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Abstract

The clustering methods have been used in a variety of fields such as image processing, data mining,

pattern recognition, and statistical analysis. Generally, the clustering algorithms consider all vari-

ables equally relevant or not correlated for the clustering task. Nevertheless, in real situations, some

variables can be correlated or may be more or less relevant or even irrelevant for this task. This

paper proposes partitioning fuzzy clustering algorithms based on Euclidean, City-block and Maha-

lanobis distances and entropy regularization. These methods are an iterative three steps algorithms

which provide a fuzzy partition, a representative for each fuzzy cluster, and the relevance weight

of the variables or their correlation by minimizing a suitable objective function. Several experi-

ments on synthetic and real datasets, including its application to noisy image texture segmentation,

demonstrate the usefulness of these adaptive clustering methods.

Keywords: Fuzzy clustering, Prototype-based clustering, Distance metric learning,

Maximum-entropy regularization

1. Introduction

Clustering refers to a procedure that groups similar objects while separating dissimilar ones apart

[1, 2, 3, 4]. Clustering algorithms are an efficient tool for image processing, data mining, pattern

recognition, and statistical analysis [5, 6, 7, 8]. The most popular clustering algorithms provide

hierarchical and partitioning structures. Hierarchical methods deliver an output represented by a

hierarchical structure of groups known as a dendrogram, i.e., a nested sequence of partitions of the
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input data, whereas partitioning methods create a partition of the input data into a fixed number of

clusters based on either distance or density criteria of a dataset, typically by optimizing an objective

function. An advantage of partitioning methods is its ability to manipulate large datasets, since

the construction of dendrogram by the hierarchical approach may be computationally impractical

in some applications.

Partitioning clustering methods were performed mainly in two different ways: hard and fuzzy.

In hard clustering, the clusters are disjoint and non-overlapping. In this case, any pattern may

belong to one and only one group. On the other hand, in fuzzy clustering, an object may belong

to all clusters with a specific membership degree. The membership degree is essential for discov-

ering intricate relations which may arise between a given data object and all clusters [9]. The

fuzzy clustering methods are peculiarly effective when the boundaries between groups of data are

ambiguous.

In the past few decades, various partitioning clustering algorithms have been proposed as K-

Means [10], Fuzzy C-Means (FCM) [1] and the FCM, which takes into account entropy regularization

(FCM-ER) [11]. One drawback of these clustering algorithms is that they treat each feature of data

point as equally relevant and independent from others. This assumption is not always be satisfied

in real applications, especially in high dimensional data clustering where some variables may not

be tightly related to the topic of interest. In contrast, a distance metric with good quality should

identify essential features and discriminate relevant and irrelevant features [12, 13, 14, 15, 16, 17].

Recent studies have shown that learning the distance function from the data can improve the

performance effectively. The advantage of this idea is that the clustering method can recognize

groups of different shapes and sizes.

The Weighted Fuzzy C-Means (WFCM) [18] method proposed by Wang et al. applies a weighted

Euclidean distance in FCM formulation to improve the performance of the FCM clustering algo-

rithm. Later, Deng et al. [19] developed an Enhanced Entropy-Weighting Subspace Clustering al-

gorithm (EEW-SC) for high dimensional gene expression data clustering analysis by integrating the

within-cluster and between-class information simultaneously. Ref. [20] shows a fuzzy co-clustering

approach using a multi-dimensional distance function as the dissimilarity measure and entropy as

the regularization term for image segmentation. Later, Rodŕıguez and Carvalho [21] presented a

fuzzy clustering algorithm based on Adaptive Euclidean distance and entropy regularization named

AFCM-ER. Aiming to simplify the presentation and the discussion of the experimental results of
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Section 4, hereafter we adopt the notation AFCM-ER-LP-L2.

Traditionally, the squared Euclidean distance is used to compare the objects and the prototypes

in the Fuzzy C-Means algorithms, but theoretical studies indicate that methods based on City-

Block distances are more robust concerning the presence of outliers in the dataset than those

based on squared Euclidean distance. For this purpose, Ref. [11] proposed an entropy regularized

FCM clustering algorithm where the squared Euclidean and City-Block are used as a dissimilarity

measure. Despite the usefulness of these algorithms, the variables have the same importance for the

clustering task. To solve the problem, Rodŕıguez and Carvalho [22] introduced the fuzzy clustering

algorithm based on Adaptive City-block distance and entropy regularization.

This paper extends Refs. [11, 20] proposing new partitioning fuzzy clustering methods based

on suitable adaptive distances and entropy regularization.

The main contributions are as follows:

• Adaptive distances are proposed, taking into account the relevance of the variables in the

clustering process, which allows recognizing clusters of different shapes and sizes. Besides,

these adaptive distances change in each iteration of the algorithm and can be different from

one cluster to another. It was used as dissimilarity measures, the Euclidean distance that

is one of the most used in the literature, but also the Mahalanobis distance to consider the

covariance of the data points. This last distance is defined by a positive definite symmetric

matrix that can be different from one cluster to another. Additionally, methods based on City-

Block distance were employed because they show better robustness in noisy data environment

than those based on Euclidean and Mahalanobis distances.

• Additionally, we use both kinds of adaptive distances, local (the set of relevant variables is

different for each cluster) and global (the set of relevant variables is the same to all clusters),

because in some situations local adaptive distances may not be appropriate, for example,

when the internal dispersion of the clusters are almost the same. As in Ferreira and de

Carvalho [23], the derivation of the expressions of the relevance weights of the variables was

done considering two cases. In the first case, the sum of the weights of the variables (global

constraint) or the sum of the weights of the variables on each cluster (local constraint) must

be equal to one [24]. In the second case, the product of the weights of the variables (global

constraint) or the product of the weights of the variables on each cluster (local constraint)
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must be equal to one [25, 26, 27]. An advantage of the product constraint over the sum is

that it requires the tuning of fewer parameters.

The paper is organized as follows. Section 2 reviews two works closely related to the proposed

approaches. Section 3 presents the proposed fuzzy clustering algorithms based on Adaptive Eu-

clidean, Mahalanobis and City-block distances and entropy regularization. Experiments and results

are reported in Section 4. Finally, conclusions are drawn in Section 5.

2. Related work

Several maximum entropy clustering algorithms are available in the literature which aims to

search for global regularity and obtain the smoothest reconstructions from the available data. This

section briefly describes two algorithms closely related to our approaches.

Let E = {e1, . . . , eN} be a set of N objects. Each object ei (1 ≤ i ≤ N) is described by the

vector xi = (xi1, . . . , xiP ), with xij ∈ IR (1 ≤ j ≤ P). Let D = {x1, . . . ,xN} be the dataset.

It is assumed that the fuzzy clustering algorithms considered in this paper provide:

• A fuzzy partition represented by the matrix U = (u1, . . . ,uN ) = (uik)1≤i≤N
1≤k≤C

, where uik is

the membership degree of object ei into the fuzzy cluster k and ui = (ui1, . . . , uiC);

• A matrix G = (g1, . . . ,gC) = (gkj)1≤k≤C
1≤j≤P

where the component gk = (gk1, . . . , gkP ) is the

representative (prototype) of fuzzy cluster k, where gkj ∈ IR.

2.1. Fuzzy clustering algorithms based on Euclidean and City-Block distances and entropy regular-

ization

The first approach [11], hereafter named FCM-ER, is a variant of the FCM algorithm, which

takes into account entropy regularization. It involves the minimization of the following objective

function:

JFCM−ER =

C∑
k=1

N∑
i=1

(uik)d(xi,gk) + Tu

C∑
k=1

N∑
i=1

(uik) ln(uik) (1)

Subject to: uik ∈ [0, 1] and
∑C
k=1(uik) = 1

In Equation 1, d is a dissimilarity function which compares the object ei and the cluster pro-

totype gk. FCM-ER is named FCM-ER-L2 when d is the squared Euclidean distance such that
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d(xi,gk) =
∑P
j=1(xij − gkj)2. Additionally, FCM-ER is named FCM-ER-L1 when d is the City-

Block distance such that d(xi,gk) =
∑P
j=1 |xij − gkj |.

The first term in the Equation (1) denotes the total heterogeneity of the fuzzy partition as the

sum of the heterogeneity of the fuzzy clusters; the second term is related to the entropy which

serves as a regulating factor during minimization process. The parameter Tu is the weight factor

in the entropy term.

2.2. Fuzzy clustering algorithms based on Adaptive Euclidean and City-Block distances and entropy

regularization

Rodŕıguez and de Carvalho [21, 22] introduced AFCM-ER-LP, a variant of FCM-ER with adap-

tive distances, where in addition to the matrix U of membership degrees and the matrix G of

prototypes, it is also provided:

• A matrix of relevance weights V = (v1, . . . ,vC) = (vkj)1≤k≤C
1≤j≤P

where vkj is the relevance

weight of the j-th variable of the k − th fuzzy cluster and vk = (vk1, . . . , vkP ).

The corresponding algorithm of this method is based the minimization of the following objective

function:

JAFCM−ER−LP =

C∑
k=1

N∑
i=1

(uik) dvk
(xi,gk) + Tu

C∑
k=1

N∑
i=1

(uik) ln(uik) (2)

=

C∑
k=1

N∑
i=1

(uik)

P∑
j=1

(vkj)d(xij , gkj) + Tu

C∑
k=1

N∑
i=1

(uik)

Subject to: uik ∈ [0, 1], vkj > 0,
∑C
k=1(uik) = 1 and

∏P
j=1(vkj) = 1.

AFCM-ER-LP is named AFCM-ER-LP-L2 when dvk
(1 ≤ k ≤ C) is the squared local adaptive

Euclidean distance such that dvk
(xi,gk) =

∑P
j=1 vkjd(xij , gkj), with d(xij , gkj) = (xij − gkj)

2.

Additionally, AFCM-ER-LP is named AFCM-ER-LP-L1 when dvk
is the local adaptive City-Block

distance such that dvk
(xi,gk) =

∑P
j=1 vkjd(xij , gkj), with d(xij , gkj) = |xij − gkj |.

The first term defines the shape and size of the clusters and encourages agglomeration, while

the second term is the negative entropy and is used to control the membership degree. Tu is a

weighting parameter that specifies the fuzziness degree; increasing Tu increases the fuzziness of the

clusters.
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3. The proposed clustering algorithms with automatic variable selection and entropy

regularization

This section presents new partitioning fuzzy clustering algorithms based on feature-weight learn-

ing that measure the heterogeneity of the fuzzy partition as the sum of the heterogeneity in each

fuzzy cluster, where the distance-based term defines the shape and size of the groups and encourages

agglomeration. Additionally, it is employed an entropy term which serves as a regulating factor

during the minimization process.

One of the proposed adaptive distance is defined by a local co-variance matrix introduced by

Gustafson and Kessel [27] that changes in each iteration of the algorithm and is different from one

cluster to another. In this case, the algorithm is named AFCM-ER-Mk and it is based on the

minimization of the following objective function:

JAFCM−ER−Mk =

C∑
k=1

N∑
i=1

(uik) dMk
(xi,gk) + Tu

C∑
k=1

N∑
i=1

(uik) ln(uik) (3)

=

C∑
k=1

N∑
i=1

(uik)(xi − gk)TMk(xi − gk) + Tu

C∑
k=1

N∑
i=1

(uik) ln(uik)

Subject to: uik ∈ [0, 1],
∑C
k=1(uik) = 1 and det(Mk) = 1.

If the adaptive distance is defined by a global co-variance matrix that changes in each iteration

of the algorithm and is the same for all clusters, the algorithm is named AFCM-ER-M and it is

based on the minimization of the following objective function:

JAFCM−ER−M =

C∑
k=1

N∑
i=1

(uik) dM(xi,gk) + Tu

C∑
k=1

N∑
i=1

(uik) ln(uik) (4)

=

C∑
k=1

N∑
i=1

(uik)(xi − gk)TM(xi − gk) + Tu

C∑
k=1

N∑
i=1

(uik) ln(uik) (5)

Subject to: uik ∈ [0, 1],
∑C
k=1(uik) = 1 and det(M) = 1.

For both cases, besides the matrix of membership degrees and the vector of prototypes, the global

co-variance matrix M and the local co-variance matrix Mk are also returned for AFCM-ER-M and

AFCM-ER-Mk, respectively.
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Another proposed adaptive distance takes into account the relevance of the variables for the

clustering task. As an extension of Ref. [20], this set of relevant variables is the same to all clusters

and the sum of the variables weights is equal to one (vj ≥ 0 and
∑P
j=1 vj = 1). This variant is

named AFCM-ER-GS and the corresponding algorithms involve the minimization of:

JAFCM−ER−GS =

C∑
k=1

N∑
i=1

(uik) dv(xi,gk) + Tu

C∑
k=1

N∑
i=1

(uik) ln(uik) + Tv

P∑
j=1

(vj) ln(vj) (6)

=

C∑
k=1

N∑
i=1

(uik)

P∑
j=1

(vj)d(xij , gkj) + Tu

C∑
k=1

N∑
i=1

(uik) ln(uik) + Tv

P∑
j=1

(vj) ln(vj)

With v = (v1, . . . , vP ) and subject to: uik ∈ [0, 1], vj ∈ [0, 1],
∑C
k=1(uik) = 1 and

∑P
j=1(vj) = 1.

Tu and Tv are weighting parameters that specify the fuzziness degree. Increasing the values of Tu

and Tv increases the fuzziness of the clusters.

AFCM-ER-GS is named AFCM-ER-GS-L2 when dv is the squared global adaptive Euclidean

distance such that dv(xi,gk) =
∑P
j=1 vjd(xij , gkj), with d(xij , gkj) = (xij − gkj)2. In this case, the

objective function becomes:

JAFCM−ER−GS−L2 =

C∑
k=1

N∑
i=1

(uik)

P∑
j=1

(vj)(xij − gkj)2 + Tu

C∑
k=1

N∑
i=1

(uik) ln(uik) + Tv

P∑
j=1

(vj) ln(vj)

(7)

Furthermore, AFCM-ER-GS is named AFCM-ER-GS-L1 when dv is the global adaptive City-

Block distance such that dv(xi,gk) =
∑P
j=1 vjd(xij , gkj), with d(xij , gkj) = |xij−gkj |. In this case,

the objective function becomes:

JAFCM−ER−GS−L1 =

C∑
k=1

N∑
i=1

(uik)

P∑
j=1

(vj)|xij − gkj |+ Tu

C∑
k=1

N∑
i=1

(uik) ln(uik) + Tv

P∑
j=1

(vj) ln(vj)

(8)

Another alternative is that the product of the weights of the variables is equal to one. This

dissimilarity function is parameterized by the vector of relevance weights v = (v1, ..., vP ), in which

vj > 0 and
∏P
j=1 vj = 1. The advantage compared to the sum is that it requires the setting of one

less parameter. This aproach is named AFCM-ER-GP and its objective function is defined as:
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JAFCM−ER−GP =

C∑
k=1

N∑
i=1

(uik) dv(xi,gk) + Tu

C∑
k=1

N∑
i=1

(uik) ln(uik) (9)

=

C∑
k=1

N∑
i=1

(uik)

P∑
j=1

(vj)d(xij , gkj) + Tu

C∑
k=1

N∑
i=1

(uik) ln(uik)

Subject to: uik ∈ [0, 1], vj > 0,
∑C
k=1(uik) = 1 and

∏P
j=1(vj) = 1. Tu is a weighting parameter

that specifies the fuzziness degree.

AFCM-ER-GP is named AFCM-ER-GP-L2 when dv is the squared global adaptive Euclidean

distance. In this case, the objective function becomes:

JAFCM−ER−GP−L2 =

C∑
k=1

N∑
i=1

(uik)

P∑
j=1

(vj)(xij − gkj)2 + Tu

C∑
k=1

N∑
i=1

(uik) ln(uik) (10)

Furthermore, AFCM-ER-GP is named AFCM-ER-GP-L1 when dv is the global adaptive City-

Block distance. In this case, the objective function becomes:

JAFCM−ER−GP−L1 =

C∑
k=1

N∑
i=1

(uik)

P∑
j=1

(vj)|xij − gkj |+ Tu

C∑
k=1

N∑
i=1

uik ln(uik) (11)

The algorithms AFCM-ER-GS-L2, AFCM-ER-GS-L1, AFCM-ER-GP-L2 and AFCM-ER-GP-

L1 return the matrix of membership degrees, the vector of prototype for each fuzzy cluster and the

vector of relevance weights v = (v1, ..., vP ), where vj is the relevance weight of the j-th variable

estimated globally.

Additionally, a variable-wise dissimilarity with relevance weight for the variables estimated

locally is also considered, where the sum of the wights is equal to one [24] and the City-Block

distance compares the objects and the prototypes. The dissimilarity function is parameterized by

the vector of relevance weights vk = (vk1, ..., vkP ), in which vkj ≥ 0 and
∑P
j=1 vkj = 1, and it is

associated with the k-th fuzzy cluster (k = 1, ..., C). This approach is named AFCM-ER-LS-L1

and its objective function is defined as:

JAFCM−ER−LS−L1 =

C∑
k=1

N∑
i=1

(uik)

P∑
j=1

(vkj)|xij − gkj |+ Tu

C∑
k=1

N∑
i=1

(uik) ln(uik) + Tv

P∑
j=1

(vkj) ln(vkj)

(12)
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Subject to: uik ∈ [0, 1], vkj ∈ [0, 1],
∑C
k=1(uik) = 1 and

∑P
j=1(vj) = 1. Tu and Tv are weighting

parameters that control the degree of fuzziness of the clusters.

The AFCM-ER-LS-L1 algorithm, besides the matrix of membership degrees and the vector of

prototypes, returns the matrix of relevance weights V = (v1, . . . ,vC) = (vkj)1≤k≤C
1≤j≤P

where vkj is

the relevance weight of the j-th variable in the fuzzy cluster k and vk = (vk1, . . . , vkP ).

3.1. Optimization steps

This section provides the optimization steps of the algorithms aiming to compute the proto-

types, the fuzzy partition, and the covariance matrix, or the relevance weights of the variables.

The minimization of the objective functions is performed iteratively in three steps (representation,

weighting, and assignment).

3.1.1. Representation step

This step provides the solution for the optimal computation of the prototype vector associated

with each fuzzy cluster. During the representation step, the matrix of membership degree U, the

global matrix M for AFCM-ER-M or the local matrices Mk for AFCM-ER-Mk and the relevance

weights of the variables for the other approaches are kept fixed. Then, the adequacy criterion for

the algorithms is minimized concerning to the prototypes.

It is observed that the dissimilarity function plays an essential role in the computation of the

prototypes. This paper provides an exact solution for each of the three possible choices of the

dissimilarity functions.

Case 1 : If the dissimilarity function between the objects and the prototypes is the Mahalanobis

distance (xi − gk)TM(xi − gk), then taking the partial derivative of JAFCM−ER−M (see Eq. (4))

concerning gk we have:

∂JAFCM−ER−M
∂gk

= −2

N∑
i=1

M(xi − gk) = 0 (13)

Solving Equation 13, gk is defined as: gk =

∑N
i=1 uikxi∑N
i=1 uik

(14)

Similarly, if the dissimilarity function is (xi − gk)TMk(xi − gk) (Eq. 3), gk is computed as in

Eq. (14).
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Case 2 : If the dissimilarity function between the objects and the prototypes is the squared

global adaptive Euclidean distance, then taking the partial derivative of JAFCM−ER−GS−L2 (see

Eq. (7)) concerning gkj we have:

∂JAFCM−ER−GS−L2

∂gkj
= −2

N∑
i=1

(uik)(xij − gkj) = 0 (15)

Solving Equation 15 yields: gkj =

∑N
i=1 uikxij∑N
i=1 uik

(16)

Following a similar reasoning, the prototype gkj of the k-th cluster which minimizes the clus-

tering criterion JAFCM−ER−GP−L2 (see Eq. (10)) is computed as in Eq. (16).

Case 3 : If the dissimilarity function is the global adaptive City-Block distance, then the mini-

mization problem of Equations (8), (11) and (12) with respect to gkj leads to the minimization of∑N
i=1 |yi − azi|, where yi = (uik)xij , zi = (uik) and a = gkj . There is no algebraic solution for this

problem, but an algorithmic solution is known and to solve it the following algorithm [28] can be

used:

1. Rank (yi, zi) such that yi1
zi1
≤ ... ≤ yiN

ziN
;

2. To −
∑N
l=1 |zil| add successive values of 2|zil| and find r such that −

∑N
l=1 |zil|+2

∑r
s=1 |zis| <

0 and −
∑N
l=1 |zil|+ 2

∑r+1
s=1 |zis| > 0;

3. Then a = yir
zir

;

4. If −
∑N
l=1 |zil|+ 2

∑r
s=1 |zis| = 0 and −

∑N
l=1 |zil|+ 2

∑r+1
s=1 |zis| = 0,then a =

yir
zir

+
yk(r+1)
zi(r+1)

2 .

Alternatively, the minimization of Equations (8), (11) and (12) with respect to gkj also can be

solved expressing [28]:

gkj =

∑N
i=1 wik xij∑N
i=1 wik

where wik =
u

(t−1)
ik

|xij − g(t−1)
kj |

(17)

3.1.2. Weighting step

This step provides an optimal solution to compute the covariance matrix for the AFCM-ER-M

and the AFCM-ER-Mk algorithms, or the relevance weight of the variables for the other approaches,
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globally for all clusters or locally for each cluster. During the weighting step, the prototypes vector

G, and the matrix of membership degrees U are kept fixed.

Proposition 1. The covariance matrix or the weights of the variables, which minimize the proposed

objective functions are calculated according to the adaptive distance function used:

(a) If the distance function is the local adaptive Mahalanobis distance dMk
(xi,gk) = (xi −

gk)TMk(xi − gk), the positive definite symmetric matrices Mk which minimizes the criterion

JAFCM−ER−Mk (Eq. (3)) under det(Mk) = 1 is updated according to the following expression:

Mk = [det(Ck)]
1
P C−1

k with Ck =

N∑
i=1

(uik)(xi − gk)(xi − gk)T (18)

(b) If the distance function is the global adaptive Mahalanobis distance dM(xi,gk) = (xi −

gk)TM(xi−gk), the positive definite symmetric matrix M which minimizes the criterion JAFCM−ER−M

(Eq. (4)) under det(M) = 1 is updated according to:

M = [det(Q)]
1
P Q−1, Q =

C∑
k=1

Ck and Ck =

N∑
i=1

(uik)(xi − gk)(xi − gk)T (19)

(c) If the adaptive distance function is given by dv(xi,gk) =
∑P
j=1 vjd(xij , gkj), the vector of

weights v = (v1, . . . , vP ), which minimizes the criterion JAFCM−ER−GS (Eq. (6)) under vj ε [0, 1]

∀ j, and
∑P
j=1 vj = 1, has its components vj(j = 1, ..., P ) computed according to the following

expression:

vj =
exp{−

∑C
k=1

∑N
i=1(uik)d(xij ,gkj)

Tv
}∑P

w=1 exp{−
∑C

k=1

∑N
i=1(uik)d(xiw,gkw)

Tv
}

(20)

If d is the squared global adaptive Euclidean distance then:

vj =
exp{−

∑C
k=1

∑N
i=1(uik)(xij−gkj)2

Tv
}∑P

w=1 exp{−
∑C

k=1

∑N
i=1(uik)(xiw−gkw)2

Tv
}

(21)

Finally, if d is the City-Block distance then:

vj =
exp{−

∑C
k=1

∑N
i=1(uik)|xij−gkj |

Tv
}∑P

w=1 exp{−
∑C

k=1

∑N
i=1(uik)|xiw−gkw|

Tv
}

(22)
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(d) If the adaptive distance function is given by dv(xi,gk) =
∑P
j=1 vjd(xij , gkj), the vector of

weights v = (v1, . . . , vP ) which minimizes the criterion JAFCM−ER−GP (Eq. (9)) under vj > 0 ∀

j and
∏P
j=1 vj = 1, has its components vj(j = 1, ..., P ) computed according to the expression:

vj =

{∏P
w=1

∑C
k=1

∑N
i=1(uik)d(xiw, gkw)

} 1
P∑C

k=1

∑N
i=1(uik)d(xij , gkj)

(23)

If d is the squared global adaptive Euclidean distance then:

vj =

{∏P
w=1

∑C
k=1

∑N
i=1 uik(xiw − gkw)2

} 1
P∑C

k=1

∑N
i=1 uik(xij − gkj)2

(24)

Finally, if d is the global adaptive City-Block distance then:

vj =

{∏P
w=1

∑C
k=1

∑N
i=1(uik)|xiw − gkw|

} 1
P∑C

k=1

∑N
i=1(uik)|xij − gkj |

(25)

(e) If the adaptive distance function is given by
∑P
j=1 vkj |xij − gkj | the vector of weights vk =

(vk1, . . . , vkP ) which minimizes the criterion JAFCM−ER−LS−L1 (Eq. (12)) under vkj ∈ [0, 1] ∀ k, j

and
∑P
j=1 vkj = 1 ∀ k, has its components vkj(k = 1, ...C, j = 1, ..., P ) computed as follows:

vkj =
exp{−

∑N
i=1(uik)|xij−gkj |

Tv
}∑P

w=1 exp{−
∑N

i=1(uik)|xiw−gkw|
Tv

}
(26)

Proof. The proof is given in Appendix A.

3.1.3. Assignment step

This step provides the solution to compute the matrix U of membership degree. In the assign-

ment step, the cluster centroids G and the matrix M for AFCM-ER-M, Mk for AFCM-ER-Mk or

the relevance weights of the variables for the other approaches are kept fixed.

Proposition 2. The fuzzy partition represented by U = (u1, . . . ,uN ), where ui = (uik, . . . , uiC)

which minimizes the clustering criterion is such that the membership degree uik(i = 1, . . . , N ; k =
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1, . . . , C) of object ei in the k-th fuzzy cluster, under uik ∈ [0, 1] and
∑C
k=1 uik = 1, is update

according to the following assignment rule:

uik =
exp

{
−∆(xi,gk)

Tu

}
∑C
w=1 exp

{
−∆(xi,gw)

Tu

} (27)

where ∆ is the distance function which compares the i-th object and the prototype of the fuzzy

cluster k. Table 1 specifies the assignment rules to obtain the fuzzy partition according to the

different adaptive distance functions.

Table 1: Assignment rules for the fuzzy partition according to the distance functions

Distance function ∆ Algorithms Rules for uik

(xi − gk)TM(xi − gk) AFCM-ER-M
exp

{
− (xi−gk)T M(xi−gk)

Tu

}
∑C

w=1 exp

{
− (xi−gw)T M(xi−gw)

Tu

}

(xi − gk)TMk(xi − gk) AFCM-ER-Mk
exp

{
− (xi−gk)T Mk(xi−gk)

Tu

}
∑C

w=1 exp

{
− (xi−gw)T Mw(xi−gw)

Tu

}
∑P
j=1 vj(xij − gkj)2

AFCM-ER-GS-L2 exp

{
−
∑P

j=1 vj(xij−gkj)
2

Tu

}
∑C

w=1 exp

{
−
∑P

j=1
vj(xij−gwj)

2

Tu

}
AFCM-ER-GP-L2

∑P
j=1 vj |xij − gkj |

AFCM-ER-GS-L1 exp

{
−
∑P

j=1 vj |xij−gkj |
Tu

}
∑C

w=1 exp

{
−
∑P

j=1
vj |xij−gwj |

Tu

}
AFCM-ER-GP-L1

∑P
j=1 vkj |xij − gkj | AFCM-ER-LS-L1

exp

{
−
∑P

j=1 vkj |xij−gkj |
Tu

}
∑C

w=1 exp

{
−
∑P

j=1
vwj |xij−gwj |

Tu

}

Proof. The proof is given in Appendix B.

3.2. The proposed clustering algorithms

The clustering algorithms are summarized in Algorithm 1

3.2.1. Convergence of proposed algorithms

The AFCM-ER-M and AFCM-ER-Mk algorithms provide a global co-variance matrix m∗ such

that det(m∗) = 1, and a local co-variance matrix M∗ estimated locally such that det(M∗) = 1 for

each cluster respectively, a fuzzy partition U∗ = (u∗1, . . . ,u
∗
N ) and a vector of prototypes G∗ =

(g∗1, . . . ,g
∗
C) such that:

13



Algorithm 1 Proposed algorithms

Input: The dataset D; The number C of clusters; The parameter Tu > 0 and Tv > 0; The

maximum number of iterations T ; The threshold ε > 0 and ε << 1.

Output: The vector of prototypes G; The matrix of membership degrees U; The matrix M, the

matrix Mk or the relevance weights globally for all clusters or locally for each group.

1: Initialization

Set t = 0; Randomly initialize the matrix of membership degrees U = (uik)1≤i≤N
1≤k≤C

such that uik ≥ 0 and
∑C
k=1 u

(t)
ik = 1;

2: repeat

Set t = t+ 1
3: Step 1: representation.

For k = 1, . . . , C; j = 1, . . . , P , compute the component gkj of the prototype gk =

(gk1, ..., gkP ) according to the dissimilarity function considered: i) for the adaptive

Mahalanobis distances gkj is computed according to Eq. (14); ii) for the adaptive

Euclidean distances, gkj is computed according to Eq. (16); iii) for the adaptive

City-Block distances, gkj is computed according the algorithm described in Section

3.1.1 or using Eq. (17).

4: Step 2: weighting.

To obtain the matrices for all or each cluster

• Compute M and Mk according to Equations (19) and (18), respectively.

To obtain the matrix of relevance weights (k = 1, ..., C; j = 1, ..., P )

• Compute the component vkj of the vector of relevance weights vk = (vk1, ..., vkP )

according to Eq. (26) if the objective function is given by Eq. (12).

• Compute the component vj of the vector of relevance weights v = (v1, ..., vP )

according to Eq. 20 or Eq. 23 if the objective function is given by Eq. (6) or Eq.

(9) respectively.

5: Step 3: assignment.

Compute the elements uij of the matrix of membership degrees U = (uij)1≤i≤N
1≤j≤C

according to Equation (27).

6: until max(|u(t)
ij − u

(t−1)
ij |) < ε or t ≥ T

14



• JAFCM−ER−M (G∗,m∗,U∗) = min{JAFCM−ER−M (G,m,U),G ∈ LC ,m ∈M,U ∈ UN}

• JAFCM−ER−Mk(G∗,M∗,U∗) = min{JAFCM−ER−Mk(G,M,U),G ∈ LC ,M ∈ MC ,U ∈

UN}

where

− L is the representation space of the prototypes such that gk ∈ L (k = 1, . . . , C) and G ∈

LC = L× · · · × L. In this paper L = RP .

− U is the space of fuzzy partition membership degrees such that ui ∈ U (i = 1, . . . , N). In this

paper U = {u = (u1, . . . ,uC) ∈ [0, 1]× · · · × [0, 1] = [0, 1]C :
∑C
k=1 uik = 1 and uik ≥ 0} and

U ∈ UN = U× · · · × U.

− M is the space of positive definite symmetric matrix with determinant equal to 1, such that

m ∈M and M ∈MC = M× · · · ×M.

Moreover, the AFCM-ER-GS (AFCM-ER-GS-L2 and AFCM-ER-GS-L1) and AFCM-ER-GP

(AFCM-ER-GP-L1 and AFCM-ER-GP-L2) algorithms provide a fuzzy partition U∗ = (u∗1, . . . ,u
∗
N ),

a vector of prototypes G∗ = (g∗1, . . . ,g
∗
C) and a relevance weight vector v∗ such that:

• JAFCM−ER−GS(G∗,v∗,U∗) = min{JAFCM−ER−GS(G,v,U),G ∈ LC ,v ∈ Ξ,U ∈ UN}

• JAFCM−ER−GP (G∗,v∗,U∗) = min{JAFCM−ER−GP (G,v,U),G ∈ LC ,v ∈ Ξ,U ∈ UN}

where

− Ξ is the space of vectors of weights such that v ∈ Ξ. In this paper Ξ = {v = (v1, . . . ,vP ) ∈

RP : vj > 0 and
∏P
j=1 vj = 1} or Ξ = {v = (v1, . . . , vP ) ∈ RP : vj ∈ [0, 1] and

∑P
j=1 vj = 1}.

Besides, AFCM-ER-LS-L1 algorithms provide a fuzzy partition U∗ = (u∗1, . . . ,u
∗
N ), a vector

of prototypes G∗ = (g∗1, . . . ,g
∗
C) and a vector of relevance weight vectors V∗ = (v∗1, . . . ,v

∗
C) such

that:

• JAFCM−ER−LS−L1(G∗,V∗,U∗) = min{JAFCM−ER−LS−L1(G,V,U),G ∈ LC ,V ∈ ΞC ,U ∈

UN}

where
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− Ξ is the space of vectors of weights such that vk ∈ Ξ, (k = 1, . . . , C). In this paper Ξ = {v =

(v1, . . . , vP ) ∈ RP : vj ∈ [0, 1] and
∑P
j=1 vj = 1}, and V ∈ ΞC = Ξ× · · · × Ξ.

Similarly to Ref [29], the convergence properties of the proposed algorithms can be studied from

the series:

• v
(t)
AFCM−ER−M (G(t),m(t),U(t)) ∈ LC ×M× UN and u

(t)
AFCM−ER−M =

JAFCM−ER−M (v
(t)
AFCM−ER−M ) = JAFCM−ER−M (G(t),m(t),U(t)) where t = 0, 1, . . . is the

iteration number;

• v
(t)
AFCM−ER−Mk(G(t),M(t),U(t)) ∈ LC ×MC × UN and u

(t)
AFCM−ER−Mk =

JAFCM−ER−Mk(v
(t)
AFCM−ER−Mk) = JAFCM−ER−Mk(G(t),M(t),U(t)) where t = 0, 1, . . . is

the iteration number;

• v
(t)
AFCM−ER−GS(G(t),v(t),U(t)) ∈ LC × Ξ× UN and u

(t)
AFCM−ER−GS =

JAFCM−ER−GS(v
(t)
AFCM−ER−GS) = JAFCM−ER−GS(G(t),v(t),U(t)) where t = 0, 1, . . . is the

iteration number;

• v
(t)
AFCM−ER−GP (G(t),v(t),U(t)) ∈ LC × Ξ× UN and u

(t)
AFCM−ER−GP =

JAFCM−ER−GP (v
(t)
AFCM−ER−GP ) = JAFCM−ER−GP (G(t),v(t),U(t)) where t = 0, 1, . . . is

the iteration number;

• v
(t)
AFCM−ER−LS−L1(G(t),V(t),U(t)) ∈ LC × ΞC × UN and u

(t)
AFCM−ER−LS−L1 =

JAFCM−ER−LS−L1(v
(t)
AFCM−ER−LS−L1) = JAFCM−ER−LS−L1(G(t),V(t),U(t)) where t =

0, 1, . . . is the iteration number;

From the initial terms:

v
(0)
AFCM−ER−M (G(0),m(0),U(0)), v

(0)
AFCM−ER−Mk(G(0),M(0),U(0)), v

(0)
AFCM−ER−GS(G(0),v(0),U(0)),

v
(0)
AFCM−ER−GP (G(0),v(0),U(0)) and v

(0)
AFCM−ER−LS−L1(G(0),V(0),U(0)), the algorithms AFCM-

ER-M, AFCM-ER-Mk, AFCM-ER-GS, AFCM-ER-GP and AFCM-ER-LS-L1 compute the differ-

ent terms of the series, v
(t)
AFCM−ER−M , v

(t)
AFCM−ER−Mk, v

(t)
AFCM−ER−GS , v

(t)
AFCM−ER−GP , and

v
(t)
AFCM−ER−LS−L1, until the respective convergence (to be demonstrate) when the objective func-

tions JAFCM−ER−M , JAFCM−ER−Mk, JAFCM−ER−GS , JAFCM−ER−GP and JAFCM−ER−LS−L1

reach stationary values.
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Proposition 3. i) The series u
(t)
AFCM−ER−M = JAFCM−ER−M (v

(t)
AFCM−ER−M ) =

JAFCM−ER−M (G(t),m(t),U(t)), t = 0, 1, . . . , decreases at each iteration and converge;

ii) The series u
(t)
AFCM−ER−Mk = JAFCM−ER−Mk(v

(t)
AFCM−ER−Mk) =

JAFCM−ER−Mk(G(t),M(t),U(t)), t = 0, 1, . . . , decreases at each iteration and converge;

iii) The series u
(t)
AFCM−ER−GS = JAFCM−ER−GS(v

(t)
AFCM−ER−GS) =

JAFCM−ER−GS(G(t),v(t),U(t)), t = 0, 1, . . . , decreases at each iteration and converge;

iv) The series u
(t)
AFCM−ER−GP = JAFCM−ER−GP (v

(t)
AFCM−ER−GP ) =

JAFCM−ER−GP (G(t),v(t),U(t)), t = 0, 1, . . . , decreases at each iteration and converge;

v) The series u
(t)
AFCM−ER−LS−L1 = JAFCM−ER−LS−L1(v

(t)
AFCM−ER−LS−L1) =

JAFCM−ER−LS−L1(G(t),V(t),U(t)), t = 0, 1, . . . , decreases at each iteration and converge;

Proof. The proof is given in Appendix C.

Proposition 4. i) The series v
(t)
AFCM−ER−M = (G(t),m(t),U(t)), t = 0, 1, . . . , converges;

ii) The series v
(t)
AFCM−ER−Mk = (G(t),M(t),U(t)), t = 0, 1, . . . , converges;

iii) The series v
(t)
AFCM−ER−GS = (G(t),v(t),U(t)), t = 0, 1, . . . , converges;

iv) The series v
(t)
AFCM−ER−GP = (G(t),v(t),U(t)), t = 0, 1, . . . , converges;

v) The series v
(t)
AFCM−ER−LS−L1 = (G(t),V(t),U(t)), t = 0, 1, . . . , converges.

Proof. The proof is given in Appendix D.

3.2.2. Time complexity of proposed algorithms

The computational complexity for computing the prototypes for methods based on Euclidean

and Mahalanobis distances is O(N ×C ×P ), and O(N ×C ×P × log(N)) for approaches based on

City-Block distance (in which N , C and P represent the number of objects, clusters and variables

respectively). In the weighting step, the complexity to obtain M and Mk for AFCM-ER-M and

AFCM-ER-Mk respectively, depends on the matrix inversion method used in the implementation

of the clustering algorithm. In this paper, the complexity for obtaining M for AFCM-ER-M is

O(max{N × C × P 2, P 3}), and O(C × max{N × P 2, P 3}) to compute Mk for the AFCM-ER-

Mk algorithm. For the other methods, the complexity time to compute the relevance weights
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is O(N × C × P ). Finally, for computing the matrix of membership degree for AFCM-ER-M

and AFCM-ER-Mk, the complexity time is O(N × C × P 2), however, for other approaches, it is

O(N × C × P ). Therefore, globally, assuming that the iterative function needs T iterations to

converge, we would have:

• For AFCM-ER-M, a complexity time of O(T ×max{N × C × P 2, P 3}).

• For AFCM-ER-Mk, a complexity time of O(T × C ×max{N × P 2, P 3}).

• For AFCM-ER-GS-L2 and AFCM-ER-GP-L2, a complexity time of O(T ×N × C × P ).

• Finally, for AFCM-ER-GS-L1, AFCM-ER-GP-L1 and AFCM-ER-LS-L1, a complexity time

of O(T × C ×N × P × log(N)).

4. Experimental results

This section aims to evaluate the performance and illustrates the usefulness of the proposed

algorithms by applying it to suitable synthetic and real datasets. All experiments were conducted

on the same machine (OS: Windows 10 Professional 64-bits, Memory: 8 GiB, Processor: Intel Core

i7-5500U CPU @ 2.40 GHz).

4.1. Experimental setting

The proposed algorithms were compared with five previous most related fuzzy clustering models:

FCM-ER-L2 and FCM-ER-L1 [11], the Fuzzy Co-Clustering algorithm for Images (hereafter we

will adopt the notation AFCM-ER-LS-L2) [20], AFCM-ER-LP-L2 [21] and AFCM-ER-LP-L1 [22]

algorithms.

The parameter Tu for AFCM-ER-M, AFCM-ER-Mk, FCM-ER-L2, FCM-ER-L1, AFCM-ER-

LP-L2, AFCM-ER-LP-L1, AFCM-ER-GP-L2, and AFCM-ER-GP-L1 was obtained without super-

vision as follows. For each dataset, the value of Tu was varied between 0.01 to 100 (with step 0.01),

and the threshold for Tu corresponds to the value of the fuzzifier at which the minimum centroid

distance falls under 0.1 for the first time, similar to Ref. [30]. For this purpose, before running the

algorithms, each dataset is pre-processed so that every feature is standardized to have an average

of zero and the standard deviation is equal to one [30].
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The choice of the parameter Tu for the AFCM-ER-GS-L2, AFCM-ER-GS-L1, AFCM-ER-LS-

L2, and AFCM-ER-LS-L1 algorithms followed the same procedure used above, with the value of

Tv obtained after several trials and error. The selected parameters correspond to a pair (Tu, Tv)

with the maximum distance; this means parameter selection is made in an unsupervised way. The

algorithm described in Section 3.1.1 was used to compute the prototype associated with each fuzzy

cluster for algorithms based on City-Block distance. The maximum number of iterations T was

100, ε was set to 10−5, and for the datasets, the number of clusters was set equal to the number of

a priori classes.

From the fuzzy partition U = (u1, . . . ,uC) is obtained a hard partition Q = (Q1, ..., QC), where

the cluster Qk(k = 1, ..., C) is defined as: Qk = {i ∈ {1, ..., N} : uik ≥ uim,∀m ∈ {1, ..., C}}. The

clustering results obtained by the algorithms were compared using two measures: The Hullermeier

index (HUL) [31] and the Adjusted Rand index (ARI) [32]. The HUL index compares the a priori

partition of the datasets with the fuzzy partition provided by the algorithms and the ARI with the

crisp partition.

4.2. Experiment 1

In the first experiment, we investigate with synthetic datasets performance aspects of the pro-

posed algorithms with Mahalanobis (AFCM-ER-M, AFCM-ER-Mk), Euclidean (AFCM-ER-GS-L2,

AFCM-ER-GP-L2) and City-block (AFCM-ER-GS-L1, AFCM-ER-GP-L1, AFCM-ER-LS-L1) dis-

tances.

In this experiment was created four synthetic datasets described by two-dimensional vectors

generated randomly from a normal distribution. The synthetic datasets were created having classes

of different sizes and shapes as in Ref. [25]. Each synthetic datasets have 450 points, divided into

four classes of unequal sizes: two classes of size 150 each, one with 50 and other with 100. Each

class in these data were drawn according to a bi-variate normal distribution with vector µ and

covariance matrix Σ represented by:

µ =

µ1

µ2

 and Σ =

 σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2


We consider four different data configurations: (1) the class covariance matrices are diagonal,

and almost the same; (2) the class covariance matrices are diagonal but unequal; (3) the class
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covariance matrices are not diagonal but almost the same; (4) the class covariance matrices are not

diagonal and are also unequal.

Patterns of each class in data configuration 1 (Fig. 1 (a)) were drawn according to the following

parameters:

(1) Class 1: µ1 = 45, µ2 = 30, σ2
1 = 100, σ2

2 = 9, ρ = 0.0; (2) Class 2: µ1 = 70, µ2 = 38,

σ2
1 = 81, σ2

2 = 16, ρ = 0.0; (3) Class 3: µ1 = 45, µ2 = 42, σ2
1 = 100, σ2

2 = 16, ρ = 0.0; (4) Class 4:

µ1 = 42, µ2 = 20, σ2
1 = 81, σ2

2 = 9, ρ = 0.0

Patterns of each cluster in data configuration 2 (Fig. 1, (b)) were drawn according to the

following parameters:

(1) Class 1: µ1 = 45, µ2 = 22, σ2
1 = 144, σ2

2 = 9, ρ = 0.0; (2) Class 2: µ1 = 70, µ2 = 38,

σ2
1 = 81, σ2

2 = 36, ρ = 0.0; (3) Class 3: µ1 = 50, µ2 = 42, σ2
1 = 36, σ2

2 = 81, ρ = 0.0; (4) Class 4:

µ1 = 42, µ2 = 2, σ2
1 = 9, σ2

2 = 144, ρ = 0.0

Patterns of each class in data configuration 3 (Fig. 1, (c)) were drawn according to the following

parameters:

(1) Class 1: µ1 = 45, µ2 = 30, σ2
1 = 100, σ2

2 = 9, ρ = 0.7; (2) Class 2: µ1 = 70, µ2 = 38,

σ2
1 = 81, σ2

2 = 16, ρ = 0.8; (3) Class 3: µ1 = 45, µ2 = 42, σ2
1 = 100, σ2

2 = 16, ρ = 0.7; (4) Class 4:

µ1 = 42, µ2 = 20, σ2
1 = 81, σ2

2 = 9, ρ = 0.8

Finally, the patterns of each class in data configuration 4 (Fig. 1, (d)) were drawn according to

the following parameters:

(1) Class 1: µ1 = 45, µ2 = 22, σ2
1 = 144, σ2

2 = 9, ρ = 0.7; (2) Class 2: µ1 = 70, µ2 = 38,

σ2
1 = 81, σ2

2 = 36, ρ = 0.8; (3) Class 3: µ1 = 50, µ2 = 42, σ2
1 = 36, σ2

2 = 81, ρ = 0.7; (4) Class 4:

µ1 = 42, µ2 = 2, σ2
1 = 9, σ2

2 = 144, ρ = 0.8
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Figure 1: Clusters drawn from data configurations 1, 2, 3 and 4.
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Fifty replications of each synthetic dataset were carried out in a framework of a Monte Carlo

experiment. For each dataset, 50 random initializations of the algorithm are performed. The

best result from these 50 repetitions is selected according to their respective objective function.

The average and standard deviation of the indexes were calculated based on the 50 Monte Carlo

iterations.

4.2.1. Results

Table 2 shows the values of the mean and the standard deviation for HUL and ARI for different

methods and data configurations.

In data configuration 1 (the cluster covariance matrices are diagonal and almost the same),

the best results (Table 2) according to the HUL index were obtained by FCM-ER-L1, AFCM-

ER-GP-L1 and AFCM-ER-M algorithms with values of 0.7946, 0.7739 and 0.7091 respectively.

For the ARI index, the best performance was presented by the FCM-ER-L1 algorithm; moreover,

AFCM-ER-GP-L1 and FCM-ER-L2 achieved, respectively, the second and third best values. The

AFCM-ER-LS-L1, AFCM-ER-GS-L1, and AFCM-ER-Mk algorithms produced the worst clustering

results for HUL, and the algorithms AFCM-ER-Mk, AFCM-ER-LS-L1, and AFCM-ER-LP-L2 for

ARI. As expected, in this data configuration, almost all the methods with global adaptive distance

outperformed their respective variants based on local adaptive distance, i.e., the methods AFCM-

ER-M, AFCM-ER-GP-L1, AFCM-ER-GP-L2, AFCM-ER-GS-L1 outperformed, respectively, the

methods AFCM-ER-Mk, AFCM-ER-LP-L1, AFCM-ER-LP-L2, AFCM-ER-LS-L1. AFCM-ER-GS-

L2 outperforms AFCM-ER-LS-L2 concerning ARI index, but AFCM-ER-LS-L2 surpasses AFCM-

ER-GS-L2 regarding HUL index.

Data configuration 2 presents cluster covariance matrices that are diagonal but unequal. In this

case, the best result was provided by the algorithms AFCM-ER-GP-L1, AFCM-ER-LP-L2, and

FCM-ER-L1 for HUL and by AFCM-ER-LP-L2, AFCM-ER-LP-L1, and AFCM-ER-Mk for ARI.

The algorithms AFCM-ER-M, AFCM-ER-GP-L2, and FCM-ER-L2 obtained the worst performance

for the HUL index and AFCM-ER-GS-L1, AFCM-ER-M and AFCM-ER-GS-L2 for the ARI in-

dex. For this configuration, almost all the methods with local adaptive distance presented better

results compared with their respective variants based on global adaptive distance: the methods

AFCM-ER-Mk, AFCM-ER-LP-L2, AFCM-ER-LS-L1, AFCM-ER-LS-L2 surpassed, respectively,

the methods AFCM-ER-M, AFCM-ER-GP-L2, AFCM-ER-GS-L1, AFCM-ER-GS-L2. AFCM-ER-
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Table 2: Mean and standard deviation (in parenthesis) for the data configurations.

Dataset 1 Dataset 2 Dataset 3 Dataset 4

Algorithms HUL ARI HUL ARI HUL ARI HUL ARI

FCM-ER-L2 0.7006 0.5991 0.6735 0.5815 0.6314 0.4162 0.6368 0.4613

(0.0231) (0.0388) (0.0186) (0.0343) (0.0206) (0.0338) (0.0220) (0.0402)

FCM-ER-L1 0.7946 0.6383 0.7926 0.5693 0.7140 0.4393 0.7549 0.4529

(0.0788) (0.0815) (0.0344) (0.0555) (0.0659) (0.0465) (0.0205) (0.0344)

AFCM-ER-M 0.7091 0.5899 0.6190 0.5186 0.7178 0.6631 0.6197 0.4946

(0.0225) (0.0465) (0.0365) (0.0344) (0.0485) (0.1366) (0.0372) (0.0294)

AFCM-ER-Mk 0.6685 0.4127 0.7427 0.5990 0.7295 0.4936 0.7933 0.6499

(0.0887) (0.1111) (0.0821) (0.0681) (0.0901) (0.1581) (0.0660) (0.1128)

AFCM-ER-GP-L2 0.7063 0.5905 0.6648 0.5621 0.6357 0.4131 0.6347 0.4393

(0.0219) (0.0399) (0.0252) (0.0353) (0.0203) (0.0339) (0.0197) (0.0378)

AFCM-ER-GP-L1 0.7739 0.6226 0.7995 0.5819 0.7322 0.4506 0.7545 0.4506

(0.0759) (0.0801) (0.0353) (0.0641) (0.0600) (0.0595) (0.0310) (0.0464)

AFCM-ER-LP-L2 0.7055 0.4393 0.7954 0.6466 0.6424 0.3181 0.6942 0.5651

(0.0169) (0.0529) (0.0342) (0.0409) (0.0130) (0.0241) (0.0443) (0.0390)

AFCM-ER-LP-L1 0.6904 0.5328 0.7552 0.6452 0.6673 0.3994 0.7176 0.5168

(0.0593) (0.0769) (0.0530) (0.0600) (0.0365) (0.0438) (0.0537) (0.0533)

AFCM-ER-GS-L2 0.6836 0.4892 0.6890 0.5193 0.6327 0.3814 0.6515 0.4175

(0.0368) (0.1425) (0.0422) (0.0984) (0.0229) (0.0705) (0.0336) (0.0889)

AFCM-ER-GS-L1 0.6663 0.5142 0.7301 0.4444 0.6267 0.3987 0.7034 0.4175

(0.0537) (0.1054) (0.0509) (0.1298) (0.0523) (0.0775) (0.0344) (0.0876)

AFCM-ER-LS-L2 0.6936 0.4861 0.6988 0.5556 0.6394 0.3579 0.6483 0.4895

(0.0344) (0.1475) (0.0390) (0.0599) (0.0235) (0.0770) (0.0276) (0.0467)

AFCM-ER-LS-L1 0.6528 0.4243 0.7443 0.5432 0.6245 0.3611 0.6959 0.4864

(0.0556) (0.1392) (0.0470) (0.0464) (0.0517) (0.0875) (0.0589) (0.0708)

LP-L1 surpasses AFCM-ER-GP-L1 concerning ARI index, but AFCM-ER-GP-L1 outperforms

AFCM-ER-LP-L1 regarding HUL index.

In data configuration 3, (the cluster covariance matrices are not diagonal but almost the same)
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the first, second and third best performance for HUL were presented by AFCM-ER-GP-L1, AFCM-

ER-Mk, and AFCM-ER-M respectively. For the ARI index, the best results were achieved, respec-

tively, by AFCM-ER-M, AFCM-ER-Mk, and AFCM-ER-GP-L1. As expected, for this data config-

uration, AFCM-ER-M and AFCM-ER-Mk were among the best. The worst result was presented,

respectively by the algorithms AFCM-ER-LS-L1 and AFCM-ER-GS-L1 for HUL and by, AFCM-

ER-LP-L2 and AFCM-ER-LS-L2 for ARI. Finally, for this data configuration and concerning the

ARI index, the methods with global adaptive distance outperformed their respective variants based

on local adaptive distance, i.e., the methods AFCM-ER-M, AFCM-ER-GP-L1, AFCM-ER-GP-L2,

AFCM-ER-GS-L1 and AFCM-ER-GS-L2 outperformed, respectively, the methods AFCM-ER-Mk,

AFCM-ER-LP-L1, AFCM-ER-LP-L2, AFCM-ER-LS-L1, and AFCM-ER-LS-L2.

For data configuration 4, where the cluster covariance matrices are not diagonal and unequal,

the algorithm AFCM-ER-Mk outperforms the other approaches for both indices. AFCM-ER-M

presented the worst performance at HUL, and AFCM-ER-GS-L1 and AFCM-ER-GS-L2 had the

worst performance for ARI. Finally, for this data configuration and concerning the ARI index,

the methods with local adaptive distance outperformed their respective variants based on global

adaptive distance, i.e., the methods AFCM-ER-Mk, AFCM-ER-LP-L1, AFCM-ER-LP-L2, AFCM-

ER-LS-L1 and AFCM-ER-LS-L2 outperformed, respectively, the methods AFCM-ER-M, AFCM-

ER-GP-L1, AFCM-ER-GP-L2, AFCM-ER-GS-L1, and AFCM-ER-GS-L2.

4.3. Experiment 2

We developed another experiment to verify the behavior of the proposed methods in the presence

of outliers. For this purpose, a synthetic dataset with 80 objects described by two-dimensional

vectors was generated randomly from a normal distribution according to the following parameters

(Fig. 2 (a)):

• Class 1: µ1 = 0, µ2 = 0, σ2
1 = 0.05, σ2

2 = 0.05;

• Class 2: µ1 = 0.8, µ2 = 0.8, σ2
1 = 0.05, σ2

2 = 0.05;

To evaluate the robustness in the presence of outliers, three different percentages of outliers (10%,

20%, 30%) have been added to the dataset (Figs. 2 (b), (c) and (d)) with µ1 = 0.8, µ2 = 1, σ2
1 = 5

and σ2
2 = 5. Fifty replications of the synthetic dataset were carried out in a framework of a

Monte Carlo experiment. For each dataset, 50 random initializations of the clustering algorithm
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are performed. The average and standard deviation of the indexes were calculated based on the 50

Monte Carlo iterations.
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Figure 2: Synthetic dataset with different percentage of outliers. (a) data with 0% of outliers, (b) data with 10% of

outliers, (c) data with 20% of outliers and (d) data with 30% of outliers.

The robustness of the algorithms have been evaluated according to the misclassification (HUL

and ARI indices) and according to the representative detection both in the presence of outliers.

To evaluate this last index, D’Urso et al. [33] introduced an index of robustness detection (rd)

aiming to assess the robustness in the presence of outliers. This index compares the representatives

provided by the algorithms with the ideal representative of the a priori classes. Here we adopt this

index as follows:

rd =
∆(gid1 ,g1) + ∆(gid1 ,g2) + ∆(gid2 ,g1) + ∆(gid2 ,g1)

2∆(gid1 ,g
id
2 )

(28)

where g1 and g2 denote, respectively, the representatives of clusters 1 and 2 provided by the

algorithms, gid1 and gid2 denotes, respectively, the ”ideal” representatives of the a priori classes 1

and 2, and ∆ is a suitable Euclidean distance between vectors.

4.3.1. Results

Table 3 presents the results for the HUL, ARI, and rd indices with different percentages of

outliers according to the mean and the standard deviation (in parentheses).

Table 3 shows that for the values of ARI and rd for 0% of outliers, methods with Euclidean

distance presented the best results compared with those based on Mahalanobis and City-Block

distances. However, concerning misclassification measured in HUL and ARI with different percents

of outliers, algorithms based on City-Block distance outperform the other approaches, being able
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Table 3: Mean and standard deviation (in parentheses) of HUL, ARI, and rd on the synthetic interval-valued dataset

for different percentages of outliers.

0% Outliers 10% Outliers 20% Outliers 30% Outliers

Algorithms HUL ARI rd HUL ARI rd HUL ARI rd HUL ARI rd

FCM-ER-L2 0.5726 0.9761 1.0010 0.5120 0.8103 1.0272 0.5077 0.6524 1.0489 0.5039 0.4776 1.0765

(0.0226) (0.0350) (0.0014) (0.0087) (0.3117) (0.0328) (0.0097) (0.3847) (0.0471) (0.0085) (0.3990) (0.0633)

FCM-ER-L1 0.7708 0.9683 1.0176 0.7143 0.9683 1.0212 0.7383 0.9663 1.0366 0.7438 0.9567 1.0397

(0.1351) (0.0431) (0.0181) (0.1308) (0.0431) (0.0280) (0.1495) (0.0416) (0.0391) (0.1346) (0.0528) (0.0405)

AFCM-ER-M 0.6319 0.8726 1.0028 0.5214 0.8285 1.0282 0.5108 0.7343 1.0478 0.5082 0.6231 1.0772

(0.1209) (0.2517) (0.0064) (0.0179) (0.2573) (0.0331) (0.0067) (0.2429) (0.0466) (0.0070) (0.3188) (0.0665)

AFCM-ER-Mk 0.6572 0.4467 1.0137 0.5308 0.1963 1.0537 0.5335 0.2199 1.1731 0.5361 0.2424 1.4651

(0.2210) (0.4029) (0.0211) (0.0964) (0.2552) (0.0645) (0.0691) (0.2561) (0.5259) (0.0831) (0.3015) (0.8398)

AFCM-ER-GP-L2 0.5392 0.9761 1.0011 0.5117 0.8145 1.0271 0.5051 0.6548 1.0486 0.5020 0.4765 1.0677

(0.0646) (0.0350) (0.0021) (0.0094) (0.3042) (0.0327) (0.0070) (0.3847) (0.0498) (0.0066) (0.3981) (0.0586)

AFCM-ER-GP-L1 0.7716 0.9692 1.0181 0.7407 0.9732 1.0245 0.7385 0.9633 1.0347 0.7550 0.9585 1.0443

(0.1335) (0.0397) (0.0195) (0.1449) (0.0389) (0.0290) (0.1478) (0.0432) (0.0345) (0.1366) (0.0488) (0.0407)

AFCM-ER-LP-L2 0.5657 0.9761 1.0010 0.5033 0.3116 1.0328 0.5051 0.4161 1.1113 0.5064 0.3339 1.2806

(0.0338) (0.0350) (0.0014) (0.0300) (0.3210) (0.0301) (0.0309) (0.3074) (0.4038) (0.0544) (0.3145) (0.6476)

AFCM-ER-LP-L1 0.7703 0.9653 1.0182 0.6903 0.9673 1.0178 0.6759 0.9586 1.0194 0.6838 0.9665 1.0214

(0.1351) (0.0436) (0.0192) (0.0996) (0.0440) (0.0217) (0.1029) (0.0504) (0.0198) (0.0777) (0.0478) (0.0234)

AFCM-ER-GS-L2 0.5062 0.9761 1.0009 0.5105 0.8128 1.0271 0.5063 0.6533 1.0506 0.5025 0.4818 1.0677

(0.0175) (0.0350) (0.0013) (0.0075) (0.3044) (0.0328) (0.0101) (0.3838) (0.0474) (0.0073) (0.3974) (0.0579)

AFCM-ER-GS-L1 0.7956 0.9702 1.0207 0.7248 0.9732 1.0237 0.7287 0.9672 1.0345 0.7243 0.9596 1.0395

(0.1454) (0.0399) (0.0210) (0.1368) (0.0389) (0.0301) (0.1589) (0.0394) (0.0382) (0.1365) (0.0501) (0.0436)

AFCM-ER-LS-L2 0.5444 0.8795 1.0010 0.4997 0.1466 1.0332 0.4982 0.1971 1.0542 0.4994 0.2690 1.1254

(0.0271) (0.2741) (0.0014) (0.0233) (0.2276) (0.0294) (0.0103) (0.2515) (0.0434) (0.0118) (0.2950) (0.3543)

AFCM-ER-LS-L1 0.7495 0.9491 1.0194 0.6383 0.8515 1.0266 0.5898 0.7302 1.0212 0.5503 0.5868 1.0181

(0.1804) (0.0642) (0.0209) (0.1724) (0.2542) (0.0344) (0.1506) (0.3209) (0.0250) (0.0868) (0.3845) (0.0204)

to identify the presence of clusters even in a noisy environment, and the performance clustering

degrades very slowly as the percentage of outliers increases. Also, those methods are more robust

concerning the ability to produce cluster prototypes which are not very dissimilar from the ”ideal”

centers (rd index). In conclusion, as expected, it is observed that whatever the index considered,

algorithms based on Euclidean and Mahalanobis distances are less robust to the presence of outliers

than those based on City-Block distance.

4.4. Real datasets

The previous and proposed algorithms were also applied on 15 real datasets available at the

UCI machine learning repository [34]: Automobile, Balance Scale, Haberman’s Survival, Stat-
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log (Heart), Image Segmentation, Ionosphere, Iris plants, Mnist, Thyroid gland, User knowledge

modeling (UKM), Vehicle, Vertebral column, Wisconsin diagnostic breast cancer (WDBC), Wall-

Following Robot Navigation (WFRN) and Wine. Table 4 briefly describes the datasets in which

N represents the number of patterns, P represents the number of variables and C the number of a

priori classes. We can see that several different sample sizes, number of attributes, and the number

of classes were taken into account.

Table 4: Summary of the real datasets.

Dataset N P C Dataset N P C Dataset N P C

Automobile 205 25 6 Balance Scale 625 4 3 Haberman 306 3 2

Heart 270 13 2 Image Segmentation 2310 19 7 Ionosphere 351 33 2

Iris plants 150 4 3 Mnist 14 780 784 2 Thyroid gland 215 5 3

UKM 403 5 4 Vehicle 846 18 4 Vertebral column 310 6 3

WDBC 569 30 2 WFRN 5456 4 4 Wine 178 13 3

4.4.1. Experimental setting

For real datasets, the choice of the parameter value for the algorithms followed the same proce-

dure used in Section 4.1, and it was varied between 0.01 to 300 (with step 0.01). Each algorithm was

executed on each dataset 100 times, and the cluster centers were initialized randomly at each time.

The best result for each algorithm was selected according to its respective objective function. The

parameter ε was set to 10−5, the maximum number of iterations T was 100, and for each dataset,

the number of clusters was set equal to the number of a priori classes. From the fuzzy partition

provided by each algorithm, a hard partition was obtained as described in Section 4.1. The HUL

and ARI indices were considered to evaluate the misclassification.

4.4.2. Results

Table 5 gives the results provided by the algorithms on real datasets and the performance rank

of each algorithm (in parenthesis) according to the indices and datasets. Besides, Table 6 presents

the average performance ranking of the clustering algorithms according to both indices computed

from Table 5. It is also shown the performance ranking of the clustering algorithms (in parentheses)

according to the average performance ranking.
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Table 5: Algorithms performance for real datasets.

Automobile Balance Scale Haberman

Algorithms HUL ARI HUL ARI HUL ARI

FCM-ER-L2 0.5692 (8.0) 0.0941 (10.0) 0.4568 (6.0) 0.1420 (2.0) 0.5892 (8.0) -0.0026 (10.0)

FCM-ER-L1 0.7180 (1.0) 0.1474 (4.0) 0.4299 (11.0) 0.0000 (10.0) 0.4990 (11.0) -0.0011 (8.0)

AFCM-ER-M 0.4208 (12.0) 0.1073 (6.0) 0.4535 (7.0) 0.0652 (7.0) 0.5844 (9.0) 0.0035 (6.0)

AFCM-ER-Mk 0.4806 (11.0) 0.0253 (12.0) 0.5741 (1.0) 0.1131 (3.5) 0.6086 (1.0) 0.1596 (3.0)

AFCM-ER-GP-L2 0.7073 (3.0) 0.1415 (5.0) 0.5121 (2.0) 0.1131 (3.5) 0.6025 (5.0) -0.0027 (11.0)

AFCM-ER-GP-L1 0.7084 (2.0) 0.2160 (1.0) 0.4299 (11.0) 0.0000 (10.0) 0.4987 (12.0) -0.0011 (8.0)

AFCM-ER-LP-L2 0.5585 (9.0) 0.1060 (7.0) 0.4640 (5.0) 0.0729 (6.0) 0.6084 (2.0) 0.1456 (4.0)

AFCM-ER-LP-L1 0.6440 (6.0) 0.0869 (11.0) 0.4977 (4.0) -0.0110 (12.0) 0.6047 (4.0) 0.1725 (2.0)

AFCM-ER-GS-L2 0.5700 (7.0) 0.0971 (9.0) 0.4474 (8.0) 0.2934 (1.0) 0.5097 (10.0) -0.0040 (12.0)

AFCM-ER-GS-L1 0.6790 (4.0) 0.1604 (3.0) 0.4299 (11.0) 0.0000 (10.0) 0.6018 (6.0) -0.0011 (8.0)

AFCM-ER-LS-L2 0.5336 (10.0) 0.0975 (8.0) 0.4992 (3.0) 0.1024 (5.0) 0.6072 (3.0) 0.1001 (5.0)

AFCM-ER-LS-L1 0.6683 (5.0) 0.2020 (2.0) 0.4299 (9.0) 0.0011 (8.0) 0.6005 (7.0) 0.1789 (1.0)

Heart Image Segmentation Ionosphere

FCM-ER-L2 0.5451 (5.0) 0.3487 (8.0) 0.8027 (6.0) 0.4911 (6.0) 0.5358 (12.0) 0.1588 (4.0)

FCM-ER-L1 0.6910 (1.0) 0.4227 (4.0) 0.8627 (2.0) 0.5257 (1.0) 0.5377 (8.0) 0.0936 (9.0)

AFCM-ER-M 0.5156 (7.0) 0.1338 (10.0) 0.1425 (12.0) 0.0041 (12.0) 0.5407 (5.0) 0.0085 (12.0)

AFCM-ER-Mk 0.5027 (12.0) -0.0036 (11.5) 0.2101 (11.0) 0.0151 (11.0) 0.5713 (1.0) 0.0321 (11.0)

AFCM-ER-GP-L2 0.5050 (9.0) 0.3576 (7.0) 0.8365 (3.0) 0.4309 (8.0) 0.5384 (7.0) 0.1588 (4.0)

AFCM-ER-GP-L1 0.5908 (4.0) 0.1807 (9.0) 0.8659 (1.0) 0.5221 (2.0) 0.5418 (4.0) 0.1045 (8.0)

AFCM-ER-LP-L2 0.5312 (6.0) 0.4131 (5.0) 0.7281 (9.0) 0.3242 (9.0) 0.5360 (11.0) 0.1406 (6.0)

AFCM-ER-LP-L1 0.5046 (10.0) -0.0036 (11.5) 0.6862 (10.0) 0.2979 (10.0) 0.5362 (10.0) 0.0870 (10.0)

AFCM-ER-GS-L2 0.5045 (11.0) 0.4325 (3.0) 0.8008 (7.0) 0.5021 (4.0) 0.5384 (6.0) 0.1588 (4.0)

AFCM-ER-GS-L1 0.6792 (3.0) 0.4423 (1.5) 0.8300 (4.0) 0.5137 (3.0) 0.5558 (2.0) 0.1243 (7.0)

AFCM-ER-LS-L2 0.5111 (8.0) 0.3757 (6.0) 0.7937 (8.0) 0.4864 (7.0) 0.5365 (9.0) 0.1634 (2.0)

AFCM-ER-LS-L1 0.6794 (2.0) 0.4423 (1.5) 0.8291 (5.0) 0.4928 (5.0) 0.5508 (3.0) 0.2092 (1.0)

Iris plants Mnist Thyroid

FCM-ER-L2 0.7524 (11.0) 0.6199 (11.0) 0.5072 (6.0) 0.9564 (3.0) 0.5997 (12.0) 0.3623 (8.0)

FCM-ER-L1 0.8538 (6.0) 0.6656 (7.5) 0.5660 (1.0) 0.9503 (8.0) 0.8702 (1.0) 0.7324 (1.0)

AFCM-ER-M 0.9020 (2.0) 0.9037 (1.0) 0.5538 (3.0) 0.9569 (1.5) 0.6106 (11.0) 0.1136 (11.0)

AFCM-ER-Mk 0.5870 (12.0) 0.2824 (12.0) 0.5538 (2.0) 0.9569 (1.5) 0.7184 (4.0) 0.0931 (12.0)

AFCM-ER-GP-L2 0.8878 (4.0) 0.8510 (3.0) 0.5022 (11.0) 0.9561 (4.5) 0.6547 (8.0) 0.5038 (4.0)

AFCM-ER-GP-L1 0.9481 (1.0) 0.8857 (2.0) 0.5082 (5.0) 0.9532 (6.0) 0.8586 (2.0) 0.7167 (2.0)

AFCM-ER-LP-L2 0.7811 (8.0) 0.6882 (5.0) 0.5168 (4.0) 0.0513 (9.0) 0.6892 (5.0) 0.6931 (3.0)

AFCM-ER-LP-L1 0.8931 (3.0) 0.8019 (4.0) 0.5033 (7.0) 0.0169 (10.0) 0.7287 (3.0) 0.4148 (7.0)

AFCM-ER-GS-L2 0.7607 (9.0) 0.6303 (9.5) 0.5022 (10.0) 0.9561 (4.5) 0.6611 (7.0) 0.4731 (5.0)

AFCM-ER-GS-L1 0.8535 (7.0) 0.6656 (7.5) 0.5028 (8.0) 0.9511 (7.0) 0.6830 (6.0) 0.3337 (9.0)

AFCM-ER-LS-L2 0.7549 (10.0) 0.6303 (9.5) 0.5021 (12.0) 0.0041 (12.0) 0.6215 (9.0) 0.4392 (6.0)

AFCM-ER-LS-L1 0.8584 (5.0) 0.6757 (6.0) 0.5023 (9.0) 0.0096 (11.0) 0.6208 (10.0) 0.1349 (10.0)
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Table 5: Algorithms performance for real datasets (continued).

UKM Vehicle Vertebral column

Algorithms HUL ARI HUL ARI HUL ARI

FCM-ER-L2 0.4900 (10.0) 0.1647 (11.0) 0.5660 (8.0) 0.0736 (11.0) 0.5749 (6.0) 0.2993 (9.0)

FCM-ER-L1 0.6095 (6.0) 0.1935 (9.0) 0.6503 (3.0) 0.1124 (7.0) 0.6016 (5.0) 0.3330 (8.0)

AFCM-ER-M 0.7151 (2.0) 0.3530 (1.0) 0.6653 (2.0) 0.1399 (2.0) 0.3811 (12.0) 0.2479 (10.0)

AFCM-ER-Mk 0.4269 (12.0) 0.0176 (12.0) 0.4362 (12.0) 0.0951 (8.0) 0.4658 (10.0) 0.0045 (12.0)

AFCM-ER-GP-L2 0.6937 (3.0) 0.3024 (4.0) 0.5535 (9.0) 0.0755 (10.0) 0.5640 (7.0) 0.3344 (7.0)

AFCM-ER-GP-L1 0.7373 (1.0) 0.3499 (2.0) 0.6435 (4.0) 0.1269 (5.0) 0.6131 (4.0) 0.3416 (4.0)

AFCM-ER-LP-L2 0.5459 (7.0) 0.2750 (6.0) 0.5730 (7.0) 0.1299 (4.0) 0.5595 (9.0) 0.3526 (3.0)

AFCM-ER-LP-L1 0.6633 (4.0) 0.3264 (3.0) 0.6695 (1.0) 0.1425 (1.0) 0.6204 (3.0) 0.3398 (5.0)

AFCM-ER-GS-L2 0.4728 (11.0) 0.1679 (10.0) 0.5416 (10.0) 0.0698 (12.0) 0.5628 (8.0) 0.3368 (6.0)

AFCM-ER-GS-L1 0.5236 (8.0) 0.2327 (7.0) 0.5043 (11.0) 0.1135 (6.0) 0.6984 (1.0) 0.4365 (1.0)

AFCM-ER-LS-L2 0.6180 (5.0) 0.2858 (5.0) 0.5865 (6.0) 0.0792 (9.0) 0.4628 (11.0) 0.0269 (11.0)

AFCM-ER-LS-L1 0.5107 (9.0) 0.2319 (8.0) 0.6047 (5.0) 0.1353 (3.0) 0.6417 (2.0) 0.3558 (2.0)

WDBC WFRN Wine

FCM-ER-L2 0.5677 (5.0) 0.6895 (6.0) 0.4972 (10.0) 0.1581 (10.0) 0.5550 (9.0) 0.5953 (8.0)

FCM-ER-L1 0.8032 (2.0) 0.7551 (4.0) 0.5527 (5.0) 0.1591 (9.0) 0.7601 (4.0) 0.8804 (3.0)

AFCM-ER-M 0.5314 (12.0) 0.0100 (12.0) 0.5893 (1.0) 0.1451 (11.0) 0.9765 (1.0) 0.9651 (1.0)

AFCM-ER-Mk 0.5451 (7.0) 0.1578 (10.0) 0.5381 (6.0) 0.2165 (4.0) 0.5014 (12.0) 0.2619 (12.0)

AFCM-ER-GP-L2 0.5318 (11.0) 0.6954 (5.0) 0.5297 (8.0) 0.1608 (8.0) 0.6149 (7.0) 0.6316 (7.0)

AFCM-ER-GP-L1 0.8207 (1.0) 0.7736 (3.0) 0.5252 (9.0) 0.2777 (3.0) 0.7730 (3.0) 0.8804 (3.0)

AFCM-ER-LP-L2 0.5342 (9.0) 0.4513 (8.0) 0.5548 (3.0) 0.3419 (2.0) 0.6505 (6.0) 0.5114 (10.0)

AFCM-ER-LP-L1 0.7963 (3.0) 0.7925 (1.0) 0.5530 (4.0) 0.3543 (1.0) 0.7905 (2.0) 0.8804 (3.0)

AFCM-ER-GS-L2 0.7121 (4.0) 0.7802 (2.0) 0.4847 (12.0) 0.1887 (5.0) 0.5147 (11.0) 0.5083 (11.0)

AFCM-ER-GS-L1 0.5620 (6.0) 0.5057 (7.0) 0.5613 (2.0) 0.1814 (7.0) 0.5869 (8.0) 0.7185 (6.0)

AFCM-ER-LS-L2 0.5332 (10.0) 0.1390 (11.0) 0.4850 (11.0) 0.1864 (6.0) 0.5213 (10.0) 0.5188 (9.0)

AFCM-ER-LS-L1 0.5388 (8.0) 0.4292 (9.0) 0.5369 (7.0) 0.0717 (12.0) 0.6601 (5.0) 0.8185 (5.0)

Table 6: Average performance ranking in real datasets.

Index FCM-ER-L2 FCM-ER-L1 AFCM-ER-M AFCM-ER-Mk AFCM-ER-GP-L2 AFCM-ER-GP-L1

HUL 8.1 (10.0) 4.5 (2.0) 6.5 (7.0) 7.6 (9.0) 6.5 (6.0) 4.3 (1.0)

ARI 7.8 (11.0) 6.2 (7.0) 6.9 (9.0) 9.0 (12.0) 6.1 (5.0) 4.5 (1.0)

Index AFCM-ER-LP-L2 AFCM-ER-LP-L1 AFCM-ER-GS-L2 AFCM-ER-GS-L1 AFCM-ER-LS-L2 AFCM-ER-LS-L1

HUL 6.7 (8.0) 4.9 (3.0) 8.7 (12.0) 5.8 (4.0) 8.3 (11.0) 6.1 (5.0)

ARI 5.8 (3.0) 6.1 (6.0) 6.5 (8.0) 6.0 (4.0) (10.0) (2.0)

Table 6 shows that the algorithm AFCM-ER-GP-L1 presents the best average performance

ranking for real datasets whatever the considered index. Moreover, the algorithms FCM-ER-L1
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and AFCM-ER-LP-L1 achieved the second and third best average ranking, respectively, for the

index HUL and, AFCM-ER-LS-L1 and AFCM-ER-LP-L2 for ARI. Finally, the algorithm AFCM-

ER-GS-L2 obtained the worst results for HUL and AFCM-ER-Mk for ARI.

4.5. Brodatz texture images for segmentation

Image segmentation is a challenging but essential task in many image analysis or computer

vision applications. This section presents different experiments with texture images to evaluate the

performance and robustness of the proposed algorithms in texture image segmentation with and

without noise. The used images were taken from the Brodatz texture dataset [35] and they are

employed to demonstrate the performance of the algorithms for datasets with high dimensionality.

The texture images without and with Gaussian noise (mean 0, variance 0.3) are shown in Figure 3.

Moreover, in Fig. 3 (c), (f) and (i), we can see the corresponding ideal segmentation results used as

a reference to determine the segmentation performance quantitatively. The images are synthesized

with different kinds of texture images: two-textural image (D4 and D49), five-textural image (D21,

D22, D49, D53, and D55), and seven-textural image (D3, D6, D21, D49, D53, D56, and D93).

(a) 2-textural

image

(b) 2-textural

image with

Gaussian noise

(c) Ideal seg-

mentation of

2-textural image

(d) 5-textural

image

(e) 5-textural

image with

Gaussian noise

(f) Ideal seg-

mentation of

5-textural image

(g) 7-textural

image

(h) 7-textural

image with

Gaussian noise

(i) Ideal segmenta-

tion of 7-textural

image

Figure 3: Two, five and seven-textural images. (a), (d) and (g) show the original 2, 5 and 7 textural images

respectively. (b), (e) and (h) present the image with Gaussian noises N(0, 0.3) and (c), (f) and (i) are the ideal

segmentation result of the original image.
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4.5.1. Experimental setting

To extract the features of the texture images was used the Gabor filter as in Ref. [36]. A

filter bank with six orientations (every 30° ) and five frequencies starting from 0.4 was created by

extracting 30-dimensional features for every pixel of the 100 × 100 texture images filtered by the

filter bank. After extracting the texture features, we used the algorithms to segment each texture

image. The choice of the parameter values was obtained as in previous sections, and the Tu value

varied between 0.1 to 100 (with step 0.1). The algorithms were executed on each dataset 10 times,

and we selected the best result according to their respective objective function.

4.5.2. Results

Tables 7 and 8 present the clustering results obtained for the algorithms on images without and

with noise respectively according to HUL and ARI. Also, Figures 4, 5 and 6 show the unsupervised

segmentation results using each algorithms on 2, 4 and 7 textural images respectively without and

with Gaussian noise.

Table 7: HUL and ARI index for 2, 5 and 7 textural image without noise.

2-Textural Image 5-Textural Image 7-Textural Image

Algorithms HUL ARI HUL ARI HUL ARI

FCM-ER-L2 0.5547 (6) 0.7438 (4) 0.6484(5) 0.7572 (3) 0.7577 (3) 0.4716 (5)

FCM-ER-L1 0.7853 (1) 0.7222 (7) 0.5780 (6) 0.7502 (4) 0.7225 (6) 0.5191 (2)

AFCM-ER-M 0.5398 (10) 0.0079 (10) 0.2990 (12) 0.1906 (10) 0.8765 (1) 0.5231 (1)

AFCM-ER-Mk 0.5365 (11) -0.0236 (11) 0.5558 (8) 0.1792 (11) 0.6561 (10) 0.2157 (10)

AFCM-ER-GP-L2 0.5710 (5) 0.7438 (4) 0.6873 (3) 0.7740 (2) 0.8063 (2) 0.4981 (4)

AFCM-ER-GP-L1 0.6980 (3) 0.7571 (2) 0.6487 (4) 0.7826 (1) 0.6939 (7) 0.5051 (3)

AFCM-ER-LP-L2 0.5506 (7) 0.7266 (6) 0.6964 (2) 0.4811 (8) 0.6581 (9) 0.2632 (9)

AFCM-ER-LP-L1 0.7005 (2) 0.7740 (1) 0.5580 (7) 0.6054 (6) 0.6862 (8) 0.4319 (8)

AFCM-ER-GS-L2 0.5399 (9) 0.7438 (4) 0.5160 (10) 0.4860 (7) 0.7403 (5) 0.4666 (6)

AFCM-ER-GS-L1 0.5925 (4) 0.7114 (8) 0.5053 (11) 0.1230 (12) 0.6003 (12) 0.1081 (11)

AFCM-ER-LS-L2 0.5359 (12) -0.0430 (12) 0.7629 (1) 0.4379 (9) 0.7404 (4) 0.4353 (7)

AFCM-ER-LS-L1 0.5420 (8) 0.1129 (9) 0.5368 (9) 0.6319 (5) 0.6267 (11) 0.0743 (12)

In this application results, we observe that, in general, methods based on City-Block distance

degrade their performance more slowly compared with those based on Mahalanobis and Euclidean

distance in a noisy environment. The first and second rows of Figures 4, 5, 6, and Table 7 show that
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Table 8: HUL and ARI index for 2, 5 and 7 textural image with Gaussian noise.

2-Textural Image 5-Textural Image 7-Textural Image

Algorithms HUL ARI HUL ARI HUL ARI

FCM-ER-L2 0.5694 (4) 0.5863 (7) 0.4795 (9) 0.4523 (6) 0.6437 (4) 0.2894 (6)

FCM-ER-L1 0.630 (2) 0.6328 (2) 0.6164 (5) 0.5925 (4) 0.5830 (8) 0.3274 (2)

AFCM-ER-M 0.5392 (8) 0.0434 (8) 0.2021 (12) 0.0678 (12) 0.1484 (12) 0.0390 (12)

AFCM-ER-Mk 0.5195 (12) 0.0015 (9) 0.4318 (10) 0.1805 (10) 0.5412 (9) 0.1373 (9)

AFCM-ER-GP-L2 0.5403 (5) 0.5866 (5.5) 0.7592 (1) 0.6730 (1) 0.6964 (1) 0.3219 (3)

AFCM-ER-GP-L1 0.6581 (1) 0.6427 (1) 0.6589 (4) 0.6515 (2) 0.6808 (2) 0.4451 (1)

AFCM-ER-LP-L2 0.5344 (10) -0.0015 (11) 0.6910 (3) 0.3515 (9) 0.6139 (7) 0.2076 (8)

AFCM-ER-LP-L1 0.5759 (3) 0.5960 (4) 0.7028 (2) 0.6102 (3) 0.6608 (3) 0.3000 (4)

AFCM-ER-GS-L2 0.5399 (7) 0.5866 (5.5) 0.4844 (8) 0.4692 (5) 0.4767 (10) 0.2912 (5)

AFCM-ER-GS-L1 0.5403 (6) 0.6045 (3) 0.5269 (7) 0.1018 (11) 0.6418 (5) 0.0814 (10)

AFCM-ER-LS-L2 0.5361 (9) -0.0375 (12) 0.4309 (11) 0.4246 (8) 0.4745 (11) 0.2873 (7)

AFCM-ER-LS-L1 0.5215 (11) -0.0001 (10) 0.5923 (6) 0.4499 (7) 0.6264 (6) 0.0592 (11)

for the 2-textural image without noise the best result according to HUL was obtained by FCM-

ER-L1 algorithm. However, AFCM-ER-LP-L1 and AFCM-ER-GP-L1 achieved the second and

third best performance, respectively. For the ARI values, AFCM-ER-LP-L1 and AFCM-ER-GP-

L1 outperform the other approaches. The AFCM-ER-LS-L2 algorithm presented the worst results

for both indices. In the case of the 5-textural image, AFCM-ER-LS-L2 showed a higher value of

HUL compared with the other algorithms, but AFCM-ER-GP-L1 yielded the highest clustering

result for ARI and produced better segmentation results. AFCM-ER-M presented the worst results

for HUL and AFCM-ER-GS-L1 for ARI. For 7-textural image, AFCM-ER-M reached the best

results whatever the considered index. AFCM-ER-GS-L1 and AFCM-ER-LS-L1 obtained the worst

performance for HUL and ARI respectively.

For the case of images with Gaussian noise, Table 8 and the second and fourth row of the

Figures 4, 5 and 6 show that, for both indexes HUL and ARI, AFCM-ER-GP-L1 and AFCM-ER-

GP-L2 obtained the best results for the 2 and 5-textural images respectively. For 7-textural image

according to HUL, AFCM-ER-GP-L2 presented better clustering results, and AFCM-ER-GP-L1

is the best according to ARI. AFCM-ER-Mk achieved the worst results for 2-textural images for

HUL and AFCM-ER-LS-L2 for ARI. The AFCM-ER-M algorithm had the worst performance
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(a) FCM-ER-L2 (b) FCM-ER-L1 (c) AFCM-ER-

M

(d) AFCM-ER-

Mk

(e) AFCM-ER-

GP-L2

(f) AFCM-ER-

GP-L1

(g) AFCM-ER-

LP-L2

(h) AFCM-ER-

LP-L1

(i) AFCM-ER-

GS-L2

(j) AFCM-ER-

GS-L1

(k) AFCM-ER-

LS-L2

(l) AFCM-ER-

LS-L1

Figure 4: Segmentation results of the algorithms for the 2-textural image without and with Gaussian noise. The

first and the third row show the segmentation results for the original 2-textural image. The second and the fourth

row present the obtained segmentation for the 2-textural image with Gaussian noise.

regarding both indexes for 5 and 7-textural images.

5. Conclusions

In this paper, we proposed new fuzzy clustering algorithms based on suitable Adaptive Eu-

clidean, Mahalanobis and City-Block distances, and entropy regularization. Moreover, adaptive

distances were used, which changes at each algorithm iteration and can either be the same for all

clusters or different from one cluster to another. These kind of dissimilarity measures are suitable

to learn the weights of the variables during the clustering process, improving the performance of

the algorithms.

The proposed algorithms are based on the minimization of clustering criteria, that is performed

on three steps (representation, weighting, and assignment) providing a fuzzy partition, a represen-
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(a) FCM-ER-L2 (b) FCM-ER-L1 (c) AFCM-ER-

M

(d) AFCM-ER-

Mk

(e) AFCM-ER-

GP-L2

(f) AFCM-ER-

GP-L1

(g) AFCM-ER-

LP-L2

(h) AFCM-ER-

LP-L1

(i) AFCM-ER-

GS-L2

(j) AFCM-ER-

GS-L1

(k) AFCM-ER-

LS-L2

(l) AFCM-ER-

LS-L1

Figure 5: Segmentation results of each algorithm for the 5-textural image without and with Gaussian noise. The

first and the third row show the segmentation results for the original 5-textural image. The second and the fourth

row present the obtained segmentation for the 5-textural image with Gaussian noise.

tative for each fuzzy cluster, and a relevance weight for each variable (if the comparison between

the objects and the prototypes of the clusters uses a Euclidean distance) or a matrix of weights (if

the comparison between the objects and the prototypes of the clusters uses a quadratic distance).

To take into account the relevance weights of the variables, we considerate two types of constraints.

In the first type, the sum of the weights of the variables or the sum of the variables weights on each

cluster must be equal to one, whereas the other type assumes that the product of the weights of

the variables or the product of the weights of the variables on each cluster must be equal to one.

The performance and usefulness of the proposed algorithms have been illustrated through ex-

periments carried out on suitable synthetic and real datasets. In the first simulation study, it

is observed that for data with the cluster covariance matrices diagonal and almost the same, al-

most all the methods with global adaptive distance outperformed their respective variants based
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(a) FCM-ER-L2 (b) FCM-ER-L1 (c) AFCM-ER-

M

(d) AFCM-ER-

Mk

(e) AFCM-ER-

GP-L2

(f) AFCM-ER-

GP-L1

(g) AFCM-ER-

LP-L2

(h) AFCM-ER-

LP-L1

(i) AFCM-ER-

GS-L2

(j) AFCM-ER-

GS-L1

(k) AFCM-ER-

LS-L2

(l) AFCM-ER-

LS-L1

Figure 6: Segmentation results of each algorithm for the 7-textural image without and with Gaussian noise. The

first and the third row show the segmentation results for the original 7-textural image. The second and the fourth

row present the obtained segmentation for the 7-textural image with Gaussian noise.

on local adaptive distance, i.e., the methods AFCM-ER-M, AFCM-ER-GP-L1, AFCM-ER-GP-

L2, AFCM-ER-GS-L1 outperformed, respectively, the methods AFCM-ER-Mk, AFCM-ER-LP-L1,

AFCM-ER-LP-L2, AFCM-ER-LS-L1. AFCM-ER-GS-L2 outperforms AFCM-ER-LS-L2 concern-

ing ARI index, but AFCM-ER-LS-L2 surpasses AFCM-ER-GS-L2 regarding HUL index. How-

ever, for data with cluster covariance matrices diagonal but unequal, almost all the methods with

local adaptive distance presented better results compared with their respective variants based

on global adaptive distance: the methods AFCM-ER-Mk, AFCM-ER-LP-L2, AFCM-ER-LS-L1,

AFCM-ER-LS-L2 surpassed, respectively, the methods AFCM-ER-M, AFCM-ER-GP-L2, AFCM-

ER-GS-L1, AFCM-ER-GS-L2. AFCM-ER-LP-L1 surpasses AFCM-ER-GP-L1 concerning ARI

index, but AFCM-ER-GP-L1 outperforms AFCM-ER-LP-L1 regarding HUL index. For datasets

with cluster covariance matrices that are almost the same but not diagonal, the best performance
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for HUL was presented by AFCM-ER-GP-L1 and for ARI by AFCM-ER-M. Concerning this last

index, the methods with global adaptive distance outperformed their respective variants based on

local adaptive distance, i.e., the methods AFCM-ER-M, AFCM-ER-GP-L1, AFCM-ER-GP-L2,

AFCM-ER-GS-L1 and AFCM-ER-GS-L2 outperformed, respectively, the methods AFCM-ER-Mk,

AFCM-ER-LP-L1, AFCM-ER-LP-L2, AFCM-ER-LS-L1, and AFCM-ER-LS-L2. Finally, for the

last data configuration where the cluster covariance matrices are not diagonal and unequal, the

algorithm AFCM-ER-Mk outperforms the other approaches for both indices.

The second simulation study evaluated the robustness of the algorithms in the presence of

outliers. For this experiment, three different percentages of outliers have been added to the dataset.

The results showed that the algorithms with City-Block distance were more robust and performed

better than those based on Euclidean and Mahalanobis distances, being able to identify the clusters

in a noisy environment, and the clustering performance degrades very slowly as the percentage of

outliers increases. It is also observed that those methods are more robust concerning the ability to

produce cluster prototypes which are similar to the ideal centers.

Respect to the benchmark datasets, the proposed AFCM-ER-GP-L1 algorithm presents the

best average performance ranking. Moreover, the FCM-ER-L1 and AFCM-ER-LP-L1 algorithms

achieved the second and third best average ranking respectively for HUL and, AFCM-ER-LS-L1

and AFCM-ER-LP-L2 for ARI. The AFCM-ER-GS-L2 algorithm obtained the worst results for

HUL and the AFCM-ER-Mk for ARI.

Finally, all algorithms were executed on the Brodatz texture image dataset to examine the

clustering performance and robustness for noise-free and noisy texture-image segmentation. For

image without noise, FCM-ER-L1 algorithm obtained the best performance according to HUL,

and AFCM-ER-LP-L1 for ARI in the 2-textural image. For 5-textural image, AFCM-ER-LS-L2

showed a higher value of HUL, but AFCM-ER-GP-L1 yielded the highest clustering result for

ARI and produced better segmentation results. For 7-textural image, AFCM-ER-M reached the

best results whatever the considered index. Moreover, concerning images with Gaussian noise, it

was observed that methods based on City-Block distance generally degrade their performance more

slowly compared with those based on Mahalanobis and Euclidean distance.
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Appendix A. Proof of the Proposition 1

The covariance matrix or the weights of the variables, which minimize the proposed objective

functions are calculated according to the adaptive distance function used:

(a) If the adaptive distance function is given by (xi−gk)TM(xi−gk), the global covariance ma-

trix M for all cluster which minimize JAFCM−ER−M under det(M) = 1 is obtained with Equation

19.

(b) If the adaptive distance function is given by (xi − gk)TMk(xi − gk), the local covariance

matrices for each cluster Mk which minimize JAFCM−ER−Mk under det(Mk) = 1 is obtained with

Equation 18.

(c) If the adaptive distance function is given by
∑P
j=1 vjd(xij , gkj), the vector of weights vj , (j =

1, ..., P ) which minimizes the criterion JAFCM−ER−GS under ε [0, 1] ∀ j and
∑P
j=1 vj = 1 has its

components in vj , (j = 1, ..., P ) computed according to Eq 21 if d is the square Euclidean distance,

else according to Eq. 22 if d is the City-Block distance.

(d) If the adaptive distance function is given by
∑P
j=1 vjd(xij , gkj), the vector of weights v =

(v1, . . . , vP ) which minimizes the criterion JAFCM−ER−GP under vj > 0 ∀ j and
∏P
j=1 vj = 1, has

its components vj(j = 1, ..., P ) computed according to Eq. 24 if d is the square Euclidean distance

and according to Eq. 25 if d is the City-Block distance.
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(e) If the adaptive distance function is given by
∑P
j=1 vkj |xij − gkj |, the vector of weights

vk = (vk1, . . . , vkP ) which minimizes the criterion JAFCM−ER−LS−L1 under vkj ≥ 0 ∀ k, j ∀ j and∑P
j=1 vkj = 1 has its components in vkj(k = 1, ...C, j = 1, ..., P ) computed according to Eq. 26.

Proof. (a) We want to minimize JAFCM−ER−M with respect to M under det(M) = 1. Let the

Lagrangian function be:

L =

C∑
k=1

N∑
i=1

uik(xi − gk)TM(xi − gk) + Tu

C∑
k=1

N∑
i=1

uik ln(uik) + β [1− det(M)] (A.1)

Taking the derivative ∂L
∂M and using the identities ∂(yTMy)

∂M = yyT , ∂ det(M)
∂M = det(M)M−1

which hold for a non-singular matrix M and any compatible vector y:

∂L
∂M

=

C∑
k=1

N∑
i=1

uik(xi − gk)(xi − gk)T − β det(M)M−1 = 0 (A.2)

It follows that M−1 = Q
β where Q =

∑C
k=1 Ck and Ck =

∑N
i=1 uik(xi − gk)(xi − gk)T because

det(M) = 1. As det(M−1) = 1
det(M) = 1, from M−1 = −Q

β it follows that det(M−1) = det(Q)
βP = 1,

then β = (det(Q))
1
P . Moreover, as M−1 = Q

β = Q

(det(Q))
1
P

, it follows also that M = (det(Q))
1
P Q−1.

An extremum value of JAFCM−ER−M is reached when M = (det(Q))
1
P Q−1. This extremum

value is JAFCM−ER−M ((det(Q))
1
P Q−1) = trace[Q(det(Q))

1
P Q−1] = p det(Q))

1
P . On the other

hand JAFCM−ER−M (I) = trace[QI] = trace[Q]. As a positive definite symmetric matrix, Q =

PΛPT (according to the singular value decomposition procedure) where: PPT = PTP = I,

Λ = diag(ς1, ..., ςP ), and ςj(j = 1, ..., P ) are the eigenvalues of Q. Thus JAFCM−ER−M (I) =

trace[PΛPT ] = trace[Λ] =
∑P
j=1 ςj . Moreover, det(Q) = det(PΛPT ) = det(Λ) =

∏P
j=1 ςj . As it is

well known that the arithmetic mean is greater than the geometric mean, i.e., (1/P )(ς1 + ...+ ςP ) >

{ς1 × .. × ςP }1/P (the equality holds only if ς1 = ... = ςP , it follows that JAFCM−ER−M (I) >

JAFCM−ER−M (det(Q))
1
P Q−1). Thus, we conclude that this extreme is a minimum.

Remark: The matrix Ck is related to the fuzzy covariance matrix in the k-th cluster, and

therefore the matrix M is related to the pooled fuzzy covariance matrix.

(b) Following a similar reasoning as in part (a) we conclude that Mk = [det(Ck)]
1
P C−1

k with

Ck =
∑N
i=1 uik(xi − gk)(xi − gk)T .

(c) We want to minimize JAFCM−ER−LS−L1 with respect to vkj , (k = 1, ...C, j = 1, ..., P )

under ε[0, 1] ∀j and
∑P
j=1 vkj = 1. We use the Lagrangian multiplier to solve the unconstrained

minimization problem in Eq. 12.
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L =

C∑
k=1

N∑
i=1

uik

P∑
j=1

vkj |xij − gkj |+ Tu

C∑
k=1

N∑
i=1

uik ln(uik)

+Tv

P∑
j=1

vkj ln(vkj)−
C∑
k=1

γk

 P∑
j=1

vkj − 1

 (A.3)

Taking the partial derivative of L in Eq. A.3 with respect to vkj and setting the gradient to

zero we have:

∂L
∂vkj

=

N∑
i=1

uik|xij − gkj |+ Tv(ln(vkj) + 1)− γk = 0 (A.4)

From Eq. A.4, is obtained

vkj = exp{γk
Tv
− 1} exp{−

∑N
i=1 uik|xij − gkj |

Tv
} (A.5)

Substituting Eq. A.4 in
∑P
w=1 vkj = 1 we have

P∑
w=1

vkw =

P∑
w=1

exp{γk
Tv
− 1} exp{−

∑N
i=1 uik|xiw − gkw|

Tv
} = 1 (A.6)

It follows that

exp{γk
Tv
− 1} =

1∑P
w=1 exp{−

∑N
i=1 uik|xiw−gkw|

Tv
}

(A.7)

Substituting Eq. A.7 in Eq. A.4 we obtain

vkj =
exp{−

∑N
i=1 uik|xij−gkj |

Tv
}∑P

w=1 exp{−
∑N

i=1 uik|xiw−gkw|
Tv

}
(A.8)

Also we have that

∂JAFCM−ER−LS−L1

∂vkj
=

N∑
i=1

uik|xij − gkj |+ Tv(ln(vkj) + 1) (A.9)

then, ∂2JAFCM−ER−LS−L1

∂vkj
= Tv

vkj
.

The Hessian matrix of JAFCM−ER−LS−L1 with respect to V is:

∂2JAFCM−ER−LS−L1(V) =


Tv

v11
. . . 0

. . . . . . . . . . . . . .

0 . . . Tv

vCP


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Since we know Tv > 0 and vkj ≥ 0 (according to Eq. 26), the Hessian matrix ∂2JAFCM−ER−LS−L1(V)

is positive definite, so that we can conclude that this extremum is a minimum.

(d) Following a similar reasoning as in part (c) we conclude that

vj =
exp{−

∑C
k=1

∑N
i=1 uikd(xij ,gkj)

Tv
}∑P

w=1 exp{−
∑C

k=1

∑N
i=1 uikd(xiw,gkw)

Tv
}

(e) We want to minimize JAFCM−ER−GP with respect to vj , (k = 1, ..., C), under vj > 0 ∀ j and∏P
j=1 vj = 1. We use the Lagrangian multiplier technique to solve the unconstrained minimization

problem in Eq. 9.

L =

N∑
i=1

C∑
k=1

P∑
j=1

uikvjd(xij , gkj)
2 + Tu

N∑
i=1

C∑
k=1

uik ln(uik)− γ

 P∏
j=1

vj − 1

 (A.10)

Taking the partial derivative of L in Eq. A.10 with respect to vj and setting the gradient to

zero we have:

∂L
∂vj

=

N∑
i=1

C∑
k=1

uikd(xij , gkj)−
γ

vj
= 0 (A.11)

From Eq. A.11, is obtained

vj =
γ∑N

i=1

∑C
k=1 uikd(xij , gkj)

(A.12)

Substituting Eq. A.12 in
∏P
j=1 vj = 1 we have

P∏
w=1

vw =

P∏
w=1

γ∑N
i=1

∑C
k=1 uikd(xij , gkj)

= 1 (A.13)

It follows that

γ = {
P∏
h=1

N∑
i=1

C∑
k=1

uikd(xij , gkj}
1
P (A.14)

Substituting Eq. A.14 in Eq. A.12 we obtain

vj =
{
∏P
h=1

∑N
i=1

∑C
k=1 uikd(xij , gkj)}

1
P∑N

i=1

∑C
k=1 uikd(xij , gkj)

(A.15)
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If we rewrite the criterion JAFCM−ER−GP as J(v1, ..., vP ) =
∑P
j=1 vjJj where Jj

∑N
i=1 uikd(xij , gkj)

and Tu
∑N
i=1

∑C
k=1 uik ln(uik)) is seem like a constant. Thus, an extreme value of J is reached when

J(v1, ..., vP ) = p{J1, ..., JP }
1
P . As J(1, ..., 1) =

∑P
j=1 Jj = J1 + ...+JP , and as it is well known that

the arithmetic mean is greater than the geometric mean, i.e., 1
P {J1 + ...+ JP } > {J1 × ...× JP }

1
P ,

(the equality holds only if J1 = . . . = JP ), we conclude that this extremum is a minimum.

Thus, Proposition 1 was proved.

Appendix B. Proof of the Proposition 2

Proof. We want to minimize the clustering criterion with respect to uik under uik ∈ [0, 1] and∑C
k=1 uik = 1.

(a) If the adaptive distance function is given by (xi−gk)TM(xi−gk) and we want to minimizes

JAFCM−ER−M with respect to uik under uik ∈ [0, 1] and
∑C
k=1 uik = 1. Let the Lagrangian

function be:

L =

C∑
k=1

N∑
i=1

uik(xi − gk)TM(xi − gk) + Tu

C∑
k=1

N∑
i=1

uik ln(uik)−
N∑
i=1

λi

[
C∑
k=1

uik − 1

]
(B.1)

Taking the partial derivative of L with respect to uik and setting the gradient to zero we have:

∂L
∂uik

= (xi − gk)TM(xi − gk) + Tu(ln(uik) + 1)− λi = 0 (B.2)

From Eq. B.2 is obtained:

uik = exp{ λi
Tu
− 1} exp{− (xi − gk)TM(xi − gk)

Tu
} (B.3)

If
∑C
w=1 uiw = 1 then:

C∑
w=1

exp{ λi
Tu
− 1} exp{− (xi − gw)TM(xi − gw)

Tu
} = 1 (B.4)

From Eq. B.4 we have that:

exp{ λi
Tu
− 1} =

1∑C
w=1 exp{− (xi−gw)TM(xi−gw)

Tu
}

(B.5)
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Substituting Eq. B.5 in Eq. B.3 we have:

uik =
exp{− (xi−gk)TM(xi−gk)

Tu
}

1∑C
w=1 exp{− (xi−gw)T M(xi−gw)

Tu
}

(B.6)

Additionally, we know that:

∂JAFCM−ER−M
∂uik

= (xi − gk)TM(xi − gk) + Tu(ln(uik) + 1) (B.7)

and ∂2JAFCM−ER−M

∂uik
= Tu

uik
.

The Hessian matrix of JAFCM−ER−M according to U is:

∂2JAFCM−ER−M (U) =


Tu

u11
. . . 0

. . . . . . . . . . . . . .

0 . . . Tu

uNC


Since Tu > 0 and uik ≥ 0, the Hessian matrix ∂2JAFCM−ER−M (U) is positive definite, so that

we can conclude that this extremum is a minimum.

Because the solution for the fuzzy partition does not depend on the distance function, the matrix

of membership degree of the objects into the fuzzy clusters for the other proposed approaches is

obtained in a similar way as in part (a).

Thus, Proposition 2 was proved.

Appendix C. Proof of the Proposition 3

i) The series u
(t)
AFCM−ER−M = JAFCM−ER−M (v

(t)
AFCM−ER−M ) =

JAFCM−ER−M (G(t),m(t),U(t)), t = 0, 1, . . . , decreases at each iteration and converge;

ii) The series u
(t)
AFCM−ER−Mk = JAFCM−ER−Mk(v

(t)
AFCM−ER−Mk) =

JAFCM−ER−Mk(G(t),M(t),U(t)), t = 0, 1, . . . , decreases at each iteration and converge;

iii) The series u
(t)
AFCM−ER−GS = JAFCM−ER−GS(v

(t)
AFCM−ER−GS) =

JAFCM−ER−GS(G(t),v(t),U(t)), t = 0, 1, . . . , decreases at each iteration and converge;
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iv) The series u
(t)
AFCM−ER−GP = JAFCM−ER−GP (v

(t)
AFCM−ER−GP ) =

JAFCM−ER−GP (G(t),v(t),U(t)), t = 0, 1, . . . , decreases at each iteration and converge;

v) The series u
(t)
AFCM−ER−LS−L1 = JAFCM−ER−LS−L1(v

(t)
AFCM−ER−LS−L1) =

JAFCM−ER−LS−L1(G(t),V(t),U(t)), t = 0, 1, . . . , decreases at each iteration and converge;

Proof. i) The series u
(t)
AFCM−ER−M = JAFCM−ER−M (v

(t)
AFCM−ER−M ) =

JAFCM−ER−M (G(t),m(t),U(t)), t = 0, 1, . . . , decreases at each iteration and converge;

The objective function JAFCM−ER−M measures the heterogeneity of the partition as the sum

of the heterogeneity in each cluster. We will first show that the inequalities (I), (II) and (III) below

hold (i.e., the series decreases at each iteration).

JAFCM−ER−M (G(t),m(t),U(t))︸ ︷︷ ︸
u
(t)
AFCM−ER−M

(I)︷︸︸︷
≥ JAFCM−ER−M (G(t+1),m(t),U(t))

(II)︷︸︸︷
≥ JAFCM−ER−M (G(t+1),m(t+1),U(t))

(III)︷︸︸︷
≥ JAFCM−ER−M (G(t+1),m(t+1),U(t+1))︸ ︷︷ ︸

u
(t+1)
AFCM−ER−M

The inequality (I) holds because JAFCM−ER−M (G(t),m(t),U(t)) =
∑C
k=1

∑N
i=1(u

(t)
ik ) dM(t)(xi,g

(t)
k )+

Tu
∑C
k=1

∑N
i=1(u

(t)
ik ) ln(u

(t)
ik ) and JAFCM−ER−M (G(t+1),m(t),U(t)) =

∑C
k=1

∑N
i=1(u

(t)
ik ) dM(t)(xi,g

(t+1)
k )+

Tu
∑C
k=1

∑N
i=1(u

(t)
ik ) ln(u

(t)
ik ), and according to Section 3.1.1,

G(t+1)=(g
(t+1)
1 ,...,g

(t+1)
C ) = arg min︸ ︷︷ ︸

G=(g1,...,gC)∈LC

C∑
k=1

N∑
i=1

(u
(t)
ik ) dM(t)(xi,gk) + Tu

C∑
k=1

N∑
i=1

(u
(t)
ik ) ln(u

(t)
ik )

Moreover, inequality (II) holds because JAFCM−ER−M (G(t+1),m(t+1),U(t)) =∑C
k=1

∑N
i=1(u

(t)
ik ) dM(t+1)(xi,g

(t+1)
k ) + Tu

∑C
k=1

∑N
i=1(u

(t)
ik ) ln(u

(t)
ik ) and according to Proposition 1,

m(t+1) = arg min︸ ︷︷ ︸
m∈M

C∑
k=1

N∑
i=1

(u
(t)
ik ) dM(xi,g

(t+1)
k ) + Tu

C∑
k=1

N∑
i=1

(u
(t)
ik ) ln(u

(t)
ik )

The inequality (III) also holds because JAFCM−ER−M (G(t+1),m(t+1),U(t+1)) =∑C
k=1

∑N
i=1(u

(t+1)
ik ) dM(t+1)(xi,g

(t+1)
k ) + Tu

∑C
k=1

∑N
i=1(u

(t+1)
ik ) ln(u

(t+1)
ik ) and according to Propo-

sition 2,

45



U(t+1) = (u
(t+1)
1 , . . . ,u

(t+1)
N ) = arg min︸ ︷︷ ︸

U=(u1,...,uN )∈UN

C∑
k=1

N∑
i=1

(uik) dM(t+1)(xi,g
(t+1)
k )

+Tu

C∑
k=1

N∑
i=1

(uik) ln(uik)

Finally, because the series u
(t)
AFCM−ER−M decreases and it is bounded (J(v

(t)
AFCM−ER−M ) ≥ 0)

it converges.

The proof of the convergence of the series u
(t)
AFCM−ER−Mk, t = 0, 1, . . . , u

(t)
AFCM−ER−GS , t =

0, 1, . . . , u
(t)
AFCM−ER−GP , t = 0, 1, . . . and u

(t)
AFCM−ER−LS−L1, t = 0, 1, . . . proceeds similarly to the

proof of the convergence of the series u
(t)
AFCM−ER−M , t = 0, 1, . . . presented above.

Appendix D. Proof of the Proposition 4

i) The series v
(t)
AFCM−ER−M = (G(t),m(t),U(t)), t = 0, 1, . . . , converges;

ii) The series v
(t)
AFCM−ER−Mk = (G(t),M(t),U(t)), t = 0, 1, . . . , converges;

iii) The series v
(t)
AFCM−ER−GS = (G(t),v(t),U(t)), t = 0, 1, . . . , converges;

iv) The series v
(t)
AFCM−ER−GP = (G(t),v(t),U(t)), t = 0, 1, . . . , converges;

v) The series v
(t)
AFCM−ER−LS−L1 = (G(t),V(t),U(t)), t = 0, 1, . . . , converges.

Proof. i) The series v
(t)
AFCM−ER−M = (G(t),m(t),U(t)), t = 0, 1, . . . , converges;

Assuming that the stationarity of the series u
(t)
AFCM−ER−M is achieved in the iteration t =

T , then, we have u
(T )
AFCM−ER−M = u

(T+1)
AFCM−ER−M and then JAFCM−ER−M (v

(T )
AFCM−ER−M ) =

JAFCM−ER−M (v
(T+1)
AFCM−ER−M ).

From JAFCM−ER−M (v
(T )
AFCM−ER−M ) = JAFCM−ER−M (v

(T+1)
AFCM−ER−M ) we arrive at

JAFCM−ER−M (G(T ),m(T ),U(T )) = JAFCM−ER−M (G(T+1),m(T+1),U(T+1)). This equality, ac-

cording to Proposition 4 , can be rewritten as the equalities (I)-(III):

JAFCM−ER−M (G(T ),m(T ),U(T ))︸ ︷︷ ︸
u
(T )
AFCM−ER−M

(I)︷︸︸︷
= JAFCM−ER−M (G(T+1),m(T ),U(T ))

(II)︷︸︸︷
= JAFCM−ER−M (G(T+1),m(T+1),U(T ))

(III)︷︸︸︷
= JAFCM−ER−M (G(T+1),m(T+1),U(T+1))
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From the first equality (I), we have that G(T ) = G(T+1), because G is unique, minimizing

JAFCM−ER−M when the fuzzy partition represented by U(T ) and the matrix m(T ) are kept fixed.

From the second equality (II), we have that m(T ) = m(T+1) because m is unique, minimizing

JAFCM−ER−M , when the fuzzy partition represented by U(T ) and and the matrix of prototypes

G(T+1) are kept fixed. Furthermore, from the third equality (III), we have that U(T ) = U(T+1)

because U is unique minimizing JAFCM−ER−M when the matrix of prototypes G(T+1) and the

matrix m(T+1) are kept fixed.

Therefore, it can be concluded that v
(T )
AFCM−ER−M = v

(T+1)
AFCM−ER−M . This conclusion stands for

all t ≥ T and v
(t)
AFCM−ER−M = v

(T )
AFCM−ER−M ,∀t ≥ T and it follows that the series v

(t)
AFCM−ER−M

converges.

The proof of the convergence of the series v
(t)
AFCM−ER−Mk, t = 0, 1, . . . , v

(t)
AFCM−ER−GS , t =

0, 1, . . . , v
(t)
AFCM−ER−GP , t = 0, 1, . . . and v

(t)
AFCM−ER−LS−L1, t = 0, 1, . . . proceeds similarly to the

proof of the convergence of the series v
(t)
AFCM−ER−M presented above.
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