
MO-PaDGAN: Reparameterizing Engineering Designs for Augmented
Multi-Objective Optimization

Wei Chena,∗, Faez Ahmedb

aNorthwestern University, Evanston, IL 60208, USA
bMassachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract

Multi-objective optimization is key to solving many Engineering Design problems, where design parameters
are optimized for several performance indicators. However, optimization results are highly dependent on how
the designs are parameterized. Researchers have shown that deep generative models can learn compact design
representations, providing a new way of parameterizing designs to achieve faster convergence and improved
optimization performance. Despite their success in capturing complex distributions, existing generative
models face three challenges when used for design problems: 1) generated designs have limited design
space coverage, 2) the generator ignores design performance, and 3) the new parameterization is unable to
represent designs beyond training data. To address these challenges, we propose MO-PaDGAN, which adds
a Determinantal Point Processes based loss function to the generative adversarial network to simultaneously
model diversity and (multi-variate) performance. MO-PaDGAN can thus improve the performances and
coverage of generated designs, and even generate designs with performances exceeding those from training
data. When using MO-PaDGAN as a new parameterization in multi-objective optimization, we can discover
much better Pareto fronts even though the training data do not cover those Pareto fronts. In a real-world
multi-objective airfoil design example, we demonstrate that MO-PaDGAN achieves, on average, an over
180% improvement in the hypervolume indicator when compared to the vanilla GAN or other state-of-the-art
parameterization methods.

Keywords: Generative Adversarial Network, multi-objective optimization, engineering design optimization,
neural networks, aerodynamic shape optimization, Determinantal Point Process

1. Introduction

The goal of many Engineering Design applications is to find designs which perform well on multiple
performance goals. For example, bike engineers want to design the geometry of road bikes which are
lightweight, have less drag and exhibits good ride quality. Such design applications often have problems
with huge collections of data (CAD models, images, microstructures, etc.) with hundreds of features and
multiple functionalities. These designs are commonly represented using parametric modeling, which defines
design geometry using hard-coded features and constraints [1]. Once a parametric model is defined for a
design, it can be used for design synthesis (generating new designs by changing design parameters) or for
design optimization (finding optimal parameters which maximize the desirable performance goals). However,
there are two issues with traditional hard-coded parametric modeling: 1) the parameterization is often not
flexible to cover all possible variations of the chosen type of designs, and 2) the parametric representation
may contain a large number of parameters, which often leads to infeasible designs and increased optimization
cost. To alleviate these issues, researchers in Engineering Design have used machine learning techniques

∗Corresponding author
Email address: wei.wayne.chen@northwestern.edu (Wei Chen)

Preprint submitted to Applied Soft Computing September 29, 2021

ar
X

iv
:2

00
9.

07
11

0v
3

 [
cs

.L
G

]
 2

8
Se

p
20

21

(deep generative models in particular) to replace hard-coded parametric models with compact representations
learned from data [2, 3, 4]. Those learned representations can then be treated as parameterizations that
are fed into a design optimization method to find one or more designs with optimal performance measures.
Variational autoencoders (VAEs) [5] and Generative Adversarial Networks (GANs) [6] are the two most
commonly used deep generative models for these tasks. These models are applied in design optimization over
domains including microstructural design [7], 3D modeling [8], and aerodynamic shape design [9]. However,
existing generative models, whose goal is learning the distribution of existing designs, face three challenges
when being used for parameterizing designs: 1) generated designs may have limited design space coverage
(e.g., when mode collapse happens with GANs), 2) the generator ignores design performance, and 3) the new
parameterization is unable to represent designs outside the training data.

In this work, we address all the three challenges by modifying the architecture and loss of deep generative
models, which allows simultaneous maximization of generated designs’ diversity and (possibly multivariate)
performance. With such a setting, we develop a new variant of GAN, named MO-PaDGAN (Multi-Objective
Performance Augmented Diverse Generative Adversarial Network). This new model architecture is based on
the PaDGAN architecture [10], where both diversity and scalar performance are modeled by Determinantal
Point Processes (DPPs) [11]. The current work extends the PaDGAN architecture [10] to account for
multivariate performance and shows how the learned representations can be used for solving multi-objective
optimization problems. We use MO-PaDGAN as a parameterization in multi-objective optimization tasks and
demonstrate that it contributes to large improvements in the final Pareto optimal solutions when compared
to a baseline GAN model and other state-of-the-art parameterizations. The contributions of this work are as
follows:

1. We propose a new GAN architecture—MO-PaDGAN, which generalizes the ability to model a single
performance measure in performance-augmented GANs [10] to multiple performance measures.

2. We show that the latent representation learned by MO-PaDGAN enhances performance and diversity
in the learnt parameterization.

3. We show that MO-PaDGAN parameterization leads to large improvements in multi-objective opti-
mization solutions. For a real-world airfoil design example, the method leads to over 180% average
improvement of the hypervolume indicator compared to three state-of-the-art methods.

4. We demonstrate that MO-PaDGAN discovers novel high-performance designs that it had not seen from
existing data.

5. We demonstrate the generalizability of the proposed approach by showing large improvements in two
synthetic and one real-world example. We also show the approach is optimization-method agnostic by
reporting comparisons for both multi-objective Bayesian optimization and evolutionary algorithms.

2. Background

Below we provide background on Generative Adversarial Networks and Determinantal Point Processes,
which are the two key ingredients of our method.

2.1. Generative Adversarial Nets

Generative Adversarial Networks [6] model a game between a generative model (generator) and a
discriminative model (discriminator). The generator G maps an arbitrary noise distribution to the data
distribution (i.e., the distribution of designs in our scenario), thus can generate new data; while the
discriminator D tries to perform classification, i.e., to distinguish between real and generated data. Both G
and D are usually built with deep neural networks. As D improves its classification ability, G also improves
its ability to generate data that fools D. Thus, a GAN has the following objective function:

min
G

max
D

V (D,G) = Ex∼Pdata
[logD(x)] + Ez∼Pz [log(1−D(G(z)))], (1)

where x is sampled from the data distribution Pdata, z is sampled from a pre-defined noise distribution Pz

(usually a standard normal or a standard uniform distribution), and G(z) is the generator distribution. A
trained generator thus can map from a predefined noise distribution to the distribution of designs. The

2

noise input z is considered as the latent representation of the data, which can be used for design synthesis
and exploration. Note that GANs often suffer from mode collapse [12], where the generator fails to capture
all modes of the data distribution. In this work, by maximizing the diversity objective, mode collapse is
discouraged as it leads to less diverse samples.

2.2. Determinantal Point Processes

Determinantal Point Processes (DPPs), which arise in quantum physics, are probabilistic models that
model the likelihood of selecting a subset of diverse items as the determinant of a kernel matrix. Viewed
as joint distributions over the binary variables corresponding to item selection, DPPs essentially capture
negative correlations and provide a way to elegantly model the trade-off between often competing notions
of quality and diversity. The intuition behind DPPs is that the determinant of a kernel matrix roughly
corresponds to the volume spanned by the vectors representing the items. Points that “cover” the space well
should capture a larger volume of the overall space, and thus have a higher probability.

DPP kernels can be decomposed into quality and diversity parts [11]. The (i, j)-th entry of a positive
semi-definite DPP kernel L can be expressed as:

Lij = qi φ(i)T φ(j) qj . (2)

We can think of qi ∈ R+ as a scalar value measuring the quality of an item i, and φ(i)T φ(j) as a signed
measure of similarity between items i and j. The decomposition enforces L to be positive semidefinite.
Suppose we select a subset S of samples, then this decomposition allows us to write the probability of this
subset S as the square of the volume spanned by qiφi for i ∈ S using the equation below:

PL(S) ∝
∏
i∈S

(qi
2) det(KS), (3)

where KS is the similarity matrix of S. As item i’s quality qi increases, so do the probabilities of sets
containing item i. As two items i and j become more similar, φi

Tφj increases and the probabilities of
sets containing both i and j decrease. The key intuition of MO-PaDGAN is that if we can integrate the
probability of set selection from Eq. (3) to the loss function of any generative model, then while training it
will be encouraged to generate high probability subsets, which will be both diverse and high-performance.

3. Problem Setting

We consider a design represented by x ∈ X . In particular, x is a low-level representation which does not
encode any prior knowledge. For example, x can be a sequence of surface points or a pixel/voxel array when
representing a geometric design. Since this low-level representation does not account for prior knowledge,
it usually has a unnecessarily high dimension and any perturbation may lead to invalid designs with high
probability. Thus, it is often impractical to directly control x in design optimization. Nonetheless, in many
cases, we can find a parametric model that parameterizes x by considering some prior knowledge. For
example, we can use a B-spline curve to parameterize the surface of a geometry if it has a smooth surface.
Using “smoothness” as our prior knowledge, we constrain the space X so that some invalid designs cannot
be represented (i.e., only a subset X ′ ⊂ X can be represented). Assume that the parameters are v ∈ V (e.g.,
v can be a sequence of B-spline control points) and the parametric model is a function F : V → X ′, now we
can represent a design by a high-level representation v. We can easily obtain the low-level representation via
x = F (v).

Given a parametric model F , a multi-objective design optimization problem can be formulated as:

min
v

fm(F (v)),m = 1, ...,M

s.t. gj(F (v)) ≤ 0, j = 1, ..., J

hk(F (v)) = 0, k = 1, ...,K

vinfd ≤ vd ≤ v
sup
d , d = 1, ..., D,

3

where f denotes objective functions which compute performance indicators. Functions g and h compute
inequality and equality constraints, respectively. vinfd and vsupd denote the lower and upper bounds, respectively,
for the d-th parameter vd.

The results of the optimization problem can be affected by two factors — the parametric model F and
the optimization algorithm. In this paper, we focus on the effects of the former. Given two parameterizations
F1 : V1 → X ′1 and F2 : V2 → X ′2, V1 and V2 can have different dimensionality and X ′1 and X ′2 may cover
different parts of X . Such differences can contribute to different optimization results and are optimization
algorithm agnostic. To derive a parameterization that helps improve the performance of multi-objective design
optimization, we propose to use a deep generative model, MO-PaDGAN, which can compactly represent
designs with higher diversity and performances, as we will elaborate in the next section. We need the
following two assumptions to build the MO-PaDGAN model:

1. There is a dataset containing possible design variants. This dataset is normally built by collecting
historical designs, but can also be randomly generated following certain rules [13].

2. One can evaluate the performance of any design (e.g., through simulations, experiments, visual
inspection, etc.) or has a dataset containing design/performance pairs.

In the next section, we explain the unique components in MO-PaDGAN and how to use it as a
parameterization in design optimization.

4. Methodology

MO-PaDGAN adds a performance augmented DPP loss to a vanilla GAN architecture which measures
the diversity and performance of a batch of generated designs during training. In this section, we first
explain how to construct a DPP kernel. Then we show how to bake the DPP kernel into MO-PaDGAN’s loss
function. Finally, we formulate the multi-objective design optimization problem where we use MO-PaDGAN’s
generator as a parametric model and optimize designs over the learned latent space.

4.1. Creating a DPP kernel

We create the kernel L for a sample of points generated by MO-PaDGAN from known inter-sample
similarity values and performance vector.

The similarity terms φ(i)Tφ(j) can be derived using any similarity kernel, which we represent using
k(xi,xj) = φ(i)Tφ(j) and ‖φ(i)‖ = ‖φ(j)‖ = 1. Here xi is a vector representation of a design. Note
that in a DPP model, the quality of an item is a scalar value representing design performance such as
compliance, displacement, drag-coefficient. For multivariate performance, we use a performance aggregator
to obtain a scalar quality q(x) = wTp, where p = (p1, ..., pM)T are M -dimensional performances and
the corresponding weights w = (w1, ..., wM)T are positive numbers sampled uniformly at random and
1Tw = 1. The performance vector p can be estimated using a performance estimator E, i.e., p = E(x).
The performance estimator can be a physics simulator or a surrogate model. Maximizing q(x) pushes the
non-dominated Pareto set of generated samples in the performance space to have higher values. While more
complex performance aggregators (e.g., the Chebyshev distance from an ideal performance vector) are also
applicable, we use the common linear scalarization to have fewer assumptions about the performance space.

4.2. Performance Augmented DPP Loss

The overall model architecture of MO-PaDGAN at the training stage is shown in Fig. 1(a). Our
performance augmented DPP loss models diversity and performance simultaneously and gives a lower loss to
sets of designs which are both high-performance and diverse. Specifically, we construct a kernel matrix LB
for a generated batch B based on Eq. (2). For each entry of LB , we have

LB(i, j) = k(xi,xj) (q(xi)q(xj))
γ0 , (4)

where xi,xj ∈ B, q(x) is the quality function at x, and k(xi,xj) is the similarity kernel between xi and xj .
To allow trade-off between quality and diversity, we adjust the dynamic range of the quality scores by using

4

zn

z2
z1

... G

Input vector

xn

x2
x1

...

Generated designs

x'n

x'2
x'1

...

Design data Real-world designs
D

Probability
of

real design

GAN loss

x1
x2

xn

..
.

x1 x2 xn...

DPP kernel

Performance

augmented

DPP loss

MO-PaDGAN loss

E

...

pn

p2
p1

Random weights
...

wn

w2
w1

G f

(b) Design Optimization

(High fidelity)
Performance estimator

Design
parameters

Trained generator

Generated design
f1

f2 Pareto front

(a) Learning Parameterization

Performance indicators

Performance indicators

Optimization

Figure 1: Overview of our method: (a) the MO-PaDGAN architecture at the training stage (The operator � denotes performance
aggregation); (b) the multi-objective optimization loop at the design optimization stage.

an exponent (γ0) as a parameter to change the distribution of quality. A larger γ0 increases the relative
importance of quality as compared to diversity, which provides the flexibility to a user of MO-PaDGAN in
deciding emphasis on quality vs diversity.

The performance augmented DPP loss is expressed as

LPaD(G) = − 1

|B|
log det(LB) = − 1

|B|

|B|∑
i=1

log λi, (5)

where λi is the i-th eigenvalue of LB . We add this loss to the vanilla GAN’s objective in Eq. (1) and form a
new objective:

min
G

max
D

V (D,G) + γ1LPaD(G), (6)

where γ1 controls the weight of LPaD(G). For the backpropagation step, to update the weight θiG in the
generator in terms of LPaD(G), we descend its gradient based on the chain rule:

∂LPaD(G)

∂θiG
=

|B|∑
j=1

(
∂LPaD(G)

∂q(xj)

dq(xj)

dxj
+
∂LPaD(G)

∂xj

)
∂xj
∂θiG

, (7)

where xj = G(zj). Equation (7) indicates a need for dq(x)/dx, which is the gradient of the quality function.
In practice, this gradient is accessible when the quality is evaluated through a performance estimator that is
differentiable (e.g., using adjoint-based solver). If the gradient of a performance estimator is not available, one
can either use numerical differentiation or approximate the quality function using a differentiable surrogate
model (e.g., a neural network-based surrogate model, as used in our experiments).

5

4.3. MO-PaDGAN Training and Evaluation

The training of MO-PaDGAN follows the standard GAN training procedure, with the objective replaced
by Eq. (6). Specifically, in each iteration, we first update the discriminator D by ascending its stochastic
gradient, and then update the generator G by descending its stochastic gradient. Please see Ref. [6] for
details on the training of GANs.

Note that when using a data-driven surrogate model as the performance estimator E, it will perform
unreliably on unrealistic designs, since it is usually trained on realistic data. This may cause problem at
the beginning of MO-PaDGAN’s training process, because the generator will produce unrealistic designs
initially, which leads to unreliable estimator predictions and makes MO-PaDGAN training unstable. Ref. [10]
proposed a few heuristics to address this problem. Please see Appendix D for a detailed description.

There are standard metrics to evaluate a generative model in general (e.g., maximum mean discrepancy
and Wasserstein distance between the data distribution and the generative distribution [14]). However, since
MO-PaDGAN’s goal is to build a better parameterization for design optimization, rather than approximating
the data distribution, we can evaluate it by examining its design/performance space coverage and the
downstream optimization task performance. We will show these results in Section. 5.

4.4. Optimizing Designs over Latent Representation

The performance augmented DPP loss will encourage the generator to produce diverse and high-
performance designs. After training, the generator G forms a parametric model where the parameters
are its input z, as shown in Fig. 1(b). One can use z to synthesize new designs (i.e., x = G(z)) which exhibit
high diversity and performance. This indicates that the design space covered by MO-PaDGAN’s generator is
expanded and contains higher-performance designs, which is favorable when performing design optimization.
The multi-objective optimization problem can be formulated as (when maximizing performances):

max
z

fm(G(z)),m = 1, ...,M

s.t. gj(G(z)) ≤ 0, j = 1, ..., J

hk(G(z)) = 0, k = 1, ...,K

zinfd ≤ zd ≤ z
sup
d , d = 1, ..., D.

(8)

In this design optimization setting, variables z are treated as design parameters which controls the geometry
of the design. The d-th design parameter zd is bounded by zinfd and zsupd . As mentioned in Section 2.1,
since the distribution of z is defined as a prior, it is easy to set its lower and the upper bounds in design
optimization. For example, if z has a standard uniform distribution, we can set the bounds of each design
parameter to be [0,1]. The function fm is the estimator of the m-th performance indicator for a given design.
In practice, it can be, for example, a Computational Fluid Dynamics (CFD) or Finite Element Method
(FEM) solver, where we can evaluate the physics properties of any given design. Note that f = (f1, ...fM)
is not necessarily the same as the performance estimator E. To balance cost and accuracy, we can use
a cheap low-fidelity model for E and an expensive high-fidelity model for f , since MO-PaDGAN training
requires much more frequent performance evaluations whereas design optimization needs higher accuracy as
it leads to the final product. Functions gj and hk define the j-th inequality and the k-th equality constraints,
respectively. For example, gj can be the function that evaluates whether the bending stress in structural
optimization exceeds the allowable stress, and hk can be the function that evaluates whether the lift in
aerodynamic shape optimization equals the required lift.

There is no limitation of using any specific type of optimizer. Note that in the case where gradients are
required (for gradient-based optimization), the functions fm, gj , and hk need to be differentiable (e.g., by
using adjoint solvers). This allows access to the gradients of the objective and constraints with respect to
the design x = G(z). Since we can already obtain dx/dz using automatic differentiation, the gradients of the
objective and constraints at z can be computed using the chain rule.

6

E
x
a
m

p
le

 I
E
x
a
m

p
le

 I
I

Objective 1

Data

Objective 2

Figure 2: Synthetic data and test quality (objective) functions.

Example I Example II

Density of generated samples Performance space Density of generated samples Performance space

x1

x
2

x1

x
2

x1

x
2

x1

x
2

G
A

N
M

O
-P

a
D

G
A

N

Figure 3: Distribution and performance of generated points for the synthetic examples. While the data has few points near the
true Pareto fronts, many of the generated samples from MO-PaDGAN are near the Pareto front.

5. Experimental Results

In this section, we demonstrate the merit of using MO-PaDGAN as a parameterization in multi-objective
optimization problems via two synthetic examples and a real-world airfoil design example. Please refer to
our code and data for reproducing the experimental results1.

5.1. Synthetic Examples

We create two synthetic examples, with eight clusters each, where cluster centers are evenly spaced
around a circle (Fig. 2). The sample size is 10,000 points. Both the synthetic examples have two parameters

1https://github.com/wchen459/MO-PaDGAN-Optimization

7

https://github.com/wchen459/MO-PaDGAN-Optimization

(a) Example I (b) Example II

Figure 4: Multi-objective optimization history for synthetic examples. Results shown are mean and standard deviation from ten
optimization runs.

(a) Example I (b) Example II

Objective 1Objective 1

O
b

je
ct

iv
e
 2

Figure 5: The union of solution sets obtained by ten runs of multi-objective optimization for synthetic examples. MO-PaDGAN
solutions are closer to the Pareto front than GAN.

and two objectives, which enables us to visualize the results and compare the performance against a known
ground truth Pareto optimal front. In the example following this section, we discuss a real-world airfoil
example, which has larger dimensionality.

The objective functions of both synthetic examples are plotted in Fig. 2. Please see Appendix A for more
details about the objective functions used.

We use the same network architecture and hyperparameter settings in both examples. We sample the
noise vectors z from a two-dimensional normal distribution. The generator has four fully connected layers.
Each hidden layer has 128 nodes and a LeakyReLU activation. We apply a hyperbolic tangent activation at
the last layer. The discriminator has three fully connected layers. Each hidden layer has 128 nodes and a
LeakyReLU activation. We apply a Sigmoid activation at the last layer. For MO-PaDGAN, we set γ0 = 2
and γ1 = 0.5. We use a RBF kernel with a bandwidth of 1 when constructing the DPP kernel matrix LB in
Eq. (4), i.e., k(xi,xj) = exp(−0.5‖xi − xj‖2). We train both the MO-PaDGAN and the vanilla GAN for
10,000 iterations with 32 training samples drawn randomly from data at each iteration. For both generator
and discriminator, we use Adam optimizer with a learning rate of 0.0001.

Figure 3 visualizes the parameter space and the performance (objective) space of points generated by a
vanilla GAN and MO-PaDGAN, respectively. It shows that in the performance space, data are separated

8

(a) Data (b) MO-PaDGAN (c) GAN (d) SVD (e) FFD

Figure 6: Airfoil shapes randomly drawn from the training data or generated by parameterizations.

into several clusters, just as in the parameter space. The vanilla GAN approximates the data distribution
well, except that it generates some points in between clusters, which is reasonable since the noise input
z is continuous. Most points from the training data or generated by GAN are away from the (ground
truth) Pareto fronts. In contrast, MO-PaDGAN generates points that fill up the gaps between clusters
in the performance space and has many solutions near the Pareto fronts. This shows that guided by the
performance augmented DPP loss, MO-PaDGAN pushes generated points towards higher performance in all
objectives, although these new points are not seen in the dataset. Note that although results can differ due
to the stochasticity introduced in the neural network training process (e.g., random weights initialization
and stochastic gradients), we do not observe any qualitative difference on the results.

We then perform multi-objective Bayesian optimization (MOBO) [15] to solve Eq. (8) while using the
trained generators as parameterizations. Here the variables are the generator’s two-dimensional input vector
z. The objective functions f1 and f2 are the ones shown in Fig. 2 (please see Appendix A for details).
Note that here we use synthetic functions as the objectives only for demonstration and validation purpose.
In reality, the objectives can be any quantities of interest (e.g., displacement, lift coefficient, weight, cost,
etc.). The bounds zinfd and zsupd (d = 1, 2) are -2 and 2, which are two times the standard deviation of the
distribution of zd. In these two examples, we do not set constraints g and h. We sample 5 points (noise
input vectors) via Latin Hypercube Sampling (LHS) [16] for initial evaluations. This is followed by Bayesian
optimization to select 50 additional evaluations. Bayesian optimization uses a Gaussian process to model the
objective function and its uncertainty [17]. We use a Matérn 5/2 kernel for the Gaussian process. Please see
Ref. [17] and our open-sourced code for more implementation details. We use the hypervolume indicator [18]
to assess the quality of a solution set. The hypervolume measures the volume of the dominated portion of
the performance space bounded from below by a reference point. We use (0, 0) as the reference points for
both examples. Figure 4 shows the history of hypervolume indicators during optimization from ten runs.
Figure 5 shows the union of final solution sets from these ten runs. The results indicate that MO-PaDGAN
achieves a much better performance than the vanilla GAN in discovering the Pareto front. This is expected
since, as shown in Fig. 3, the parameterization learned by MO-PaDGAN can represent high-performance
samples near the true Pareto front, whereas a vanilla GAN cannot.

5.2. Airfoil Design Example

An airfoil is the cross-sectional shape of an airplane wing or a propeller/rotor/turbine blade. Airfoil
shape optimization is crucial when designing a wing or a blade, as we usually optimize multiple 2D airfoils at
different cross-sections and interpolate between sections to get the full 3D geometry. In this example, we use
the UIUC airfoil database2 as our data source. It provides the geometries of nearly 1,600 real-world airfoil
designs. We preprocessed and augmented the dataset similar to [9], which led to a dataset of 38,802 airfoils,
each of which is represented by 192 surface points (i.e., xi ∈ R192×2). Figure 6(a) shows airfoil shapes
randomly drawn from the training data. We use two performance indicators for designing the airfoils — the
lift coefficient (CL) and the lift-to-drag ratio (CL/CD). These two are common objectives in aerodynamic
design optimization problems and have been used in different multi-objective optimization studies [19].
We use XFOIL [20] for CFD simulations and compute CL and CD values3. We scaled the performance

2http://m-selig.ae.illinois.edu/ads/coord_database.html
3We set CL = CL/CD = 0 for unsuccessful simulations.

9

http://m-selig.ae.illinois.edu/ads/coord_database.html

Figure 7: Randomly sampled airfoils embedded into a 2D space via t-SNE.

Figure 8: Performance space visualization for airfoil samples shown in Fig. 7.

scores between 0 and 1. To provide the gradient of the quality function for Eq. (7), we trained a neural
network-based surrogate model on all 38,802 airfoils to approximate both CL and CD.

We use a residual neural network (ResNet) [21] as the surrogate model to predict the performance
indicators and a BézierGAN [9, 22, 23] to parameterize airfoils. Please refer to Appendix B and the code for
details on their network architectures. Different from the vanilla GAN’s architecture, BézierGAN’s generator
has two inputs — the latent code z and the noise vector z′, which follows the InfoGAN’s setting [24]. The
additional latent code provides a more disentangled representation and hence will be used as our design
parameters. We set the latent dimension and the noise dimension to 5 and 10, respectively. We sample
the latent codes from a uniform distribution, i.e., zi ∼ U(0, 1), i = 1, ..., 5. We sample the noise vectors
from a normal distribution, i.e., z′j ∼ N (0, 1), j = 1, ..., 10. For simplicity, we refer to the BézierGAN as
a vanilla GAN and the BézierGAN with the loss LPaD as a MO-PaDGAN in the rest of the paper. We
follow the same training configuration (i.e., training iterations, batch size, optimizer, and learning rate) as
in the synthetic examples. For MO-PaDGAN, we set γ0 = 5 and γ1 = 0.2. We use the RBF kernel with a
bandwidth of 1 in the DPP kernel matrix.

10

Airfoils randomly generated by MO-PaDGAN and GAN are shown in Fig. 6(b) and (c), respectively.
Both MO-PaDGAN and GAN can generate realistic airfoil shapes. To compare the distribution of real
and generated airfoils in the design space, we map randomly sampled airfoils into a two-dimensional space
through t-SNE, as shown in Figure 7. The results indicate that compared to a vanilla GAN, MO-PaDGAN
can generate airfoils that are outside the boundary of the training data, driven by the tendency to maximize
diversity using the DPP loss. Figure 8 visualizes the joint distribution of CL and CL/CD for randomly
sampled/generated airfoils. It shows that MO-PaDGAN generates airfoils with performances exceed randomly
sampled airfoils from training data and the vanilla GAN (i.e., the non-dominated Pareto set of generated
samples is pushed further in the performance space to have higher values). Hence, Figures 7 and 8 indicate
that MO-PaDGAN can expand the existing boundary of the design space towards high-performance regions
outside the training data. This directed expansion is allowed since the MO-PaDGAN’s generator is updated
with the quality gradients (i.e., dq(x)/dx in Eq. (7)).

We then perform multi-objective Bayesian optimization (MOBO) and multi-objective evolutionary
algorithm (MOEA, C-TAEA in particular) [25] to solve Eq. (8) while using the trained generator G as the
parameterization. We use only the latent codes as design parameters (variables) and fix the noise vector to
zeros. The objectives are CL and CL/CD. Thus, f1 and f2 in Eq. (8) both contain the CFD simulator. The
bounds zinfd and zsupd (d = 1, ..., 5) are 0 and 1, which are the bounds of the uniform distribution of zd. In
this example, we do not set constraints g and h. For MOBO, we sample 15 points (latent codes) via LHS for
initial evaluations and 150 subsequent evaluations for Bayesian optimization. We use the same settings for
Gaussian process as in the synthetic examples. To assess the optimization performance, we use (0, 0) as the
reference points in the hypervolume indicator. For MOEA, we have 11 generations with a population size of
15. Therefore, MOEA has the same number of evaluations as MOBO. The number of offsprings is 1. We use
the simulated binary crossover [26] with a distribution index of 30 and the polynomial mutation [27] with a
distribution index of 20. Please refer to our code for detailed implementation.

We also compare MO-PaDGAN and GAN with other two state-of-the-art airfoil parameterizations — Sin-
gular Value Decomposition (SVD) [28, 29] and Free-Form Deformation (FFD) [30]. The SVD extracts salient
airfoil deformation modes from a dataset using truncated SVD and uses the weights of those modes as design
parameters. We set the number of extracted modes to 5 in this experiment (i.e., 5 design parameters). The
FFD represents a new shape by deforming some initial shape via moving a set of m× n control points. We
set the number of control points to 3 × 4 and only move their y coordinates (i.e., 12 design parameters).
We refer interested readers to our code for detailed algorithms and settings of these two parameterizations.
Figure 6(d) and (e) shows randomly synthesized airfoils using SVD and FFD. Compared to airfoils drawn
from data or generated by MO-PaDGAN/GAN, airfoils synthesized by SVD/FFD either have unrealistic
(e.g., self-intersecting) shapes or insufficient diversity. This is expected since, as generative models, the
objective of GAN and its variants is to learn data distribution, so it is able to generate designs with similar
(realistic) appearance and diversity to the data if trained properly, whereas non-generative models do not
capture the feasible boundary.

Figure 9 shows that, when using a MO-PaDGAN for parameterization, the hypervolume indicators are
significantly higher than other parameterizations throughout the whole optimization process. This observation
is consistent using either MOBO or MOEA as the optimizer. This is expected since the main contributor to
MO-PaDGAN’s exceptional optimization results is its ability as a parameterization to expand the design space
towards high-performance regions, and this ability is independent of any downstream optimization solvers
(i.e., optimization algorithm agnostic). The MO-PaDGAN achieves on average an over 180% improvement in
the final hypervolume indicator compared to the second-best parameterization. Figure 10 shows the union
of solution sets obtained by ten optimization runs, which illustrates a notable gain in the performances of
optimized MO-PaDGAN airfoils, when optimizing using either MOBO or MOEA. We further obtain the
non-dominated Pareto set for each parameterization given the points shown in Fig. 10 and plot the shapes
of airfoils in the Pareto sets in Figs. 11 and 12. It shows that solutions from MO-PaDGAN’s Pareto set
dominate all the solutions in other Pareto sets. To assess whether the optimized shapes are novel, i.e.,
different from any existing shapes (from the dataset), we compute the novelty indicator for each optimized
shape from Figs. 11 and 12. Specifically, the novelty indicator is represented by the difference between each
optimized shape and the most similar shape (i.e., the nearest neighbor) from the original dataset. While the

11

(a) (b)

Figure 9: Hypervolume indicator history for airfoil optimization using different parameterizations. Results shown are mean
and standard deviation from ten optimization runs. MO-PaDGAN achieves on average an over 180% improvement in the final
hypervolume indicator compared to the second-best parameterization.

(a) (b)

Figure 10: The union of solution sets obtained by ten runs of multi-objective airfoil design optimization using MO-PaDGAN,
GAN, SVD, and FFD. We see that MO-PaDGAN solutions dominate solutions from all other methods.

difference can be measured with various metrics based on the specific application, in this experiment we use
Hausdorff distance, which measures the distance between any two sets of airfoil surface points. The novelty
indicators are shown in Fig. 13. It shows that while GAN, as a generative model, can generate realistic
designs which exhibit similar diversity as data, it is harder to discover novel solutions in design optimization,
compared to SVD or FFD. In contract, also as a generative model, MO-PaDGAN can discover optimal
solutions with much higher novelty. This shows that the solutions found on the trade-off front are far from
the original dataset. Because by simultaneously modeling diversity and quality, MO-PaDGAN encourages
high-performance designs to be diverse and hence expands the space of high-performance designs.

6. Conclusion

We proposed MO-PaDGAN to encourage diverse and high-quality sample generation, where the quality
of a sample can be specified by a multivariate metric. This is particularly useful for Engineering Design
applications, which often require simultaneous improvement in several performance indicators. By using the
new model as a design parameterization, we showed that it expands the design space towards high-performance
regions, whereas a vanilla GAN only generates designs within the original design space bounded by data. As
a result, MO-PaDGAN can represent designs that have higher-performance but also are novel compared to
existing ones. We further used MO-PaDGAN as a new parameterization in multi-objective optimization tasks.
Through two synthetic examples, we found that MO-PaDGAN allows the discovery of the underlying full

12

Figure 11: Non-dominated set among MOBO solutions shown in Fig. 10(a). We see that MO-PaDGAN outperforms other
parameterizations on both objectives.

Pareto fronts even though data do not cover those Pareto fronts. In the airfoil design example, we compared
MO-PaDGAN with three state-of-the-art parameterization methods — a vanilla GAN, SVD, and FFD. We
showed that MO-PaDGAN achieves on average an over 180% improvement in the hypervolume indicator
compared to the second-best parameterization. We also discovered that the Pareto-optimal solutions by
using MO-PaDGAN exhibit higher novelty than GAN.

Although we demonstrated the real-world application of MO-PaDGAN through an airfoil design example,
this model shows promise in extending to other Engineering problems like material microstructural design
and molecule discovery. The proposed model also generalizes to other generative models like VAEs, where we
can add the performance augmented DPP loss to the Kullback-Leibler divergence and the reconstruction loss.

Future work will investigate questions focused on two key limitations of the method — a) How to extend
the method to domains where gradient information of design performance is not available, and b) How to
capture the entire Pareto front uniformly for many-objective optimization problems.

13

Figure 12: Non-dominated set among MOEA solutions shown in Fig. 10(b). We see that MO-PaDGAN outperforms other
parameterizations on both objectives (numbers are rounded to the nearest hundreds).

14

(a) (b)

Figure 13: Novelty indicators of airfoils shown in Fig. 11 and 12. This indicates that MO-PaDGAN solutions are most novel in
general. Note that SVD and FFD are also able to give relatively novel solutions, but cannot reach the same level of performance
as MO-PaDGAN based on Fig. 11 and 12.

15

Appendix A. Synthetic Examples: Objective Functions

In Example I, we use the modified KNO1 [31] as the objective functions:

max
x′
1,x

′
2

f1 = (r/20) cos(φ)

max
x′
1,x

′
2

f2 = (r/20) sin(φ)

s.t. r = 9−
[
3 sin

(
5

2(x1 + x2)2

)
+ 3 sin(4(x1 + x2))

+5 sin(2(x1 + x2) + 2)

]
φ =

π(x1 − x2 + 3)

12
x1 = 3(x′1 + 0.5)

x2 = 3(x′2 + 0.5)

x′1, x
′
2 ∈ [−0.5, 0.5].

The Pareto front for this function lies on the line defined by x1 + x2 = 0.4705 (in the parametric space).
There are multiple locally optimal fronts.

In Example II, we use the modified VLMOP2 [32] as the objective functions:

max
x1,x2

f1 = exp

(
−
(
x1 −

1√
2

)2

−
(
x2 −

1√
2

)2
)

max
x1,x2

f2 = exp

(
−
(
x1 +

1√
2

)2

−
(
x2 +

1√
2

)2
)

s.t. x1, x2 ∈ [−0.5, 0.5].

The Pareto front for this bi-objective problem is concave (in the objective space) and lies on the line defined
by x1 − x2 = 0 (in the parametric space).

For simplicity, both performance estimators E (used in the training stage) and f (used in the multi-objective
optimization stage) are defined by the above objective functions. In practice, one can use a lower-fidelity but
differentiable E during MO-PaDGAN training and a higher-fidelity f during design optimization, as shown
in the airfoil design example.

16

Appendix B. Airfoil Design Example: Neural Network Surrogate
Model

To obtain a differentiable performance estimator E for airfoil designs, we train a ResNet as a surrogate
model of a higher-fidelity physics solver. The model architecture is shown in Fig. B.1. We use eight residual
blocks, three of which has down-sampling. The convolution is performed along the sequence of airfoil surface
point coordinates. We use batch normalization and a leaky ReLU activation following each hidden layer, and
a Sigmoid activation at the output layer. We use XFOIL to compute the target CL and CL/CD values of
the airfoil data and scale the target values between 0 and 1.

We use 38,802 airfoil designs as the training data. We train the surrogate model for 10,000 iterations with
a batch size of 256 at each iteration. We use the Adam optimizer with a learning rate of 0.0001, β1 = 0.5,
and β2 = 0.999. Please refer to our code for more details on the surrogate model’s network and training
configurations.

17

4x2 Conv, 16, /1

Airfoil surface points
(192x2)

4x2 Conv, 16, /1

4x2 Conv, 16, /1

4x2 Conv, 16, /1

4x2 Conv, 16, /1

4x2 Conv, 32, /(2,1)

4x2 Conv, 32, /1

1x1 conv, 32, /(2,1)

4x2 Conv, 32, /1

4x2 Conv, 32, /1

4x2 Conv, 64, /(2,1)

4x2 Conv, 64, /1

1x1 conv, 64, /(2,1)

4x2 Conv, 64, /1

4x2 Conv, 64, /1

4x2 Conv, 128, /(2,1)

4x2 Conv, 128, /1

1x1 conv, 128, /(2,1)

4x2 Conv, 128, /1

4x2 Conv, 128, /1

FC, 128

Predicted (CL, CL/CD)

Conv: Convolutional layer

FC: Fully connected layer

/1: Without downsampling

/(2,1): Downsample with a stride of (2,1)

Figure B.1: Architecture of the neural network surrogate model for airfoil performance prediction.

18

Appendix C. Airfoil Design Example: BézierGAN for Smooth
Airfoil Generation

Samples generated by conventional GANs can be noisy. This noisiness may not be an issue for images,
but would cause airfoils to have non-smooth surfaces and greatly impair their performances. Therefore, we
replace the conventional GAN with BézierGAN to guarantee the smoothness of generated airfoils. Instead of
generating airfoil surface points freely in a 2D space, it uses a Bézier layer to constrain generated points
to be on a rational Bézier curve. We follow [9] to setup the model architecture. We use the same training
data as for the neural network surrogate model. For tests with or without the performance augmented DPP
loss (i.e., MO-PaDGAN or GAN), we train the model for 10,000 iterations with a batch size of 32. Both
the generator and the discriminator use the Adam optimizer with a learning rate of 0.0001, β1 = 0.5, and
β2 = 0.999. Please refer to our code for more details on BézierGAN’s network and training configurations.

Note that BézierGAN’s generator has both latent codes and the noise vector as inputs. While one can
use both inputs as design parameters, we only use the latent codes as variable design parameters in our
optimization experiments. How either input affects optimization performance is not central to this work
(please refer to [9] for related details).

19

Appendix D. Airfoil Design Example: Heuristics for Improving
MO-PaDGAN Stability

While training a MO-PaDGAN, the performances are predicted by E and used in the performance
augmented DPP loss to provide feedback for updating the generator. If the quality gradients are not accurate,
the generator learning can go astray. This is not a problem when the quality estimator is a simulator that
can reasonably evaluate (even with low-fidelity) any design in the design space, irrespective of the designs
being invalid or unrealistic. However, it creates problems when we use a data-driven surrogate model, as
in our airfoil design example. A data-driven surrogate model is normally trained only on realistic designs
and hence may perform unreliably on unrealistic ones. In the initial stages of training, a GAN model will
not always generate realistic designs. This makes it difficult for the surrogate model to correctly guide the
generator’s update and may cause stability issues. We use the follow heuristics to improve the stability:

1. Realisticity weighted quality. We weight the predicted quality at x by the probability of x being the
real design (predicted by the discriminator):

q(x) = D(x)q′(x)

where q′(x) is the predicted quality (by a surrogate model for example), and D(x) is the discriminator’s
output at x.

2. An escalating schedule for setting γ1 (the weight of the performance augmented DPP loss). A GAN
is more likely to generate unrealistic designs in its early stage of training. Thus, we initialize γ1 at 0
and increase it during training, so that MO-PaDGAN focuses on learning to generate realistic designs
at the early stage, and takes quality into consideration later when the generator can produce more
realistic designs. The schedule is set as:

γ1 = γ′1

(
t

T

)p
where γ′1 is the value of γ1 at the end of training, t is the current training step, T is the total number
of training steps, and p is a factor controlling the steepness of the escalation.

References

[1] K.-H. Chang, e-Design: computer-aided engineering design, Academic Press, 2016.
[2] S. Oh, Y. Jung, S. Kim, I. Lee, N. Kang, Deep generative design: Integration of topology optimization and generative

models, Journal of Mechanical Design 141 (11).
[3] A. Burnap, J. R. Hauser, A. Timoshenko, Design and evaluation of product aesthetics: A human-machine hybrid approach,

Available at SSRN 3421771.
[4] D. Shu, J. Cunningham, G. Stump, S. W. Miller, M. A. Yukish, T. W. Simpson, C. S. Tucker, 3d design using generative

adversarial networks and physics-based validation, Journal of Mechanical Design 142 (7).
[5] D. P. Kingma, M. Welling, Auto-encoding variational bayes, arXiv preprint arXiv:1312.6114.
[6] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative

adversarial nets, in: Advances in neural information processing systems, 2014, pp. 2672–2680.
[7] Z. Yang, X. Li, L. Catherine Brinson, A. N. Choudhary, W. Chen, A. Agrawal, Microstructural materials design via deep

adversarial learning methodology, Journal of Mechanical Design 140 (11).
[8] W. Zhang, Z. Yang, H. Jiang, S. Nigam, S. Yamakawa, T. Furuhata, K. Shimada, L. B. Kara, 3d shape synthesis for

conceptual design and optimization using variational autoencoders, in: ASME 2019 International Design Engineering
Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical
Engineers Digital Collection, 2019.

[9] W. Chen, K. Chiu, M. D. Fuge, Airfoil design parameterization and optimization using bézier generative adversarial
networks, AIAA Journal 58 (11) (2020) 4723–4735.

[10] W. Chen, F. Ahmed, Padgan: Learning to generate high-quality novel designs, Journal of Mechanical Design 143 (3).
[11] A. Kulesza, B. Taskar, Determinantal point processes for machine learning, arXiv preprint arXiv:1207.6083.
[12] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen, Improved techniques for training gans, in:

Advances in neural information processing systems, 2016, pp. 2234–2242.
[13] W. Chen, A. Ramamurthy, Deep generative model for efficient 3d airfoil parameterization and generation, in: AIAA Scitech

2021 Forum, 2021, p. 1690.

20

[14] Q. Xu, G. Huang, Y. Yuan, C. Guo, Y. Sun, F. Wu, K. Weinberger, An empirical study on evaluation metrics of generative
adversarial networks, arXiv preprint arXiv:1806.07755.

[15] I. Couckuyt, D. Deschrijver, T. Dhaene, Fast calculation of multiobjective probability of improvement and expected
improvement criteria for pareto optimization, Journal of Global Optimization 60 (3) (2014) 575–594.

[16] M. D. McKay, R. J. Beckman, W. J. Conover, A comparison of three methods for selecting values of input variables in the
analysis of output from a computer code, Technometrics 42 (1) (2000) 55–61.

[17] C. Rasmussen, C. Williams, M. Press, F. Bach, P. (Firm), Gaussian Processes for Machine Learning, Adaptive computation
and machine learning, MIT Press, 2006.
URL https://books.google.com/books?id=Tr34DwAAQBAJ

[18] E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach,
IEEE transactions on Evolutionary Computation 3 (4) (1999) 257–271.

[19] K. Park, J. Lee, Optimal design of two-dimensional wings in ground effect using multi-objective genetic algorithm, Ocean
Engineering 37 (10) (2010) 902–912.

[20] M. Drela, Xfoil: An analysis and design system for low reynolds number airfoils, in: Low Reynolds number aerodynamics,
Springer, 1989, pp. 1–12.

[21] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 770–778.

[22] W. Chen, K. Chiu, M. Fuge, Aerodynamic design optimization and shape exploration using generative adversarial networks,
in: AIAA SciTech Forum, AIAA, San Diego, USA, 2019.

[23] W. Chen, M. Fuge, Béziergan: Automatic generation of smooth curves from interpretable low-dimensional parameters,
arXiv preprint arXiv:1808.08871.

[24] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, P. Abbeel, Infogan: Interpretable representation learning
by information maximizing generative adversarial nets, in: Advances in neural information processing systems, 2016, pp.
2172–2180.

[25] K. Li, R. Chen, G. Fu, X. Yao, Two-archive evolutionary algorithm for constrained multiobjective optimization, IEEE
Transactions on Evolutionary Computation 23 (2) (2019) 303–315. doi:10.1109/TEVC.2018.2855411.

[26] K. Deb, K. Sindhya, T. Okabe, Self-adaptive simulated binary crossover for real-parameter optimization, in: Proceedings of
the 9th annual conference on genetic and evolutionary computation, 2007, pp. 1187–1194.

[27] K. Deb, M. Goyal, A combined genetic adaptive search (geneas) for engineering design, Computer Science and informatics
26 (1996) 30–45.

[28] D. J. Poole, C. B. Allen, T. C. Rendall, Metric-based mathematical derivation of efficient airfoil design variables, AIAA
Journal 53 (5) (2015) 1349–1361.

[29] D. J. Poole, C. B. Allen, T. Rendall, Efficient aero-structural wing optimization using compact aerofoil decomposition, in:
AIAA Scitech 2019 Forum, 2019, p. 1701.

[30] D. A. Masters, N. J. Taylor, T. Rendall, C. B. Allen, D. J. Poole, Geometric comparison of aerofoil shape parameterization
methods, AIAA Journal 55 (5) (2017) 1575–1589.

[31] J. Knowles, Parego: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization
problems, IEEE Transactions on Evolutionary Computation 10 (1) (2006) 50–66.

[32] D. A. Van Veldhuizen, G. B. Lamont, Multiobjective evolutionary algorithm test suites, in: Proceedings of the 1999 ACM
symposium on Applied computing, 1999, pp. 351–357.

21

https://books.google.com/books?id=Tr34DwAAQBAJ
https://books.google.com/books?id=Tr34DwAAQBAJ
http://dx.doi.org/10.1109/TEVC.2018.2855411

	1 Introduction
	2 Background
	2.1 Generative Adversarial Nets
	2.2 Determinantal Point Processes

	3 Problem Setting
	4 Methodology
	4.1 Creating a DPP kernel
	4.2 Performance Augmented DPP Loss
	4.3 MO-PaDGAN Training and Evaluation
	4.4 Optimizing Designs over Latent Representation

	5 Experimental Results
	5.1 Synthetic Examples
	5.2 Airfoil Design Example

	6 Conclusion

