
Uncertainty-wise Software Anti-patterns Detection: A
Possibilistic Evolutionary Machine Learning Approach

Sofien Boutaiba,∗, Maha Elarbia, Slim Bechikha,∗, Carlos A. Coello Coellob,
Lamjed Ben Saida

aSMART Lab, ISG, University of Tunis, Tunisia
bDepartamento de Computación, CINVESTAV-IPN, Mexico City, Mexico

Basque Center for Applied Mathematics (BCAM) & Ikerbasque

Abstract

Context. Code smells (a.k.a. anti-patterns) are manifestations of poor de-

sign solutions that can deteriorate software maintainability and evolution. Re-

search gap. Existing works did not take into account the issue of uncertain

class labels, which is an important inherent characteristic of the smells detec-

tion problem. More precisely, two human experts may have different degrees of

uncertainty about the smelliness of a particular software class not only for the

smell detection task but also for the smell type identification one. Unluckily, ex-

isting approaches usually reject and/or ignore uncertain data that correspond

to software classes (i.e. dataset instances) with uncertain labels. Throwing

away and/or disregarding the uncertainty factor could considerably degrade the

detection/identification process effectiveness. From a solution approach view-

point, there is no work in the literature that proposed a method that is able

to detect and/or identify code smells while preserving the uncertainty aspect.

Objective. The main goal of our research work is to handle the uncertainty

factor, issued from human experts, in detecting and/or identifying code smells

by proposing an evolutionary approach that is able to deal with anti-patterns

classification with uncertain labels. Method. We suggest Bi-ADIPOK, as an
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effective search-based tool that is capable to tackle the previously mentioned

challenge for both detection and identification cases. The proposed method

corresponds to an EA (Evolutionary Algorithm) that optimizes a set of detec-

tors encoded as PK-NNs (Possibilistic K-nearest neighbors) based on a bi-level

hierarchy, in which the upper level role consists on finding the optimal PK-

NNs parameters, while the lower level one is to generate the PK-NNs. A newly

fitness function has been proposed fitness function PomAURPC-OVA dist (Pos-

sibilistic modified Area Under Recall Precision Curve One-Versus-All distance,

abbreviated PAURPC d in this paper). Bi-ADIPOK is able to deal with label

uncertainty using some concepts stemming from the Possibility Theory. Fur-

thermore, the PomAURPC-OVA dist is capable to process the uncertainty issue

even with imbalanced data. We notice that Bi-ADIPOK is first built and then

validated using a possibilistic base of smell examples that simulates and mimics

the subjectivity of software engineers opinions. Results. The statistical anal-

ysis of the obtained results on a set of comparative experiments with respect

to four relevant state-of-the-art methods shows the merits of our proposal. The

obtained detection results demonstrate that, for the uncertain environment, the

PomAURPC-OVA dist of Bi-ADIPOK ranges between 0.902 and 0.932 and its

IAC lies between 0.9108 and 0.9407, while for the certain environment, the

PomAURPC-OVA dist lies between 0.928 and 0.955 and the IAC ranges be-

tween 0.9477 and 0.9622. Similarly, the identification results, for the uncertain

environment, indicate that the PomAURPC-OVA dist of Bi-ADIPOK varies

between 0.8576 and 0.9273 and its IAC is between 0.8693 and 0.9318. For the

certain environment, the PomAURPC-OVA dist lies between 0.8613 and 0.9351

and the IAC values are between 0.8672 and 0.9476. With uncertain data, Bi-

ADIPOK can find 35% more code smells than the second best approach (i.e.,

BLOP). Furthermore, Bi-ADIPOK has succeeded to reduce the number of false

alarms (i.e., misclassified smelly instances) by 12%. In addition, our proposed

approach can identify 43% more smell types than BLOP and reduces the num-

ber of false alarms by 32%. The same results have been obtained for the certain

environment, demonstrating Bi-ADIPOK’s ability to deal with such environ-
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ment.

Keywords: Code smells detection, Data uncertainty, Possibility theory,

Evolutionary Algorithm, Possibilistic K-NN.

1. Introduction

Several studies on software engineering have demonstrated that the dead-

line pressure and the developer’s inexperience are among the factors that may

lead to the introduction of the so-called technical debt [1, 2], which refers to a

group of design issues that may affect the software’s maintenance as well as its5

evolution in the future [3, 4]. Code smells (a.k.a. Anti-patterns) [5] are among

the code technical debt’ indications, i.e., poor design solutions (or best prac-

tice violations) that developers introduce to meet the new requirements in the

software system. Previous empirical studies have revealed that code smells are

serious issues to maintainability and evolution of source code as they deterio-10

rate the developer’s ability to comprehend the software source code and render

the classes that are affected, more change- and fault-prone [6, 7, 8, 9]. In fact,

enhancing the code quality may lead to the appearance of major bugs in the

new software system. Therefore, it is important to detect well the smelly parts

of the software system before proceeding to the refactoring process that consists15

of modifying the internal code structure with keeping the external behavior of

the system unchanged.

Motivated by this observation, researchers have paid attention to code smell

detection [10] and they have proposed different techniques to automatically de-

tect code smells within software systems codebases [4]. These techniques could20

be classified into three categories: (1) rule/heuristic-based approaches [11], (2)

machine learning-based approaches [12], and (3) search-based ones [13]. Mantyla

et al. have been discussing the uncertainty issue as one of the major individual

human factors that may influence software engineers’ decisions about the smelli-

ness of software classes for more than fifteen years, and more specifically since25

2004. These choices are affected by their experiences as well as intuitions. As a
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result, developers may have differing viewpoints, owing to their varying levels of

knowledge and expertise. A considerable number of existing techniques can be

considered as rule/heuristic-based approaches as they proceed as follows. First,

they calculate the values for the set of chosen metrics. Second, some thresholds30

are applied on the on considered metrics to distinguish smelly code fragments

from non-smelly ones. These techniques have shown good performance, how-

ever their main drawback is the specification of the threshold parameter that

pushes the practitioners to ignore a portion of occurrences of code smells [14, 15].

The threshold selection influences the code smell detectors performances. Differ-35

ent from the rule/heuristic-based techniques, machine learning-based techniques

train a classifier model based on a base of examples. The existing approaches

use classifiers to detect the smelly instances rather than employing predefined

thresholds values on the calculated metrics. However, machine learning-based

techniques provide locally-optimal classifiers since their model construction pro-40

cess is performed in a greedy way [16, 17]. Moreover, the existing techniques

need a high-quality base of examples with sufficient sizes to build classifiers

models [10]. The latter category, i.e., search-based one, overcome such issues,

as they can tune the thresholds based on the base of examples (including good

and bad designs) [18]. In addition, the search-based techniques optimize a set of45

code smell detectors (i.e., detection rules) using evolutionary algorithms, which

aid to exploit (near) globally-optimal detectors [19, 20].

Most of the existing techniques (detectors), in particular those belonging to

the two latter described categories, have displayed considerable detection per-

formance, but they still present some critical limitations that minimize their50

adoption in the industry. Some studies [21, 22] mentioned that the obtained re-

sults from the automated detectors, regarding the smelliness of software classes,

are interpreted in a subjective way due to the differentiation between devel-

opers in terms of knowledge and expertise. This could be explained by the

doubtfulness of the software engineers interpretations concerning the smelliness55

of software classes components. Two software engineers could identify various

smell types differently over a software class, as demonstrated in previous work
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Figure 1: A Long Method smell type called rtrim () method for the Apache Common CLI

[24]. When using the JDedoroant advisor, this method is considered a Long method, whereas

when using the PMD advisor, it is considered a normal method.

[23]. The fact that they may have varying levels of experience could explain their

subjectivity and uncertainty. As a result, one software engineer may label a class

Smelly (i.e., containing a smell type) and another software engineer may label60

it as Non-smelly. To simulate such situation, we picked two different advisors

(JDeodorant and PMD) in the aim to mimic expert opinions for the detection of

the Long Method smell type. Figure 1 shows a code fragment from the Apache

Commons CLI, specifically a method called rtrim() [24]. The rtrim() method is

a Long method smell according to the JDedoroant advisor, but it is a normal65

method according to the PMD. Such subjectivity is explained by the fact that

each of those advisors uses different detection rules. Furthermore, human soft-

ware engineers are sources of subjectivity because they can only express their

uncertainty using likelihood values. Existing research has shown that likelihood

values (i.e., probability theory) are ineffective when dealing with uncertain data70

[25]. To solve this problem, we propose using the possibility theory, which has

been shown to be adequate in the case of uncertain data [26].

The idea to alleviate such a problem was inspired by the studies that are

conducted in the data mining field. Thus, this problem can be represented as an

uncertain class label problem [27]. Generally, the dependent variables refer to75

the smelliness of a class (i.e., presence/absence of smell), but in our case, these
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variables are likelihood values that represent the doubtfulness of the developer

towards the degree of membership of a class to one of the two categories (i.e.,

smelly/non-smelly). However, most of the existing works do not consider (of-

ten ignore) the uncertain data and replace it with a certain (crisp) one. Such80

practice is done a-posteriori, specifically when the code smell occurrences have

been introduced to software developers: this does not allow them to profit from

the highest information amount covered up in the data [26] and thus it might

break down the overall performance of the smell detectors. Scientists of data

mining and machine learning domains have suggested a multitude of uncertainty85

theories, in which possibility theory is one of them.

In this research paper, we present the first search-based tool in the SE do-

main and in particular the Search Based Software Engineering (SBSE) one,

named Anti-pattern Detection and Identification using Possibilistic Optimized

K-NNs (Bi-ADIPOK) to detect and identify code smells under uncertainty. In-90

deed, the detection process consists of separating whether a given class is affected

by a generic code smell, while the identification process target calling attention

to the presence of a specific sort of code smell (e.g., a Feature Envy).

Motivated by the remarkable performance of the K-Nearest Neighbors (K-

NN) under Possibilistic Framework (abbreviated Possibilistic K-NN (PK-NN)95

in this paper) [28] classifier, which is a blend between Possibility theory and

K-NN, Bi-ADIPOK evolves a set of PK-NNs using the GA (Genetic Algorithm)

metaheuristic. It requires as input a possibilistic base of examples (PBE) char-

acterized with uncertain class labels that are designed in the form of possibility

distributions and generate as output a set of optimized possibilistic detectors100

(i.e., optimized PK-NNs). To verify the smelliness of a class, Bi-ADIPOK an-

alyzes the generated PK-NNs and merges the resulting possibility distributions

to obtain a single one that indicates the presence of a peculiar smell. Similarly,

in the identification problem, Bi-ADIPOK launches the GA upon a base of ex-

amples including a single smell type and then the same task for the fusion of105

the distribution is carried out.

Given that Bi-ADIPOK adopts numerous techniques from the computational
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intelligence field, it is important to justify our choices:

1. The interesting performance of PK-NNs in uncertain data classification

is well-appreciated through the the machine learning literature thanks to110

their capability to learn from a training set in which uncertain class labels

are represented by possibility distributions [28];

2. The capability of GA to escape local optima in the PK-NN search space;

which is not the case of state-of-the art greedy machine learning algorithms

for PK-NN induction;115

3. The well-suited structuring of PK-NNs as uncertain classifiers, which is

not the case of search-based detection methods that usually optimize a set

of ad-hoc rules; and

4. The adaptive fusion of possibilistic distributions through conjunctive and

disjunctive aggregations; which eases the decision making whatever are120

the states of the code smell detectors (in a concordance or disagreement

[29]).

Our Bi-ADIPOK approach performance is assessed on the basis of a detailed em-

pirical study including six well-known open-source software systems inundated

by uncertainty. The comparisons are conducted regarding four relevant state-125

of-the-art approaches. Our experimental results demonstrate that Bi-ADIPOK

has better performance on both tasks: detection and identification. In summary,

the main contributions of this paper are:

1. Constructing a new base of possibilistic smell instances in view of em-

ulating the subjective and uncertain opinions of the software developers130

where the uncertain and subjective opinions are expressed based on ade-

quate possibility theory tools;

2. Proposing Bi-ADIPOK as a new Bilevel SBSE method and tool for de-

tecting and identifying code smells under the uncertainty of class labels;

3. Showing our Bi-ADIPOK tool performance upon a group of detailed and135

statistically analyzed comparative experiments on six commonly open-
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source software systems with regard to four relevant approaches as well as

the baseline PK-NN [28].

Structure of the paper. Section 2 provides the fundamental concepts regard-

ing the possibility theory. Section 3 presents the basic concepts of the Bilevel140

Optimization problem. Section 4 defines the principal motivations behind our

study and describes our approach Bi-ADIPOK. Section 5 replicate the experi-

mental results of our work in the aim to assess the performance of our approach

as well as to compare it with respect to the state-of-the-art approaches. Section

6 details the potential threats that could hinder our experimentations valid-145

ity. Section 7 discusses the literature related to the code smell detection tools.

Section 8 concludes this paper and outlines avenues for future research.

2. Fundamental concepts of possibility theory

Possibility theory is one of the well-known uncertainty theories that proposes

a suitable model to represent the imperfect (incomplete and uncertain) infor-150

mation. This theory was developed by Zadeh [30] and improved later by several

researchers [31]. In this section, we will present the main concepts needed to un-

derstand the proposed approach. For more details about the possibility theory,

please refer to [31].

2.1. Possibility distributions155

One basic concept in possibility theory is that of a possibility distribution

that is denoted by π. Let, Ω be the universe of discourse including various

states of the world (i.e., Ω = {ω1, ..., ωn}) and π is a function that associates

to each state in Ω (i.e., each ωi) a value from the unit interval (i.e., [0, 1]) that

refers to the possibilistic scale L. The associated value is called a possibility

degree and it represents our knowledge regarding a given state of the real world.

By convention, π(ωk) = 1 indicates that the achievement of ωk is completely

possible, while ωk is considered as an excluded state iff π(ωk) = 0. Generally,

ωk is considered somewhat plausible (i.e., flexible) iff π(ωk) ∈]0, 1[. Moreover,
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ωk is considered as more plausible (or more specific) than ωj only for the case

where π(ωk) > π(ωk). The possibility distribution is considered as a normalized

one in case where there exists at least one state from Ω that is fully possible

(i.e., max ω ∈ Ω {π(ω)} = 1). Otherwise, π (the possibility distribution) is

a sub-normalized possibility distribution and this could be demonstrated using

the inconsistency degree Inc as follows:

Inc(π) = 1−maxω∈Ω{π(ω)} (1)

It is obvious that, in case of normalized π, Inc(π) will be equal to 0. The

concept of inconsistency is employed to calculate the amount of conflict between

two possibilistic chunks of information such as π1 and π2. More formally, the

amount of conflict could be assessed Inc(π1∧π1) where the conjunction operator

(i.e., ∧) is the minimum (min) operator:

Inc(π1 ∧ π2) = 1−maxωi∈Ω{minωi∈Ω{π1(ωi), π2(ωi)}} (2)

In possibility theory, two extreme knowledge forms of possibility distribu-

tions could be differentiated as follows:

• Complete knowledge: ∃ ωk ∈ Ω, π(ωk) = 1 and all remaining states (ωi)

in Ω (i.e., ωi ̸= ωk) s.t. π(ωi) = 0. In this case, one fully possible element

exists, while the remaining ones are impossible.160

• Total ignorance: ∀ ωk ∈ Ω, π(ωk) = 1. This case indicates that all the

states in Ω are possible.

2.2. Information Fusion modes in possibility theory

Conjunctive Fusion: This mode is suitable for the case where all the detec-

tors (information sources) agree with each other. The conjunctive fusion was

proposed by Dubois and Prade [32] and it is expressed as follows:

π∧(ω) = ⊗i=1..nπi(ω),∀ω ∈ Ω (3)

were ⊗ represents a [0,1]-valued operation specified on [0,1]×[0,1] and π∧ refers

to the conjunctive fusion mode of π. Such fusion mode employs the intersection165
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with the aim to infer the resulting conclusion. Notably, there exist different

operators like product, minimum, and Lukasievicz t-norm:

• Product: π1 ⊗ π2=π1 × π2

• Minimum: π1 ⊗ π2= min(π1, π2)

• Lukasievicz t-norm: π1 ⊗ π2= max(0, π1 + π2 − 1)170

Disjunctive Fusion: This mode of combination is adopted when detectors

(information sources) are in disagreement (or conflict). This fusion rule was

suggested by Dubois and Prade [32] and it is defined as:

π∨(ω) = ⊕j=1..nπj(ω),∀ω ∈ Ω (4)

where ⊕ represents a [0, 1]-valued operation specified on [0, 1]×[0, 1], and π∨

corresponds to the disjunctive fusion mode of π. This mode employs different

operators:

• Max: π1 ⊕ π2 = max(π1, π2)

• Probabilistic: π1 ⊕ π2 = π1 + π2 - π1 × π2175

• Lukasievicz t-conorm: π1 ⊕ π2 = min(1, π1 + π2)

2.3. Possibilistic similarity measures

To measure the similarity between different uncertain information sources,

the researchers have suggested various similarity measures that are inspired from

many theories. For the case of possibility theory, some measures have been

suggested like Minkowski distance [33], information closeness [34], Sanguesa et

al distance [35], and information divergence [36]. However, all these measures

are unable to satisfy the inconsistency criterion. These measures are the main

criteria that have been used to measure the possibilistic similarity apart from

the distance criterion. To take both criteria (inconsistency and distance) into

account, Jenhani et al. [37] defined a new measure called information affinity

(denoted by Aff ) and it is expressed as follows:

Aff(π1, π2) = 1− d(π1, π2) + Inc(π1, π2) (5)
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where Inc(π1, π2) refers to the inconsistency (cf. Equation 2) and d(π1, π2) is

the distance measure that relies on the normalized Manhatten distance where

the formula conducting to this distance computation is defined as follows:

d(π1, π2) =

∑n
i=1|π1(ωi)− π2(ωi)|

n
(6)

To better understand how the Information Affinity measure is calculated, we

consider two possibility distributions π1(0.4, 1) and π2(1, 0.23), which represent

two experts opinions in the detection case. As a result, the Affinity is calculated180

in the following manner:

• d(π1, π2) =
∑n

i=1 |π1(ωi)−π2(ωi)|
n = |0.4−1|+|1−0.23|

2 = 0.685

• Inc(π1, π2) = maxωi∈Ω(minωi∈Ω(π1(ωi), π2(ωi))) = 1 −

max(min(0.4, 1),min(1, 0.23)) = 1−max(0.4, 0.23) = 1− 0.4 = 0.6

• Aff(π1, π2) = 1− κ∗d(π1,π2)+λ∗Inc(π1,π2)
κ+λ = 1− 0.5∗0.685+0.5∗0.6

0.5+0.5 = 0.3575185

2.4. Discounting

Generally, the information coming from an expert should not be blindly

taken into account due to a problem regarding the information reliability. More

precisely, the information may not be fully reliable since the human expert may

suffer from the lack of expertise regarding a domain, hence, bad measure values

could be generated. To take into account the reliability source, a discounting

method should be adopted to update the experts’ information. Let α be the

reliability degree for a given source of information represented by a possibility

distribution π and π′ be the updated possibility distribution [31] (cf. Equation

7). We notice that if α is fully reliable (i.e., equals to 1), then the source could

be fully confident. Based on this fact, π′ is not modified (π′ = π ). Otherwise, π′

is modified since the source is not reliable (α = 0) and the obtained information

will be taken into account as fully imprecise.

π′ = α× π + 1− α (7)
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3. Fundamental concepts of Bilevel Optimization

BiLevel Optimization Problem (BLOP) has two optimization levels: (1) the

upper level and (2) the lower level [38, 39]. Each level has its own set of con-

straints, decision variables, and objective functions. As a result, there are two

types of variables: upper level variables xu and lower level variables xl. It’s

worth noting that the optimization task for the lower-level problem is carried

out with respect to the variables xl, with the variables xu acting as parameters.

As a result, each xu corresponds to a different lower level problem for which an

optimal solution must be found. The upper level problem considers all variables

(xu and xl), and optimization is expected to be conducted with both sets of

variables (cf. Fig. 2). The following definition gives the analytical formulation

of a BLOP:

Minxu∈XU ,xl∈XL
F (xu, xl)

s.t.

xl ∈ ArgMin {f(xu, xl), } g(xu, xl) ≤ 0,

G(xu, xl) ≤ 0, i = 1...l, j = 1...J
(8)

where gi denotes the lower-level constraint set and Gj denotes the upper-level

constraint set. Due to the problem’s structure, only the best solutions from

the lower level optimization task may be considered as viable candidates for190

the upper level optimization task. For example, at the upper level, a member

x1 = (x1
u, x

1
l ) is only feasible if x1 satisfies the upper level constraints and the

lower level problem referring to x1
u has an optimal solution, x1

l . Therefore, the

upper-level problem makes the decision first. The lower level must then decide,

having known the upper level’s decision, in order to optimize its own objective195

function without regard for the upper objective function. The xu and xl are

decision variables that can be continuous, discrete, or mixed.
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Figure 2: An illustration of the two levels of a bilevel single-objective optimization problem

[40].

4. Bi-ADIPOK: Bilevel Anti-pattern Detection and Identification us-

ing Possibilistic Optimized K-NNs

In this section, we present the principal components of our proposed ap-200

proach used for code smell detection and identification under uncertainty, called

Bi-ADIPOK. The uncertainty is mainly inherent from the subjectivity and the

uncertainty of experts perceptions regarding the smelliness of a software project

class as well as the existing smell types. In fact, ignoring the uncertainty may

result in a decrease in the quality of the results produced by detectors. We no-205

ticed that detection and identification tasks are done using the same mechanism,

but using different BEs characterized by uncertain class labels. More precisely,

the uncertainty of the experts’ opinions towards class labels is represented in the

form of likelihood values called possibility degrees. These latter are built based

on five probabilistic classifiers (Näıve Bayes classifier [41], Probabilistic K-NN210

[42], Bayesian Networks [43, 44], Näıve Bayes Nearest Neighbor [45], and Prob-

abilistic Decision Tree [46]) in the aim to attribute the aggregated probability

distributions for every existing instance (software class) in the Base of Exam-

ples (BE). The adoption of probabilistic classifiers is an extension of the idea

proposed in [47] where a set of classifiers are employed to mimic the experts. In215
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other words, in this study, the chosen classifiers are used in the aim to mimic

the software engineers’ uncertainty for labeling the software classes within the

BE. This will aid the software engineer to model its uncertainty regarding the

smelliness of a software class in the form of likelihood values.

Hereafter, these produced values are converted into possibility distributions220

via conversion formula (described in detail below). For the detection task, the

BE may incorporate smell types or vice versa, while for the identification task,

the BE contains only one smell type. Therefore, the identification task is seen

as a subcase of the detection task, where the approach only operates on a

single smell type. To promote the understanding of the working principle of Bi-225

ADIPOK, we first introduce the main needs behind its requirements. Second, we

describe the artificial building of the PBEs. Third, we clearly present the global

schema of our detection method within an uncertain environment. Fourth, we

clearly state how the GA is used for the evolution of detectors (i.e., PK-NNs).

We mention that PK-NNs are used in our work because they are suitable for230

learning from instances (software classes) with uncertain class labels. In the

remainder of this section, we tend to describe the solution encoding, the fitness

function, and the reproduction (i.e., crossover and mutation) operators. Finally,

we tend to illustrate how the resulted detectors could be used for both detection

and identification problems.235

4.1. Artificial creation of Possibilistic BEs

Similar to many data mining fields, the SE (Software Engineering) industry

could be affected by the uncertainty issue. Indeed, the BE may be overwhelmed

by uncertain class labels. The principal sources of uncertainty may be related

to: (1) the lack of knowledge of human experts and/or (2) the subjectivity of240

their conflicting opinions. In this uncertain environment, experts can express

their opinions in the form of possibility distribution where each possibility de-

gree refers to the degree of membership of every software class to every class

label. To be able to produce possibilistic code smell detectors, we need a group

of PBEs. In these PBEs, every instance (i.e., software class) could be attributed245
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to a group of class labels and every class label has a possibility degree. Never-

theless, the existing BEs do not include any uncertain class labels, which could

be used as training datasets for the induction of possibilistic detectors. Since

the aim of this work is to only deal with uncertainty at the level of class labels

and not at the level of attributes, only the class labels are replaced with possi-250

bility distributions; while the original features’ values are kept. The possibility

distributions are produced by an opinion-based classifier (extended from [47])

as well as a conversion formula [48] (cf. Figure 3). The conversion process can

be described as follows:

1. First, we adopted five different advisors (DECOR [49], JDeodorant [50],255

inFusion1, iPlasma2, and PMD [51]) to produce five crisp BEs.

2. Second, we run autonomously five probabilistic classifiers (i.e., Näıve

Bayes classifier, Probabilistic K-NN, Bayesian Networks, Näıve Bayes

Nearest Neighbor, and Probabilistic Decision Tree). Then, we use the

average operator twice to apply the voting fusion. For the first time, we260

use the voting fusion in the aim to aggregate the resulted probabilistic

BE for every classifier. For the second time, it was used to get a single

probabilistic BE (cf. Figure 3).

3. Finally, we employed the following conversion formula proposed by [48] to

convert the obtained probability distributions into possibility ones:

πi(ωi) = i× p(ωi) +
n∑

j=i+1

p(ωj),∀i = 1...n (9)

where the probability distribution p defined on Ω should be sorted in

descending order (p(ω1) ≥ p(ω2) ≥ ... ≥ p(ωn)) before starting the trans-265

formation of p into π. It should be noted that the sum of the probability

distribution degrees should be equal to one.

1http://www.intooitus.com/products/infusion
2http://loose.upt.ro/iplasma/
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Figure 4: The global schema of the Bi-ADIPOK approach.

4.2. Main schema

Figure 4 shows the main architecture of the Bi-ADIPOK method, which is

predominantly made out of two parts: (1) the possibilistic smell detectors gen-270

eration module and (2) the possibilistic smell detectors application one. The

former is divided into two levels that are:(1) the upper level and (2) the lower

level. The former generates a set of optimized PK-NNs parameters, while the

lower level optimizes a set of PK-NNs based on the parameters obtained from

the upper level. The gnerated detectors are assembled into a single base of ex-275

amples. However, through the identification process, Bi-ADIPOK yields a group

of specialized detectors (i.e., a set of specialized PK-NNs) that are trained on

the chosen smell type. As a result, we get a base of detectors for every con-

sidered smell type (i.e., Data class, Feature Envy, Blob, etc.). Therefore, the

practitioners can analyze any unseen software’s classes, more precisely, these280

latter are checked based on the obtained set of detectors for each smell type

where their outputs are aggregated based on a specific majority voting strat-

egy to determine the existing smell types. More details about this process are

presented later.

17



Figure 5: Solution encoding employed in the upper level.

4.2.1. Upper level optimization285

The optimization process is carried out as follows at this level. The pro-

posed approach starts with the solution with the lowest fitness value and grad-

ually increase the fitness values of the remaining solutions until we reach the

stopping criterion. The mating selection and variation operators (crossover and

mutation) are then applied. We have used PAURPC d as a fitness function to290

assess the solutions. Such measure is able to deal with the problem of uncertain

and imbalanced data issues. Furthermore, the PAURPC d measure promotes

upper-level convergence and diversity, which aids the algorithm in approximat-

ing optimal solutions.

• Solution Encoding: At the upper level, a candidate parameters values295

solution is represented as a chromosome in which every case corresponds to

a parameter value.It is important to know that each individual is expressed

by a vector containing 2 numbers where the former is an integer value that

corresponds to the parameter K and the second value is a float (varies

between 0 and 1) that corresponds to the parameter α. Figure 5 shows300

an example of a solution of PK-NN parameters optimization.

• Solution evaluation: The solution evaluation step evaluates the classifiers’

performance,guiding the evolution to individuals who have high perfor-

mance because they considers the uncertain and imbalance problems at

the same time. In fact, before the evaluation of each individual (PK-NN),

the K nearest neighbors of the current individual are selected using the

Euclidean distance. Then, a combination of the possibility degrees for

every class label should be performed to produce a final possibility distri-

bution for the new unseen instance using Equation 10. Then, the obtained
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information (possibility distribution) for the unseen software class is up-

dated based on α (i.e., the reliability of the detector that exists in the

vector presentation) using Equation 7.

∀ωq ∈ Ω, π∑(ωq) =

∑K
i=1 π(ω

(i)
q )∑K

i=1 π(ω
(i))

(10)

where ωq represents the class of the ith instance among the K chosen

nearest neighbors. Suppose that we have three nearest neighbors from the

BE of a given unseen instance with the following possibility distributions

([1 0.5], [0.3 1], [1 0.5]). Using Equation 10, the possibilistic distribution

of the unseen software class will be equal to [1 0.87], which is computed

as follows: The first bound is computed as the sum of 1, 0.3, and 1, while

the second bound is computed as the sum of 0.5, 1, and 0.5. Then, we will

normalize the two obtained bounds by dividing them on the max bound

value (i.e., 0.534). A variety of fitness functions have been proposed such

as the accuracy measure [52]. Notwithstanding, the use of the existing

measures as a fitness function within the case of uncertain class labels is a

crucial problem. As we mentioned earlier, the PK-NN produces possibility

distributions through the process of classification. However, these metrics

give a great deal of attention to the most plausible class labels (i.e., their

possibility degrees equal to 1), whereas the rest are overlooked. In fact,

ignoring some possibility degrees (i.e., class labels) may result in the loss

of a large amount of produced information by detectors. In addition to the

uncertain class labels issue, the code smell detection problem is consid-

ered to be an imbalanced data classification problem [53, 4], where BE is

made out of two sub-sets: (1) the majority class and (2) the minority one.

The latter cardinality is much less than the former one, which involves an

imbalance problem that should be considered by the detector. To address

the problem of skewed (imbalanced) data, our developed fitness function

is based on mAURPC − OV A (modified Area Under Recall Precision

Curve-One Versus All) [54]. Our choice could be justified by the fact

that the mAURPC − OV A is insensitive to the data imbalance problem
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especially in the case where the number of Non-smelly (negative) exam-

ples largely surpasses the number of smelly (positive) examples. More

precisely, the mAURPC − OV A metric depicts how well a detector can

classify smelly examples that are truly smelly examples. However, this

measure is unlikely to be suitable for the uncertain environment and will

diminish the overall performance of the detector. Motivated by this ob-

servation, in this paper, we have proposed a new performance measure

called PomAURPC − OV A dist (Possibilistic modified Area Under Re-

call Precision Curve- One Versus All distance) that is defined by equation

17. The computation of PomAURPC − OV A dist relies on the mean

distances between the predicted (πpred) and the actual possibility distri-

bution (πact) of every unclassified (unlabeled) software class
−→
Ij . In fact,

when PomAURPC−OV A dist is near 1, the obtained detector is precise

and the produced possibility distributions have high-quality and faithful-

ness compared to real (actual) ones. On the contrary, if an assigned fitness

function (relaying on PomAURPC − OV A dist) to a detector drops to

0, then the detector is considered terrible. We notice that due to the rea-

son of clarity and space, we prefer to denote PomAURPC−OV A dist as

PAURPC d. The PAURPC d could be expressed as follows: The Sd(
−→
Ij )

(Similarity distance) represents the distance between the generated pos-

sibility distribution (πpred) and the actual possibility distribution (πact).

This measure belongs to [0, 2] and it is calculated as follows:

Sd(
−→
Ij ) =

|C|∑
i=1

(πpred(Ci)− πj(Ci)) (11)

The SD(
−→
Ij ) measure, has values between 0 and 1, is a modification

performed on the Sd(
−→
Ij ) in the aim to have a significance close to

mAURPC −OV A and it is computed as follows:

SD(
−→
Ij ) = 1− Sd(

−→
Ij )

2
(12)

The TP dist is the sum of the distances of the Actual Smelly classes cor-
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rectly classified and it is calculated as follows:

TP dist =
∑

−→
Ij∈ASCcc

SD(
−→
Ij ) (13)

where ASCcc is the Actual Smelly classes correctly classified. The TN dist

is the sum of the distances of the Actual Smelly classes correctly classified

and it is calculated as follows:

TN dist =
∑

−→
Ij∈ANSCcc

SD(
−→
Ij ) (14)

where ANSCcc is the Actual Non-smelly classes correctly classified. The

FP dist is the sum of the distances of the Actual Smelly classes miss-

classified as Non-smelly and it is calculated as follows:

FP dist =
∑

−→
Ij∈ASCmNs

SD(
−→
Ij ) (15)

where ASCmNs is the Actual Smelly classes miss-classified as Non-smelly.

FN dist is the sum of the distances of the ctual Non-smelly classes miss-

classified as Smelly and it is computed follows:

FN dist =
∑

−→
Ij∈ANSCms

SD(
−→
Ij ) (16)

where ANSCms is the Actual Non-smelly classes miss-classified as Smelly.

The PAURPC d is calculated based on the TP dist, FP dist, TN dist, and

FN dist as follows:

PAURPC d =
1

2× |C|
× ((

TP dist

(TP dist+FN dist)

TP dist

(TP dist+FN dist)
+ FP dist

(FP dist+TN dist)

+

TP dist

(TP dist + FN dist)
) + (

TN dist

(FP dist+TN dist)

FN dist

(TP dist+FN dist)
+ TN dist

(FP dist+TN dist)

+

TN dist

(FP dist + TN dist)
))

(17)

Based on the obtained position of the most plausible classes, the (
−→
Ij )

is added to the adequate quantity (i.e., TP distor FP dist or TN dist
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or FN dist). Thsese distances are computed to obtain at the end the

PAURPC d. For example, if πact=[1 0.4] and πpred=[1 0.2], then based305

on the calculated distance between those possibility distributions, we will

add the obtained distance to the TP dist. Conversely, if πpred=[0.2 1],

then the obtained distance will be added to FP dist.

• Mating selection operator: As noted earlier, one of the strongest points

of our Bi-ADIPOK method consists of its capability to avoid the local310

optima and to reach the globally optimal smell detectors. The principal

mechanism that guarantees such behavior is the mating selection operator

that we have adopted, i.e., the binary tournament selection operator [55],

which can be defined as follows:

– First, we select (N/2) parents for the phase of reproduction, N rep-315

resents the population size.

– Then, we execute a loop of (N/2) iterations. More clearly, two indi-

viduals (PK-NNs) are selected arbitrarily.

– Finally, the fit parent is retained and added to the mating pool.

Such selection strategy makes possible the selection of good and bad in-320

dividuals with preferential towards good individuals.

• Crossover and mutation operators: As shown by Figure 4, we employed

the SBX crossover operator with rounding up mechanism [56] since the

SBX outputs real numbers and the K value should be an integer, the

obtained value from the SBX is rounded up to the nearest integer (cf.325

Figure 6). For the mutation operation, we performed the mutation similar

to the crossover operation (i.e., per part). As illustrated by Figure 5, we

adopted, for the first part, the one-point mutation operator [57], while for

the second part we used the polynomial mutation [56] with rounding up

as the value of the K parameter is an integer one (cf. Figure 7). However,330

we applied, for the last part, a polynomial mutation without rounding up

due to the real type of the parameter (cf. Figure 7). It is important to
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Figure 6: Crossover operator used in the upper level.

note that once the mutation is triggered, it modifies the three chromosome

parts simultaneously.

4.2.2. Lower level optimization335

At this level, an upper level solution is passed as a fixed parameter to the

lower level. Then, a set of PK-NN solutions are generated in the lower level.

After that the fitness values of the lower level PK-NN individuals are computed

(i.e., the IAC fitness values are computed). The fittest solutions in the lower

level will be assigned to the upper level solution. Finally,the set of PK-NN340

individuals are evolved based on the variation operators.

• Solution Encoding: At the lower level, each chromosome (cf. Figure 8) en-

codes the feature set (FS) parameter, which is a binary vector of structural

metrics (cf. Appendix 10). In fact, the weights of the selected metrics are

assigned the ’1’ values, while the weights of the remaining metrics took ’0’345

values. The PK-NN will be formed by merging the solution of the lower

level with the generated parameter of the upper level.

• Solution evaluation: The evalaution of the PK-NNs at the lower level

has been performed using the IAC (Information Affinity-based criterion)
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Figure 7: Mutation operator adopted in the upper level.

Figure 8: Solution Encoding used in the lower level

(cf. Equation 18) which was suggested by [25]. Such a measure relies on

the Affinity distance (cf. Equation 5) to compute the distance between

two possibility distributions: the original (πact) and the predicted one

(πpred). In fact, the IAC has been considered since it considers the un-

certainty aspect. In fact, when the values of the are close to 1 means that

the obtained detectors are more accurate than the original ones, while

the provided possibility distributions have high qualities and faithfulness.

Nonetheless, when the values of the IAC fall to 0, this implies that the

evolved detectors are weak.

IAC =
1

n

n∑
i=1

Aff(πact
i , π

pred)
i (18)

• Mating selection operator: At hte lower level, the tournament selection

operator is used to select parents for the reproduction. It is important

to know that at every generation, half of the population (i.e., N/2) is350
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Figure 9: Crossover operator adopted in the lower level

selected.

• Crossover and mutation operators: For the variation of the population at

the lower level, we adopt the uniform crossover [58] for the first part (bi-

nary string), which in turn employs a random binary mask (cf. Figure 9).

For the mutation operation, we adopted, the one-point mutation operator355

[57] (cf. Figure 10).

4.3. Optimized possibilistic detectors use

Once the optimized possibilistic smell detectors (PK-NNs) are generated us-

ing the GA, the Bi-ADIPOK method is ready to be employed on unseen software

classes in the aim to detect the occurrences of code smells and/or identify their360

types. More clearly, the software engineers are permitted to use some, or all, of

the best detectors. It is recommended to employ all the produced smell detec-

tors following the voting fusion process as demonstrated by Figure 11. Indeed,

every smell detector (PK-NN) corresponds to possibility distribution (obtained

from the K nearest neighbors), where each possibility degree refers to the degree365
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Figure 10: Mutation operator adopted in the lower level

of membership to each BE’ class label. Therefore, the AFO (Adaptive Fusion

Operator) [29] (cf. Equation 19) is adopted to aggregate the different generated

decisions (i.e., possibility distributions) from the set of smell detectors. For more

comprehension, the AFO combines the possibility distributions (i.e., decisions)

based on the disjunctive fusion operator (cf. sub-section 2.2), especially where370

the detectors are in disagreement. However, the conjunctive fusion operator (cf.

sub-section 2.2) is adopted by the AFO for combining the decisions where the

sources (smell detectors are in agreement). The agreement and disagreement

state is determined based on the amount of conflict between the produced deci-

sions (possibility distributions) by the detectors. Thus, if Inc(π1 ∧ π2) = 0 this375

indicates that the code smells are in the state of agreement, while the state of the

detectors could be in disagreement when Inc(π1 ∧ π2) ̸= 0. Figure 11 outlines

the detection of smelly software classes according to PBE, which also contains

both smelly and non-smelly examples. For more accuracy about the smell types,

Figure 11 illustrates the identification process where the Bi-ADIPOK tool places380

a specific base of smell detectors for every considered smell type.

∀ω ∈ Ω, π AD(ω) = max(π∧(ω), min(π∨(ω), 1− h(π1, π2))) (19)
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Figure 11: Illustrating the use of Bi-ADIPOK for smell type identification on an unseen

software class.

Inc(π1 ∧ π2)) = 1−max(min(π1, π2)) (20)

where π∧(ω) = min(π1(ω),π2(ω))
h(π1,π2)

, π∨(ω) = max(π1(ω), π2(ω)) and

h(π1(ω), π2(ω)) = 1 − Inc(π1 ∧ π2)). The h(π1(ω), π2(ω)) depicts the agree-

ment degree among two smell detectors [59]. Note that π∧ and π∨ refer to the

conjunctive and disjunctive operators, respectively.385

5. Experimental validation

The overall performance of Bi-ADIPOK is assessed based on the most out-

standing existing works in the literature. Over a series of comparative experi-

ments employing six commonly used software projects:

• RQ1: How does our Bi-ADIPOK work in an uncertain setting for the code390

smell detection issue? To answer this question, we report the performance

of using a suitable fitness function to simultaneously handle uncertain class

labels and data imbalance issues. In addition, we assess the effectiveness
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of Bi-ADIPOK for the adaptation of appropriate detectors (PK-NNs) with

a view to the processing of possibilistic class labels. These are performed395

comparing to four state-of-the-art approaches through a serious of com-

parative experiments.

• RQ2: How does our Bi-ADIPOK process identify the existing code smell

types? We report the performance of employing a set of optimized de-

tectors for every smell type to identify the existing smell types in order400

to answer the current research question. Therefore, our Bi-ADIPOK is

compared to four respective state-of-the-art approaches.

• RQ3: How does our Bi-ADIPOK approach detect/or identify code smells

for uncertain class labels and data imbalance issues compared to the base-

line PK-NN approach? It is important to know how far our proposed405

approach could go beyond the baseline PK-NN with a greedy search.

5.1. Subject Systems

Our Bi-ADIPOK tool is assessed on the basis of a series of commonly adopted

open-source Java projects, consisting of Xerces-J3, GranttProject4, Ar-

goUML5, Ant-Apache6, JFreechart7, and Azureus8. Table 1 lists the410

features of the software projects under consideration in our experimental anal-

ysis, where the columns (from the left to the right) display the project name,

the release number, the description, the size in relation to the number of classes

(NOC) as well as the number of lines of code (KLOC: thousands of code Lines),

respectively.415

JFreechat is a professional Java chart library dedicated to the produc-

tion of high-quality charts. GanttProjects is a cross-platform dedicated to

3http://xerces.apache.org/xerces-j/
4https://sourceforge.net/projects/ganttproject/files/OldFiles/
5http://argouml.tigris.org/
6http://ant.apache.org
7http://www.jfree.org/jfreechart/
8http://vuze.com/
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Table 1: List of considered Software Projects

Systems Version NOC KLOC Description

GanttProject 1.10.2 245 41 A platform for the scheduling of the projects

ArgoUML 0.19.8 200 300 A tool for UML modeling

Xerces-J 2.7.0 991 240 Software for XML parsing

JFreeChart 1.0.9 521 170 Java Library for the generation

Ant-Apache 1.7.0 1,839 327 Java Library for the charts Java applications

Azureus 2.3.0.6 1,449 42 Peer to Peer (P2P) client program for sharing files

scheduling projects. The ArgoUML tool is an open-source platform for mod-

eling UML. Ant-Apache is an open-source Java library and a built-in tool con-

ceived for the Java applications. Xerces-J is an open-source project devoted to420

the parsing of XML files. Azureus is a P2P (i.e., end-to-end) platform for shar-

ing files inter users. These systems have been considered for some reason. First,

they are open source and their source code is publicly accessible. The choice

of such open-source software projects enables this work to be re-evaluated by

other researchers. Second, all of them are wealthy in terms of the number of425

existing code smells as well as they are frequently used within the empirical

smell detection works [12, 60, 8]. Third, various developer teams have designed

the projects under consideration and can, therefore, decrease the bias of specific

developers. In this experimental study, the constructed PBE is regarded as our

ground truth because it is an aggregation of different simulated subjective and430

uncertain opinions of different experts (probabilistic classifiers). These opinions

are quantified in order to take the form of probability values.

5.2. Used baseline approaches

For the comparison of Bi-ADIPOK against the state-of-the-art approaches,

four relevant baselines have been selected, these are GP [61], MOGP [62], BLOP435

[40], and DECOR [49]. The choice of these approaches to baseline was based

on two main reasons. From one point of view, the search-based methods are

divided into three categories: (1) Mono-objective techniques (GP), (2) Multi-

objective techniques (MOGP), and (3) the Bi-level ones (BLOP). Additionally,
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these methods permit us to have a more extensive overview of how our approach440

works against the existing approaches. From another point of view, DECOR is

selected as the representative of the heuristic rule-based category; we included

it as a baseline because of our willingness to comprehend whether Bi-ADIPOK

can actually perform a basic detection approach according to heuristics that

are principally calculated on the basis of source code metrics values. A concise445

synthesis of every baseline approaches’ functioning principle (listed above) is

Indicated in the following:

• GP: This method uses the genetic programming metaheuristic, which com-

municates with a BE of code smells to evolve a set of IF-THEN rules.

Every solution is referred to as a detection rules’ tree; where the inter-450

nal nodes encompass the structural metrics as well as their corresponding

thresholds, whereas the class labels are indicated by the leaf nodes. Com-

pared with the expected number of defects in the BE, these rules have

been evolved by the maximization of the number of detected defects. The

authors highlighted that GP has achieved an average F -measure of 88%455

on six software projects, while only three smell types were considered. In

the same paper, a multi-objective refactoring approach relying on NSGA

II has been proposed to eliminate the detected smells as much as possible.

• MOGP: This method is chosen as a representative of the multi-objective460

techniques. The MOGP adopts the same encoding as GP, whereas the

difference appears in the used fitness function. Additionally, the MOGP

has a similar framework to GP and evolves trees by optimizing two con-

flictual objectives. The first objective is to maximize the detection of the

inherent code smells in the BE, whereas the other objective is to reduce465

the detection pieces of well-designed code fragments. To achieve this aim,

NSGA-II interacts with two BEs; the former has smells, while the latter

has well-designed code fragments. The authors explained the employment

of well-designed codes on the grounds that the use of smells would not
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allow all smells to be covered. By maximizing the distance from a well-470

designed code example, a piece of code can be considered as a suspicious

anti-pattern. Based on the reported precision and recall results, the mean

F -measure for seven software systems is around 87% when taking into

account five types of smells.

• BLOP: This method was suggested in the aim to tackle the lack of diver-475

sity issue that could have a BE. For this purpose, the code smell detection

problem has been proposed to be modeled as a bi-level optimization one

as follows. A set of smell detection rules has been evolved at the upper

level, while a set of artificial code smells has been evolved at the lower

level. From the fitness viewpoint, the detection of true code smells and480

artificially generated ones are maximized by the upper level, whereas the

probability that the upper-level rules would detect code smells is mini-

mized by the lower level. Therefore, the competition among the two levels

is aimed at: (1) generating rules with significant detection capability, and

(2) producing unknown artificial code smells to achieve a BE diversifica-485

tion. Based on the reported precision as well as recall values, the average

F -measure value of the nine software projects is approximately 90% rela-

tive to the seven considered smell types.

• DECOR: This method is not a search-based solution but a heuristic ap-

proach. In particular, DECOR employs a collection of rules, known as the490

“rule card”, to describe the inner properties of a sell-affected class. For

example, a software class is defined as Blob if it includes LCOM5 (Lack of

Cohesion Of Methods) [63] is greater than 20, a number of methods and

attributes greater than 20, a suffix in the list { “Process”, “Command”,

“Control”, “Manage”, “System”, “Drive”} and one-to-many association495

with various data classes. The DECOR’s ability to identify code smells

has been demonstrated with a mean F -measure around of 80% [49].
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Table 2: The default parameters configuration.

Parameters Bi-

ADIPOK

GP MOGP BLOP

Crossover

rate

0.9 0.9 0.8 0.8

Mutation

rate

0.1 0.5 0.2 0.5

Population

size

200 100 100 30

5.3. Parameter adjustment for Bi-ADIPOK

The adjustment of algorithm parameters is an important aspect that is of-

ten overlooked in metaheuristic search algorithms. It is essential to know that500

the setting of parameters can significantly affect an algorithm’s performance

on a specific problem. Accordingly, the default Bi-ADIPOK parameters used

in the simulation part (cf. Table 2) are adjusted by trial-and-error method

[64, 65], which is currently standard practice in both evolutionary computation

and SBSE domains [66, 67, 68]. For a fair comparison, the same stopping crite-505

rion has been used for methods being compared including ours. Based on this

fact, every run has been halted after reaching 256,500 fitness evaluations. This

choice is appropriate for all compared approaches as well as BLOP in which

two populations are used: (1) the upper level and (2) the lower one. In fact, a

population of 30 individuals is evolving at both levels, more precisely, 15 and 19510

generations are performed at the upper level and lower one, respectively. These

values have been set in the aim to approximate the optimal lower level popula-

tion, which is necessary for computing the fitness of its corresponding population

of the upper level. Accordingly, all algorithms as well as BLOP could thus fulfill

the stopping criterion, because under these settings, the number of evaluations515

carried out by BLOP is (30*15*30*19)= 256,500.
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5.4. Performance metrics

When addressing an uncertain data classification problem, the adopted per-

formance metrics should be able to measure the performance of the various

approaches taken into account in our study. However, the existing approaches520

ignore the fact of uncertainty, which may have an adverse effect on their perfor-

mance. In order to address this issue in our work, we have chosen two suitable

measurements for the uncertain environment. The first one is PAURC d and

the second one is the IAC, which have already been introduced above. In fact,

our experiments are performed in a within-project manner by using the hold-out525

validation technique where 70% of the BE is for the training and the remaining

30% is devoted for the performance testing

5.5. Adopted statistical testing methodology

Generally, all the approaches that rely on the GAs generate distinct results

from one run to another on the same software system (or problem). It is im-530

portant to note that the GAs are characterized by stochastic behaviors. In this

case, it is difficult to compare stochastic code smell detection approaches because

the output (result) can vary in each run. To alleviate the statistical nature of

outcomes, the use of statistical tests have been recommended by the researcher

in the aim to detect the difference among the provided results [69, 70]. There535

exist two types of tests: (1) Parametric tests that only work with normalized

data and (2) Non-parametric ones. To avoid the data normality problem in this

work, the Wilcoxon test [71] have been chosen to be used by carrying out a pair-

wise comparison. Accordingly, two hypotheses are considered: (1) H0 indicates

that the two median values belonging to the two compared algorithms have no540

significant difference in the number of runs, while H1 indicates the opposite.

Over this work, the significance rate has been fixed to 5%, which implies that

the probability of refusing H0 is just 0.05. In addition to the significance, it is

also important to quantify the results of the compared algorithms that’s why

the effect size must be reported. Indeed, the Wilcoxon test only permits for545

verification of whether the generated results are statically different. Such a test

33



does not give any indication about the difference magnitude. To deal with this

problem, the solution is to adopt the Cohen’s d statistic [71] since it is a suitable

for measuring the effect size that could be: (1) large if d ≥ 0.8, (2) medium if

0.5 ≤ d < 0.8, (3) small if 0.2≤ d < 0.5, and (4) very small if d < 0.2.550

5.6. Analysis of the results

This subsection is intended to report and explain the gathered compara-

tive results with the intention to address all the presented research questions

over this work and illustrate the effects of the key features of the Bi-ADIPOK

approach. More precisely, those features consist of: (1) the adoption of possi-555

bilistic detectors (i.e., PK-NN) for the detection of code smells, (2) the use of

the metaheuristic technique, in particular GA, to flee local optima, and (3) the

well-orchestrated smells detectors. Additionally, we illustrated the usability of

Bi-ADIPOK for the detection case as well as the identification one.

5.6.1. Results for RQ1560

In response to RQ1, we perform a number of analyzes on the six chosen

software projects with taking into account the uncertainty aspect. This aspect

mainly appears in the subjectivity of the experts’ opinions regarding the decision

about the smelliness of a software class and /or the smell type. To simulate such

uncertainty, we have transformed the original BE, which is a certain one (or crisp565

one), into a possibilistic BE having possibility distributions over its class labels.

For more details about the transformation process, please refer to Section 4.1.

Over this work, we aim to demonstrate that our Bi-ADIPOK performs well in

both cases. The first case is devoted to present the Uncertainty Level (UL) in

which half part of the content (i.e., instances’ class labels) in the BE are covered570

by uncertainty. This case represents the scenario where UL=50%. The second

case is dedicated to the crisp BE (i.e., UL=0%), where all the content (i.e.,

instances’ class labels) are certain. Based on Table 3, Bi-ADIPOK surpasses

all the chosen state-of-the-art approaches with a PAURC d raging from 0.902

and 0.932. With a PAURC d varying between 0.15321 and 0.224, the BLOP575
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approach is ranked second. In contrast, the remaining search-based approaches

(i.e., GP and MOGP) shown weak results, with the highest PAURC d values

being 0.1611 and 0.213, respectively. The outperformance of Bi-ADIPOK upon

the rest of approaches (i.e., GP, and MOGP, and BLOP) can be clarified by the

fact that our Bi-ADIPOK approach takes into consideration the uncertainty580

aspect in the solution assessment process, whereas this aspect is often ignored

by the competitors approaches. We note that the used fitness function by Bi-

ADIPOK (PAURC d) has shown its effectiveness in addressing the problem

of uncertain class labels because it is insensitive to the data imbalance issue.

However, DECOR has shown the worst results since its PAURC d values are585

between 0.146 and 0.429. The results of DECOR can be proved to be reasonable

since the adopted rules are drawn up manually and without taking into account

the uncertainty factor. As for the results of the IAC metric, they are almost

like the results displayed by the PAURC d as the certain case is a sub-case of

the uncertain one. It should be noted that the certain (crisp) case coincides590

with the ground of the truth. This means that a crisp case might be depicted

by a binary vector containing only a value of 1 that refers to the real class label

whereas the non-real class labels’ are set to 0. The shown results prove that Bi-

ADIPOK is able to detect effectively under uncertain environment. According

to Table 3, the obtained statistical results for the detection case reveal that our595

approach (i.e., Bi-ADIPOK) is more significant than DÉCOR, GP, MOGP, and

BLOP due to the consideration of the uncertainty of human experts by means

of detector method as well as the adopted fitness function.

Table 4 lists the obtained results of the adopted measures for the five smell

detection approaches in the case of a crisp environment, which UL=0%. We re-600

call that the crisp environment corresponds to the case where the BE class labels

are certain. Accordingly, the PAURC d performance behaves similarly to the

mAURPC-OVA. This table shows that the PAURC d rate of our Bi-ADIPOK

approach is between 0.928 and 0.957, which is better than the other chosen ap-

proaches. The second-best approach is doled out to the BLOP approach since605

its PAURC d lies between 0.554 and 0.337. The rest of the approaches (i.e.,
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DECOR, GP, and MOGP) shows poor results as the maximum of their dis-

played PAURC d values are 0.351, 0.401, and 0.531, respectively. The reason

why Bi-ADIPOK surpassed its rivals can be clarified as follows. The fitness

functions used by the chosen approaches (without considering ours) are not610

suitable to handle the data imbalance issue, which can trick the search process

for the obtained smell detection rules. On the contrary, the Bi-ADIPOK fitness

function is not sensitive to the data imbalance issue, because the behavior of

PAURPC d is similar to mAURPC-OVA, particularly in certain environments.

Based on Table 4, the statistical results for the detection case under certain en-615

vironment reveal that our approach (i.e., Bi-ADIPOK) is more significant than

DÉCOR, GP, MOGP, and BLOP due to the fact that our approach considers

the problem of imbalanced data through the adopted fitness function.

In summary, the Bi-ADIPOK performance improvement could be clarified as

follows. For the case of uncertain setting, the PAUPRC d is an adequate metric620

for dealing with the uncertainty inherent in the BE class labels. In contrast,

the PAUPRC d identically behaves to the mAURPC-OVA in the case of certain

setting since the mAURPC-OVA is has been proven to be insensitive to the

problem of imbalanced data.

5.6.2. Results for RQ2625

To answer RQ2, we aim in this part to assess the overall performance of

the compared approaches for the identification of the smell type issue for the

uncertain environment as well as the certain one. We recall that the uncertain

setting refers to the case where a part of the BE class labels is uncertain, while

in a certain setting, the whole instances’ class labels in the BE are certain.630

The identification process is considered as a harder process (more than the

detection one) since its data imbalance ratio is greater than the imbalance ratio

of the detection process. To achieve the comparative experiments, all software

projects have been combined into a single BE and then the minority class for

every smell type has been determined. However, we have noticed in this task635

that the number of classes that are not smelly is greater than that of smelly
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ones, leading to a significant imbalance ratio within the base of examples. In the

case of an uncertain environment, the software class labels are represented in the

form of class labels, i.e., each software class label has been defined by a vector of

two real numbers. Each vector value is a degree of possibility that indicates the640

degree of membership of a particular software class (instance) to each smell and

Non-smelly class labels. Table 5 shows the PAURPC d and IAC values of Bi-

ADIPOK, MOGP, GP, DECOR, and BLOP. We point out from this table that

our Bi-ADIPOK approach is superior to the remaining considered approaches

in terms of the used performance metrics. For Bi-ADIPOK, the PAURPC d645

values vary between [0.8576, 0.9273] and the IAC values lie between [0.8693,

0.9318]. However, the BLOP approach ranks second as its PAURPC d values

are between [0.0682, 0.2138] and its AUC values lie between [0.0716, 0.2190].

The other approaches, that is to say, DECOR, GP, and MOGP, achieved poorer

results with maximums of 0.0764, 0.1543, 0.1867, and 0.0927, 0.1615, 0.1925650

for the PAURPC d and IAC metrics, respectively. These outcomes could be

explained by the following two reasons. On the one side, the data imbalance

ratio is high through the identification process and all the existing approaches

are inappropriate for this problem. On the other side, the identification is

carried out in an uncertain setting. Therefore, the imbalance problem can not655

be dealt with their adopted detectors’ structures as well as their fitness functions.

Table 5 shows the statistical results for the identification case under uncertain

environment. These results proves that our approach (i.e., Bi-ADIPOK) is

more significant than DÉCOR, GP, MOGP, and BLOP. Such outperformance

could be explained by the fact that our proposed approach is able to handle the660

problem of uncertain developers’ opinion thanks to the adopted fitness function.

In the case of a certain environment, the whole class labels inherent in the

BE are certain. Based on Table 6, the Bi-ADIPOK approach surpasses all

the remaining considered approaches with PAURPC d varying between 0.8656

and 0.9351. The second-best approach belongs to the BLOP approach where665

its PAURPC d lies between 0.1966 and 0.4482. The remaining approaches are

ranked (based on PAURPC d values) in the following order (from the poorest
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to the best): GP (0.3379), DECOR (0.3482), and MOGP (0.4211). For the IAC

metric, similar outcomes are obtained. These outcomes are clarified by the fact

that the employed fitness functions enable us to get suitable detectors for imbal-670

anced data whereas the other approaches have got bad detectors as the fitness

function of these detectors are inappropriate to address data imbalance issue.

To sum up, the degradation in the overall performance did not affect all the

approaches of the same size. The Bi-ADIPOK approach shows a slightly lower

quality of the results compared to the one demonstrated during the detection675

process. In contrast, the performance metrics’ of DECOR, GP, BLOP, MOGP

are considerably reduced. It is possible to clarify these findings as follows. In the

case of the DECOR approach, the generated results were dire poor for the rea-

son that the employed rules are predefined. Such a fact will not render DECOR

suitable to address the data imbalance issue as well as the uncertain class la-680

bels one. However, the results of GP, MOGP, and BLOP, vary between poor

and very poor since their identification process has been evolved based on the

metaheuristic algorithms. For this reason, these approaches can discover some

smell types by accident. Generally, we can deduce from the various obtained

results that all the approaches were not similarly affected by the deterioration685

of the performance. Our Bi-ADIPOK approach succeeds to achieve better re-

sults in the process of detection as well as identification one. Nevertheless,

when treating both processes, the considered approaches (excluding ours) have

demonstrated their deeper weaknesses. For the DECOR approach, since its de-

tection rules are predefined, hence its findings were extremely poor. In contrast,690

the search-based approaches used in the experimental study, their results vary

between poor and very poor. This fact could be explained by the fact that their

identification processes have been evolved based on metaheuristic algorithms.

Therefore, the detected smells are made by chance. The statistical results for

the identification case under certain environment shown in Table 6, proves that695

Bi-ADIPOK approach is more significant than the remaining approaches (i.e.,

DÉCOR, GP, MOGP, and BLOP) and this could be explained by the fact that

our approach is able to deal with the problem of imbalanced data.
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5.6.3. Results for RQ3

To reply to the RQ3, we would like to point out that the principal objective700

of this research question is to assess the overall performance of our Bi-ADIPOK

against the baseline PK-NN. For the comparison, we adopted the PK-NN since

it is able to manage the uncertainty inherent in the BE class labels over the

building process. However, the PK-NN relies on the greedy search strategy to

build its classifiers. More precisely, the greedy search is performed to fix the705

PK-NN’ parameters. Therefore, the two approaches have been compared under

two environments, i.e., uncertain and certain, for the detection ad identification

tasks.

For the case of the detection in an uncertain environment (cf., Table 7), the

PAURPC d metric values of our ADPOK approach lie between 0.902 and 0.932,710

while the IAC metric values vary between 0.9108 and 09407. In contrast, the

PK-NN records 0.3684 and 0.5013 for the PAURPC d metric, 0.3703 and 0.5215

for the IAC metric. Similarly, the Bi-ADIPOK approach largely exceeds the

baseline PK-NN for the detection under certain environment, the Bi-ADIPOK

PAURPC d values belong to [0.928, 0.957] whereas those of the PK-NN belong715

to [0.3359, 0.5162]. For the IAC metric, the same observation is valid.

For the case of identification in an uncertain environment (cf., Table 8),

Bi-ADIPOK surpasses the PK-NN for the identification of eight types of code

smell under both environments: certain and uncertain. These obtained results

could be clarified as follows. On the one side, through the adopted GA, the Bi-720

ADIPOK approach can prevent falling into local optima as well as getting close

to the global optima. However, the PK-NN approach conducts a greedy search

through the search space that will push it to get stack into the local optima.

On the other side, the Bi-ADIPOK used an appropriate fitness function that

can deal with the data imbalance problem in addition to the uncertain class725

labels. However, the PK-NN is almost able to handle the uncertainty. For this

reason, the baseline approach has shown a medium quality during the detection

process as this latter is characterized by a lower ratio of data imbalance. The
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Bi-ADIPOK approach produces a set of optimized detectors for every consid-

ered smell type. Contrary, the baseline PK-NN generates only non-optimized730

detectors. It is important to note that the results deterioration of Bi-ADIPOK

through the identification process could be clarified by the significantly higher

ratio of the data imbalance. In contrast, the PK-NN suffers from a remark-

able degradation. Table 7 and 8 show the statistical results of Bi-ADIPOK and

baseline PK-NN in the detection and identification under uncertain and cer-735

tain environments. The obtained results clearly demonstrate that Bi-ADIPOK

approach is more significant that the baseline PK-NN

6. Threats to validity

The various factors that could distort our empirical research are discussed

in this section. These factors could be split into three different categories that740

are: (1) internal, (2) external, and (3) construct validity. The first category,

internal validity threats, is related to the correctness of the obtained outcomes of

our proposal’s experiments, whereas the second category (i.e., external validity

threats) concerns the generalization of the obtained outcomes. The last category

of threats, i.e., construct validity, concerns the theory-observation link.745

6.1. Threats to internal validity

In this work, we took into account the internal threats to validity in the

stochastic algorithm use since our experiments are based on 31 independent

simulations for every instance of the problem, and the outcomes are assessed

using the Wilcoxon-rank sum test with a confidence level equals to 95% and750

the alpha equals to 5%. During this work, the configuration of the parameter

related to the different optimization algorithms used in our work activates a

crucial internal threat that needs to be addressed in our forthcoming work.

Furthermore, the calibration of the parameters in the experimental study is

performed through the commonly employed technique in the SBSE community755

known as the trial-and-error technique [64, 70]. To handle such a threat, it
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Table 7: PAURPC d and IAC median scores of Bi-ADIPOK and PK-NN baseline approach

over 31 independent runs regarding the detection task the uncertainty levels UL=50% and

UL=0%. The sign ”+” at the ith location means that the algorithm PAURPC d (or IAC)

median score is statically different from the ith algorithm score. The sign ”-” means the

opposite. Similarly, the effect sizes scores (small (s), medium (m), and large (l)) using the

Cohen’d statistics are given. Best PAURPC d (or IAC) scores are in Bold.

Systems UL
Bi-ADIPOK baseline PK-NN

PAURPC d IAC PAURPC d IAC

GanttProject
UL= 50 %

0.902

(+)

(l)

0.9108

(+)

(l)

0.5013 0.5215

UL= 0%

0.928

(+)

(l)

0.9477

(+)

(l)

0.5162 0.5329

ArgoUML
UL= 50 %

0.9227

(+)

(l)

0.9246

(+)

(l)

0.4927 0.5068

UL= 0%

0.943

(+)

(l)

0.9597

(+)

(l)

0.503 0.5315

Xercess-J
UL= 50 %

0.914

(+)

(l)

0.9130

(+)

(l)

0.4815 0.4920

UL= 0%

0.931

(+)

(l)

0.9405

(+)

(l)

0.4620 0.4721

JFreeChart
UL= 50 %

0.932

(+)

(l)

0.9407

(+)

(l)

0.4009 0.4253

UL= 0%

0.957

(+)

(l)

0.9622

(+)

(l)

0.3855 0.4062

Azureus
UL= 50 %

0.9307

(+)

(l)

0.9356

(+)

(l)

0.3817 0.3941

UL= 0%

0.946

(+)

(l)

0.9593

(+)

(l)

0.3482 0.3605

Ant-Apache
UL= 50 %

0.923

(+)

(l)

0.9293

(+)

(l)

0.3684 0.3703

UL= 0%

0.9423

(+)

(l)

0.955

(+)

(l)

0.3359 0.3482
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Table 8: PAURPC d and IAC median scores of Bi-ADIPOK and PK-NN baseline approach

over 31 independent runs regarding the identification task the uncertainty levels UL = 50%

and UL=0%. The sign ”+” at the ith location means that the algorithm PAURPC d (or

IAC) median score is statically different from the ith algorithm score. The sign ”-” means the

opposite. Similarly, the effect sizes scores (small (s), medium (m), and large (l)) using the

Cohen’d statistics are given. Best PAURPC d (or IAC) scores are in Bold.

Systems UL
Bi-ADIPOK baseline PK-NN

PAURPC d IAC PAURPC d IAC

Blob
UL= 50 %

0.9273

(+)

(l)

0.9318

(+)

(l)

0.3706 0.384

UL= 0%

0.9351

(+)

(l)

0.9476

(+)

(l)

0.4015 0.4124

Data Class
UL= 50 %

0.9054

(+)

(l)

0.9133

(+)

(l)

0.0.3689 0.3762

UL= 0%

0.9012

(+)

(l)

0.9154

(+)

(l)

0.3170 0.3207

Feature Envy
UL= 50 %

0.8872

(+)

(l)

0.8962

(+)

(l)

0.3154 0.3288

UL= 0%

0.8874

(+)

(l)

0.8901

(+)

(l)

0.3290 0.3302

Long Method
UL= 50 %

0.8713

(+)

(l)

0.8835

(+)

(l)

0.3062 0.3109

UL= 0%

0.8803

(+)

(l)

0.8820

(+)

(l)

0.3158 0.3177

Duplicate Code
UL= 50 %

0.8702

(+)

(l)

0.8821

(+)

(l)

0.2976 0.3082

UL= 0%

0.8694

(+)

(l)

0.8715

(+)

(l)

0.2813 0.2957

Long Parameter List
UL= 50 %

0.8835

(+)

(l)

0.8976

(+)

(l)

0.2910 0.2976

UL= 0%

0.8775

(+)

(l)

0.8844

(+)

(l)

0.2387 0.2492

Spaghetti Code
UL= 50 %

0.8726 (+)

(l)

0.8741

(+)

(l)

0.239 0.2413

UL= 0%

0.8613

(+)

(l)

0.8672

(+)

(l)

0.2146 0.2301

Functional

Decomposition

UL= 50 %

0.8576

(+)

(l)

0.8693

(+)

(l)

0.1985 0.2110

UL= 0%

0.8652

(+)

(l)

0.8703

(+)

(l)

0.1502 0.1589
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could be an interesting prospect if we realize a configuration strategy that aims

to update our approach parameters until the best ones have been achieved.

6.2. Threats to external validity

The external threat to validity principally discusses the considered smell760

types in addition to the set of software systems studied through this study.

We have studied eight code smell types (cf. Appendix 9), which are a widely

representative and most frequent collection of smell types. Similarly, we have

selected from different application domains, six different software systems (cf.

Table 1) with various sizes as well as varied functionalities, and further devel-765

oped by diverse companies. The purpose of choosing such different systems is

to decrease the bias that may occur as a result of the specific character on the

picked systems. To mitigate the bias evoked by the chosen systems, we con-

ducted a K-folds cross-validation strategy. It is also of great interest to test

our proposed Bi-ADIPOK tool to identify anti-patterns residing in web services770

and Android applications. For the web-services applications, the existing anti-

patterns may hinder their processing and thus decrease their quality as well

as their rate of utilization. Concerning the Android applications, the residing

anti-patterns could negatively influence the execution of these applications by

reducing the processing time and by rising the energy consumption.775

6.3. Threats to construct validity

During our experimental study, we have constructed a BE for the detec-

tion of anti-patterns by means of some known advisors (cf. Figure 3) that are:

JDeodorant [50], DECOR [49], iPlasma9, inFusion10, and PMD [51]. The

generated BE is injected with uncertainty, precisely, at the level of class labels.780

The conversion from crisp (or certain) class labels to the uncertain ones are

performed through five distinct types of probabilistic classifiers (Näıve Bayes

classifier [41], Probabilistic K-NN [42], Bayesian Networks [43, 44], Näıve Bayes

9http://loose.upt.ro/iplasma/
10http://www.intooitus.com/products/infusion
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Nearest Neighbor [45], and Probabilistic Decision Tree [46]) with the aim to

create probability values for the existing class labels. Then, we used an existing785

mathematical formula for the conversion of probability distributions into possi-

bility ones (more details are given in Section 4.1). Thus, a constructed threat

to validity might be linked to the use of the set of chosen probabilistic classifiers

that aims to simulate the subjectivity and the uncertainty of the experts’ opin-

ions through the process of likelihood values generation. To deal with such issue,790

the obtained values will be manually verified by human experts. Our research

study is the first work in the SBSE field that detects and identifies code smells

under uncertainty that resides at the level of class labels. Accordingly, a crucial

construct threat to validity occurs since there is no SBSE work dealing with

the detection of code smells under uncertain environment. Existing approaches795

neglect the existing uncertainty in the BE. For the comparison, we assessed

our approach with a baseline (possibilistic) one (i.e., PK-NN). In fact, we re-

implemented the baseline approach since it is not available. Thus, the PK-NN

could be wrongly re-implemented and consequently the obtained results could

be skewed. To diminish this threat, we based on experienced code reviewers to800

ensure effective implementation. Moreover, we compared the outcomes of the

re-implemented PK-NN presented in the literature, so the comparison demon-

strates that the outcomes are almost identical.

7. Related works

The code smell detection continues to be an extremely active and opportune805

subject for research in the SE field, in particular the SBSE one [72]. Differ-

ent authors have suggested several research types for automating the detection

methods of code smells to assist the developers in the detection task. In a

number of SE problems [73], the term uncertainty has emerged, in which the

authors the researchers have addressed the uncertainty provoked by changing810

environmental conditions by varying environmental conditions in the case of self-

adapting systems. We notice that the uncertainty was also mentioned by [74]
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in an attempt to optimize the non-functional requirements of the self-adaptive

system, which produces adjustment strategies for making reconfigurations at

run time to deal with issues that are unforeseen due to uncertainty like unpre-815

dictable issues in the system itself. However, the majority of works that have

been conducted in the SE have not dealt with real imperfect data, including the

SBSE researches that can be categorized into four main groups: (1) Rule-based

methods, (2) Machine learning-based methods (coupled with deep learning), (3)

Search-based methods, and (4) Others.820

7.1. Rule/heuristic-based approaches

The initial attempts to identify the software classes, which contain anti-

patterns focused on determining rule-based methods (also known as heuristic-

based approaches) [75] that depend on structural metrics to capture detours

from best practices of object-oriented design. The first study was conducted825

by Erni and Lewerentz [76] that employed quality metrics to assess the per-

formance of the framework in order to enhance it. The authors employed the

multi-metric definition, whereby the m-tuple of various metrics determines a

quality criterion. Such was Marinescu [77]’s proposal to use a metric-based

approach to analyze the code source for the identification of defects on vari-830

ous levels of object-oriented design fragments (along with method, class, and

subsystem). In this respect, Lanza and Marinescu [78]’s detection strategy con-

sisted of a combination of structural metrics with thresholds several detection

rules for 11 anti-patterns were laid down. These rules consist of several metric

threshold pairs connected by the operators of AND/OR. Such heuristics have835

been implemented within the InCode tool [79]. Furthermore, Moha et al. [49]

proposed in another research the DECOR approach, which comprises the ma-

jor steps in the specification and detection of code smells. More precisely, this

approach begins by describing the symptoms of defects through abstract rules

language. These descriptions contain various concepts, including class roles and840

structures, mapped to an algorithm for detection. More recently, the cluster-

ing methods used to detect code smells have been adopted. On the basis of
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this consideration, Tsantalis and Chatzigeorgiou [50] suggested the JDeodorant

tool for detecting code smells and recommending certain move methods as a

refactoring procedure. The tool is first established to detect only the Feature845

Envy smell and then upgraded to deal with some other smell types like the

blob, state checking, and long method [80, 81]. The detection mechanism for

JDeodorant relies on a set of code metrics that are linked to the cut-off of the

resulted dendrograms using the clustering techniques as well as thresholds.

7.2. Machine Learning-based approaches850

A new trend has recently been raised, which comprises the use of machine

learning techniques for code smell detection. In this portion, the adopted tech-

niques principally belong to the supervised techniques. In particular, these tech-

niques are constructed based on training data and then carried out on software

systems to predict the smelly software classes. Initially, Kreimer [82] suggested855

a model that merges known methods to detect the occurrences of design defects

like God class and Long Method on the basis of code metrics as attributes to

build Decision Trees (DTs). Two small software systems, IYC and WEKA, were

evaluated. After ten years, previous findings were confirmed by Amorim et al.

[83], which evaluated the performance of DTs classifiers on different software860

projects to recognize 12 anti-patterns.

Khomh et al. [84] suggested that Bayesian Networks be used to detect Blob

code smell occurring in open source software systems (GanttProject, Xerces-J).

Subsequently, Khomh et al. [85] expanded their work to a novel one called

Bayesian Detection Expert (BDTEX). This latter was validated on different865

smell types like God Class, Functional Decomposition, and Spaghetti Code. The

BDTEX approach employs the Goal Question Metric for the construction of the

Belief Bayesian Network (BBN) to infer information from the definition of code

smells. The BDTEX detection outputs are probability (rather than Boolean)

values that are attributed to the code component containing code smell. Khomh870

et al. [85] also employed the BBNs to investigate and the lifecycle of the BLOB’

evolution from those who have accidentally occurred (i.e., bad code).
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Maiga et al. [86, 87] introduced the SVMDetect method, which identifies

anti-patterns with the Support Vector Machine (SVM) technique. This pro-

posed approach has been approved with four types of anti-patterns (like Blob,875

Functional Decomposition, Spaghetti Code, and Swiss Army Knife) upon Ar-

goUML, Azureus, and Xerces software projects. The authors then broadened

their approach to a more effective one named SMURF, which tooks into account

the various participants’ feedbacks.

Hassaine et al. [88] adopted an immune-inspired approach for the detec-880

tion of BLOB smell type. The designed approach detects the smells in software

classes, especially those that violate the features of certain rules. Likewise,

Oliveto et al. [89] presented an approach named Anti-pattern identification us-

ing B-Splins (ABS) that identifies smelly instances via a technique for numerical

analysis.885

Recently, the authors have investigated the performance of diverse ML tech-

niques for the problem of code smells detection. Additionally, Fontana et al.

[90] surveyed 16 supervised ML methods with their boost variant to detect

anti-patterns, like Blob, Data Class, Feature Envy, and Long Method, on 74

software projects. Furthermore, over the training and the assessment phases,890

the authors adopted a technique of under-sampling in the interest of poor per-

formance of some ML techniques when datasets were imbalanced. In another

research, Fontana and Zanoni [91] made a classification of code smells severity

on the basis of a regression technique and multinomial classification. Such an

approach may help developers to prioritize or to rank classes or methods. How-895

ever, Di Nucci et al. [20] referenced that Fontana et al. [90] had limited the way

the dataset would be constructed. Accordingly, the authors set up Fontana’s

datasets and create new ones, which are suitable for real-world scenarios.

7.3. Search-based approaches

In software engineering, search-based approaches are adopted to alleviate900

diverse optimization problems with meta-heuristic techniques like GA, GP, and

so on. The detection stage is seen as the main stage since over this stage the
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existing smell types, as well as their paths in the software systems, are reported

before the refactoring (correction) phase started. For instance, the departure

point was with Kessentini et al. [13] where they suggested an automated solu-905

tion based on detection rules to identify the existing code smells in a particular

software project. These detection rules are expressed as combinations of quality

metrics together with thresholds derived from the comparison of diverse heuris-

tic search algorithms for rules extraction such as Simulated Annealing, Harmony

Search, and Particle Swarm Optimization. The experiments were conducted on910

a series of anti-patterns (Spaghetti Code, God Class, and Functional Decompo-

sition) on the basis of Xerces-J and GanttProject Software projects. Then, Ouni

et al. [61] have implemented a search-based approach to detect current smells

in software projects. This proposed approach was the first to infer detection

rules from the smelly examples through Genetic Programming. For the exper-915

imentation study, the authors have applied their approach on Blob, Spaghetti

Code, and Functional Decomposition anti-patterns types relying on a variety

of software projects with diverse scales as GanttProject, Xerces-J, ArgoUML,

Quick UML, LOG4J, and AZUREUS.

Boussaa et al. [92] have conceived an approach, which leans on a competitive920

co-evolutionary search to tackle the problem of code smell detection. Over this

proposed approach, two competing populations simultaneously evolve where the

first population is devoted to generate a number of detection rules aiming to

enhance the ratio of the detection task of smelly examples, while the second

population tries to increase the amount of artificially build code smells, which925

the first population does not detect. The experimental study was carried out on

the basis of a number of software projects having various sizes, namely Xerces,

Azureus, Ant-Apache, and ArgoUML aiming to detect three types of code smells

viz., Spaghetti Code, Functional Decomposition, and Blob.

Kessentini et al. [93] introduced the parallel way to their conceived approach930

namely the Parallel Evolutionary Algorithm (PEA) aiming to detect code smells.

This approach the Genetic Algorithm and Genetic Programming simultaneously

across the optimization stage to generate a number of code smell detection
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rules based on various examples of code smells as well as well-designed (non-

smelly) code fragments examples respectively. The PEA approach has been935

tested on distinct types of code smells (such as spaghetti code, feature envy,

data class, lazy class, Blob, functional decomposition, shotgun surgery, and

long parameter list) based upon open sources software systems like ApacheAnt

V1.5.2, ApacheAnt V1.7.0, Nutch, Log4J, Lucene, Xerces-J, Rhino, JFreechart,

and Ganttproject.940

Sahin et al. [40] have proposed an approach called Bi-Level Optimization

Problem (BLOP) approach that uses the bi-level optimization technique to

generate rules for code smell detection relying on two levels: (1) the upper

and (2) the lower levels. The former is involved in the creation of a range of

code smell detection rules aiming to raise the coverage of not only the code945

smell examples but also the artificial code smells obtained from the lower level.

The latter has the responsibility to disclose the most potential smells from

the upper level that are not recognized by the obtained detection rules. The

BLOP approach was tested on a variety of code smells (like Long Parameter

List, Functional Decomposition, Blob, Feature Envy, Data Class, Spaghetti950

Code, and Lazy Class) and on the basis of nine software systems having large

and medium sizes viz., JFreeChart, GanttProject, ApacheAnt, Nutch, Log4J,

Lucene, Xerces-J, and Rhino.

Mansoor et al. [18] have suggested a method that relies on the multi-

objective optimization strategy, namely Multi-objective Genetic Programming955

(MOGP) for the task of generating the range of detection rules. This approach

has been employed to identify the best combination of quality metrics that

raises the number of the detected code smell examples while simultaneously de-

creases the number of detected well-conceived examples. The MOGP approach

has been evaluated on various code smells (Blob, Feature Envy, Data Class,960

Spaghetti Code, Functional Decomposition) using diverse Object-Oriented Soft-

ware projects: ArgoUML v0.26, ArgoUML v0.3, Xerces-J, Ant-Apache v1.5,

Ant-Apache v1.7.0, GanttProject, Azureus.
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7.4. Others

Recently, a number of researchers addressed the code smell detection prob-965

lem from the historical information viewpoint for the code source evolution.

This concept initially begins with Rapu et al. [94], which inferred the historical

information from the defective code source structure. The study analyzed a

collection of historical measurements that reflect the evolution of code smells.

The findings obtained were combined with the initial strategies for detection.970

On the basis of three open-source projects, two in-house projects, and Jan (3D

graphics environment), the researchers assessed their proposed approach upon

the identification of two smell types: Blob, Data Class. In another study, an ap-

proach namely Historical Information for Smell detection (HIST) was developed

by Palomba et al. [95, 96]. The proposed approach involves the detection of975

code smells through the projects’ historical information that are inferred from

the revision control system. Five distinct types of code smells (Feature Envy,

Divergent Change, Blob, Shotgun Surgery, and Parallel Inheritance) in addi-

tion to a set of software projects were adopted in the experimental study of

the HIST work approach. In fact, the authors have raised the number of soft-980

ware projects to 20 in the latest work. Likewise, Fu and Shen [97] suggested

a tool (founded on the associated rule mining) that is capable of deriving data

history (concerned with addition or modification, either methods or classes or

packages) from projects with an enormous growth history length. The authors

seek to validate their proposed method by identifying three code smells, namely985

shotgun surgery, duplicate code, and divergent change, using five open source

systems that are: Eclipse, Closure Compiler, jUnit, Guava, and Maven.

Some researchers like Emden and Moonen [98] have focused on visualizing

anti-patterns for complicated software analysis like the jCOSMO tool. This

proposed approach involves parsing the Java source code and using the graphical990

view to display the defective code fragments by smells and their links. Subse-

quently, the VERSO framework in which the process of visualization relied on

colors that represent properties and are mainly intended to facilitate software

quality analysis. Such tool has been suggested by Langelier et al. [99]. Similar
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to the same features of the previous tool, another tool for code smell detection995

has been proposed by Dhambri et al. [100] in which a part of the detection

is performed automatically while the other part is left to the human analyst

for the judgment. Such a tool was tested various design anomalies (viz., Blob,

Functional Decomposition, and Divergent Change) using two software projects

such as PMD and Xerces-J.1000

8. Conclusion and future works

In this paper, we proposed Bi-ADIPOK as a new approach for detecting

and identifying code smells under certain and uncertain environments where

the uncertainty occurs at the level of class labels. Through this original re-

search study, we launched an original trend in the Software Engineering field1005

and more specifically in the SBSE one, which corresponds to the consideration

of code smell detection and identification as an uncertain classification problem.

The uncertainty sources could be: (1) the subjectivity and/or doubtfulness of

software engineers about the system classes smelliness or (2) diverse opinions

belonging to the human experts regarding the types of the existing smells inside1010

the processed classes of a given software project. Taking decisions under un-

certainty generally leads to biased results. Unfortunately, existing works in the

SBSE community usually overlook the issue of uncertain class labels and choose

a single possible code smell type from various ones. Ignoring and/or discarding

the uncertainty lead to the deterioration of the detectors’ performances. More-1015

over, the good results shown by most existing detectors are biased since they

suffer from the inability to deal with uncertainty. To mitigate the uncertainty

problem, we have proposed the Bi-ADIPOK approach, which evolves a set of

PK-NNs classifiers based on the optimization of the PAURPC d in which the

possibility distribution at each software class label is taken into account. Such1020

a measure is not only adequate for the case of uncertain classification problems

but also suitable for the case of imbalanced data classification issue. The ob-

tained outcomes prove the merits of our developed approach against the four
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relevant state-of-the-art approaches and the PK-NN baseline approach. The

surpass of our Bi-ADIPOK approach might be justified based on the following1025

reasons. First, it adopts a suitable scripter (PK-NN classifier) that is adequate

to handle the issue of uncertainty residing over the class labels. Such a cho-

sen classifier is evolved via the employment of the GA in order to avoid falling

into local optima and simultaneously approaching the global optima. Second,

the developed fitness function is able to manage simultaneously the uncertain1030

and imbalanced data. Third, Bi-ADIPOK employs the possibility theory tool

to manage the uncertainty existing at the level of software class labels based

on the possibility distributions. Finally, based on the solutions offered by the

possibility theory, our proposed approach adopts the fusion operator namely

Adaptive Fusion Operator (AFO) for merging the various possibility distribu-1035

tions generated by several detectors. Thanks to the AFO tool, our Bi-ADIPOK

becomes able to merge non-conflictual and conflictual information, more pre-

cisely possibility distributions, simultaneously.

As future works, we intend to broaden our BE by generating artificial code

smell types that are not covered throughout this work. Another issue can1040

be faced by the researchers which corresponds to the fact that a considerable

amount of data could be unlabeled. This issue could be mitigated based on one

of the semi-supervised techniques as an amount of labeled data exist in addition

to a huge amount of unlabeled data. Handling such issue could bring interest-

ing results to the SBSE community in addition to the uncertain classification1045

problem. Moreover, we aim to fusion different types of data (like historical and

structural ones) using adequate classifiers for the learning process in order to

well detect and/or identify the present code smells especially under uncertain

environment. In addition, in this work, we have used the possibility theory to

simulate the subjectivity and doubtfoulness of the software engineers regarding1050

the smelliness of the software classes. However, it will be interesting to use

other uncertainty theories such as the imprecise probability, evidence theory,

etc [101, 102]. Finally, in our work, we have investigated the performance of

Bi-ADIPOK approach on unseen software classes obtained from the six software
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projects used in the training phase. However, we have not predicted the labels of1055

the target software projects [103, 104]). Hence, equipping our Bi-ADIPOK with

a transfer learner capable of transferring knowledge from the considered source

projects to target ones from various domains will be interesting [105, 106, 107].
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Appendix A. Description of the processed code smells

During this work, we addressed eight types of anti-patterns stated in Table1415

9, which are among the most common addressed anti-patterns in the research

topics of software maintenance [108], [109], [110], [78], [111], [112], [72]:

Table 9: List of frequently addressed code smells over the detection task into the literature.

Code Smell / Antipattern Description

God Class (aka Blob) It is found when most of a system’s behavior is cen-

tralized by a large class, while other classes primarily

include data.

Data Class It appears when a class only stores information with-

out performing any processing.

Feature Envy It comes up whenever a method accesses another

class’s data much more than its own.

Long Method It is found when too many line lines of code are in-

cluded in one method.

Duplicate code It arises when a code fragment that looks identical

to other code fragments located at many classes.

Long Parameter List It is found when a method includes a high number

of parameters.

Spaghetti Code This smell is triggered in the case where the code’s

control structure gets complicated and tangled.

Functional Decomposition It occurs when a class is built to carry out only one

function. This is found in code generated by object-

oriented developers who are not experienced.
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Appendix B. Description of the adopted metrics

The adopted metrics throughout this work are illustrated in Table 10 [113],

[114], [78], [112], [72]:

Table 10: List of the considered measures.

Metric Description

ANA - Average Number of Ancestors This metric implies the mean number of classes from which

information is inherited by every class.

AOFD - Access Of Foreign Data This measure is adopted for counting the number of at-

tributes, which are accessed directly from unrelated classes

or by calling getters methods.

CAM - Cohesion Among Methods of Class This measure is employed to compute the relatedness be-

tween class methods, calculated by summing the intersec-

tion of method parameters with the maximum independent

set of all the types of parameters within the class.

CBO - Coupling Between Objects The number of classes invoking a function or accessing a

variable of a particular class is counted by this measure.

CIS - Class Interface Size Such metric is used for counting the number of methods

in a class that is public. It is perceived in a design as the

average across all classes.

CM - Changing Method The number of separate methods that call the method cal-

culated is counted by this metric.

DAM - Data Access Metric It calculates the ratio of the number of attributes that are

private or protected to the overall number of declared at-

tributed throughout the class.

DCC - Direct Class Coupling The number of different classes is counted by this metric,

and to which class is directly related. It includes classes

that are directly related to the attribute declarations and

passing messages (i.e. parameters) in the methods.

DSC - Design Size in Classes It is used for counting the overall number of classes existing

in the design without taking into account the library classes

that are imported.

LOC - Lines of Code This measure is devoted for measuring a given program size

based on counting the instruction number residing within

classes or methods.

MFA - Measure of Functional Abstraction It calculates the ratio of the methods number in which a

class inherits to the total methods number that the class’s

member methods can reach.

1420
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Metric Description

MOA - Measure of Aggregation The number of data declarations in which their types are

user-defined classes is counted by this metric.

NOA - Number of Attributes This metric is adopted for counting the attributes number

belonging to a class existing in the chosen program.

NOAM - Number of Accessor Methods It is employed for counting the accessor (i.e. getter) and

mutator (i.e. setter) numbers that pertain to the class in

question.

NOF - Number of Fields This metric counts the number of fields existing in the

classes.

NOH - Number of Hierarchies It is adopted for counting the entire number of class hier-

archies within the design.

NOM - Number of Methods The number of methods that a class defines is counted by

this measure.

NOPA - Number of Public Attributes This metric is employed for counting the public attributes

number belonging to a specific class that exists in a given

program.

NPA - Number of Private Attributes The private attributes number belonging to a given class is

measured using this metric.

TCC - Tight Class Cohesion This measure is adopted for calculating the relative number

of method pairs of a class, which have access to at least one

of the measured class attributes in common.

WMC - Weighted Methods per Class It is employed to calculate a class’s complexity based on

the methods number within the class that exist.

WOC - Weighted Of Class It counts the functional methods (i.e., non-accessor meth-

ods) within a given class divided by the overall interface

members number.
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