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Abstract

In sparse representation problem, there is always interest to re-
duce the solution space by introducing additional constraints. This
can lead to efficient application-specific algorithms. Despite known
advantages of sparsity and non-negativity for image data represen-
tation, limited studies have addressed these characteristics simultane-
ously, due to the challenges involved. In this paper, we propose a novel
inexpensive sparse non-negative reconstruction method. We utilise a
non-negativity penalty term within a convex function while impos-
ing sparsity at the same time. Our method, termed as SnSA (smooth
non-negative sparse approximation) applies a novel thresholding strat-
egy on the sparse coefficients during the minimisation of the proposed
convex function. The main advantage of SnSA algorithm is that hard
zeroing the negative samples which leads to unstable and non-optimal
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sparse solution is avoided. Instead, a differentiable smoothing func-
tion is proposed that allows gradual suppression of negative samples
leading to a sparse non-negative solution. This way, the algorithm is
driven toward a solution with a balance in maximising the sparsity and
minimising the reconstruction error. Our numerical and experimental
results on both synthetic signals and well-established face and hand-
written image databases, indicate higher classification performance of
the proposed method compared to the state-of-the-art techniques.

Keywords— Non-negative sparse representation, Gradient descent, Smooth-
ing function, face recognition, handwritten recognition.

1 Introduction

Sparse representation problem is one of the most attractive and demanding topics
in signal processing, image processing, computer vision and pattern classification
research [1, 2, 3]. It is now explicitly observed that one can represent variety
of signals/images/patterns with only few non-zero samples using an overcomplete
matrix, the so-called dictionary. In fact, the input data, e.g. face images, can be
represented as a linear combination of few (sparse) coefficients with respect to a
predefined or learned dictionary. This image representation scheme can then be
used for various purposes from image denoising, to image classification and object
tracking. There are many different data types in the world with underlying sparse
structure which make the sparse analysis meaningful.
Original sparse recovery problem can be defined as follows

min [[s||, s.t. y=As (1)

where s € R" is sparse coefficients vector having at most k non-zero elements
(k < n), A € R™*" is called dictionary, and y € R™ is the corresponding non-
sparse-domain vector which can be regarded as input data sample, e.g. face image
in vectorised form. The dictionary is normally chosen to be overcomplete, i.e.
m < n. The columns of the dictionary are called atoms. In addition, the term
Islly = > sY is called p-norm and counts the number of non-zero elements in
s. It also worth noting that (1) has a unique and exact solution under specific
conditions on k, m, and structure of dictionary. Depending on the application
and data of interest, it might be required to impose additional constraint(s) on
the sparse recovery problem for obtaining desired results. This is when it be-
comes very important to decide what family of methods to choose in order to
mitigate the computational and analytical burden of adding new constraint(s) as
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well as maintaining reconstruction quality. In general, solving (1), which
is a non-convex problem, is NP-hard. Hence, various approaches have been pro-
posed to convert it to a feasible problem. Most traditional techniques attempt to
convexify (1) by replacing ¢p-norm with ¢;-norm. The reason is that ¢;-norm is a
differentiable function and thus there exist many typical techniques to tackle it.
However, it normally requires expensive optimisation tools. One of the
important constraints, widely used in many applications, is non-negativity which is
of particular interest in applications dealing with non-negative data [4, 5]. In fact,
since the image pixels are naturally non-negative quantities, they can be used for
parts-based description of the object of interest in the image. For instance, parts
of a face image (e.g. eyes, eyebrows, lips) can be represented only by applying
addition operator on a selection of pixels and hence the non-negativity condition
is preserved.

In this paper, we propose a novel approach to solve sparse recovery problem (1)
with additive non-negative penalty. Motivated by the effectiveness of non-
negativity constraint in learning parts of objects, particularly in appli-
cations like face and handwritten recognition [6], we derive and embed
a mathematical smoothing function to simultaneously exploit sparsity
and non-negativity. We consider direct minimisation of /y-norm, in-
stead of /i1-norm, to avoid encountering complex optimisation issues.
To do this, a novel auxiliary function with tunable parameters to con-
trol smoothness and non-negativity is proposed. The main advantage
of this function is that it is differentiable and can be directly embedded
in the optimisation problem. Our proposed approach can find a stable solu-
tion that avoids rigid weighting function such as those reported in previous works.
Our sparse reconstruction regime starts by allowing existence of negative
coefficients but at a high cost. These negative sparse coefficients are gradually
suppressed by appropriate weight functions to ultimately turn them into
non-negative (and sparse) components while the reconstruction error
is minimised simultaneously. In other words, we do not blindly zero-out all
negative values (unlike traditional techniques), but leave the algorithm to automat-
ically adjust the reconstructed signal to a non-negative solution. This innovative
dynamic suppression technique makes a great impact on the reconstructed coef-
ficients compared to previous works. The mathematical tool we propose for this
purpose is a smooth differentiable function that forms the proposed cost function.
Then, a solution based on gradient descent minimisation is proposed. Finally,
the theoretical contributions achieved in this study are supported by
presenting a non-negative sparse representation classification utilised in face and
handwritten image recognition applications.

The rest of the paper is organised as follows. In section 2, related works and
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state-of-the-art are reviewed. The proposed method and its associated mathemat-
ical formulations are described in section 3. Section 4 is devoted to represent the
numerical experiments and the results. Finally, the paper is concluded in section

5.

2 Related works

One of the well-known sparse recovery methods is called basis pursuit (BP) [7]. In
BP, the minimisation problem (1) is reformulated to be solved using linear pro-
gramming. This family of approaches is precise and stable but too complex and
heavy-run. There has been also reported a family of greedy techniques such as or-
thogonal matching pursuit (OMP) [8] to solve (1). The main advantages of these
techniques are simplicity and fast implementation, despite less accuracy compared
to BP. An alternative family of inexpensive sparse recovery methods, called itera-
tive shrinkage techniques, has also been proposed in the literature [9, 10]. These
methods fundamentally use an iterative scheme comprising a multiplication by
dictionary and its adjoint, and a simple scalar shrinkage step. The shrinkage oper-
ation, which is a kind of sparsification, sets to zero those elements that fall below
a threshold and leaves the remaining elements untouched. Among other exist-
ing methods, Orthogonal Least-Squares (OLS) [11] has drawn attention
in recent years in several applications. OLS has been proposed for re-
covery of sparse vectors in both noisy and noiseless scenarios. Unlike
OMP which performs few linear inversions, OLS performs as many in-
versions and therefore it is relatively expensive. However, it has shown
superior performance than OMP as a consequence. Relevance vector
machine (RVM), as a statistical sparse coding technique, uses Bayesian
model to obtain the parsimonious solutions for regression and proba-
bilistic classification [12]. It is also called probabilistic sparse Kernel
version of support vector machine (SVM) which can be used for sparse
representation problems and classification.

Sparsity and non-negativity have been used in areas such as pattern classifica-
tion [13], particularly for image super-resolution [14], unsupervised feature selec-
tion [15], spectral clustering [16], and graph matching [17]. Sparse non-negative
image representation has shown effectiveness in reducing the reconstruction error
for local features and mitigating the computational cost of sparse coding-based
image features [18]. There are many applications where transform coefficients
are encountered to be sparse non-negative, e.g. in spectroscopy, hyperspectral
imaging, tomography, DNA microarrays, and network monitoring [19, 20, 21].
This is of significant practical interest in X-ray computed tomography (CT), sin-
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gle photon emission computed tomography (SPECT), positron emission tomogra-
phy (PET), and magnetic resonance imaging (MRI). For instance, an accelerated
proximal-gradient technique for reconstructing non-negative signals being sparse
in a transform domain from underdetermined measurements has proposed in [22].
The authors applied ¢1-norm and non-negativity constraint on the signal and its
transform coefficients and reported a greater reconstruction performance compared
to existing works [22]. Given the non-negative nature of sound, automatic music
transcription using a non-negative sparse algorithm was proposed [23]. Similarly,
a voice activity detection approach for noisy scenarios has been proposed in [24]
under the non-negative sparse coding regime.

Utilising sparsity penalty into the non-negative matrix factorisation (NMF)
problem has also been extensively studied with many applications from face recog-
nition, [6, 25, 26] to biomedical engineering [5] and community detection [27]. In
NMF, the aim is to extract meaningful features from input data matrix by fac-
torising (approximating) it into two non-negative matrices. The main issue in
NMF is that it cannot always guarantee sparse and parts-based representation of
non-negative data. Therefore, enforcing sparsity to the objective function seems
necessary but challenging. Meanwhile, there are some methods that add extra
constraints to improve the convergence and speed of NMF [28, 29]. While /p-norm
induces a natural sparsity measure, most works apply £1-norm constraint due to
its well-posedness. However, we found one work that applies £y-norm constraint
for approximate NMF by following an alternating least squares scheme [30, 31].
Since NMF has not been basically designed for classification problem, it cannot
be directly suited for this purpose. However, it is encouraging to study how to
exploit non-negativity and sparsity for classification of non-negative data, e.g. im-
ages. This idea, which has been rarely explored so far, will be addressed in this
paper.

Sparse representation classification (SRC) techniques are among those that
take advantages of sparsity for classification purposes [32]. Several extensions of
this family of methods have been presented by adding specific constraints. For
instance, Yuan et al. proposed a non-negative dictionary based on SRC for ear
recognition [33]. They attempt to model partial occlusion and design a dictionary
using Gabor features extracted from ear images. A label orthogonal regularised
NMF was proposed in [34] for image classification. They combine label consis-
tency, non-negativity and orthogonality for learning dictionary atoms that are
discriminative. They evaluate the performance of this technique on digit and face
databases. In microwave image classification, a method called aspect-aided dy-
namic non-negative sparse representation was proposed by Zhang et al. [35]. The
authors attempt to classify active and inactive atoms via establishing a dynamic
dictionary. Then, they use f;-regularised non-negative sparse representation for
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final sparse recovery and classification. Several other applications of sparse repre-
sentations for classification include hyperspectral image classification [36], traffic
sign classification [37] and plant recognition [38].

Although direct enforcing of fp-norm into the reconstruction problem is chal-
lenging, several researchers attempted to find innovative alternatives [30, 39, 40].
One of the interesting methods of this kind is called smoothed ¢y (SLO) where
{p-norm of a vector is approximated by an exponential smoothing function [39].
While there are several methods that apply sparsity and smoothness in general
reconstruction problems [41], very few works have reported its efficacy for non-
negative problems. Amongst few, Mohammadi et al. added non-negativity penalty
to SLO, and proposed a method called constrained smoothed LO (CSLO) [42]. In
this method, the negative sparse coefficients are severely suppressed by introducing
some weights against positive ones. The weights are static and cannot change with
respect to the algorithm progress. In another work, a modification has been pro-
posed to make orthogonal matching pursuit (OMP) non-negative [43], which was
later improved in terms of computational complexity [44]. A robust non-negative
sparse recovery method was proposed in [45] where the authors address recovery
of non-negative vectors from non-negative compressive measurements. Random
Bernoulli matrix (with 0/1 values) is considered for this purpose to preserve the
non-negativity property.

3 Proposed method

As stated in previous section, a generic sparse recovery problem can be expressed
by (1). Here, we add non-negativity penalty to (1) which forms the new cost
function as follows:

min|s||, st. y=As, s>0 (2)

Since {p-norm is not differentiable, minimisation problem (2) cannot be directly

solved. One traditional solution is to replace £y-norm with £;-norm so that optimisation-

based techniques, e.g. those based on linear programming, could be used. However,
as mentioned in previous section, these techniques are computationally expensive
and researchers are looking for alternatives. Our approach in this paper is
inspired by SLO method [39] where a smoothing function was proposed
to directly minimises the /y-norm in a coarse to fine approach. Their
proposed function, which symmetrically affects both negative and non-
negative values, is defined as:

ol = 1-e (55 ®

6
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Figure 1: Sketch of smoothing function f,(s) with three controller parame-
ters. This function was used in [39] to convert {y-norm into a differentiable
form.

where o is a scalar parameter to control the degree of smoothness. Fig.
1 illustrates the shape of this function for three different ¢’s. According
to this figure, as o decreases the smoothness decreases, and the function
becomes closer to exact {p-norm. In other words, f,—¢ is equivalent to /y-
norm problem (1), which is non-convex, and cannot be solved directly.
The concept of embedding such a smoothing function into the original
minimisation problem (1) is to relax this dilemma. Hence, taking (3)
into account, the /y-norm minimisation problem (1) is approximated to:

min »  fo(si) ~ |slly st y=As (4)
=1

which is convex and computationally inexpensive to solve (please refer
to [39] for details of the minimisation process). While f,(s) has shown
to be very effective for solving fy-norm problem, it is not suitable for
non-negative problems as it does not enforce any non-negative penalty
(as can be observed from Fig. 1). Here, we design a different function to
simultaneously apply smoothness and non-negativity, utilisable in (2).
We aim to propose a differentiable function giving great flexibility to
optimise the cost function as well as enforcing non-negativity. We start
by modifying Fig. 1 so that f(-) be boosted for s < 0 while it remains
unchanged for s > 0. In other words, our desire is to mathematically
derive a function that can generate proposed curves in Fig. 2. As seen
from Fig. 2, not only the proposed function incurs a large penalty to

7
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Figure 2: Function f, s(s) behaviour versus different values of s.

negative coefficients but the differentiability should be preserved. To
do this, we start by reformulating non-negative penalty in (2) using the Lagrange
method:

min > (|si| +5:)° + A(|si| — si) sty = As, (5)

(2

In order to provide a more precise description of the proposed cost function we
rewrite it in a different form as follows:

2

525+a s>0

fap(s) = { " 5=0 (6)
JsI(5)r+
~#ta <0

where s; refers to i-th coefficient of vector s, and the scalar A is the Lagrange
multiplier and defines the contribution of negative coefficients penalty to the whole
cost function. For those coefficients in vector s in (5) that are negative (i.e. s; < 0),
the term A(|s;| — s;) turns into 2)|s;|. This means that negative coefficients are
imposed by a large penalty equal to 2\. In contrast, if s; > 0, then, |s;|—s; = 0, and
therefore, no suppression is applied to the positive coefficients. This is desirable,
as we aim not to impose any penalty rather than sparsity on positive coefficients
to allow their natural evolution during the reconstruction procedure. However, the
main challenge is to design a penalty function to simultaneously enforce sparsity
as well as non-negativity on all coefficients. The term (|s;| 4+ s;)° in (5) has been

8
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proposed for this purpose. It merely controls sparsness of positive coefficients and
does not interfere the non-negativity penalty. If one defines A = oo in (5), it turns
into the non-negative problem (2). However, (|s;| + s;)° is not differentiable, and
we cannot use this term directly as a plausible penalty. Instead, we propose
to add some new terms in form of numerators and a normalisation
denominator, leading to the following function, which is differentaible
and can generate our desired penalty function (as sketched in Fig. 2):

s|+s)s s| — s)(lzhp+1
fa,g(S)Zé(l |+ 5) 4;2(|+|a )(5)

(7)

where «, 8, and p are positive scalars to control the shape and smoothness of
this function. Notably, equation (7) presents working principle of the proposed
penalty and it should be applied to all coefficients s; € {s}. Fig. 2, illustrates
several shapes of f, g(s) for selected values of o and . As seen from this figure,
the proposed function can provide a great flexibility in the amount of penalty that
can be imposed on negative coefficients, while it does not have any significant
impact on the positive coefficients.

As seen in (6), parameter « accounts for defining the sparsity degree. In other
words, % is a smoothed version of {y-norm. Moreover, (3 is equivalent to A in
(5). If v tends to zero, then we will have:

1 s>0
lim fop(s) = ¢ 0 s=0 (8)
a—0

|s[? 0

Br+1 s <

It is clear from the above equation that if o tends to zero, f, g(s) would be
equivalent to fg-norm for positive values. In addition, when 8 tends to zero, a
large amount of penalty is applied for negative values. It is important to note that
parameter p controls the growing rate of the penalty imposing to negative values.

Now, we apply the defined function f, g(s) to the vector s and modify the
optimisation problem (2) to:

min Fy, g(s) = min ) ; fo g(s:) = 9)

: 1 (sil+s)si+(sil=s)([s:l/8)PF!
min ), 5 7 ra

s.t. y = As.

In order to solve the above optimisation problem we use the following steps:

1. Gradient descent algorithm (moving toward opposite direction of VF, g(s))
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2. Projection onto the constraints; non-negative-sparsity, and feasible set y =
As.

These two steps start initially with large values for a and 3, and then their values
are gradually decreased. The initial solution of each step is taken from the result
of the previous step. This process avoids the procedure to be trapped in local
minima. On the other hand, small values of o and § in (8) is corresponding to
(2) and (5). It is important to note that projection onto the three spaces, i.e.
non-negativity, sparsity and y = As is performed as follows. Values smaller than
0B in the non-negative and sparse domain are set to zero and then the result is
projected onto the linear domain y = As. In practice, exact equality y = As
cannot be reachable, instead |y — ASH% < € is used. In order to impose this
condition into the proposed cost function, inspired by SLO method, the projection
onto the linear space is performed when ||y — As||3 < ¢ does not meet [46]. The
gradient of F, g(s) can be also computed as:

VsFap(s) = [fap(s:)] €R™ (10)
where f’ is obtained via (11):

( ) = 0. (H)p-l—l
s)

5((1 + sign(s)s + (s + |s]) + (sign(s) —
+(p+1)519n(8)(‘ | — Isl\p

(5

Table 1 shows the summary of notations and symbols used in this
paper. The pseudo-code of the proposed method (SnSA) is given in Algorithm

Table 1: Summary of notations and symbols along with typical se-
lected values.

s e R" sparse coefficients vector k number of non-zero coefficients
A e R™*"  dictionary matrix n number of sparse coefficients

y € R™ raw input data vector m number of input samples
A>0 Lagrange multiplier a>10"" smoothness controller scalar

0 < 8 <10 penalty controller scalar p=1 penalty growing rate controller
p (0.8 ~ 1) decreasing factor for « ~v=0.1 non-negative penalty constant
w=0.001 Gradient descent step size | L =15 number of iterations

0 =0.25 estimator’s threshold € reconstruction error

10

1)
(8% + @) = 25((Is] + s)s + (|Is] = $)(5))(s* + a) 72

(11)
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Algorithm 1 Pseudo-code of the proposed SnSA.
Input: A and y
Initialisation:

1. Qumin, p (decreasing factor), u, So, v, L, t = 1.
2. s=AT(AAT) 1y
3. o =2max|§|

4. B =Po

Output: s
repeat
for i =1to L do
(a) Gradient descent: § <— 8 — pVsF, 5(8)
(b) Projection:

o if ; <p (i=1,..m) then 5, =0
o if ||y — As||> > € then
s+ 8—AT(AAT)"1(As —y)
end for
a = pa
B = Boexp(—t)
t=t+1

until o > a,,,

1. During execution of SnSA, S acts as a suppressor of negative s;
coefficients. This can be graphically and mathematically observed by
referring to Fig. 2 and equation (7), where as § decreases, the shape
of f(-) is become closer to /y-norm, while preserving only non-negative
coefficients. We cannot simply zero out negative s; coeflficients as the
fidelity approximation, i.e. y =~ As, would not be met. Instead, we
aim to gradually reduce  in an iterative manner so that the algorithm
smoothly converges. To implement this, we vary 5 using 5 = 5y exp(—7t)
in Algorithm 1 to monotonically control the non-negative penalty con-
tribution. Using this exponential function, § will be large at the initial
iterations of the algorithm (i.e. small t), but once the iterations pro-

11
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ceed, it decreases to ultimately gets close to zero. Conceptually, this way,
the amount of penalty on negative coefficients is increased as the iterations grow.

4 Experimental results

In this section, the proposed algorithm is numerically compared with two com-
mon methods BP [7] and SLO [39], and their corresponding extended versions,
i.e. non-negative BP (NNBP) [47] and constrained SLO (CSLO) [42]. In addition,
non-negative orthogonal matching pursuit (NNOMP) [43] is included as a greedy
sparse recovery technique for comparison. Further, two more relevant meth-
ods, i.e. orthogonal least square (OLS) [11] and Bayesian sparse coding
known as relevance vector machine (RVM) [12], were included in our
experiments. Two sets of experiments are conducted in this section. First, syn-
thetic signals are generated and extensive simulations have been carried out to
study the performance of the proposed method. Furthermore, two real scenarios,
i.e., face recognition and handwritten digits recognition, are examined by apply-
ing the proposed method and related techniques using several well-established
databases. Finally, a comprehensive comparison and performance evalu-
ation between the proposed method and several deep learning models
is provided. All experiments were carried out under the same environmental
conditions in MATLAB software on a Core(TM)i7-2.6GHz machine with 12GB of
memory. The parameters for SnSA are empirically selected as follows: Sy = 10,
p=09~=01,L=5, amin =107 u = 0.001. Moreover, we set p = 1 in our
simulations unless specified otherwise.

4.1 Synthetic data

In the first experiment, we generated random dictionary ensembles A of size 50 x
150, and applied different reconstruction methods for recovery of sparse vector s
with & non-zero samples. The experiment was repeated 1000 times (each time
with a random A and s) for k varying from 1 to 50. The average signal-to-noise-
ratio (SNR) against k£ has been illustrated in Fig. 3 with SnSA for p =1 and
p =5, as well as other related methods. It is observed that SnSA outperforms
other methods especially for severe conditions, i.e. 15 < k£ < 30. Robustness of
SnSA against different selection of p is evident from this figure. The second best
performance belongs to CSLO yet slightly weaker than SnSA.

Next, the phase-transition diagrams are evaluated as a very important and well-
established performance measure for sparse recovery techniques [48, 49]. These
diagrams are generated for 500 trials for signal length n = 128 while varying

12
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Figure 3: Reconstruction performance of different methods with random
dictionary of size 50 x 100 for SnSA with both p = 1 and p = 5 and other
relevant methods. Graphs with markers are associated to relevant methods.

measurement number m from 1 to n/2 and sparsity level k from 1 to n/4. The
success rate was computed by giving a credit to the trials leading to reconstruction
error less than 107°. The average success rates of all 500 independent trials for
each point on the grid are sketched in Fig. 4. Darker areas correspond to higher
success score and vice versa. The overlaid curves show the estimate at which the
reconstruction is successful with probability 1 — #. 6 is the estimator’s threshold
set to 6 = 0.25 according to [50]. Fig. 5 illustrates the reconstruction performance
among various relevant methods. It is seen from this figure that the performance
of NNBP, BP, CSLO and SLO is comparable with that of SnSA when m and k are
small. However, SnSA introduces higher success rate among all other techniques
for larger m and k. This shows greater robustness of the proposed method.

Another aspect of advantage of SnSA is revealed by considering its perfor-
mance against number of iterations. In this experiment, we conducted 100 trials
of random ensembles with A of size 50 x 150 and & = 10. The reconstruction
errors were then recorded against evolution of iterations. These results are plotted
in Fig. 6 for three methods, i.e. SLO, CSLO, and SnSA, where all have iterative
nature. It is seen from this figure that SnSA reaches to the minimum faster than
other methods. Moreover, MSE of SnSA at iteration number 40 is about 0.00086
which is much less than that for SLO and CSLO. It means that SnSA has a better
convergence rate compared to other techniques.
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Figure 4: Phase transitions for (a) BP, (b) NNBP, (¢c) NNOMP, (d) SLO, (e)
CSLO, and (f) SnSA. Darker areas correspond to higher success rate.

4.2 Real data

4.2.1 Face recognition

Four different face databases are considered here for evaluation of the proposed
method in real scenarios. Some sample images of each database are given in Fig.
7. A brief description of these databases are:

e Yale: it contains 165 GIF images of 15 subjects of size 64 x 64. There are
11 images per subject, one for each of the following facial expressions or
configurations: center-light, with glasses, happy, left-light, without glasses,
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Figure 6: Average MSEs of different methods for 100 trials. (Dictionary Size:

50 x 100, k =10, p = 1).

Number of iterations

normal, right-light, sad, sleepy, surprised, and wink [51].

e ORL: it contains 400 images of size 48 x 48, 10 different images per person
for 40 subjects. For some individuals, the images were acquired at different
times. The facial expressions in these images are different, e.g. open or
closed eyes and smiling or non-smiling. Other facial details such as glasses

or no glasses also exist [52].

15




332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

Table 2: Comparison of classification accuracy (%) for different methods
using four face databases.
| YALE | CK+ | AR | ORL
BP 85.32 84.76 | 87.10 | 94.37
NNBP 86.67 | 88.18 | 89.54 | 95.63
NNOMP | 85.33 | 80.00 | 82.29 | 93.13

OLS 88.00 | 85.00 | 86.57 | 95.75
RVM 81.33 | 83.29 | 85.43 | 95.63
SLO 86.00 | 87.29 | 86.86 | 94.82
CSLO 86.67 | 93.33 | 89.71 | 95.75
SnSA 91.33 | 96.67 | 92.00 | 96.88

e CK+: it consists of 321 emotion sequences with labels (angry, contempt,
disgust, fear, happiness, sadness, surprise). Images are of size 128 x 128 [53].

e AR: it consists of 4000 images corresponding to 126 people’s faces (70 men
and 56 women). The images size is 165 x 120. Images feature frontal view
faces with different facial expressions, illumination conditions, and occlusions
(sun glasses and scarf) [54]. Here a subset of 50 males and 50 females are
used.

For all four databases sparse representation classification (SRC) technique was
used [32]. Following previous works, we assume for CK+ database that the infor-
mation of neutral face is provided and subtract from all images both training and
testing. Also, the preprocessings such as removing background have been applied
to input images wherever needed prior applying the algorithms.

The average accuracies of classification of different facial expressions on four
databases are given in Table 2. As seen from Table 2, SnSA outperforms with
all databases. Inspection of this table confirms the overall improved performance
achieved using the proposed method. In addition, non-negative-based methods
generally give better results confirming the compatibility of these methods for
non-negative data such as face images.

In the process of preparing the face images as input for the algorithms, there is
a conventional stage of eigenface production. In this step, face images are projected
onto a lower dimensional feature space, performed using principle comment analy-
sis (PCA) technique [55]. This process greatly reduces the computational burden
while preserving most important information of the images. However, selecting
the dimension of lower space is challenging and could influence on the ultimate
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Figure 7: Sample images from various databases.
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Figure 8: Average recognition rate of SnSA versus the number of selected
eigenfaces. As seen, the accuracy becomes stable and maximised when the
number of eigenfaces are more than 60.

results. We setup an experiment to illustrate how the reduced dimension was cho-
sen. Based on observations, if the length of the feature vector to be higher than
50, the stable and optimal performance is guaranteed. These results are given in
Fig. 8. We have chosen 80 for the number of eigenfaces in all experiments.

Next, we conduct an experiment to study the robustness of the proposed ap-
proach. We evaluated the influence of variation of key parameters, i.e. 8y, v, p
and L on the classification accuracy for AR database. In particular, we recorded
the recognition accuracy while varying these parameters within a wide range and
keeping other parameters fixed. The results of this experiment are depicted in Fig.
9. Following observations can be revealed by inspecting graphs in Fig. 9. SnSA is
highly robust against variations of v, By and L, as observed from Fig. 9 (d), (e)
and (f). Most sensitivity occurs where v and p are changing while keeping other
parameters fixed (Fig. 9 (c¢)). This is reasonable since v is exponential index and
p is the step-size of the outer loop (Algorithm 1). Hence, smaller values for p leads
to a higher accuracy (Fig. 9 (c)). Also, inspecting Fig. 9 (a) and (b) implies that
too small (too large) fy degrades the accuracy. Therefore, a moderate value for
Bo (e.g. Bo =~ 10) would provide the best performance.

4.2.2 Handwritten Digits Recognition

In this part, we investigate the effectiveness of SnSA and compare its recognition
performance with related methods on a different data type, i.e., handwritten dig-
its. We consider two databases for this purpose, i.e., MNIST and USPS. MNIST
involves a training set of 60,000, and a test set of 10,000 grayscale image examples
of digits ‘0’ through ‘9’. It is a subset of a larger set available from NIST. The
digits have been size-normalised and centered in a fixed-size image [56]. USPS has
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Figure 9: The classification accuracy of SnSA versus variations of parameters
Bo, v, p, and L. We fixed p = 0.001 and c,y,;, = 1072 for all trials, and fixed
v=0.1 5y =10 p =1 and L = 5 where needed at each specific sub-figure
shown above.
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(a) MNIST (b) USPS

Figure 10: Sample grayscale images of handwritten digits. The images have
made negative for ease of representation.

Table 3: Classification accuracy (%) and running time (ms) for different
methods with MNIST and USPS handwritten digits database. The running
time was calculated as the average reconstruction time per image.
| BP | NNBP | NNOMP | OLS | RVM | SLO | CSLO | SnSA
MNIST (%) | 93.10 | 91.32 92.40 94.00 | 82.67 | 90.40 | 91.21 | 94.52
USPS (%) | 95.28 | 93.11 94.87 95.30 | 96.50 | 94.68 | 95.98 | 97.49
Time (ms) 3126 1350 76.00 144.4 | 83.32 | 75.00 | 731.0 | 52.00

7291 train and 2007 test images of digits ‘0’ through ‘9’. The images are 16-by-16
grayscale pixels [57]. Sample representations of these images for both databases
are given in Fig. 10. Table 3 represents the classification results of applying sev-
eral sparse recovery techniques within SRC for these databases. SnSA parameter
settings were the same as those in the previous experiments. It can be observed
from the results of Table 3 that the proposed method outperforms all other tech-
niques. In particular, SnSA performs best among its non-negative competitors i.e.
NNBP and NNOMP. Table 3 also reports the running times of different sparse
recovery method per image. It is seen that SnSA is the fastest method among
others. Furthermore, the running time of RVM and SLO are comparable
with that of the proposed method. As expected, BP achieved second highest
accuracy in the table, however, it is the slowest by far among others due to its
high computational complexity.

Finally, we depict the confusion matrix as a result of applying SnSA to MNIST
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and USPS databases in Fig. 11. As seen from Fig. 11 (a), classification accuracy
is more that 90% in most classes except for digits ‘4’ and ‘9’. Precise inspection
through the shape of these digits (Fig. 10 (a)) reveals high similarity between
them which explains the reason of misclassification in Fig. 11 (a). However, this
is not the case for USPS database as the classification accuracy for all classes are
very good according to Fig. 11 (b).
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Figure 11: Confusion matrix for handwritten digits classification using SnSA.

4.3 Comparison with Deep learning models

The fast pacing developments of deep learning techniques has led to
an increased tendency to embedding them in numerous problems such
as pattern classification. Since mathematical developments proposed in
this paper was utilised in face and handwritten recognition as potential
applications, here we provide a comparison with state-of-the-art deep
learning methods. To this end, five different architectures have been
employed in our experiments: three pure convolutional neural networks
(CNNs) with 1, 2, and 3 convolutional layer(s) under ReLU activation
function, one LeNet-5 [58] with Sigmoid activation function, and one
well-established pre-trained deep network, i.e., ResNet [59]. LeNet-5
has a convolution and subsampling layer that are alternated twice. All
the models except ResNet have been locally trained using the datasets
of interest in this work. ResNet (with 152 layers) was pre-trained on the
large well-known ImageNet database and is adopted here using transfer
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Table 4: Classification accuracy (%) among various deep neural network
architectures and the proposed method with face and handwritten datasets.
| ONN-1 | CNN-2 | ONN-3 | LeNet-5 | ResNet152 | SnSA

YALE 80.74 84.63 85.21 91.32 82.68 91.33
AR 81.73 86.91 92.55 97.88 96.75 92.00
ORL 87.33 88.67 89.53 88.37 92.33 96.88
CK+ 74.88 81.04 73.46 76.30 85.00 96.67
MNIST | 97.45 98.33 98.62 97.13 97.86 94.52
USPS 89.78 89.57 89.69 71.10 95.51 97.49

learning technique to work with our datasets. Table 4 depicts the results
of this experiment with all the face and handwritten datasets used in
this paper. According to this table, the proposed method has achieved
highest accuracy with all datasets except with AR and MNIST. We
reasonably believe that this is mainly dependent on the scale of the
dataset. In fact, deep learning methods naturally perform weaker on
small datasets such as YALE, ORL, and CK+. Nevertheless, deep net-
works present greater performance with large-scale datasets such as AR
and MINIST. Also, pre-trained network, i.e. ResNet152, has slightly

Running time (min.sec)

CNN-1 CNN-2 CNN-3  LeNet-5 ResNet152 SnSA

Figure 12: Comparative analysis of the running time(s) elapsed to
train various deep models and the proposed method with YALE
dataset. Learning rate and number of epochs were 0.001 and 40,
respectively, for deep neural network models.
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improved the performance with ORL, MNIST or USPS, but still per-
forms weaker than SnSA.

Unlike deep network models which mainly require high power com-
puters, our proposed method runs locally and fast on general-purpose
computers. Figure 12 provides a comparative illustration of the pro-
cessing time elapsed for training the model with YALE face dataset.
As seen from this figure, as the depth of neural network increases the
running time also increases dramatically. Figure 12 shows that com-
plex networks like ResNet152 takes significantly longer to be trained
even with datasets like YALE which includes only 165 images of small
sizes 32 x 32. In contrast, Figure 12 shows that the proposed method
is x5 and x50 faster than CNN-1 and ResNet152, respectively. More-
over, well-framed deep models require enormous number of parameters
(e.g. ResNet with 25 million parameters), while the proposed method
only requires 6 parameters to be fine-tuned. In summary, the proposed
method is preferred when small datasets and less computing resources
are available.

5 Conclusions

In this paper, a novel technique for non-negative sparse recovery problem was pre-
sented. A smooth non-negative function was proposed for this purpose. This con-
vex function allows existence of negative coefficients at initial iterations which are
gradually suppressed until a non-negative solution is achieved. The main advan-
tages of proposed SnSA compared to CSLO are as follows. The penalty term of non-
negative coefficients in SnSA has the convex form and therefore is differentiable.
The thresholding step is embedded into the optimisation. These properties result
in better convergence and higher performance as explored through our extensive
experiments. In addition, the superiority of the proposed method for real-world
applications of face recognition and handwritten digits recognition with several
well-established databases were verified. It was observed that the proposed
method outperforms deep learning methods on small-scale datasets, and
performs competitively when large-scale datasets are available. We are
interested and aim to further study how the proposed method can be
utilised as a complementary algorithm, e.g. activation function, con-
tributing as a layer within deep learning techniques. This will also pro-
vide further opportunity to investigate the utilisation of the proposed
approach in deep dictionary learning framework.
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Nonnegative smoothed LO (SLO) for sparse recovery is proposed.

The proposed cost function has a convex form and hence differentiable.
Numerical experiments demonstrate high performance and robustness.
Successful performance on face and handwritten recognition has been verified.
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