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Abstract

The Gaussian mixture model (GMM) provides a simple yet principled framework for clustering, with properties

suitable for statistical inference. In this paper, we propose a new model-based clustering algorithm, called EGMM

(evidential GMM), in the theoretical framework of belief functions to better characterize cluster-membership

uncertainty. With a mass function representing the cluster membership of each object, the evidential Gaussian

mixture distribution composed of the components over the powerset of the desired clusters is proposed to model

the entire dataset. The parameters in EGMM are estimated by a specially designed Expectation-Maximization (EM)

algorithm. A validity index allowing automatic determination of the proper number of clusters is also provided. The

proposed EGMM is as simple as the classical GMM, but can generate a more informative evidential partition for

the considered dataset. The synthetic and real dataset experiments show that the proposed EGMM performs better

than other representative clustering algorithms. Besides, its superiority is also demonstrated by an application to

multi-modal brain image segmentation.

Keywords: belief function theory, evidential partition, Gaussian mixture model, model-based clustering,

expectation-maximization

1. Introduction

Clustering is one of the most fundamental tasks in data mining and machine learning. It aims to divide a set of

objects into homogeneous groups, by maximizing the similarity between objects in the same group and minimizing

the similarity between objects in different groups [1]. As an active research topic, new approaches are constantly

proposed, because the usage and interpretation of clustering depend on each particular application. Clustering is

currently applied in a variety of fields, such as computer vision [2], security [3], commerce [4, 5], and biology [6].

Based on the properties of clusters generated, clustering techniques can be classified as partitional clustering and
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hierarchical clustering [7]. Partitional clustering conducts one-level partitioning on datasets. In contrast, hierarchical

clustering conducts multi-level partitioning on datasets, in agglomerative or divisive way.

Model-based clustering is a classical and powerful approach for partitional clustering. It attempts to optimize the

fit between the observed data and some mathematical model using a probabilistic approach, with the assumption that

the data are generated by a mixture of underlying probability distributions. Many mixture models can be adopted to

represent the data, among which the Gaussian mixture model (GMM) is by far the most commonly used representation

[8]. As a model-based clustering approach, the GMM provides a principled statistical way to the practical issues

that arise in clustering, e.g., how many clusters there are. Besides, the statistical properties also make it suitable for

inference [9]. The GMM has shown promising results in many clustering applications, ranging from image registration

[10], topic modeling [11], traffic prediction [12] to anomaly detection [13].

However, the GMM is limited to probabilistic (or fuzzy) partitions for datasets: it does not allow ambiguity

or imprecision in the assignment of objects to clusters. Actually, in many applications, it is more reasonable to

assign those objects in overlapping regions to a set of clusters rather than some single cluster. Recently, the notion of

evidential partition [14, 15, 16] was introduced based on the theory of belief functions [17, 18, 19, 20, 21]. As a general

extension of the probabilistic (or fuzzy), possibilistic, and rough partitions, it allows the object not only to belong to

single clusters, but also to belong to any subsets of the frame of discernment that describes the possible clusters

[22]. Therefore, the evidential partition provides more refined partitioning results than the other ones, which makes

it very appealing for solving uncertain data clustering problems. Up to now, different evidential clustering algorithms

have been proposed to build an evidential partition for object datasets. Most of these algorithms fall in the category

of prototype-based clustering, including evidential c-means (ECM) [15], and its variants such as constrained ECM

(CECM) [23], median ECM (MECM) [24], credal c-means(CCM) [25], transfer ECM (TECM) [26], et al. Besides,

in [27], a decision-directed clustering procedure, called EK-NNclus, was developed based on the evidential k-nearest

neighbor rule, and in [28, 29], belief-peaks evidential clustering (BPEC) algorithms were developed by fast search

and find of density peaks. Although the above mentioned algorithms can generate powerful evidential partitions, they

are purely descriptive and unsuitable for statistical inference. A recent work for model-based evidential clustering

was proposed in [30] by bootstrapping Gaussian mixture models (called bootGMM). This algorithm builds calibrated

evidential partitions in an approximate way, but the high computational complexity in the procedures of bootstrapping

and calibration limits its application to large datasets.

In this paper, we propose a new model-based evidential clustering algorithm, called EGMM (evidential GMM),

by extending the classical GMM in the belief function framework directly. Unlike the GMM, the EGMM associates

a distribution not only to each single cluster, but also to sets of clusters. Specifically, with a mass function

representing the cluster membership of each object, the evidential Gaussian mixture distribution composed of the

components over the powerset of the desired clusters is proposed to model the entire dataset. After that, the maximum

likelihood solution of the EGMM is derived via a specially designed Expectation-Maximization (EM) algorithm.

With the estimated parameters, the clustering is performed by calculating the N-tuple evidential membership
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M = {m1, . . . ,mN}, which provides an evidential partition for the considered N objects. Besides, in order to determine

the number of clusters automatically, an evidential Bayesian inference criterion (EBIC) is also presented as the validity

index. The proposed EGMM is as simple as the classical GMM that has no open parameter and does not require to fix

the number of clusters in advance. More importantly, the proposed EGMM generates an evidential partition, which is

more informative than a probabilistic partition.

The rest of this paper is organized as follows. Section 2 recalls the necessary preliminaries about the theory of

belief functions and the Gaussian mixture model from which the proposal is derived. Our proposed EGMM is then

presented in Section 3. In Section 4, we conduct experiments to evaluate the performance of the proposal using both

synthetic and real-world datasets, and an application to multi-modal brain image segmentation is given to illustrate

the interest of the proposal. Finally, Section 5 concludes the paper.

2. Preliminaries

We first briefly introduce necessary concepts about belief function theory in Section 2.1. The Gaussian mixture

model for clustering is then recalled in Section 2.2.

2.1. Basics of the Belief Function Theory

The theory of belief functions [17, 18], also known as Dempster-Shafer theory or evidence theory, is a

generalization of the probability theory. It offers a well-founded and workable framework to model a large variety

of uncertain information. In belief function theory, a problem domain is represented by a finite set Ω = {ω1, . . . , ωC}

called the frame of discernment. A mass function expressing the belief committed to the elements of 2Ω by a given

source of evidence is a mapping function m: 2Ω → [0, 1], such that

m(∅) = 0 and
∑
A∈2Ω

m(A) = 1. (1)

Subsets A ∈ 2Ω such that m(A) > 0 are called the focal sets of the mass function m. The mass function m has several

special cases, which represent different types of information. A mass function is said to be

• Bayesian, if all of its focal sets are singletons. In this case, the mass function reduces to the precise probability

distribution;

• Certain, if the whole mass is allocated to a unique singleton. This corresponds to a situation of complete

knowledge;

• Vacuous, if the whole mass is allocated to Ω. This situation corresponds to complete ignorance.
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Shafer [18] also defined the belief and plausibility functions as follows

Bel(A) =
∑
B⊆A

m(B) and Pl(A) =
∑

B∩A,∅

m(B), ∀A ∈ 2Ω. (2)

Bel(A) represents the exact support to A and its subsets, and Pl(A) represents the total possible support to A. The

interval [Bel(A),Pl(A)] can be seen as the lower and upper bounds of support to A. The belief functions m, Bel and

Pl are in one-to-one correspondence.

For decision-making support, Smets [31] proposed the pignistic probability BetP(A) to approximate the unknown

probability in [Bel(A),Pl(A)] as follows

BetP(A) =
∑
A∈B

m(B)
|B|

, ∀A ∈ Ω, (3)

where |B| is the cardinality of set B.

2.2. Gaussian Mixture Model for Clustering

Suppose we have a set of objects X = {x1, . . . , xN} consisting of N observations of a D-dimensional random

variable x. The random variable x is assumed to be distributed according to a mixture of C components (i.e., clusters),

with each one represented by a parametric distribution. Then, the entire dataset can be modeled by the following

mixture distribution

p(x) =

C∑
k=1

πk p(x | θk), (4)

where θk is the set of parameters specifying the kth component, and πk is the probability that an observation belongs

to the kth component (0 ≤ πk ≤ 1, and
∑C

k=1 πk = 1).

The most commonly used mixture model is the Gaussian mixture model (GMM) [1, 8, 32], where each component

is represented by a parametric Gaussian distribution as

p(x | θk) = N(x | µk,Σk) =
1

(2π)D/2|Σk |
1/2 exp

{
−

1
2

(x − µk)TΣk
−1(x − µk)

}
, (5)

where µk is a D-dimensional mean vector, Σk is a D × D covariance matrix, and |Σk | denotes the determinant of Σk.

The basic goal of clustering using the GMM is to estimate the unknown parameter Θ = {π1, . . . , πC , µ1, . . . , µC ,

Σ1, . . . ,ΣC} from the set of observations X. This can be done using maximum likelihood estimation (MLE), with the

log-likelihood function given by

logL(Θ) = log p(X | Θ) =

N∑
i=1

log p(xi | Θ) =

N∑
i=1

log
C∑

k=1

πkN(xi | µk,Σk). (6)

The above MLE problem is well solved by the Expectation-Maximization (EM) algorithm [33], with solutions
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given by

π(s+1)
k =

1
N

N∑
i=1

γ(s)
ik , k = 1, . . . ,C, (7)

µ(s+1)
k =

∑N
i=1 γ

(s)
ik xi∑N

i=1 γ
(s)
ik

, k = 1, . . . ,C, (8)

Σ
(s+1)
k =

∑N
i=1 γ

(s)
ik (xi − µ

(s)
k )(xi − µ

(s)
k )T∑N

i=1 γ
(s)
ik

, k = 1, . . . ,C. (9)

where γ(s)
ik is the posterior probabilities given the current parameter estimations Θ(s) as

γ(s)
ik =

π(s)
k N(xi | µ

(s)
k ,Σ(s)

k )∑K
l=1 π

(s)
l N(xi | µ

(s)
l ,Σ(s)

l )
, i = 1, . . . ,N, k = 1, . . . ,C. (10)

With initialized parameters π(0)
k , µ(0)

k , and Σ(0)
k , the posterior probabilities and the parameters update alternatively

until the change in the log-likelihood becomes smaller than some threshold. Finally, the clustering is performed by

calculating the posterior probabilities γik with the estimated parameters using Eq. (10).

3. EGMM: Evidential Gaussian Mixture Model for Clustering

Considering the advantages of belief function theory for representing uncertain information, we extend the

classical GMM in belief function framework and develop an evidential Gaussian mixture model (EGMM) for

clustering. In Section 3.1, the evidential membership is first introduced to represent the cluster membership of each

object. Based on this representation, Section 3.2 describes how the EGMM is derived in detail. Then, the parameters

in EGMM are estimated by a specially designed EM algorithm in Section 3.3. The whole algorithm is summarized

and analyzed in Section 3.4. Finally, the determination of the number of clusters is further studied in Section 3.5.

3.1. Evidential Membership

Suppose the desired number of clusters is C (1 < C < N). The purpose of the EGMM clustering is to assign to

the objects in dataset X soft labels represented by an N-tuple evidential membership structure as

M = {m1, . . . ,mN}, (11)

where mi, i = 1, . . . ,N, are mass functions defined on the frame of discernment Ω = {ω1, . . . , ωC}.

The above evidential membership modeled by mass function mi provides a general representation model regarding

the cluster membership of object xi:

• When mi is a Bayesian mass function, the evidential membership reduces to the probabilistic membership of

the GMM defined in Eq. (10) .
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• When mi is a certain mass function, the evidential membership reduces to the crisp label employed in many

hard clustering methods, such as c-means [34], DPC [35], et al.

• When mi is a vacuous mass function, the class of object xi is completely unknown, which can be seen as an

outlier.

Example 1. Let us consider a set of N = 4 objects X = {x1, x2, x3, x4} with evidential membership regarding a set of

C = 3 classes Ω = {ω1, ω2, ω3}. Mass functions for each object are given in Table 1. They illustrate various situations:

the case of object x1 corresponds to situation of probabilistic uncertainty (m1 is Bayesian); the class of object x2 is

known with precision and certainty (m2 is certain), whereas the class of object x3 is completely unknown (m3 is

vacuous); finally, the mass function m4 models the general situation where the class of object x4 is both imprecise and

uncertain.

Table 1: Example of the evidential membership

A m1(A) m2(A) m3(A) m4(A)
{ω1} 0.2 0 0 0
{ω2} 0.3 0 0 0.1
{ω1, ω2} 0 0 0 0
{ω3} 0.5 1 0 0.2
{ω1, ω3} 0 0 0 0
{ω2, ω3} 0 0 0 0.4
Ω 0 0 1 0.3

As illustrated in the above example, the evidential membership is a powerful model to represent the imprecise and

uncertain information existing in datasets. In the following part, we will study how to derive a soft label represented

by the evidential membership for each object in dataset X given a desired number of clusters C.

3.2. From GMM to EGMM

In the GMM, each component in the desired cluster set Ω = {ω1, . . . , ωC} is represented by the following cluster-

conditional probability density:

p(x | ωk, θk) = N(x | µk,Σk), k = 1, . . . ,C, (12)

where θk = {µk,Σk} is the set of parameters specifying the kth component ωk, k = 1, . . . ,C. It means that any objet in

set X = {x1, . . . , xN} is drawn from one single cluster in Ω.

Unlike the probabilistic membership in the GMM, the evidential membership introduced in the EGMM enables

the object to belong to any subset of Ω, including not only the individual clusters but also the meta-clusters composed
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of several clusters. In order to model each evidential component A j (A j , ∅, A j ∈ 2Ω), we construct the following

evidential cluster-conditional probability density:

p(x | A j, θ̃ j) = N(x | µ̃ j, Σ̃ j), j = 1, . . . ,M, (13)

where θ̃ j = {̃µ j, Σ̃ j} is the set of parameters specifying the jth evidential component A j, j = 1, . . . , 2C − 1 ∆
= M.

Notice that different evidential components may be nested (e.g., A1 = {ω1}, A2 = {ω1, ω2}), the cluster-conditional

probability densities are no longer independent. To model this correlation, we propose to associate to each component

A j the mean vector µ̃ j of the average value of the mean vectors associated to the clusters composing A j as

µ̃ j =
1
|A j|

C∑
k=1

Ik jµk, j = 1, . . . ,M, (14)

where |A j| denotes the cardinal of A j, and Ik j is defined as

Ik j = I(ωk ∈ A j), k = 1, . . . ,C, j = 1, . . . ,M. (15)

with I(·) being the indicator function.

As for the covariance matrix, the values for different components can be free. Some researchers also proposed

different assumptions on the component covariance matrix in order to simplify the mixture model [36]. In this paper,

we adopt the following constant covariance matrix:

Σ̃ j = Σ, j = 1, . . . ,M, (16)

where Σ is an unknown symmetric matrix. This assumption results in clusters that have the same geometry but need

not be spherical.

In the EGMM, each object is assumed to be distributed according to a mixture of M components over the powerset

of the desired cluster set, with each one defined as the evidential cluster-conditional probability density in Eq. (13).

Formally, the evidential Gaussian mixture distribution can be formulated as

p(x) =

M∑
j=1

π̃ j p(x | A j, θ̃ j) =

M∑
j=1

π̃ jN(x | µ̃ j, Σ̃ j), (17)

where π̃ j is called mixing probability, denoting the prior probability that the object was generated from jth component.

Similar with the GMM, the mixing probabilities {̃π j}
M
j=1 must satisfy 0 ≤ π̃ j ≤ 1, and

∑M
k=1 π̃ j = 1.

Remark 1. The above EGMM is an generalization of the classical GMM in the framework of belief functions. When

the evidential membership reduces to the probabilistic membership, all the meta-cluster components are assigned
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zero prior probability, i.e., π̃ j = 0, j = C + 1, . . . ,M. In this case, the evidential Gaussian mixture distribution

p(x) =
∑M

j=1 π̃ jN(x | µ̃ j, Σ̃ j) =
∑C

j=1 π̃ jN(x | µ j,Σ j), which is just the classical Gaussian mixture distribution.

In this formulation of the mixture model, we need to infer a set of parameters from the observations, including the

mixing probabilities {̃π j}
M
j=1 and the parameters for the component distributions {̃µ j, Σ̃ j}

M
j=1. Considering the constraints

for the mean vectors and covariance matrices indicated in Eqs. (14) and (16), the overall parameter of the mixture

model is Θ̃ = {̃π1, . . . , π̃M , µ1, . . . , µC , Σ}. If we assume that the objects in set X are drawn independently from the

mixture distribution, then we can obtain the observed-data log-likelihood of generating all the objects as

logLO(Θ̃) = log p(X | Θ̃) =

N∑
i=1

log p(xi | Θ̃) =

N∑
i=1

log
M∑
j=1

π̃ jN(xi | µ̃ j, Σ̃ j). (18)

In statistics, maximum likelihood estimation (MLE) is an important statistical approach for parameter estimation. The

maximum likelihood estimate of Θ̃ is defined as

Θ̃MLE = arg max
Θ̃

logLO(Θ̃), (19)

which is the best estimate in the sense that it maximizes the probability density of generating all the observations.

Different from the normal solutions of the GMM, the MLE of the EGMM is rather complicated as additional

constraints (see Eqs. (14) and (16)) are imposed for the estimated parameters. Next, we will derive the maximum

likelihood solution for the EGMM via a specially designed EM algorithm.

3.3. Maximum Likelihood Estimation via the EM algorithm

In order to use the EM algorithm to the solve the MLE problem for the EGMM in Eq. (19), we artificially

introduce a latent variable zi to denote the component (cluster) label of each object xi, i = 1, . . . ,N, with the form of

an M-dimensional binary vector zi = (zi1, . . . , ziM), where,

zi j =

 1, if xi belongs to cluster j,

0, otherwise.
(20)

The latent variable zi is independent and identically distributed (idd) according to a multinomial distribution of

one draw from M components with mixing probabilities π̃1, . . . , π̃M . In conjunction with the observed data xi, the

complete data are considered to be (xi, zi), i = 1, . . . ,N. Then, the corresponding complete-data log-likelihood can be

formulated as

logLC(Θ̃) = log p(X,Z | Θ̃) =

N∑
i=1

M∑
j=1

zi j log
[̃
π jN(xi | µ̃ j, Σ̃ j)

]
. (21)
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The EM algorithm approaches the problem of maximizing the observed-data log-likelihood logLO(Θ̃) in Eq. (18)

by proceeding iteratively with the above complete-data log-likelihood logLC(Θ̃). Each iteration of the algorithm

involves two steps called the expectation step (E-step) and the maximization step (M-step). The derivation of the EM

solution for the EGMM is detailed in Appendix. Only the main equations are given here without proof.

As the complete-data log-likelihood logLC(Θ̃) depends explicitly on the unobservable data Z, the E-step is

performed on the so-called Q-function, which is the conditional expectation of logLC(Θ̃) given X, using the current

fit for Θ̃. More specifically, on the (s + 1)th iteration of the EM algorithm, the E-step computes

Q(Θ̃, Θ̃(s)) = EΘ̃(s) [logLC(Θ̃) | X] =

N∑
i=1

M∑
j=1

m(s)
i j log

[̃
π jN(xi | µ̃ j, Σ̃ j)

]
, (22)

where m(s)
i j is the evidential membership of ith object to jth component, or responsibility of the hidden variable zi j,

given the current fit of parameters. Using Bayes’ theorem, we obtain

m(s)
i j = p(zi j = 1 | xi, Θ̃

(s)) =
π̃(s)

j N(xi | µ̃
(s)
j , Σ̃

(s)
j )∑M

l=1 π̃
(s)
l N(xi | µ̃

(s)
l , Σ̃(s)

l )
, i = 1, . . . ,N, j = 1, . . . ,M. (23)

In the M-step, we need to maximize the Q-function Q(Θ̃, Θ̃(s)) to update the parameters:

Θ̃(s+1) = arg max
Θ̃

Q(Θ̃, Θ̃(s)). (24)

Different from the observed-data log-likelihood in Eq. (18), the logarithm of Q-function in Eq. (22) works directly

on the Gaussian distributions. By keeping the evidential membership m(s)
i j fixed, we can maximize Q(Θ̃, Θ̃(s)) with

respect to the involved parameters: the mixing probabilities of the M components {̃π j}
M
j=1, the mean vectors of the C

single-clusters {µk}
C
k=1 and the common covariance matrix Σ. This leads to closed-form solutions for updating these

parameters as follows.

• The mixing probabilities of the M components π̃ j, j = 1, . . . ,M:

π̃(s+1)
j =

1
N

N∑
i=1

m(s)
i j . (25)

• The mean vectors of the C single-clusters µk, k = 1, . . . ,C:

Ξ(s+1) = H−1B, (26)

where Ξ(s+1) is a matrix of size (C × D) composed of all the mean vectors, i.e., Ξ(s+1) = [µ(s+1)
1 ; . . . ; µ(s+1)

C ], H is
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a matrix of size (C ×C) defined by

Hkl =

N∑
i=1

M∑
j=1

|A j|
−2m(s)

i j Ik jIl j, k = 1, . . . ,C, l = 1, . . . ,C, (27)

and B is a matrix of size (C × D) defined by

Bkp =

N∑
i=1

xip

M∑
j=1

|A j|
−1m(s)

i j Ik j, k = 1, . . . ,C, p = 1, . . . ,D. (28)

• The common covariance matrix Σ:

Σ(s+1) =
1
N

N∑
i=1

M∑
j=1

m(s)
i j (xi − µ̃

(s+1)
j )(xi − µ̃

(s+1)
j )T , (29)

where µ̃(s+1)
j is the updated mean vector of the jth evidential component, which is computed using Eq. (14)

based on the updated mean vectors of the C single-clusters in Eq. (26).

This algorithm is started by initializing with guesses about the parameters Θ̃(0). Then the two updating steps (i.e.,

E-step and M-step) alternate until the change in the observed-data log-likelihood logLO(Θ̃(s+1)) − logLO(Θ̃(s)) falls

below some threshold ε. The convergence properties of the EM algorithm are discussed in detail in [37]. It is proved

that each EM cycle can increase the observed-data log-likelihood, which is guaranteed to convergence to a maximum.

3.4. Summary and Analysis

With the estimated parameters via the above EM algorithm, the clustering is performed by calculating the

evidential membership mi j, i = 1, . . . ,N, j = 1, . . . ,M, using Eq. (23). The computed N-tuple evidential membership

M = {m1, . . . ,mN} provides an evidential partition of the considered objects. As indicated in [22], the evidential

partition provides a complex clustering structure, which can boil down to several alternative clustering structures

including traditional hard partition, probabilistic (or fuzzy) partition [38, 39], possibilistic partition [40, 41], and

rough partition [42, 43]. We summarize the EGMM for clustering in Algorithm 1.

Generality Analysis: The proposed EGMM algorithm provides a general framework for clustering, which boils

down to the classical GMM when we constrain all the evidential components to be singletons, i.e., A j = ω j, j =

1, . . . ,C. Compared with the GMM algorithm, the evidential one allocates for each object a mass of belief to any

subsets of possible clusters, which allows to gain a deeper insight on the data.

Convergence Analysis: As indicated in [44], the EM algorithm for mixture models takes many iterations to reach

convergence, and reaches multiple local maxima starting from different initializations. In order to find a suitable

initialization and speed up the convergence for the proposed EGMM algorithm, it is recommended to run the c-means

algorithm [34] and choose the means of the clusters and the average covariance of the clusters for initializing {µ(0)
k }

C
k=1
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Algorithm 1 EGMM clustering algorithm.
Require: X = {x1, . . . , xN}: N samples in RD; C: number of clusters 1 < C < N; ε: termination threshold.

1: Initialize the mixing probabilities {̃π(0)
j }

M
j=1, the mean vectors of the C single-clusters {µ(0)

k }
C
k=1 and the common

covariance matrix Σ(0);

2: s← 0;

3: repeat

4: Calculate the mean vectors {̃µ(s)
j }

M
j=1 and the covariance matrices {Σ̃(s)

j }
M
j=1 of the evidential components using

the current parameters {µ(s)
k }

C
k=1 and Σ(s) based on Eq. (14) and Eq. (16), respectively;

5: Calculate the evidential memberships {{m(s)
i j }

N
i=1}

M
j=1 using the current mixing probabilities {̃π(s)

j }
M
j=1, the mean

vectors {̃µ(s)
j }

M
j=1 and the covariance matrices {Σ̃(s)

j }
M
j=1 based on Eq. (23);

6: Update the mixing probabilities {̃π(s+1)
j }Mj=1 and the mean vectors of the C single-clusters {µ(s+1)

k }Ck=1 using the

calculated evidential memberships {{m(s)
i j }

N
i=1}

M
j=1 based on Eqs. (25)-(28);

7: Update the common covariance matrix Σ(s+1) using the calculated evidential memberships {{m(s)
i j }

N
i=1}

M
j=1 and

the updated mean vectors {µ(s+1)
k }Ck=1 based on Eq. (29);

8: Compute the observed-data log-likelihood logLO(Θ̃(s+1)) based on the updated parameters using Eq. (18);

9: s← s + 1;

10: until logLO(Θ̃(s)) − logLO(Θ̃(s−1)) < ε;

11: return the N-tuple evidential membership M = {m1, . . . ,mN}, with each mi = {m(s)
i j }

M
j=1, i = 1, . . . ,N.

and Σ(0), respectively. As for the mixing probabilities {̃π(0)
j }

M
j=1, if no prior information is available, these values can

be initialized equally as 1/M.

Complexity Analysis: For each object, the proposed EGMM algorithm distributes a fraction of the unit mass to

each non-empty element of 2Ω. Consequently, the number of parameters to be estimated is exponential in the number

of clusters C and linear in the number of objects N. Considering that, in most cases, the objects assigned to elements

of high cardinality are of less interpretability, in practice, we can reduce the complexity by constraining the focal sets

to be composed of at most two clusters. By this way, the number of parameters to be estimated is drastically reduced

from O(2C N) to O(C2N).

3.5. Determining the Number of Clusters

One important issue arising in clustering is the determination of the number of clusters. This problem is often

referred to as cluster validity. Most of the methods for GMM clustering usually start by obtaining a set of partitions

for a range of values of C (from Cmin to Cmax) which is assumed to contain the optimal C. The number of clusters is

then selected according to

C∗ = arg max
Cmin≤C≤Cmax

I(ΘC ,C), (30)
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where ΘC is the estimated parameter with C clusters, and I(ΘC ,C) is some validity index. A very common criterion

can be expressed in the form [1]

I(ΘC ,C) = logL(ΘC) − P(C), (31)

where logL(ΘC) is the maximized mixture log-likelihood when the number of clusters is chosen as C and P(C) is an

increasing function penalizing higher values of C.

Many examples of such criterion have been proposed for the GMM, including Bayesian approximation criteria,

such as Laplas-empirical criterion (LEC) [45], and Bayesian inference criterion (BIC) [9], and information-theoretic

criterion, such as minimum description length (MDL) [46], minimum message length (MML) [47], and Akaike’s

information criterion (AIC) [48]. Among these criterion, the BIC has given better results in a wide range of

applications of model-based clustering. For general mixture models, the BIC is defined as

BIC(ΘC ,C) = logL(ΘC) −
1
2

vC log(N), (32)

where vC is the number of independent parameters to be estimated in ΘC when the number of clusters is chosen as C.

For our proposed clustering approach, we adopt the above BIC as the validity index to determine the number

of clusters. For EGMM, the mixture log-likelihood is replaced by the evidential Gaussian mixture log-likelihood

logLO(Θ̃C) defined in Eq. (18), and the number of independent parameters in ΘC is replaced by that in Θ̃C .

Consequently, the evidential version of BIC for EGMM is then derived as

EBIC(Θ̃C ,C) = logLO(Θ̃C) −
1
2

ṽC log(N), (33)

where ṽC = M − 1 + CD + D(D + 1)/2, including M − 1 independent parameters in the mixing probabilities {̃π j}
M
j=1,

CD independent parameters in the mean vectors {µk}
C
k=1, and D(D + 1)/2 independent parameters in the common

covariance matrix Σ. This index has to be maximized to determine the optimal number of clusters.

4. Experiments

This section consists of three parts. In Section 4.1, some numerical examples are used to illustrate the behavior of

the EGMM algorithm1. In Section 4.2, we compare the performance of our proposal with those of related clustering

algorithms based on several real datasets. In Section 4.3, the interest of the proposed EGMM is illustrated by an

application to multi-modal brain image segmentation.

4.1. Illustrative examples

In this section, we consider three numerical examples to illustrate the interest of the proposed EGMM algorithm

for deriving evidential partition that better characterizes cluster-membership uncertainty.

1The source code can be downloaded from https://github.com/jlm-138/EGMM.
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4.1.1. Diamond dataset

In the first example, we consider the famous Diamond dataset to illustrate the behavior of EGMM compared with

the general GMM [1]. This dataset is composed of 11 objets, as shown in Fig. 1. We first calculated the cluster

validity indices by running the EGMM algorithm under different numbers of clusters. Table 2 shows the EBIC indices

with the desired number of clusters ranging from 2 to 6. It can be seen that the maximum is obtained for C = 2

clusters, which is consistent with our intuitive understanding for the partition of this dataset. Figs. 2 and 3 show the

clustering results (with C = 2) by GMM and EGMM, respectively. For the GMM, object 6, which lies at the cluster

boundary, is assigned a high probability to cluster ω2. But for our proposed EGMM, object 6 is assigned a high

evidential membership to Ω, which reveals that this point is ambiguous: it could be assigned either to ω1 or ω2. In

addition, the EGMM can find the approximate locations for both of the two cluster centers, whereas the GMM gives a

biased estimation for the center location of cluster ω2. This example demonstrates that the proposed EGMM is more

powerful to detect those ambiguous objects, and thus can reveal the underlying structure of the considered data in a

more comprehensive way.
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Figure 1: Diamond dataset

Table 2: Diamond dataset: EBIC indices for different numbers of clusters

Cluster number 2 3 4 5 6
EBIC index -55.9 -63.1 -70.6 -91.5 -132.3

4.1.2. Two-class dataset

In the second example, a dataset generated by two Gaussian distributions is considered to demonstrate the

superiority of the proposed EGMM compared with the prototype-based ECM [15] and the model-based bootGMM

[30], which are two representative evidential clustering algorithms developed in the belief function framework. This

dataset is composed of two classes of 400 points, generated from Gaussian distributions with the same covariance

matrix [3, 2; 2, 3] and different mean vectors, [2, 4] and [2, 0], respectively. The dataset and the contours of the

distributions are represented in Fig. 4 (a). We first calculated the cluster validity indices by running the EGMM
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Figure 2: Diamond dataset: clustering results by GMM

algorithm under different numbers of clusters. Table 3 shows the EBIC indices with the desired number of clusters

ranging from 2 to 6. It indicates that the number of clusters should be chosen as C = 2, which is consistent with the

real class distributions. Figs. 4 (b)-(d) show the clustering results (with C = 2) by ECM, bootGMM and EGMM,

respectively. It can be seen that, the ECM fails to recover the underlying structure of the dataset, which is because

the Euclidan distance-based similarity measure can only discover hyperspherical clusters. The proposed EGMM

accurately recovers the two underlying hyperellipsoid clusters thanks to the adaptive similarity measure derived via

MLE. This example demonstrates that the proposed EGMM is more powerful to distinguish hyperellipsoid clusters

with arbitrary orientation and shape than ECM. As for the bootGMM, it successfully recovers the two underlying

hyperellipsoid clusters by fitting the model based on mixtures of Gaussian distributions with arbitrary geometries.

However, it fails to detect those ambiguous objects lying at the cluster boundary via the hard evidential partition,

as quite small evidential membership is assign to Ω for these objects. By comparison, the proposed EGMM can

automatically detect these ambiguous objects thanks to the mixture models constructed over the powerset of the

desired clusters.

Table 3: Two-class dataset: EBIC indices for different numbers of clusters

Cluster number 2 3 4 5 6
EBIC index -3395.6 -3413.1 -3425.6 -3443.7 -3466.8
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Figure 3: Diamond dataset: clustering results by EGMM

4.1.3. Four-class dataset

In the third example, a more complex dataset is considered to illustrate the interest of evidential partition obtained

by the proposed EGMM. This dataset is composed of four classes of 200 points, generated from Gaussian distributions

with the same covariance matrix 2I and different mean vectors, [0, 0], [0, 4], [4, 4], and [4, 0], respectively. The dataset

and the contours of the distributions are represented in Fig. 5 (a). We first calculated the cluster validity indices by

running the EGMM algorithm under different numbers of clusters. Table 4 shows the EBIC indices with the desired

number of clusters ranging from 2 to 6. Noting that the maximum is obtained for C = 4 clusters, the underlying

structure of the dataset is correctly discovered. Fig. 5 (b) shows the hard evidential partition result (represented by

convex hull) and the cluster centers (marked by red cross) with C = 4. It can be seen that the four clusters are

accurately recovered, and those points that lie at the cluster boundaries are assigned to the ambiguous sets of clusters.

Apart from the hard evidential partition, it is also possible to characterize each cluster ωk by two sets: the set of objects

which can be classified asωk without any ambiguity and the set of objects which could possibly be assigned toωk [15].

These two sets ωL
k and ωU

k , referred to as the lower and upper approximations of ωk, are defined as ωL
k = X(ωk) and

ωU
k =

⋃
j\ωk∈A j

X(A j), with X(A j) denoting the set of objects for which the mass assigned to A j is highest. Figs. 5 (c) and

(d) show the lower and upper approximations of each cluster, which provide a pessimistic and an optimistic clustering

results, respectively. This example demonstrates that the evidential partition generated by the proposed EGMM is

quite intuitive and easier to interpret than the numerical probabilities obtained by the GMM, and can provide much

15



x
1

-6 -4 -2 0 2 4 6 8 10

x 2

-6

-4

-2

0

2

4

6

8

10

(a) The dataset

x
1

-6 -4 -2 0 2 4 6 8 10

x 2

-6

-4

-2

0

2

4

6

8

10
Cluster !

1
Cluster !

2
+
Cluster centers

(b) Hard evidential partition result and the cluster centers by ECM

x
1

-6 -4 -2 0 2 4 6 8 10

x 2

-6

-4

-2

0

2

4

6

8

10
Cluster !

1
Cluster !

2

Cluster centers

(c) Hard evidential partition result and the cluster centers by bootGMM

x
1

-6 -4 -2 0 2 4 6 8 10

x 2

-6

-4

-2

0

2

4

6

8

10
Cluster !

1
Cluster !

2
+
Cluster centers

(d) Hard evidential partition result and the cluster centers by EGMM

Figure 4: Two-class dataset: clustering results by ECM, bootGMM, and EGMM

richer partition information than the classical hard partition.

Table 4: Four-class dataset: EBIC indices for different numbers of clusters

Cluster number 2 3 4 5 6
EBIC index -3648.5 -3666.5 -3635.2 -3655.1 -3679.9
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Figure 5: Four-class dataset: interpretation of the evidential partition generated by EGMM

4.2. Real data test

4.2.1. Experimental setup

In this section, we aim to evaluate the performance of the proposed EGMM based on eight representative

benchmark datasets from the UCI Machine Learning Repository [49], whose characteristics are summarized in Table

5. It can be seen that the selected datasets varies greatly in both size and dimensionality. The clustering results

obtained with the proposed EGMM were compared with the following representative clustering algorithms:

• HCM [34]: hard c-means (function kmeans in the MATLAB Statistics toolbox).

• FCM [38]: fuzzy c-means (function fcm in the MATLAB Fuzzy Logic toolbox).
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• ECM [15]: evidential c-means (function ECM in the MATLAB package Evidential Clustering2).

• BPEC [28]: belief-peaks evidential clustering (function bpec in the R package evclust3).

• GMM [1]: general Gaussian mixture model without constraints on covariance (function fitgmdist in the

MATLAB Statistics toolbox).

• CGMM [1]: constrained Gaussian mixture model with constant covariance across clusters (function fitgmdist

with ‘SharedCovariance’ = true).

• bootGMM [30]: calibrated model-based evidential clustering by bootstrapping the most fitted GMM (function

bootclus in the R package evclust).

Table 5: Characteristics of the real datasets used in the experiment

Datasets # Instances # Features # Clusters
Ecoli 336 5 8
Iris 150 4 3
Knowledge 403 5 4
Magic 19020 10 2
Newthyroid 215 5 3
Seeds 210 7 3
Vehicle 846 18 4
Wine 178 13 3

To perform a fair evaluation of the clustering results, hard partitions were adopted for all the considered algorithms.

For the four evidential clustering algorithms, hard partitions were obtained by selecting the cluster with maximum

pignistic probability for each object. The following three common external criteria were used for evaluation [50]:

• Purity: Purity is a simple and transparent evaluation measure. To compute purity, each cluster is assigned to the

class which is most frequent in the cluster, and then the accuracy of this assignment is measured by counting

the number of correctly assigned objects and dividing by N. Formally,

Purity(Ω,Q) =
1
N

C∑
k=1

max
j
|ωk ∩ q j|, (34)

where Ω = {ω1, . . . , ωC} is the set of partitioned clusters and Q = {q1, . . . , qJ} is the set of actual classes.

• NMI (Normalized Mutual Information): NMI is an information-theoretical evaluation measure, which is defined

as

NMI(Ω,Q) =
I(Ω;Q)

[H(Ω) + H(Q)]/2
, (35)

2Available at https://www.hds.utc.fr/˜tdenoeux/dokuwiki/en/software
3Available at https://cran.r-project.org/web/packages/evclust
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where I and H denote the operations of mutual information and entropy, respectively.

• ARI (Adjusted Rand Index): ARI is a pair counting based evaluation measure, which is defined as

ARI(Ω,Q) =
2(TP · TN − FP · FN)

(TN + FP)(FP + TP) + (TN + FN)(FN + TP)
, (36)

where TP, TN, FP, FN denote true positive samples, true negative samples, false positive samples and false

negative samples, respectively.

4.2.2. Comparison with unknown number of clusters

In the first group of experiments, the number of clusters C was assumed to be unknown and had to be determined

based on the affiliated validity indices. For determining the number of clusters, the validity indices of modified

partition coefficient (MPC) [51] and average normalized specificity (ANS) [15] were used for FCM and ECM,

respectively, and the classical BIC [9] was used for the three model-based algorithms including GMM, CGMM and

bootGMM. As for BPEC, the delta-Bel graph [28] was used to determine the number of clusters. For all the algorithms

except HCM (which requires the number of clusters to be known in advance), the number of clusters was searched

between 2 and 8. All algorithms were run 10 times, and the average estimated number of clusters was calculated

for each algorithm. For evaluating the clustering performance, the average NMI and ARI were calculated for each

algorithm using the corresponding estimated number of clusters. Note that the purity measure was not used here

because it is severely affected by the number of clusters as indicated in [50] (high purity is easy to achieve when the

number of clusters is large).

Table 6 shows the number of clusters estimated by different algorithms in comparison with the real number of

clusters (the second column). We can see that the proposed EGMM performed the best for determining the number

of clusters (obtaining the best estimation accuracy on five of the eight datasets), while the performance of other

algorithms was generally unstable. Tables 7 and 8 show the clustering results of different algorithms with the estimated

number of clusters in terms of NMI and ARI, in which the bootGMM algorithm failed on the large dataset Magic.

The numbers in brackets in the tables represent the performance ranks of different algorithms. It can be seen that the

proposed EGMM achieved the highest clustering quality as measured by NMI and ARI for most of the datasets and it

ranked the first in average. These results show the superiority of the proposed EGMM both in finding the number of

clusters and clustering the data.

To analyze the results statistically, we used the Friedman test and Bonferroni-Dun test [52] to compare the average

ranks of different algorithms under each criterion. We first considered the Friedman test to check whether there is a

significant difference among algorithms on the whole. As shown in Table 9, the Friedman statistic is larger than the

critical value under significance level α=0.05 for the two criteria NMI and ARI, indicating that there is a significant

difference among the results of different algorithms. Then, we applied the post hoc Bonferroni-Dun test to compare

the algorithm with highest rank (the proposed EGMM) with the other ones based on the two criteria NMI and ARI.
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Table 6: Number of clusters estimated by different algorithms

Dataset # Clusters FCM ECM BPEC GMM CGMM bootGMM EGMM
Ecoli 8 4.0±0 4.0±0 3.0±0 4.0±0 4.5±0.71 5.0±0 4.0±0
Iris 3 4.1±1.45 2.0±0 2.0±0 2.0±0 4.5±0.85 2.0±0 3.4±0.52
Knowledge 4 4.9±1.10 2.0±0 3.0±0 2.5±0.53 2.5±0.85 3.0±0 3.8±0.63
Magic 2 4.4±0.90 5.0±0 4.0±0 5.0±0 5.0±0 – 3.2±0.95
Newthyroid 3 2.0±0 6.0±0 2.0±0 5.8±0.42 5.5±0.71 3.0±0 3.2±0.42
Seeds 3 4.7±1.06 5.4±0.52 2.0±0 2.0±0 3.1±0.31 4.0±0 3.0±0
Vehicle 4 4.1±1.45 6.0±0 4.0±0 5.1±0.57 4.7±0.95 6.0±0 5.9±0.32
Wine 3 4.1±1.45 6.0±0 2.0±0 2.0±0 5.1±0.88 4.0±0 3.8±0.42

Table 7: NMI by different algorithms with unknown number of clusters

Dataset FCM ECM BPEC GMM CGMM bootGMM EGMM
Ecoli 0.58±0.01(7) 0.59±0.01(5.5) 0.65±0(4) 0.69±0.01(1) 0.67±0.01(3) 0.59±0.01(5.5) 0.68±0.01(2)
Iris 0.70±0.01(6) 0.57±0.05(7) 0.72±0(5) 0.73±0(3.5) 0.77±0.06(2) 0.73±0(3.5) 0.87±0.05(1)
Knowledge 0.29±0.02(5) 0.33±0(4) 0.16±0(6) 0.36±0.12(3) 0.02±0.02(7) 0.39±0(2) 0.43±0.05(1)
Magic 0.01±0(5.5) 0.01±0(5.5) 0.06±0(4) 0.12±0.01(2) 0.11±0.03(3) – – 0.13±0(1)
Newthyroid 0.13±0(7) 0.34±0(5) 0.22±0(6) 0.46±0.01(4) 0.50±0.08(2) 0.68±0.01(1) 0.48±0.05(3)
Seeds 0.61±0(3) 0.58±0(6) 0.50±0(7) 0.60±0(4) 0.78±0.07(2) 0.59±0.01(5) 0.80±0(1)
Vehicle 0.18±0(4) 0.12±0(7) 0.13±0(6) 0.19±0.03(3) 0.15±0.04(5) 0.35±0.01(1) 0.24±0(2)
Wine 0.36±0(5) 0.35±0.01(6) 0.16±0(7) 0.58±0.07(4) 0.81±0.03(3) 0.95±0(1) 0.82±0.05(2)
Average rank 5.32 5.75 5.63 3.06 3.38 3.25 1.62

Table 8: ARI by different algorithms with unknown number of clusters

Dataset FCM ECM BPEC GMM CGMM bootGMM EGMM
Ecoli 0.51±0.04(6.5) 0.51±0.04(6.5) 0.70±0(4) 0.73±0.01(1) 0.71±0.01(3) 0.61±0.01(5) 0.72±0.01(2)
Iris 0.62±0.02(3) 0.54±0(7) 0.56±0(6) 0.57±0(4.5) 0.72±0.11(2) 0.57±0(4.5) 0.85±0.10(1)
Knowledge 0.22±0.02(5) 0.28±0(3) 0.12±0(6) 0.26±0.11(4) 0.01±0(7) 0.29±0(2) 0.31±0.04(1)
Magic 0.02±0(5.5) 0.02±0.01(5.5) 0.03±0(4) 0.11±0.01(2) 0.10±0.06(3) – – 0.14±0.03(1)
Newthyroid 0.05±0.01(7) 0.21±0(6) 0.22±0(5) 0.44±0.05(4) 0.51±0.12(3) 0.71±0.01(1) 0.54±0.06(2)
Seeds 0.52±0(4.5) 0.52±0(4.5) 0.45±0(7) 0.51±0(6) 0.81±0.13(2) 0.53±0.03(3) 0.85±0(1)
Vehicle 0.12±0(5) 0.14±0(2) 0.09±0(7) 0.13±0.03(3.5) 0.10±0.03(6) 0.21±0.01(1) 0.13±0(3.5)
Wine 0.27±0(5) 0.24±0(6) 0.15±0(7) 0.44±0.06(4) 0.80±0.05(3) 0.97±0(1) 0.83±0.06(2)
Average rank 5.19 5.06 5.75 3.63 3.63 3.06 1.68

Fig. 6 graphically shows the test results of the average ranks under significance level α = 0.05. The critical difference

(CD) value is marked as horizontal line, and any one with the rank outside these areas is significantly different from

the proposed EGMM. It can be seen that the proposed EGMM performed significantly better than FCM, ECM and

BPEC on both of the two criteria NMI and ARI.

Table 9: Friedman test results of different algorithms with unknown number of clusters (α = 0.05)

Criterion Friedman statistic Critical value
NMI 25.78 12.59
ARI 20.81 12.59

20



1 2 3 4 5 6

EGMM

bootGMM

CD0.05 = 2.85

GMM CGMM FCM

BPEC

ECM

(a) NMI criterion

1 2 3 4 5 6

EGMM

bootGMM

CD0.05 = 2.85

CGMM FCM

BPECECMGMM

(b) ARI criterion

Figure 6: Bonferroni-Dun test results of EGMM versus other ones with unknown number of clusters (α = 0.05)

4.2.3. Comparison with known number of clusters

In the second group of experiments, the number of clusters was assumed to be known in advance. All algorithms

were run 10 times using the real number of clusters, and the average purity, NMI, and ARI were calculated for each

algorithm as shown in Tables 10-12, in which the bootGMM algorithm failed on the large dataset Magic. It can be

seen that the proposed EGMM achieves the highest clustering quality as measured by purity, NMI and ARI for most

of the datasets and it also ranks the first in average.

Table 10: Purity by different algorithms with known number of clusters

Dataset HCM FCM ECM BPEC GMM CGMM bootGMM EGMM
Ecoli 0.81±0.02(2.5) 0.79±0.01(5) 0.79±0.01(5) 0.76±0(8) 0.78±0.01(7) 0.81±0.01(2.5) 0.79±0.01(5) 0.82±0.01(1)
Iris 0.87±0.07(6.5) 0.89±0(4) 0.89±0(4) 0.69±0(8) 0.89±0.15(4) 0.87±0.14(6.5) 0.97±0.01(1) 0.93±0.09(2)
Knowledge 0.57±0.05(3) 0.50±0.01(5) 0.51±0.01(4) 0.49±0(6.5) 0.62±0.02(2) 0.38±0.10(8) 0.49±0.01(6.5) 0.63±0.04(1)
Magic 0.65±0(5.5) 0.65±0(5.5) 0.65±0(5.5) 0.65±0(5.5) 0.66±0(3) 0.72±0.01(2) – – 0.75±0(1)
Newthyroid 0.81±0.04(5) 0.79±0.01(6) 0.70±0(8) 0.77±0(7) 0.87±0(3) 0.86±0.02(4) 0.91±0.01(1) 0.88±0.03(2)
Seeds 0.89±0(5) 0.90±0(3) 0.89±0(5) 0.65±0(8) 0.84±0.09(7) 0.92±0.09(2) 0.89±0.01(5) 0.95±0(1)
Vehicle 0.44±0.01(3.5) 0.45±0(2) 0.40±0(7) 0.38±0(8) 0.43±0.03(5) 0.41±0.03(6) 0.44±0.01(3.5) 0.46±0.18(1)
Wine 0.69±0.01(6) 0.69±0(6) 0.69±0(6) 0.56±0(8) 0.87±0.12(2) 0.84±0.13(4) 0.98±0.01(1) 0.85±0.13(3)
Average rank 4.63 4.56 5.56 7.38 4.13 4.38 3.88 1.50

We also conducted a non-parametric statistical test to compare the average ranks of different algorithms with

known number of clusters. Table 13 shows the Friedman test results of different algorithms with known number of

clusters under significance level α=0.05. As the Friedman statistics are larger than the critical value, these algorithms

perform significantly different on the three criteria purity, NMI and ARI. Furthermore, Fig. 7 shows the Bonferroni-

Dun test results of EGMM versus other ones. It can be seen that the proposed EGMM performed significantly better

than HCM, FCM, ECM and BPEC on the criteria purity and NMI, and it also performed significantly better than

CGMM on the criteria ARI.
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Table 11: NMI by different algorithms with known number of clusters

Dataset HCM FCM ECM BPEC GMM CGMM bootGMM EGMM
Ecoli 0.58±0.02(6) 0.55±0.01(7) 0.54±0.01(8) 0.63±0(4) 0.69±0.01(2) 0.68±0.01(3) 0.61±0.01(5) 0.70±0.01(1)
Iris 0.74±0(7) 0.75±0(6) 0.76±0(5) 0.58±0(8) 0.84±0.13(3) 0.83±0.11(4) 0.91±0.01(1) 0.87±0.05(2)
Knowledge 0.36±0.03(3) 0.29±0.03(4.5) 0.29±0.02(4.5) 0.15±0(7) 0.39±0.02(2) 0.10±0.17(8) 0.26±0.01(6) 0.43±0.05(1)
Magic 0.02±0(4) 0.01±0(6) 0.01±0(6) 0.01±0(6) 0.04±0(3) 0.08±0.01(2) – – 0.11±0(1)
Newthyroid 0.35±0.09(4.5) 0.35±0.01(4.5) 0.16±0(8) 0.26±0(7) 0.43±0.01(3) 0.29±0.07(6) 0.68±0.01(1) 0.48±0.05(2)
Seeds 0.70±0.01(3) 0.69±0(4.5) 0.66±0(7) 0.43±0(8) 0.68±0.08(6) 0.78±0.07(2) 0.69±0.02(4.5) 0.80±0(1)
Vehicle 0.19±0.01(3) 0.18±0(4) 0.13±0(7.5) 0.13±0(7.5) 0.17±0.04(5.5) 0.17±0.03(5.5) 0.20±0.01(2) 0.21±0.02(1)
Wine 0.42±0.01(5.5) 0.42±0(5.5) 0.40±0(7) 0.16±0(8) 0.70±0.19(4) 0.73±0.15(3) 0.95±0.01(1) 0.81±0.14(2)
Average rank 4.50 5.25 6.63 6.94 3.56 4.19 3.56 1.37

Table 12: ARI by different algorithms with known number of clusters

Dataset HCM FCM ECM BPEC GMM CGMM bootGMM EGMM
Ecoli 0.43±0.03(6) 0.35±0.01(7.5) 0.35±0.01(7.5) 0.69±0(4) 0.72±0.01(1.5) 0.71±0.01(3) 0.64±0.01(5) 0.72±0.01(1.5)
Iris 0.70±0.10(7) 0.73±0(5.5) 0.73±0(5.5) 0.51±0(8) 0.81±0.21(3) 0.78±0.21(4) 0.92±0.01(1) 0.85±0.10(2)
Knowledge 0.25±0.03(3) 0.23±0.03(4.5) 0.23±0.03(4.5) 0.10±0(7) 0.28±0.02(2) 0.07±0.14(8) 0.21±0.01(6) 0.31±0.04(1)
Magic 0.06±0(4) 0.02±0(6.5) 0.02±0(6.5) 0.04±0(5) 0.09±0(3) 0.10±0.07(2) – – 0.14±0(1)
Newthyroid 0.36±0.19(6) 0.45±0.01(3.5) 0.45±0.02(3.5) 0.26±0(8) 0.42±0.05(5) 0.27±0.07(7) 0.71±0.01(1) 0.54±0.06(2)
Seeds 0.71±0(6) 0.72±0(4) 0.72±0(4) 0.42±0(8) 0.65±0.11(7) 0.81±0.13(2) 0.72±0.02(4) 0.85±0(1)
Vehicle 0.12±0(4.5) 0.12±0(4.5) 0.12±0(4.5) 0.09±0(8) 0.12±0.03(4.5) 0.10±0.02(7) 0.16±0.01(1) 0.14±0.02(2)
Wine 0.36±0.02(5) 0.35±0(6.5) 0.35±0(6.5) 0.14±0(8) 0.70±0.19(3) 0.69±0.20(4) 0.97±0.01(1) 0.75±0.21(2)
Average rank 5.19 5.31 5.31 7.00 3.63 4.63 3.38 1.56

Table 13: Friedman test results of different algorithms with known number of clusters (α = 0.05)

Criterion Friedman statistic Critical value
Purity 24.77 14.07
NMI 30.28 14.07
ARI 25.07 14.07

4.2.4. Computation time analysis

At the end of this section, we give an evaluation on the run time of the considered clustering algorithms. The

computations were executed on a Microsoft Surface Book with an Intel(R) Core(TM) i5-6300U CPU @2.40 GHz and

8 GB memory. All algorithms were tested on MATLAB platform, except BPEC and bootGMM which were tested on

R platform. As both of MATLAB and R are script languages, their execution efficiency is nearly at the same level.

Table 14 shows the average run time of different algorithms on the eight considered datasets, in which the bootGMM

algorithm failed on the large dataset Magic. It can be seen that the four evidential clustering algorithms (i.e., ECM,

BPEC, bootGMM, EGMM) generally cost more time than the non-evidential ones, mainly because more independent

parameters are needed to be estimated in the evidential partition. Among these four evidential clustering algorithms,

the proposed EGMM runs fastest. In particular, it shows obvious advantage over bootGMM, which costs a great deal

of time in the procedures of bootstrapping and calibration.
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Figure 7: Bonferroni-Dun test results of EGMM versus other ones with known number of clusters (α = 0.05)

Table 14: CPU time (second) on different datasets

Dataset HCM FCM ECM BPEC GMM CGMM bootGMM EGMM
Ecoli 0.066 0.108 1.486 6.160 0.237 0.206 29.35 1.297
Iris 0.004 0.004 0.085 1.970 0.012 0.008 7.610 0.029
Knowledge 0.004 0.014 0.080 1.780 0.030 0.031 56.66 0.035
Magic 3.449 4.022 239.8 791.6 4.277 3.446 – – 66.91
Newthyroid 0.012 0.029 0.410 2.160 0.021 0.014 11.42 0.074
Seeds 0.003 0.003 0.078 1.860 0.013 0.011 18.16 0.045
Vehicle 0.006 0.022 4.134 55.92 0.048 0.034 167.79 2.255
Wine 0.003 0.005 0.116 1.700 0.009 0.006 46.77 0.052

4.3. Application to multi-modal brain image segmentation

In this section, the interest of the proposed EGMM was illustrated by an application to multi-modal brain

image segmentation. The multi-modal brain images with multiple sclerosis (MS) lesions were generated using the

BrainWEB tool4, in which two different pulse sequences (T1 and T2) were employed for magnetic resonance imaging

(MRI). As shown in Fig. 8(a), two main areas are easily distinguished from the T1 image: the bright area represents

brain tissues, and the dark grey area represents ventricles and cerebrospinal fluid. As the T1 pulse sequence is designed

for observing the anatomical structure of brain, the pathology cannot be seen in T1 image. However, as shown in Fig.

4https://brainweb.bic.mni.mcgill.ca/brainweb/.

23



8(b), the pathology (bright area) is easily discovered from the T2 image, but the normal brain tissues have almost the

same gray level with the ventricles and cerebrospinal fluid. Therefore, these two images exhibit different abilities of

discernment for the involved three areas: pathology, normal brain tissues, and ventricles and cerebrospinal fluid.

(a) Brain image with T1 pulse sequence (b) Brain image with T2 pulse sequence

Figure 8: Multi-modal brain images with MS lesions

The proposed EGMM was first applied on each individual image to get the evidential partition results under

each modality. For each image, we run the EGMM algorithm under different numbers of clusters and calculate the

corresponding values of the EBIC index. The maximum is obtained when two clusters are partitioned for both of

the two images, which is consistent with our visual perception. Figs. 9 and 10 show the segmentation results of

the T1 image and T2 image, respectively. For each cluster, the lower and upper approximations are provided, which

represent the pessimistic and the optimistic decisions, respectively. As seen from Fig. 9, for T1 image, the ventricles

and cerebrospinal fluid are well separated from brain tissues in terms of the lower approximations, and the blue area

represents the ambiguous pixels lying at the cluster boundary. For T2 image, as shown in Fig. 10, the pathology is

recovered by the lower approximation of cluster 1, and the other area (ventricles and cerebrospinal fluid as well as

normal brain tissues) is recovered by the upper approximation of cluster 2. Note that a large number of ambiguous

pixels are detected which take intermediate gray levels in T2 image.

Next, we combined the above two two-cluster partitions in order to get a meaningful three-cluster partition of the

brain with lower ambiguity. As the clustering results of the proposed EGMM are characterized by mass functions,

for each pixel, the fusion result can be obtained by combining the mass functions derived from the two images using

the classical Dempster’s rule [17]. Fig. 11 shows the segmentation results by combining the evidential partitions of

T1 and T2 brain images. It can be seen that, the three areas of interest (pathology, ventricles and cerebrospinal fluid,
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(a) Lower (red) and upper (red + blue) approximations of
cluster 1 (ventricles and cerebrospinal fluid)

(b) Lower (red) and upper (red + blue) approximations
of cluster 2 (brain tissues)

Figure 9: Segmentation results of the T1 brain image

(a) Lower (red) and upper (red + blue) approximations
of cluster 1 (pathology)

(b) Lower (red) and upper (red + blue) approximations of
cluster 2 (ventricles and cerebrospinal fluid, normal brain
tissues)

Figure 10: Segmentation results of the T2 brain image

normal brain tissues) are well separated by the lower approximations. Besides, the number of ambiguous pixels (with

blue color) are greatly reduced after fusion. This application example demonstrates the great expressive power of the

evidential partition induced by the proposed EGMM. Compared with hard partition, the generated evidential partition

25



is more informative to characterize the clustering ambiguity, which can be further reduced by later fusion process.

(a) Lower (red) and upper (red + blue) approximations of
cluster 1 (pathology)

(b) Lower (red) and upper (red + blue) approximations
of cluster 2 (ventricles and cerebrospinal fluid)

(c) Lower (red) and upper (red + blue) approximations
of cluster 3 (normal brain tissues)

Figure 11: Segmentation results by combining the evidential partitions of T1 and T2 brain images

To demonstrate the superiority of the proposed EGMM for multi-modal brain image segmentation, we compared

its performance with other representative evidential clustering algorithms (the bootGMM is not included as it cannot

work on this large data). Table 14 shows the performance comparison of different algorithms on three criteria purity,

NMI and ARI, from which, it can be seen that the proposed EGMM outperforms the others on all of the three criteria.
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Table 15: Performance comparison of different algorithms for multi-modal brain image segmentation

Algorithm Purity NMI ARI
ECM 0.9777 0.8148 0.9598
BPEC 0.9542 0.7965 0.9321
EGMM 0.9844 0.8323 0.9721

5. Conclusions

In this paper, a new model-based approach to evidential clustering has been proposed. It is based on the notion

of evidential partition, which extends those of probabilistic (or fuzzy), possibilistic, and rough ones. Different from

the approximately calibrated approach in [30], our proposal generates the evidential partition directly by searching for

the maximum likelihood solution of the new EGMM via EM algorithm. In addition, a validity index is presented to

determine the number of clusters automatically. The proposed EGMM is so simple that it has no open parameter and

the convergence properties can also be well guaranteed. More importantly, the generated evidential partition provides

a more complete description of the clustering structure than does the probabilistic (or fuzzy) partition provided by the

GMM.

The proposed EGMM has been compared to some representative clustering algorithms using both synthetic and

real datasets. It was shown to outperform other algorithms for a majority of datasets and rank the first in average on the

three criteria clustering purity, NMI and ARI. The computation time analysis showed that the proposed EGMM runs

fastest among the considered evidential clustering algorithms. Besides, the multi-modal brain image segmentation

application demonstrated the great expressive power of the evidential partition induced by the proposed EGMM.

As indicated in [36], different kinds of constraints can be imposed on the covariance matrices of the GMM, which

results in a total of fourteen models with different assumptions on the shape, volume and orientation of the clusters.

In our work, the commonly used model with equal covariance matrix is adopted to develop the evidential clustering

algorithm. It is quite interesting to further study evidential versions of the GMM with other constraints. This research

direction will be explored in future work.

Appendix A. EM solution for the EGMM: The E-step

In the E-step, we need to derive the Q-function, by computing the conditional expectation of observed-data log-

likelihood logLC(Θ̃) given X, using the current fit for Θ̃, i.e.,

Q(Θ̃, Θ̃(s)) = EΘ̃(s)

[
logLC(Θ̃) | X

]
. (A.1)
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By bringing the expression of the observed-data log-likelihood logLC(Θ̃) in Eq. (21) into the above formula, we have

Q(Θ̃, Θ̃(s)) = EΘ̃(s)

[
logLC(Θ̃) | X

]
= EΘ̃(s)

{
N∑

i=1

M∑
j=1

zi j log
[̃
π jN(xi | µ̃ j, Σ̃ j)

]
| X

}
=

N∑
i=1

M∑
j=1
EΘ̃(s)

[
zi j | xi

]
log

[̃
π jN(xi | µ̃ j, Σ̃ j)

]
,

(A.2)

with

EΘ̃(s)

[
zi j | xi

]
= pΘ̃(s)

[
zi j = 1 | xi

]
=

π̃(s)
j N(xi | µ̃

(s)
j , Σ̃

(s)
j )∑M

l=1 π̃
(s)
l N(xi | µ̃

(s)
l , Σ̃(s)

l )
, mi j, i = 1, . . . ,N, j = 1, . . . ,M. (A.3)

from which we obtain Eqs. (22) and (23) of the E-step.

Appendix B. EM solution for the EGMM: The M-step

In the M-step, we need to maximize the Q-function Q(Θ̃, Θ̃(s)) derived in the E-step with respect to the involved

parameters: the mixing probabilities of the M components {̃π j}
M
j=1, the mean vectors of the C single-clusters {µk}

C
k=1

and the common covariance matrix Σ. To find a local maxima, we compute the derivatives of Q(Θ̃, Θ̃(s)) with respect

to {̃π j}
M
j=1, {µk}

C
k=1, and Σ, respectively.

First, we compute the derivative of Q(Θ̃, Θ̃(s)) with respect to the mixing probabilities {̃π j}
M
j=1. Notice that the

values of {̃π j}
M
j=1 are constrained to be positive and sum to one. This constraint can be handled using a Lagrange

multiplier and maximizing the following quantity:

F
(
{̃π j}

M
j=1, λ

)
= Q(Θ̃, Θ̃(s)) − λ

 M∑
j=1

π̃ j − 1

 . (B.1)

By differentiating F with respect to π̃ j and λ and setting the derivatives to zero, we obtain:

∂F

∂π̃ j
=

1
π̃ j

N∑
i=1

m(s)
i j − λ = 0, j = 1, . . . ,M, (B.2)

∂F

∂λ
= 1 −

M∑
j=1

π̃ j = 0. (B.3)

From Eq. (B.2) we have

π̃ j =
1
λ

N∑
i=1

m(s)
i j , j = 1, . . . ,M. (B.4)

By Bringing the above expression of π̃ j into Eq. (B.3), we have

1 −
M∑
j=1

1
λ

N∑
i=1

m(s)
i j

 = 0 ⇔ 1 −
1
λ

N∑
i=1

M∑
j=1

m(s)
i j = 0 (B.5)
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Notice that the sum of the evidential membership for each object is one, i.e.,
∑M

j=1 m(s)
i j = 1, i = 1, . . . ,N. We thus

have λ = N. Then, returning in Eq. (B.4), we obtain the updated mixing probabilities π̃ j as

π̃ j =
1
N

N∑
i=1

m(s)
i j , j = 1, . . . ,M. (B.6)

Second, we compute the derivative of Q(Θ̃, Θ̃(s)) with respect to the mean vectors of single-clusters {µk}
C
k=1:

∂Q
∂µk

=

N∑
i=1

M∑
j=1

m(s)
i j

∂N(xi | µ̃ j, Σ̃ j)
∂µk

=

N∑
i=1

M∑
j=1

m(s)
i j |A j|

−1Ik jΣ̃
−1
j (xi − µ̃ j) =

N∑
i=1

M∑
j=1

m(s)
i j |A j|

−1Ik jΣ̃
−1
j (xi − µ̃ j), k = 1, . . . ,C.

(B.7)

By bringing the expressions of the mean vectors µ̃ j and the covariance matrices Σ̃ j in Eqs. (14) and (16) into the

above formula, we have

∂Q
∂µk

=

N∑
i=1

M∑
j=1

m(s)
i j |A j|

−1Ik jΣ
−1(xi − |A j|

−1
C∑

l=1

Il jµl), k = 1, . . . ,C. (B.8)

Setting these derivatives to zero and doing simple transformation, we obtain

N∑
i=1

xi

M∑
j=1

|A j|
−1m(s)

i j Ik j =

C∑
l=1

µl

N∑
i=1

M∑
j=1

|A j|
−2m(s)

i j Ik jIl j, k = 1, . . . ,C. (B.9)

Using the notations in Eqs. (27) and (28), we obtain the updated mean vectors of single-clusters Ξ = [µ1; . . . ; µC] as

Ξ = H−1B. (B.10)

At last, we compute the derivative of Q(Θ̃, Θ̃(s)) with respect to the common covariance matrix Σ:

∂Q
∂Σ

=

N∑
i=1

M∑
j=1

m(s)
i j

∂N(xi | µ̃ j, Σ̃ j)
∂Σ

=

N∑
i=1

M∑
j=1

m(s)
i j (−

1
2

)Σ−1[1 − (xi − µ̃ j)(xi − µ̃ j)T ]Σ−1. (B.11)

Setting this derivative to zero and doing simple transformation, we obtain

 N∑
i=1

M∑
j=1

m(s)
i j

Σ =

N∑
i=1

M∑
j=1

m(s)
i j (xi − µ̃ j)(xi − µ̃ j)T . (B.12)

Notice that the sum of the evidential membership for each object is one, i.e.,
∑M

j=1 m(s)
i j = 1, i = 1, . . . ,N. We thus

obtain the updated common covariance matrix Σ as

Σ =
1
N

N∑
i=1

M∑
j=1

m(s)
i j (xi − µ̃ j)(xi − µ̃ j)T . (B.13)
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