It was observed that the proposed53

method outperforms deep learning methods on small-scale datasets, and54

performs competitively when large-scale datasets are available. We are55

interested and aim to further study how the proposed method can be56

utilised as a complementary algorithm, e.g. activation function, con-57

tributing as a layer within deep learning techniques. This will also pro-58

vide further opportunity to investigate the utilisation of the proposed59

approach in deep dictionary learning framework.60
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