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ABSTRACT

The quality of datasets is one of the key factors that affect the accuracy of aerodynamic data
models. For example, in the uniformly sampled Burgers’ dataset, the insufficient high-speed data is
overwhelmed by massive low-speed data. Predicting high-speed data is more difficult than predicting
low-speed data, owing to that the number of high-speed data is limited, i.e. the quality of the Burgers’
dataset is not satisfactory. To improve the quality of datasets, traditional methods usually employ the
data resampling technology to produce enough data for the insufficient parts in the original datasets
before modeling, which increases computational costs. Recently, the mixtures of experts have been
used in natural language processing to deal with different parts of sentences, which provides a
solution for eliminating the need for data resampling in aerodynamic data modeling. Motivated by
this, we propose the multi-task learning (MTL), a datasets quality-adaptive learning scheme, which
combines task allocation and aerodynamic characteristics learning together to disperse the pressure
of the entire learning task. The task allocation divides a whole learning task into several independent
subtasks, while the aerodynamic characteristics learning learns these subtasks simultaneously to
achieve better precision. Two experiments with poor quality datasets are conducted to verify the data
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quality-adaptivity of the MTL to datasets. The results show than the MTL is more accurate than
FCNs and GANs in poor quality datasets.

Keywords Muti-task learning · Aerodynamic data modeling · ClusterNet · K-means ·Machine learning

1 Introduction

In the field of aerodynamic data predictions, the quality of datasets is one of the key factors that influence the accuracy
of prediction models [1]. For example, in Burgers’ equation, uniform sampling results in limited number of data with
high-speed, see Fig.1. Limited high-speed data are submerged in lots of low-speed data, which leads to the inability for
neural networks to predict high-speed aerodynamic data. This phenomenon, more common in unsteady flow fields [2],
increases the difficulty of modeling and also reduce the accuracy of models.

x

u

u changes with respect to x with t=0.2 and v=0.2

Figure 1: The uniform sampling in Burgers’ equation. x denotes the displacement and u denotes the velocity.

To improve the quality of datasets, data resampling technology is widely used in this field [3]. The aim of data
resampling is to produce data conforming to the law of aerodynamic variations for the parts of flow fields with
insufficient data to alleviate the defects caused by poor quality of datasets. Generally, the studies of data resampling can
be divided into two categories: data recalculation and data generation.

Data recalculation is a traditional method that relies on computational fluid dynamics (CFD) solvers [4]. In aerodynamics,
the CFD solvers usually simulate Navier-Stokes equations to express the variations of air flows [5]. However, even
optimal CFD solvers, e.g. SU2 [6] or Fluent [7], take weeks to complete a high-dimensional aerodynamic calculation,
which affects the instantaneity of predictions about fluid dynamics [8].

Data generation, usually based on neural networks, achieves great success both in the field of machine learning and
aerodynamics [9]. This method adopts generative models to generate plentiful aerodynamic data. Among these
generative models, the generative adversarial network (GAN) [10], the most promising deep learning model in recent
years, is pervasively used in aerodynamic data generation [9]. The recursive CNNs-based GAN in unsteady flow
predictions [11], the RNNs-based GAN in the analyses of the temporal continuity [12], the tempoGAN for high-
resolution flow field image generations [13] and the RBF-GAN/RBFC-GAN for nonlinear sparse flow field data
generation [14] are outstanding models.

Recently, in the field of natural language processing, the mixtures of experts have been applied to analyze complex
sentences, which have achieved great success [15]. The idea of mixtures of experts is that different areas in a neural
network are responsible for different parts of speech, i.e. a small area in a neural network is dedicated to processing a
specific part, not the entire sentence. This mechanism provides a solution for eliminating the need for data resampling
in aerodynamic data modeling, owing to that parts of data in flow fields can be processed by a dedicated area in neural
networks-based aerodynamic models.

Motivated by this idea, we propose the multi-task learning (MTL) scheme which consists of two parts: task allocation
and aerodynamic characteristics learning. The task allocation divides a complete aerodynamic task (dataset) into
multiple subtasks (subsets) according to specific methods. In this paper, the data partition or K-means method [16] is
employed to achieve this goal. Data partition, a vertical task allocation, divides a whole dataset into several subsets
based on a certain dimension in the dataset. While K-means, a horizontal task allocation, clusters the samples in a
dataset into multiple subsets. The aerodynamic characteristics learning learns the aerodynamic variations contained
in each subsets at the same time, and outputs the corresponding predictions based on given inputs. In this paper, the
ClusterNet is applied to implement the aerodynamic characteristics learning [17]. Two experiments with poor quality
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of datasets are conducted to verify the feasibility of the MTL. Compared with fully connected networks (FCNs) and
GANs, the MTL can accurately predict the velocity u, the coefficient of pressure CP and the friction Fx in the entire
flow field from datasets with poor quality. The results reflects than the MTL is a dataset quality-adaptive learning
scheme. Besides, the MTL explains in detail how the ClusterNet automatically recognizes regions in datasets, which
was not explained in the original paper [17].

To summarize, the contributions of our work are:

a) we propose the MTL in aerodynamic data modeling;

b) our work eliminates the data resampling, while dealing with poor quality aerodynamic datasets;

c) our work, for the first time, explains in detail how the ClusterNet automatically recognizes regions in datasets.

The structure of the remainder of this paper is as follows. Section II introduces the research status of K-means clustering
algorithm and the ClusterNet in the field of aerodynamic response predictions. In Section III, the details of MTL are
elaborated. In Section IV, two typical datasets from different scenes are applied to validate the effectiveness of the
proposed scheme. The conclusion of our work is shown in Section V.

2 Previous Work

The MTL consists of two parts: task allocation and the aerodynamic characteristics learning. As the task allocation
mainly uses the K-means method, and the aerodynamic characteristics learning mainly relies on the clusterNet model,
in this section, we introduce the previous work of the K-means method and the ClusterNet model.

2.1 K-means Method

Ball presented the K-means method in 1967 and since then it has become the most popular of the clustering algorithms
[16]. In aerodynamics, K-means method is widely used to data clustering and parameters estimation.

Organizing aerodynamic data into multiple sensible groups is a foundation of MTL. Usually, it is difficult to divide a
whole aerodynamic dataset into several subsets even for experts, owing to the complex variations of air flows. K-means,
as a fast and flexible unsupervised learning method, provides a viable solution [18]. [19] adopted k-means to obtain
representative points on the upper and lower surface of a airfoil. [20] applied K-means to optimize data distribution to
cover the input space as uniform as possible. [21] replaces the hierarchical clustering algorithm with a K-means that is
suitable for large unstructured grids.

K-means algorithms are also used to estimate the hyper parameters. For example, the centers of a radial basis function
can be determined by clustering the input data [22]. Besides, the parameters (weights and biases) of other models can
also be initialized with k-menas [23, 24].

Different from the above studies, we employ K-means to clustering aerodynamic data into different independent subsets
to provide learning labels for MTL.

2.2 ClusterNet Model

For general neural networks, each neuron will be activated both in training and testing process, which is difficult to
adapt to poor quality learning samples. Although, large-scale neural networks seems to be a feasible approach [25, 26],
the computational costs increase dramatically. The reason for this is that all neurons are activated for each sample,
which is clearly different from the way the brain processes informations from real world [27].

The origin of ClusterNet can be traced back to mixtures of experts (i.e. dedicated neural networks) in natural language
processing [28]. The idea of mixtures of experts is that different experts are responsible for analyzing different parts of
speeches. The final results are obtained by linearly weighting results of all experts [29]. The experts can be implemented
by different models, such as SVMs [30], gaussian processes [31], neural networks [15], etc. After 2019, the mechanism
of partial activation of neurons is developed in the form of clusterNet in aerodynamics.

The clusterNet is a novel neural network in that different clusters automatically identify different regions in datasets.
[17] proposed the ClusterNet in 2020, which is used to predict the velocity of air flows. Compared with general neural
networks, ClusterNet reduced the errors of predicted velocity. [32] adopted a clusterNet-based physics-informed model
to predict future trajectories of the swarm by approximating the nonlinear dynamics of the swarm model, which is more
stable than other models in nonlinear ordinary differential equations systems.
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However, how the model automatically identify different regions in datasets and why the ClusterNet is better than others
is not analyzed in detail. Therefore, we combine task allocation and the ClusterNet to form MTL, which effectively
explains the mechanism of the ClusterNet.

3 Methodology

3.1 Overview

In this section, we introduce the MTL which consists of task allocation and aerodynamic characteristics learning,
see Fig.2 (a). As for the task allocation, we use data partition or K-means method to divide a whole learning task
into multiple independent subtasks according to specific rules. As for the ClusterNet, we use both a classification
loss function and a regression loss function to learn these subtasks at the same time to achieve the purpose of partial
activation.
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Figure 2: (a) The scheme of MTL in aerodynamic data modeling. (b) The structure of a ClusterNet, in which the pink
neurons denote the function network and the gray neurons denote the context network.

3.2 Task Allocation

Task allocation divides a given dataset into multiple independent subsets. Given a dataset D ⊆ Rn×m, the goal of
task allocation is to divide D into k independent subsets D̂ = {D̂z| ∩kz=1 D̂z = ∅}. In this paper, we provide two
alternative methods: data partition and K-means method.

3.2.1 Data Partition

We analyze D from the perspective of column vector, i.e. D = {d1,d2, · · · ,dm}, where di denotes the ith dimension
of D. Assuming that for any v ∈ di satisfies a ≤ v < b , then v̂ satisfies:


a+

∑z−1
j=0 λij ≤ v̂ < a+

∑z
j=0 λij , z = 0, 1, 2, · · · , k − 1

a+
∑z−1

j=0 λij = b

v̂ ∈ d̂iz

d̂iz ⊆ D̂z, z = 1, 2, · · · , k

(1)

where D̂z denotes the zth subset, d̂iz denotes the ith dimension of the zth subsets D̂z , v̂ denotes the elements of d̂iz

and λij denotes the change length of the ith dimension data in the jth subset.

4



A PREPRINT - OCTOBER 20, 2020

3.2.2 K-means method

We analyze D from the perspective of row vectors, i.e. D = {x1,x2, · · · ,xn}T where n denotes the number of data.
The goal of K-means method is to cluster all the data in D into a set of k clusters (subsets), i.e. D̂. K-means method
finds a clustering result to make the following formula reach its minimum value:

min(L) =

k∑
z=1

∑
xr∈D̂z

||xr − µz||2 (2)

where xr denotes the data in D̂z , µz denotes the center (mean) of D̂z . The algorithm obtains good clustering results by
continuously adjusting the center µz .

K-means method is a greedy algorithm, which starts with an initial partition with K clusters. Usually, this method is
considered to converge to a local minimum, while [33] showed that it can converge to the global minimum with a large
probability. The details of K-means method can be found in [34].

3.3 ClusterNets

The ClusterNet is unique in that it can process multiple subtasks simultaneously, which is due to the special structure
and the training method.

3.3.1 The Sturcture

As shown in Fig.2 (b), a ClusterNet consists of multiple clusters, each of which is responsible for a specific subtask, i.e.
q = k, where q denotes the number of clusters. A cluster is composed of two parts: a function network and a context
network. The function network learns the conditional probability P (X|Y ) to predict the corresponding value for given
inputs, i.e. the function network is a regression model. While the context network learns the nonlinear relationship
between the inputs and its category labels (from task allocation) to identify the subtask the cluster should handle, i.e.
the context network is a classification model.

The output of a ClusterNet can be written as:

yi =

q∑
j=1

fij × cij (3)

where fij and cij denote the output values of the function network and the context network in the jth cluster corre-
sponding to the ith input, respectively.

3.3.2 The Training Method

In a ClusterNet, the function network and the context network are trained alternately to achieve both regression and
classification simultaneously.

As for the regression, the loss function of function networks is:

Lf =
1

N

N∑
i=1

(yi − ŷi)2 (4)

where N denotes the number of data in the training set, yi denotes the predicted value, and ŷi denotes the real value in
the training set. Formula (4) dose not involve any information of context networks, therefore only the parameters of
function networks in all clusters will be updated at this step.

As for the classification, the loss function of context networks is :

Lc =
1

N

N∑
i=1

Li =
1

N

N∑
i=1

[−
q∑

j=1

cij log(pij)] (5)

where cij denotes the probability that the ith input is classified into the jth category by the jth context network, and pij
denotes the true category the ith input belongs to. Formula (5) does not involve any information of function networks,
hence only the parameters of context networks in all clusters will be updated at this step.
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In conclusion, the training of function networks is only related to Lf , while the training of context networks is only
related to Lc. The updating process of parameters in a ClusterNet is shown as:

Wfj = Wfj + η
∂Lf

∂Wfj

bfj = bfj + η
∂Lf

∂bfj

Wcj = Wcj + η ∂Lc

∂Wcj

bcj = bcj + η ∂Lc

∂bcj

(6)

where Wfj and bfj denotes the weight matrix and bias vector of the function network in the jth cluster, respectively,
while Wcj and bcj denotes the weight matrix and bias vector of the context network in the jth cluster, respectively.

4 Experimental Results

4.1 Dataset

(a) (b)

Figure 3: Subgraph (a) denotes the visualization of Burgers’ dataset and (b) denotes the visualization of cylindrical
laminar dataset.

To validate the dataset quality-adaptivity of the MTL, two different datasets are employed, namely the Burgers’ dataset
and the cylindrical laminar dataset.

4.1.1 Burgers’ Dataset

The Burgers’ equation is an one-dimensional partial differential equation that expresses the movement of a shockwave
across a tube:

∂u

∂t
+ u

∂u

∂x
= v

∂2u

∂x2

where u, the output, denotes the velocity of the shockwave, t, x, and v, the inputs, denotes the time, the displacement
and the coefficient of viscosity, respectively. The variation range of every input is from 0.2 to 4.8, and the step is 0.2.
Consequently, this dataset contains 13824 samples. Fig.3 (a) illustrates the visualization of whole Burgers’ dataset.
The red area in the lower left corner depicts the high-speed flow field data. We can see that the low-speed flow field
data are plentiful, while the number of high-speed flow field data is limited, which can be used to verify the dataset
quality-adaptivity of MTL.

4.1.2 Cylindrical Laminar Dataset

variables x y Ma
significance x-coordinate y-coordinate mach number

start 0.1 -0.5 0.1
end 1 0.5 0.24
step 0.005 0.0078 0.01

Table 1: The data format and variation range of input parameters in cylindrical laminar dataset.
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variables P Cp Fx Fy

significance pressure coefficient of pressure friction in x-coordinate friction in y-coordinate
Table 2: The data format of output parameters in cylindrical laminar dataset.

The cylindrical laminar is a two-dimensional application of the Navier-Stokes equation that simulates the pressure
change on the surface of a cylinder while a flow passes a cylinder. The Navier-Stokes equation is as follows:

ρ

[
∂V

∂t
+ (V.∇)V

]
= −∇P + ρg + v∇2V

where P , V , t, ρ , v denote the pressure, velocity, time, density and coefficient of viscosity, respectively. In this dataset,
we used SU2 to calculate 6000 sample points. The format and the variation range of the input parameters are shown in
Tab.1. The format of the output parameters is shown in Tab.2.

The visualization of cylindrical laminar dataset is shown in Fig.3(b) that reflects the same feature as Fig.3(a): the
number of data with large Cp is limited.

4.2 Experiment Results

We compare several approaches including FCN, GAN and MTL with different structures. The learning rate is 0.0001,
with the batch size 128, and the number of iterations 2000 within all models. All these approaches compared in this
paper are implemented based on tensorflow framework [35]. All programs run on four Tesla K80 GPUs. The whole
dataset is divided into three subsets: a training set, a validation set and a test set with a ratio of 8:1:1. The errors of
these models are evaluated by mean squared error (MSE) and mean absolute error (MAE):

{
MSE = 1

n

∑n
i=1 (yi − ŷi)

2

MAE = 1
n

∑n
i=1 |yi − ŷi|

where yi denotes the predicted value, ŷi denotes the real value for the same inputs.

4.2.1 Burgers’ Experiment

Method structure MSE MAE
FCN_1 3*32 1.64× 10−4 7.71× 10−3

FCN_2 3*64 1.85× 10−4 8.82× 10−3

cGAN_1 G(62,1*64,4)D(4,1*64,1) 2.63× 10−4 1.29× 10−2

cGAN_2 G(62,3*64,4)D(4,3*64,1) diverges diverges
MTL_k-means 4;3*64;1*5 1.79× 10−4 8.11× 10−3

MTL_v 4;3*64;1*5 1.78× 10−4 8.91× 10−3

MTL_x 4;3*64;1*5 9.86× 10−5 6.70× 10−3

Table 3: The Burgers’ experiment results. In the column related to structure, “3*32” denotes that the FCN has 3 hidden
layers, each of which has 32 neurons. “G(62,1*64,4)” indicates that generator of the GAN has 3 layers, the number of
neurons in the input layer, the hidden layer and the output layer is 62, 64 and 4, respectively. “D(4,1*64,1)” indicates
that the discriminator of the GAN has 3 layers, 4, 64 and 1 denotes the number of neurons in the input layer, the hidden
layer and the output layer, respectively. “4;3*64; 1*5” means that the ClusterNet consists of 4 clusters. The functional
network has 3 hidden layers, each of which has 64 nodes. The context network has 1 hidden layer, each of which has 5
neurons. MTL_k-means denotes the multi-task learning that uses k-means for subtask division. MTL_v denotes the
multi-task learning whose subtasks are divided by v. Similarly, MTL_x denotes that the subtasks are divided by x.

The results of Burgers’ experiment are shown in Tab.3. We can learn that MTL_x is the optimal approach in term of
MSE and MAE. Besides, the rest two MTLs are similar to FCNs, and the cGANs are the worst among them all.

The visualization results of velocity u predicted by the above approaches are shown in Fig.4. Obviously, the FCN can
not predicted u precisely where u > 3.5. What’s worse, the cGAN could not achieve accurate prediction of u in the
entire flow field. Therefore, we can get a conclusion that the velocity u predicted by MTLs are much more accurate
than FCNs and cGANs, i.e. the MTL is a dataset quality-adaptive learning scheme.
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(a) (b) (c) (d) (e)

Figure 4: The u predicted by FCN_1 (a), cGAN_1 (b), MTL_k-means (c), MTL_v (d) and MTL_x (e).

Fig.5 also reflects the same results. The red part in subgraph (b) is lighter than others, which means than the value of
predicted u is smaller than that of other approaches. Besides, the contour line in subgraph (b) and (c) are not smooth,
which means that the predicted u of the FCN and the cGAN are very different from the real one. It is worth noting that
subgraph (d), (e) and (f), i.e. the three MTLs, are much more close to subgraph (a).

(a) (b) (c)

(d) (e) (f)

Figure 5: The u predicted by CFD (a), FCN_1 (b), cGAN_1 (c), MTL_k-means (d), MTL_v (e) and MTL_x (f).

(a) (b) (c)

Figure 6: The results of task allocation in Burgers’ experiment. Subgraph (a) denotes the results of k-means, (b) denotes
the results of data partition by v and (c) denotes the results of data partition by x.

Fig.6 shows the visualization results of task allocation. Fig.7 depicts the variations of loss functions of three MTLs.
Apparently, the loss variations of function networks are similar, as well as the context networks. Besides, the loss value
of context networks is close to 0, which implies that all three MTLs learn aerodynamic characteristics strictly according
to the subtasks showed in the Fig.6.
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Figure 7: The loss variations of function network and context network of MTL_K-means, MTL_v and MTL_x in
Burgers’ experiment. The ’function_kmeans’ and ’context_kmeans’ denote the loss function of the function networks
and the context networks from MTL_K-means, respectively. The rest of signs are similar.

(a) (b) (c) (d) (e)

Figure 8: The Cp predicted by FCN_1 (a), GAN_1 (b), MTL_k-means (c), MTL_x (d) and MTL_Ma (e).

4.2.2 Cylindrical Laminar Experiment

In cylindrical laminar experiment, we test the same approaches, whose test errors are shown in Tab.4. We can learn that
all MTLs are better than others in terms of MSE and MAE. Besides, the basis of task allocation do not affects the test
errors apparently.

Method structure MSE MAE
FCN_1 3*32 1.31× 10−4 8.44× 10−3

FCN_2 3*64 2.45× 10−4 8.81× 10−3

GAN_1 G(62,1*64,4)D(4,1*64,1) 6.35× 10−4 1.91× 10−2

GAN_2 G(62,3*64,4)D(4,3*64,1) diverges diverges
MTL_K-means 4;3*64;1*5 8.51× 10−5 6.80× 10−3

MTL_x 4;3*64;1*5 8.01× 10−5 6.28× 10−3

MTL_Ma 4;3*64;1*5 7.65× 10−5 6.32× 10−3

Table 4: The test errors of cylindrical laminar experiment.

The visualization results of Cp and Fx predicted by the above approaches are shown in Fig.8 and Fig.9. Like Burgers’
experiment, the FCN still can not predicted Cp and Fx precisely where their values are relatively large. In addition, the
cGAN could not achieve accurate prediction of Cp and Fx in the entire flow field. On the contrary, all the three MTLs
can achieve accurate prediction of both Cp and Fx in the entire flow field.

The visualization results of Cp predicted by the above approaches are shown as in Fig.10. Intuitively, all these models
can predict the Cp around the surface of a cylindrical. However differences can be seen clearly after zooming in those
subgraphs. We enlarge the left half of the cylinder (i.e. the flow field with a large Cp) in Fig.12(a). We can see that the
red part comes from subgraph (b) in Fig.10 is lighter than others, which is consistent with the conclusion derived from
Fig.8

Fig.11 depicts the visualization results of task allocation. Fig.12(c) shows the variations of loss functions of three MTLs.
Also, the loss variations of context networks are similar and close to 0. However, the fluctuations of function networks
are different. As we can see, the fluctuations of function loss of the MTL which divides subtasks by Ma is more drastic
than others.

9
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(a) (b) (c) (d) (e)

Figure 9: The Fx predicted by FCN_1 (a), GAN_1 (b), MTL_k-means (c), MTL_x (d) and MTL_Ma (e).

(a) (b) (c) (d)

(e) (f)

Figure 10: The Cp predicted by CFD (a), FCN_1 (b), cGAN_1 (c), MTL_k-means (d), MTL_v (e) and MTL_x (f).

(a) (b) (c)

Figure 11: The results of task allocation in cylindrical laminar experiment. Subgraph (a) denotes the results of k-means,
(b) denotes the results of data partition by x and (c) denotes the results of data partition by Ma.

(a) (b)

Figure 12: Subgraph (a) denotes the enlargement of experimental visualization results in Fig.10. Subgraph (b) denotes
the loss variations of function network and context network of MTL_K-means, MTL_x and MTL_Ma in cylindrical
laminar experiment.
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Sample Id v real u predicted u f1 c1 f2 c2 f3 c3 f4 c4
1 1.0 0.69 0.68 0.09 0.98 0.14 0.48 0.00 0.00 0.00 0.00
2 1.8 2.79 2.08 0.62 0.00 0.96 0.48 0.89 0.01 0.81 0.00
3 3.0 3.01 2.11 0.06 0.00 0.88 0.00 0.97 0.49 0.80 0.00
4 3.8 4.04 3.77 0.00 0.00 0.87 0.00 0.94 0.49 0.40 0.99

Table 5: The output of each cluster of MTL_v in Burgers’ experiment. In the column related to "real u" and "predicted
u", the data are not normalized, however the data in the rest of columns are normalized. Bold numbers means that the
corresponding cluster is activated.

4.3 Analysis

We take Burgers’ experiment as an example to analyze the data quality-adaptivity of MTLs. Tab.5 shows four samples
in the test set. We can see that sample 1 activates the first cluster in the MTL_v, sample 2 activates the second cluster,
and so on. It is obvious that samples with different v are processed by different clusters in the MTL_v. Therefore, the
MLT_v distributes all learning pressure on every cluster, so that a cluster could focus on a small learning task and the
learning process among clusters does not affect each other. This mechanism is not affected by the quality of the dataset,
i.e. it is an dataset quality-adaptive learning scheme, which perfectly explains why the MTLs are more accurate than
FCNs and GANs in entire flow field.

5 Conclusions

In this paper, the MTL in aerodynamic data modeling is proposed. We first pointed out the impact of the quality
of datasets on the accuracy of aerodynamic data models. Then, we propose the MTL, a dataset quality-adaptive
learning scheme, which consists of tasks allocation and aerodynamic characteristics learning. Finally, the dataset
quality-adaptivity of the MTL is verified through Burgers’ and cylinder laminar experiments. Compared with existing
models, MTL possess the ability of adapting to poor quality datasets.

The detailed conclusions are as follows:

a) the MTL is a dataset quality-adaptive learning scheme;

b) the MTL is more accuracy than FCNs and GANs;

c) the advantages described in a) and b) come from the partial activation mechanism of the MTL.
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[33] Marina Meilă. The uniqueness of a good optimum for k-means. In Proceedings of the 23rd international
conference on Machine learning, pages 625–632, 2006.

[34] Anil K Jain and Richard C Dubes. Algorithms for clustering data. Prentice-Hall, Inc., 1988.
[35] Bo Pang, Erik Nijkamp, and Ying Nian Wu. Deep learning with tensorflow: A review. Journal of Educational

and Behavioral Statistics, 45(2):227–248, 2020.

13


	1 Introduction
	2 Previous Work
	2.1 K-means Method
	2.2 ClusterNet Model

	3 Methodology
	3.1 Overview
	3.2 Task Allocation
	3.2.1 Data Partition
	3.2.2 K-means method

	3.3 ClusterNets
	3.3.1 The Sturcture
	3.3.2 The Training Method


	4 Experimental Results
	4.1 Dataset
	4.1.1 Burgers' Dataset
	4.1.2 Cylindrical Laminar Dataset

	4.2 Experiment Results
	4.2.1 Burgers' Experiment
	4.2.2 Cylindrical Laminar Experiment

	4.3 Analysis

	5 Conclusions

