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Abstract: This paper presents a hybrid multi-objective success history-based parameter adaptive 

differential evolution (SHADE) with manta ray foraging optimizer (MRFO) for structural design 

problems, called MO-SHADE-MRFO. In the proposed algorithm, the updating rules of SHADE, a variant 

of differential evolution with great performance, are combined with the operators from MRFO, a recent 

swarm-based metaheuristic algorithm inspired from the manta ray with cyclone, chain and somersault 

foraging behaviors, which can balance the exploration and exploitation of the algorithm for structural 

design problems. Furthermore, MO-SHADE-MRFO utilizes the external archive to save and update the 

obtained Pareto fronts during the optimization process. The proposed algorithm is verified by 

multi-objective truss optimization problems with two objectives of minimizing the structural weight and 

the compliance, including 10-bar, 25-bar, 37-bar, 120-bar, 200-bar and 942-bar truss problems. Moreover, 

9 different multi-objective metaheuristic algorithms are implemented to compare with the proposed 

algorithm, where three metrics are used to measure the performance of the algorithms, including 

hypervolume (HV), inverted generational distance (IGD), and spacing-to-extent (STE). According to the 

experimental results, MO-SHADE-MRFO can provide the best statistical values of HV, IGD and STE in 

most cases, ranking the first among the compared algorithms. Besides, the proposed algorithm also gives 

well-distributed Pareto solutions for the tested problems, indicating the effectiveness of the hybrid 

mechanism of SHADE and MRFO. 
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Abbreviations: 

Name Description 

MOPs Multi-objective optimization problems 

PFs Pareto fronts 

NFL No free lunch 

PSO Particle swarm optimization 

GA Genetic algorithm 

DE Differential evolution 

SHADE Success history-based parameter adaptive differential evolution 

SHAMODE Success history-based parameter adaptive multi-objective differential evolution 

MRFO Manta ray foraging optimization 

MOPSO Multi-objective particle swarm optimization 

NSGA-II Non-dominated sorting genetic algorithm 

MOEA/D Multi-objective evolutionary algorithm based on decomposition 

MOGOA Multi-objective grasshopper optimization algorithm 

MOMVO Multi-objective multi-verse optimization 

MOWCA Multi-objective water cycle algorithm 

MOSSA Multi-objective salp swarm algorithm 

UPSEMOA Unrestricted population size evolutionary multi-objective optimization algorithm 

MO-SHADE-MRFO Multi-objective hybrid SHADE and MRFO 

HV Hypervolume 

IGD Inverted generational distance 

STE Spacing-to-extent 

SD Standard deviation 

FR Friedman test rank 
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1 Introduction 

The optimal truss design is a major area of interest in the field of structural design [1]. According to 

the number of objective functions, truss design problems can be divided into single-objective and 

multi-objective optimization problems. The objectives generally include mass, displacement, compliance, 

natural frequencies, and so on. The design variables can be classified as shapes, geometry sizes and 

topology. The topology variables determine the initial layout of a truss structure, while sizing and shape 

variables define the element cross-sectional areas and nodal positions, respectively. The constraints of 

truss structure usually include stress, displacement, bifurcation buckling, and natural frequencies, which 

often result in non-convex feasible regions and make designers struggle to search for the optimal solution 

in truss design. The optimal truss design is a very challenging task usually solved by the cumbersome 

trial-and-error in the practical engineering design, thus we need to develop more advanced artificial 

intelligence techniques [2][3], and the application of the optimization technique is a better choice. 

In general, two classes of optimizers can be utilized for truss optimization problems, namely, 

gradient-based algorithms [4] and metaheuristic algorithms [5]. The gradient-based algorithms are 

efficient in the optimization process but less effective in many cases of truss design problems due to 

complicated coding and derivative dependence, and especially the difficulties in handling multi-modal or 

discrete optimization problems. On the other hand, the metaheuristic algorithms are derivative-free with 

high convergence capacity for highly nonlinear optimization problems. Many reports show that 

metaheuristic algorithms can be employed to solve almost any type of optimization problems for the 

advantages of simplicity, flexibility, and derivative independence, and has increasing popularity in the 

optimal truss design [6][7]. 

The basic concept of metaheuristic algorithms is to mimic the stochastic behavior of natural systems, 

which can balance the exploration and exploitation to search the design space effectively. Over the past 

decades, a variety of metaheuristic algorithms have been developed and successfully applied in different 

optimization problems, including particle swarm optimization (PSO) [8], genetic algorithm (GA) [9], 

differential evolution (DE) [10], bat algorithm [11], grey wolf optimizer [12], salp swarm algorithm [13], 

Harris hawks optimization [14], equilibrium optimizer [15][16], marine predator algorithm [17], beluga 

whale optimization [18], and so on. However, due to the inherent randomness in the metaheuristic 

algorithms, the performance of metaheuristic algorithms may be unstable for different optimization 

problems. Besides, some of them may get stuck in the local optimum due to the poor exploration capacity 

in solving complex optimization problems. This motivates the development of the self-adaptive 

metaheuristic algorithm, which can automatically adjust the algorithmic parameters to treat specific 

optimization problems. Pholdee and Bureerat [19] investigated several top self-adaptive metaheuristic 

algorithms, including the winners of annual completion at the congress on evolutionary computation 

(CEC competitions), to solve truss optimization problems. The results demonstrate that the top 
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metaheuristics can provide good performance in truss optimization problems, and novel powerful 

metaheuristic algorithms could be noteworthy for truss optimization problems. 

The single-objective optimal truss design accounts for the major research of truss optimization, with 

the common objective function of minimizing the structural weight/mass with the constraints of stress, 

displacements, or frequencies. A great many of metaheuristics have been investigated on such a 

single-objective design problem. Kaveh and Talatahari [20] introduced the imperialist competitive 

algorithm to find the optimal design of skeletal structures and illustrated the performance of the algorithm 

using two space trusses and two frame structures. Kaveh and Mahdavi [21] developed the colliding 

bodies optimization algorithm to solve optimization problems of the benchmark truss structures. 

Mortazavi et al. [22] developed an integrated PSO with fly-back mechanism and weight particle concept 

for sizing and layout of truss structures, which is competitive with several state-of-the-art metaheuristic 

algorithms. Farshchin et al. [23] proposed the multi-class teaching-learning-based optimization to solve 

shape and sizing truss optimization problems, under the constraints of multiple natural frequencies. 

Degertekin et al. [24] employed the parameter-free Jaya algorithm to minimize the weight of truss 

structures under natural frequency constraints. Moreover, other modifications of metaheuristic in solving 

single-objective truss design problems have been developed, including hybrid optimality criterion and GA 

[25], chaotic firefly algorithms [26], Newton metaheuristic algorithm [27], discrete advanced Jaya 

algorithm [28], game theory-based Jaya algorithm [29], peloton dynamics optimization algorithm [30], 

enhanced forensic-based investigation [31], etc. Nevertheless, when it comes to consider multi-objective 

optimization problems, these algorithms may not provide good performance because of the high 

requirements of balance in exploration and exploitation.  

Compared to the abundant single-objective cases, there has been much less research work in 

multi-objective truss optimization, due to the characteristics of conflicting objectives, nonlinear 

constraints, multi-modality, and non-convex feasible regions [32]. However, multi-objective optimization 

is the more common situation than single-objective optimization in the real-world applications, with 

advantages of decision-making to handle the multiple objectives. In the multi-objective truss optimization, 

the selection of the algorithm is critical to influence the obtained solutions. According to the general 

classification of multi-objective metaheuristic algorithms, they can be divided into three parts: 

Pareto-based algorithm, indicator-based algorithm, and decomposition-based algorithms, including 

several well-known algorithms: non-dominated sorting genetic algorithm II (NSGA-II) [33], 

multiobjective PSO (MOPSO) [34], multiobjective evolutionary algorithm based on decomposition 

(MOEA/D) [35]. Moreover, several recently developed multi-objective metaheuristic algorithms have 

also attracted much attention, such as multi-objective grasshopper optimization algorithm (MOGOA) [36], 

multi-objective multi-verse optimization (MOMVO) [37], multi-objective water cycle algorithm 

(MOWCA) [38], multi-objective salp swarm algorithm (MOSSA) [39], unrestricted population size 
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evolutionary multi-objective optimization algorithm (UPSEMOA) [40]. Although, these algorithms can 

provide good performance in solving multi-objective optimization problems, some of them may stuck in 

truss optimization problems due to the imbalance between the exploration and exploitation in the 

updating rules. Researchers developed several metaheuristic algorithms for truss optimization, such as 

success history-based adaptive multi-objective differential evolution (SHAMODE) and SHAMODE with 

whale optimization (SHAMODE-WOA) [41][42], outperforming the compared algorithms in terms of 

measure indices. However, results also showed that no algorithm can outperform compared algorithms for 

all truss optimization problems, following the No Free Lunch (NFL) theory [43], which motivates 

researchers to develop more novel and high-quality algorithms for multi-objective truss optimization 

problems. 

This paper presents a hybrid multi-objective metaheuristic algorithm for truss optimization problems, 

called MO-SHADE-MRFO, combined with the updating rules from the success history-based parameter 

adaptive differential evolution (SHADE) and manta ray foraging optimizer (MRFO). SHADE is a variant 

of differential evolution with high-performance [44], achieving the 3rd rank in the CEC 2014 competition. 

MRFO is a novel swarm-based metaheuristic algorithm, inspired from the chain, cyclone and somersault 

behaviors of the manta rays [45]. SHADE and MRFO are very popular in the field of optimization, which 

can provide good performance for different optimization problems [46][47][48]. The 

MO-SHADE-MRFO utilizes the external archive to save and update the Pareto solutions, and hybridizes 

the updating rules from SHADE and MRFO to balance the exploration and exploitation, which can 

enhance the convergence behavior for truss optimization. To verify the proposed algorithm, 6 different 

truss structures with two objectives are implemented, with the comparison of 9 different multi-objective 

metaheuristic algorithms, showing the effectiveness of the proposed algorithm. 

The rest of this paper is organized as follows: Section 2 reviews the related works on the 

multi-objective metaheuristic algorithms for truss optimization. Section 3 introduces some definitions of 

the multi-objective optimization. Then, Section 4 presents the basic theory of MO-SHADE-MRFO, 

including the updating rules of SHADE and MRFO. Section 5 introduces the mathematical formulation of 

multi-objective truss problem, and Section 6 shows the comparison results of six truss problems. Finally, 

the conclusions are listed in Section 8. 

 

2 Related works 

This section provides the developments of multi-objective metaheuristic algorithms for truss 

optimization problems. The research works of Pareto-based algorithms are the main issue in this field. 

Coello et al. [49] developed the genetic algorithm for multi-objective truss optimization. In [50], a 

modified PSO was enhanced by the selection and preservation of diversity, called FC-MOPSO, to obtain 

the Pareto solutions of multi-objective truss optimization problems. A modified symbiotic organism 
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search (MOSOS) was invented for truss optimization problems, which was verified by 5 different truss 

design problems [51]. Kaveh and Mahdavi [52] proposed a multi-objective colliding bodies optimization 

algorithm for structural design problems, which was verified by benchmark functions, 120-bar truss dome, 

and 582-bar tower truss, where Pareto fronts obtained by MOCBO were better than those of NSGA-II and 

MOPSO. Kumar et al. [53] investigated the performance of multi-objective passing vehicle search 

(MOPVS) in structural design problems, illustrating that the algorithm can achieve good Pareto fronts. 

Tejani et al. [54] developed a multi-objective heat transfer search algorithm in solving structural design 

problems, verified by 5 truss optimization problems. As follows, a modified heat transfer search 

algorithm was also developed for structural design problems [55]. Premkumar et al. [56] suggested a 

multi-objective gradient-based optimizer for structural design problems, which had good performance in 

solving truss optimization problems, including 10-bar, 25-bar, 60-bar, 37-bar, 72-bar, 120-bar, 200-bar, 

and 942-bar problems. Other developments in this research field include novel MOPVS [57], 

multiobjective forensic-based investigation algorithm [58], multiobjective thermal exchange optimization 

algorithm [59], decomposition-based multi-objective heat transfer search [60], etc. Although most of the 

above algorithms can provide good Pareto solutions, some of them may not obtain stable values in terms 

of different measure indices (hypervolume, inverted generational distance, etc.). 

Except for the above algorithms, several works about the variants of differential evolution for 

multi-objective truss optimization problems were also investigated. Vargas et al. [61] investigated the 

generalized differential evolution (GDE) and its variants in solving multi-objective truss optimization 

problems, with two objectives of the total weight and the structural displacement, showing good Pareto 

fronts in the tested truss structures. Carvalho et al. [62] investigated different differential evolution 

algorithms in solving truss optimization problems with 3 objectives, which proved the feasibility in truss 

optimization with many-objective. Lemonge et al. [63] developed the third evolution step of GDE (GDE3) 

with the adaptive penalty method for truss optimization problems with complex constraints of frequencies. 

Anosri et al. [64] proposed SHAMODE with interval scheme (iSHAMODE) to solve truss optimization 

problems with two objectives of the total weight and reliability index, which had better statistical values 

of hypervolume than the compared algorithms. In [42], a comprehensive review of multi-objective 

metaheuristic algorithms in solving truss optimization problem was discussed, illustrating that 

SHAMODE and SHAMODE-WOA were outstanding among 14 different multi-objective metaheuristic 

algorithms. However, SHADE is highly focused on the intensification, while the diversification is more 

important in the multi-objective, and the exploration capacity of SHADE for multi-objective can be 

further enhanced by hybridizing another powerful metaheuristic algorithm. Thus, this work presents the 

MO-SHADE-MRFO by combining SHADE and MRFO to balance the exploration and exploitation, 

which can enhance the convergence behavior for multi-objective truss optimization problems. 
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3 Brief review on multi-objective optimization 

    The basic concepts and definitions of multi-objective optimization [65] are reviewed briefly in this 

section. In general, multi-objective optimization problems have multiple conflicting objectives to be 

optimized under the constraints, which can be formulated as: 

Find x={x1, x2, …, xm}  

Min F(x) = [f1(x), f2(x), …, fo(x)] (1) 

s.t. gi(x) ≥ 0,  i = 1,2,…,p 

hj(x) = 0,   j = 1,2,…,n 

lbk ≤ xk ≤ ubk,   k = 1,2,…,m 

 

where x ={x1, x2, …, xm} denotes the design variable vector, F(x) represents the o-dimensional vector of 

objective functions, gi is the i-th inequality constraint, hj denotes the j-th equality constraint, p and n 

represent the number of inequality and equality constraints, respectively, m is the number of design 

variable, lb and ub are the lower and upper bounds of the design variables, and o denotes the number of 

objective functions. In multi-objective optimization problems, multiple objectives are required to be 

computed simultaneously, while a good solution for one objective function may be bad for another 

objective function. Therefore, it is difficult to find a solution which satisfies all objective functions. 

Usually, a set of feasible solutions are existed in the multi-objective optimization problems. To compare 

feasible solutions, the Pareto theorem is introduced to characterize the dominance relations of different 

solutions [65]. 

Pareto-optimality: The solution x X  is denoted the Pareto optimum if and only if: 

 ∄ ( ) ( )F Fy y xpX  (2) 

Pareto-dominance: Supposing two vectors: x={x1, x2, …, xm} and y={y1, y2, …, ym}, the vector y 

dominates the vector x (denoted as y xp ), if and only if: 

   ( ) ( )   ( ) ( )1,2,..., : 1,2,..., :i i i ii j f f i j f f     y x y x  (3) 

    Pareto set: The Pareto set is defined as a set in the search space including all Pareto optimal vectors, 

expressed as follows: 

 ( ) ( ) ,sP F F=  x y y xfX  (4) 

Pareto front: The Pareto front represents the collection of Pareto optimal solutions in the Pareto set, 

defined as: 

 ( ) f sP F P= x x  (5) 

The Pareto set is the key concept for solutions of multi-objective optimization problems, which is 

defined as the relationship of design space and objective space, shown in Fig. 1. The feasible regions in 
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the design space are mapped into the regions in the objective space, while the infeasible regions are out of 

feasible solutions determined by the constraints of optimization problems. Two points A and B in the 

design space are mapped into the objective space, indicating that A dominates B. The target of 

multi-objective optimization algorithms is to find well-distributed feasible solutions, which are 

approximately close to Pareto optimal front.  

 

Fig. 1 Design space and objective space 

 

4 The proposed MO-SHADE-MRFO algorithm 

In this section, two metaheuristic algorithms, success-history based parameter adaptive differential 

evolution (SHADE) and manta ray foraging optimization (MRFO), are briefly introduced which are the 

basic components of the proposed algorithm. SHADE is a modified version of differential evolution by 

introducing the success history-based parameter adaptation technique, and MRFO is inspired by the 

foraging behavior of manta ray with good convergence in solving benchmark and real-world optimization 

problems. Finally, the procedure of MO-SHADE-MRFO is illustrated. 

 

4.1 Success history-based parameter adaptive differential evolution (SHADE) 

SHADE is a variant of differential evolution, which is a powerful metaheuristic algorithm and 

ranked the 3rd in the competition of CEC 2014 [44]. The original differential evolution highly depends on 

the settings of the algorithmic parameters (scaling factor F, crossover rate CR, population size N, chosen 

mutation/crossover strategies). To control the algorithmic parameters automatically, SHADE introduces 

the success-history based parameter adaptation, which can enhance the robustness of differential 

evolution. Therefore, SHADE is applicable to various optimization problems without trial and error. If the 

control parameters are adopted into appropriate values in different phase of algorithm, the convergence 

rate can be enhanced. The basic phases of SHADE include initialization, mutation, crossover, selection, 

and historical memory updating. 

In the initialization of SHADE, the population and historical memories are generated randomly 
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within the feasible domain, and the external archive is initialized as an empty set. The historical memories 

of scaling factor MCR,q and crossover rate MF,q are initially set as 0.5: 

 , , 0.5, 1,2,...,CR q F qM M q H= = =  (6) 

where H denotes the size of historical memories MF and MCR. 

In the mutation phase of SHADE, the current-to-pbest/1 mutation strategy is employed to update the 

mutation vector, which utilizes the information of the best solution and other good solutions, considering 

the external archive A in SHADE to maintain the diversity of the population, where A stores the inferior 

parents recently replaced by offspring. The updating mechanism of current-to-pbest/1 mutation is 

expressed as: 

 ( ) ( )1 2i i i pbest i i r rF F= + − + −v x x x x x  (7) 

where vi represents the mutant vector of the individual xi, xpbest is randomly selected from the top N*p 

individuals in the current generation, N is the population size, p is generated in [2/N, 0.2] based on the 

uniform distribution. xr1 is chosen randomly from the population, and xr2 is chosen from the union 

population (population N and external archive A). In Eq. (7), Fi can be written as: 

 ( ),0.1i i FF randc u=  (8) 

where uF denotes a randomly chosen value from the historical memory of the scaling factor MF, randci(uF, 

0.1) represents that the value is generated by the Cauchy distribution with the mean of uF and the variance 

of 0.1. Therefore, the mutation operator is controlled by the parameter  0,1iF  . 

    The crossover operator of SHADE is similar to the basic DE. The trial vector is implemented from 

parent’s vector xi and mutation vector vi:  

 
,

,

,

,

,

i k i rand

i k

i k

v if rand CR or k k
u

x otherwise

 =
= 


 (9) 

where rand is randomly selected within (0,1), krand is an integer selected from [1, D], D represents the 

number of design variable, k = 1, 2, …, N. CRi is the updated crossover rate: 

 ( ),0.1i i CRCR randn u=  (10) 

where uCR is randomly selected from the historical memory of crossover rate MCR, randni(uCR, 0.1) 

denotes that the crossover rate CRi is generated by the normal distributions with the mean of uCR and the 

variance of 0.1. If CRi is out of [0,1], it is set as the boundary value. 

    In the selection process of SHADE, the previous and current fitness values of individuals f(ui(t)) and 

f(xi(t)) are compared, and the new individual is generated according to the better solution: 



10 

 

 ( )
( ) ( )( ) ( )( )
( )

,
1

,

i i i

i

i

t if f t f t
t

t otherwise

 
+ = 



u u x
x

x
 (11) 

    The historical memory mechanism is employed in SHADE to adapt the mutation factor Fi and 

crossover factor CRi. Historical memories MF and MCR are initialized in Eq. (6) and updated in each 

iteration. If the values of MF,q and MCR,q are out of the boundary [0,1], they are set to the boundary values. 

Thus, the historical memories are calculated as: 

 
( )

,

,

,

,

WL F F

F q

F q

mean S if S
M

M otherwise

  
= 


 (12) 

 
( )

,

,

,

,

WL CR CR

CR q

CR q

mean S if S
M

M otherwise

  
= 


 (13) 

where SF and SCR are the successful recorded trial vectors for the mutation factor Fi and crossover rate CRi, 

respectively. meanWL(S) represents the weighted Lehmer mean function: 

 ( )
2

1

1

S

kk
WL S

kk

w S
mean S

w S

=

=


=






 (14) 

where the weight vector parameter wk is given by: 

 
( ) ( )

( ) ( )
1

CR

k k

k S

k kk

f f
w

f f
=

−
=

−

u x

u x
 (15) 

where f(uk) and f(xk) are the objective values of the trial vector and parent vector of the k-th individuals, 

respectively. More details of SHADE can be found in [44]. 

 

4.2 Manta ray foraging optimization (MRFO) 

    The manta ray foraging optimization (MRFO) was proposed by Zhao et al. [45] to mimic the 

behaviors of the manta rays, which is one of the largest known marine creatures. MRFO is a 

population-based optimization algorithm, and has high performance in solving benchmark and real-world 

optimization problems according to the experimental results [45]. MRFO includes three basic behaviors: 

chain foraging, cyclone foraging, and somersault foraging. 

In the chain foraging, a foraging chain is formulated in manta rays to find the plankton position. In 

each iteration, each search agent is updated according to both the best solution and the solution in front of 

it. The d-th dimension position of the search agent Zi
d is updated using the following equations: 

 ( )
( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )1

, 1
1

, 2, ,

d d d d d

i best i best id

i
d d d d d

i i i best i

Z t r Z t Z t Z t Z t i
Z t

Z t r Z t Z t Z t Z t i N



−

 + − + − =
+ = 

+ − + − =
K

 (16) 

where t is the current iteration, r refers to a random number within [0,1], N indicates the total number of 
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agents, and α represents a weighting coefficient which can be updated by: 

 ( )2 logr r =    (17) 

    In the cyclone foraging, the manta rays formulate a long chain that moves towards the food by a 

spiral. The search agent not only follows the individual in front of it, but also moves towards the position 

of food. The updating mechanism of the search agent is defined as: 

 ( )
( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )1

, 1
1

, 2, ,

d d d d d

best best i best id

i
d d d d d

best i i best i

Z t r Z t Z t Z t Z t i
Z t

Z t r Z t Z t Z t Z t i N



−

 + − + − =
+ = 

+ − + − =
K

 (18) 

where β denotes the weighting factor, calculated as: 

 ( )1 1

1
2exp sin 2iter

iter

M t
r r

M
 

  − +
=    

  
 (19) 

where r1 is a random number in (0, 1). Besides, to enhance the exploration capacity, some manta rays may 

not move to the food position: 

 ( )
( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )1

, 1
1

, 2, ,

d d d d d

rand rand i rand id

i
d d d d d

rand i i rand i

Z t r Z t Z t Z t Z t i
Z t

Z t r Z t Z t Z t Z t i N



−

 + − + − =
+ = 

+ − + − =
K

 (20) 

where ( )d

randZ t is the position randomly generated in the search space: 

 ( ) ( )rand b b bZ t l r u l= + −  (21) 

where lb and ub are the lower and upper bounds of design variables. 

The somersault foraging is the last phase of the MRFO algorithm. In this phase, the food position is 

regarded as a pivot, and each manta ray tends to swim and move around the food position. Thus, the 

updated position of a manta ray in the somersault foraging behavior is usually near to the best position, 

which can be illustrated as follows: 

 ( ) ( ) ( ) ( )( )2 31 , 1,2,...,d d d d

i i best iZ t Z t S r Z t r Z t i N+ = +  − =  (22) 

where S represents the somersault factor, to determine the somersault range of manta rays and S=2. r2 and 

r3 are random numbers in (0,1). More details on MRFO can be found in [45]. 

 

4.3 The procedure of MO-SHADE-MRFO 

SHADE is a very effective metaheuristic algorithm, especially for solving single-objective 

optimization problems. However, there has been little research on SHADE for solving multi-objective 

optimization problems. Panagant et al. [41] proposed multi-objective version of SHADE for solving 

multi-objective truss optimization problems. According to their results, the intensification part is highly 

emphasized in SHADE, but the diversification is more important in multi-objective optimization. 
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Therefore, it may suffer from the premature or oscillation of some measurement indicators (inverted 

generational distance, spacing to extent) in solving multi-objective truss optimization problems. 

In this work, a hybrid meta-heuristic algorithm called MO-SHADE-MRFO is presented for 

multi-objective truss optimization problems, with the combination of SHADE and MRFO. In 

MO-SHADE-MRFO, the external archive is utilized to save and update the obtained Pareto solutions 

during the optimization iterations, where the updating rules of SHADE and MRFO are hybridized to 

balance the exploration and exploitation. The modification is made at the reproduction process, where 

each mutant vector has a chance to be further updated with the cyclone or chain behaviors of MRFO. The 

main procedure of MO-SHADE-MRFO for multi-objective optimization problem is provided as follows: 

Step 1: Define the optimization problems including objectives, constraints, design variables, and set 

the parameters of the algorithm, including population size, maximum iterative number, Pareto archive 

size, and so on. 

Step 2: Generate the initial population randomly among the boundaries of design variables and 

calculate the fitness values of all objectives, then use Pareto theory to save the Pareto solutions into the 

archive in the initialization step.  

Step 3: Enter the main loop of the algorithm, set the historical memories MF and MCR as 0.5 initially. 

Step 4: Update the position of each particle using the mutation operator from SHADE by Eqs. (7-8). 

Step 5: Implement the updating rules of MRFO after the mutation phase of SHADE, and update the 

position of each search agent by chain foraging of Eq. (16), cyclone foraging of Eqs. (18) and (20), and 

somersault foraging of Eq. (22). 

Step 6: Update the position of each search agent using the crossover operator from SHADE by Eq. 

(9), after the updating rules of MRFO. 

Step 7: Check the constraints of the updated positions and calculate the fitness values. 

Step 8: Compare the obtained solution with the former solution by the Pareto theory, and then update 

the Pareto solutions in the archive. If the archive number achieves to the maximum, remove the position 

with the most crowded segment and add the obtained Pareto solution into the external archive. This step 

of the algorithm is similar to other Pareto-based algorithms [36][39]. 

Step 9: Implement the adaptive strategies from SHADE, and then update the historical memories by 

Eqs. (12-13). 

Step 10: If the stop criterion (maximum iterative number) is satisfied, store the archive and get out of 

the main loop. Otherwise, go to step 3 to update the Pareto solutions. 

Step 11: Finally, output the final Pareto solutions of multi-objective optimization problems. 

To fully illustrate the procedure of MO-SHADE-MRFO, the flowchart and the pseudo-code are 

provided in Fig. 2 and Algorithm 1, respectively.  
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Algorithm 1: pseudo-code of MO-SHADE-MRFO 

1: Define the objective functions, and constraints of multi-objective truss optimization problems 

2: Set parameters, such as population size, maximum iteration, and maximum Pareto archive size 

3: Initialize population P1 and select non-dominated solutions from P1 to be initial Pareto front 

4: For t = 1:Miter do    // Main loop 

5:     // reproduction process 

6:     Calculate the scaling factor Fi by Eq. (8); 

7:     Evaluate the mutation vector vi in the mutation phase of SHADE by Eq. (7) 

8:     For i = 1 to N do    // Start MRFO updating mechanism 

9:        If rand < 0.5    // Cyclone foraging 

10:            Calculate β by Eq. (19) 

11:            If t/Miter > rand 

12:                Update the position of individual using Eq. (18) 

13:            Else 

14:                Update the position of individual using Eq. (20) 

15:            End If 

16:        Else     // Chain foraging 

17:            Calculate α by Eq. (17) 

18:            Update the position of individual using Eq. (16) 

19:        End If 

20:        Update the position of individual using Eq. (22)    // Somersault foraging 

21:     End For    // End MRFO updating mechanism 

22:     Calculate the crossover rate CRi by Eq. (10) 

23:     Calculate the crossover operator using Eq. (9) 

24: 
    xG+1 = best NP solutions with highest non-dominated levels from G Gx u  

25:     Sind = set of indices of uG that survived and are included in xG 

26: 
    ParetoG+1 = non-dominated solutions from G GPareto u  

27: 
    1 ,G G Sind GA A x+ =    // adaptive strategies 

28:     Calculate the cell of historical memories MF,q and MCR,q by Eq. (12) and Eq. (13), respectively. 

29:     Record the Pareto solutions 

30: End For 
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Fig. 2. Flowchart of MO-SHADE-MRFO 
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5 Mathematical formulation of multi-objective truss optimization 

The multi-objective truss optimization design is a challenging task due to the conflicting objectives, 

complicated constraints, and discrete design variables of cross-sectional areas. This paper focuses on the 

multi-objective truss optimization problem, to minimize the total weight and compliance under allowable 

stress constraints. However, there are conflicts between the different objectives, which are impossible to 

both achieve optimal value at the same time. In addition, the nonlinear stress constraints also limit the 

search space of design variables, leading to the more intricate optimal design problems. Different from 

the single-objective problem, the multi-objective truss optimization problem aims to obtain the Pareto 

solution set rather than a unique optimal solution. 

The basic formulation of a multi-objective truss optimization can be presented as: 

Find A={A1, A2, …, Am}  

Min ( )1

1

m

i i i

i

f A A L
=

= , ( )2

Tf A compliance= = u F  (23) 

s.t. 
max 0i i −  , 

min max

i i iA A A    

where Ai is the design variable of the cross-sectional area for i-th element, m is the number of design 

variables, f1 and f2 are the structural mass and compliance, respectively, ρi and Li are the mass density and 

length of the i-th element, respectively, i  and 
max

i  are the tress and the allowable value of the i-th 

element, and 
min

iA  and 
max

iA  are the lower and upper bounds of cross-sectional areas of design variables. 

The compliance is computed by the vector product of displacement u and force F. 

 

6 Results and discussions 

To verify the MO-SHADE-MRFO algorithm, 6 multi-objective truss optimization problems are 

implemented, consisting of consisting of 10-bar, 25-bar, 37-bar, 120-bar, 200-bar, and 942-bar truss 

structures, depicted in Figs. 3-8. The related data of truss problems are listed in Table 1, and the detailed 

nodes, elements and loads are given as follows. The details of these truss structures can also be founded 

in [42]. 

 



16 

 

 

Fig. 3. 10-bar truss 

 

 

Fig. 4. 25-bar truss 

 

 

Fig. 5. 37-bar truss 
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Fig. 6. 120-bar truss 

 

 

Fig. 7. 200-bar truss 
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Fig. 8. 942-bar truss 

 

Table 1 Design consideration of the truss problems 

Problem 
Design 

variable 

Maximum stress 

σmax (MPa) 

Material density 

Ρ (kg/m3) 

Elastic modulus 

E (GPa) 
Loading (kN) 

10-bar Ai, (i=1,2,…,10) 400 

400 

 

 

400 

400 

 

 

400 

400 

7850 

7850 

 

 

7850 

7850 

 

 

7850 

7850 

200 

200 

 

 

200 

200 

 

 

200 

200 

Nodes 2, 4 (Fy=-1000) 

25-bar 

 

 

Ai, (i=1,2,…,8) 

 

 

Node 1 (Fx=-100, Fy=Fz=-1000) 

Node 2 (Fy=-1000, Fz=-1000) 

Node 3 (Fx=50) Node 4 (Fx=60) 

37-bar Ai, (i=1,2,…,15) Nodes 2-10 (Fy=-100) 

120-bar 

 

 

Ai, (i=1,2,…,7) 

 

 

Nodes 13-36 (Fz=-500) 

Nodes 37-48 (Fz=-1500)  

Node 49 (Fz=-5000) 

200-bar Ai, (i=1,2,…,29) Supplementary materials 

942-bar Ai, (i=1,2,…,59) Supplementary materials 

    Note: More details of truss problems are provided in the Supplementary materials 
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6.1 Experimental setups 

In the experiments, 9 different multi-objective metaheuristic algorithms are implemented to compare 

the MO-SHADE-MRFO, and the brief description of compared algorithms is provided as follows: 

Multi-objective particle swarm optimization (MOPSO) [34]: Particle swarm optimization (PSO) 

is one of the most well-known metaheuristic algorithms, inspired by the preying of fishes or birds. 

MOPSO is a modified version of PSO to solve multi-objective optimization problems, with the adaptive 

grid mechanism to save the external archive and the mutation strategy to maintain the diversity of 

population. 

Non-dominated sorting genetic algorithm II (NSGA-II) [33]: NSGA-II is a very famous 

multi-objective algorithm. The non-dominated sorting is used to reduce computational complexity, while 

the crowding distance operator can maintain the diversity of generation. The elitist strategy is considered 

in NSGA-II to ensure the best individual not losing during optimization and expand the search space. 

Multi-objective evolutionary algorithm based on decomposition (MOEA/D) [35]: It is another 

popular algorithm in multi-objective field, which can transfer a multi-objective optimization problem into 

a set of scalar subproblem based on uniformly distributed aggregation weight vectors, providing a general 

framework in multi-objective problems. The decomposition strategy is embedded in multi-objective 

metaheuristic algorithms to maintain the diversity of population. 

Multi-objective grasshopper optimization algorithm (MOGOA) [36]: The original version of 

grasshopper optimization algorithm mimics the behavior of grasshoppers in nature to find the best 

solution in optimization problems. In the MOGOA, the archive and leader selections are employed to 

estimate the Pareto optimal front of a multi-objective problem. 

Multi-objective multi-verse optimization (MOMVO) [37]: The multi-verse optimization is 

proposed with the inspiration of multi-verse in physics. MOMVO is developed based on the same concept 

of the multi-verse optimization for solving multi-objective optimization problems, combined with archive 

and selector in updating mechanism. 

Multi-objective water cycle algorithm (MOWCA) [38]: The water cycle algorithm mimics the 

water cycle process in nature. MOWCA is the multi-objective version of water cycle algorithm while the 

sea and rivers are considered as the non-dominated solution. The crowding-distance strategy and archive 

non-dominated solution are embedded to avoid local stagnation and maintain diversity of population. 

Multi-objective salp swarm algorithm (MOSSA) [39]: The behavior of salp chain in sea is 

simulated in the salp swarm algorithm, and the salps in chain are divided as the leader and followers, 

which can be used to solve single-objective optimization problems. The updating mechanism of MOSSA 

is inherited the salp swarm algorithm, and the leader is chosen as the archive of non-dominated solutions. 

Unrestricted population size evolutionary multi-objective optimization algorithms (UPSEMOA) 
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[40]: The basic concept of UPESMOA is to create a greater size of non-dominated solutions which can 

enhance the diversity, and the population size is not defined by user but is dependent on the minimum 

number of points required by generation of mechanism.  

Success history-based parameter adaptive multi-objective differential evolution (SHAMODE) 

[41]: SHAMODE is the multi-objective version of SHADE, where the updating rule of SHADE is 

provided in Section 4. 

For the proposed and compared algorithms, the population size and maximum iterative number are 

set as 100 and 100, respectively. Each algorithm is run 30 times to test the robustness for truss 

optimization problems, and the Friedman ranking test [66] is implemented to measure the performance of 

the algorithm, which is a non-parametric testing method to determine the difference of obtained samples. 

The algorithmic parameters of all algorithms are listed in Table 2.  

 

Table 2 Algorithmic parameters of multi-objective metaheuristic algorithms 

Algorithm Parameters Values 

# all algorithms Population size, Maximum iterations, Independent runs 100, 100, 30 

MOPSO Cognitive and social constant 

Inertia weight linearly decreased at interval 

c1=1.5, c2=1.5 

[0.9 0.4] 

NSGA-II Mutation probability 0.1 

MOEA/D Number of neighboring weight vector 

Mutation rate 

6 

0.1 

MOGOA Cmax, Cmin  1, 0.00004 

MOMVO Max and min of WEP [1 0.2] 

MOWCA Number of river summation 4 

MOSSA Leading position update probability 0.5 

UPESMOA Crossover probability 

Scaling factor 

Probability of choosing element from offspring 

0.7 

0.8 

0.5 

SHAMODE Archive ratio 1.4 

MO-SHADE-MRFO Archive ratio 1.4 

 

In the multi-objective truss optimization problems, three different metrics are used to evaluate the 

performance of metaheuristic algorithms, including hyper volume (HV) to measure spread of Pareto front, 

spacing-to-extent (STE) to measure spacing and extent of a front, and inverted generational distance (IGD) 

to measure the distances between the Pareto front and the reference front. The metrics are evaluated by: 
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 ( )1

P

i iHV V== U  (24) 

 ( )
2

1

1

1

P

i

i

Spacing d d
P =

= −
−
 , max min

1

M

i i

i

Extent f f
=

= − , STE = Spacing/Extent (25) 

 
( )

2

1

P

ii
d

IGD
P

=


=


 (26) 

where P denote the number of solutions in the Pareto front, di is the Euclidian distance between the i-th 

solution of objective functions and its nearest neighbor true Pareto optimal solution, d’
i denotes the 

Euclidian distance between the i-th true Pareto optimal solution and the nearest true Pareto optimal 

solution. d  denotes the mean value of all di, 
max

if  and 
max

if  are maximum and minimum values of 

objective function of the front, and Vi represents the hypervolume generated from two vertices between 

the i-th non-dominated solution and referent point, as illustrated in Fig. 9(a). The schematic view of IGD 

is also displayed in Fig. 9(b). It should be noted that the larger HV value is, the better performance of the 

algorithm will be, meaning that the HV combined by the solutions and reference point is large. Besides, 

the smaller IGD and STE values are, the better performance of the algorithm will be, denoting that the 

algorithm has good convergence and distribution. 

 

 

(a) Hypervolume (HV) 

 

(b) IGD 

Fig. 9. Schematic views of metrics  
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Table 3 Statistical hypervolume (HV) results for each truss problem 

Algorithm MOPSO NSGA-II MOEA/D MOGOA MOMVO MOWCA MOSSA UPSEMOA SHAMODE Proposed 

10- 

bar 

Best 2.09E+09 1.38E+09 2.05E+09 2.04E+09 2.29E+09 3.51E+08 2.05E+09 2.03E+09 2.37E+09 2.38E+09 

Mean 2.25E+09 2.18E+09 2.22E+09 2.17E+09 2.32E+09 1.75E+09 2.16E+09 2.21E+09 2.38E+09 2.38E+09 

Worst 2.33E+09 2.35E+09 2.34E+09 2.29E+09 2.35E+09 2.28E+09 2.26E+09 2.30E+09 2.38E+09 2.39E+09 

SD 5.71E+07 2.31E+08 6.88E+07 6.74E+07 1.57E+07 4.14E+08 6.25E+07 7.26E+07 3.08E+06 1.64E+06 

FR 5.40  6.03  6.37  7.40  3.27  9.23  7.80  6.50  1.90  1.10  

25- 

bar 

Best 5.49E+08 2.85E+08 5.44E+08 5.03E+08 5.58E+08 3.31E+08 5.24E+08 2.67E+08 5.69E+08 5.68E+08 

Mean 5.65E+08 4.78E+08 5.61E+08 5.24E+08 5.60E+08 4.60E+08 5.44E+08 5.22E+08 5.69E+08 5.69E+08 

Worst 5.67E+08 5.39E+08 5.70E+08 5.47E+08 5.62E+08 5.59E+08 5.53E+08 5.61E+08 5.70E+08 5.69E+08 

SD 3.25E+06 5.61E+07 6.63E+06 1.26E+07 1.12E+06 5.86E+07 6.86E+06 5.09E+07 3.27E+05 2.43E+05 

FR 3.23  9.13  4.13  7.70  4.67  9.23  6.30  7.47  1.20  1.93  

37- 

bar 

Best 1.33E+08 1.31E+08 1.31E+08 1.18E+08 1.41E+08 1.13E+08 1.16E+08 6.75E+07 1.47E+08 1.47E+08 

Mean 1.37E+08 1.39E+08 1.39E+08 1.28E+08 1.43E+08 1.33E+08 1.27E+08 1.29E+08 1.47E+08 1.47E+08 

Worst 1.43E+08 1.43E+08 1.44E+08 1.36E+08 1.44E+08 1.40E+08 1.33E+08 1.40E+08 1.48E+08 1.48E+08 

SD 2.63E+06 3.29E+06 3.14E+06 4.79E+06 8.41E+05 5.95E+06 4.14E+06 1.61E+07 1.98E+05 1.13E+05 

FR 5.93  4.93  5.07  8.73  3.27  7.30  9.20  7.57  1.47  1.53  

120- 

bar 

Best 7.66E+10 4.37E+10 7.00E+10 7.44E+10 8.10E+10 6.60E+09 7.12E+10 6.41E+10 8.44E+10 8.46E+10 

Mean 7.94E+10 7.53E+10 7.83E+10 7.83E+10 8.27E+10 5.66E+10 7.83E+10 7.48E+10 8.47E+10 8.48E+10 

Worst 8.22E+10 8.22E+10 8.27E+10 8.10E+10 8.35E+10 8.16E+10 8.15E+10 7.90E+10 8.49E+10 8.49E+10 

SD 1.57E+09 7.09E+09 3.24E+09 1.50E+09 5.64E+08 2.14E+10 2.55E+09 3.71E+09 1.52E+08 6.85E+07 

FR 5.33  7.30  6.10  6.30  3.07  9.07  6.23  8.60  1.57  1.43  

200- 

bar 

Best 2.23E+10 2.51E+10 2.56E+10 1.91E+10 2.58E+10 1.98E+10 2.13E+10 2.40E+10 2.70E+10 2.75E+10 

Mean 2.43E+10 2.61E+10 2.62E+10 2.26E+10 2.63E+10 2.47E+10 2.31E+10 2.61E+10 2.75E+10 2.76E+10 

Worst 2.68E+10 2.69E+10 2.68E+10 2.45E+10 2.67E+10 2.60E+10 2.46E+10 2.71E+10 2.77E+10 2.77E+10 

SD 1.11E+09 5.28E+08 3.16E+08 1.20E+09 1.80E+08 1.26E+09 7.51E+08 7.99E+08 1.78E+08 3.64E+07 

FR 7.67  4.70  4.87  9.47  4.33  7.27  9.13  4.57  1.70  1.30  

942- 

bar 

Best 1.07E+11 1.17E+11 1.21E+11 8.73E+10 1.15E+11 1.07E+11 9.51E+10 1.14E+11 1.27E+11 1.29E+11 

Mean 1.18E+11 1.20E+11 1.23E+11 9.94E+10 1.20E+11 1.15E+11 1.03E+11 1.26E+11 1.29E+11 1.30E+11 

Worst 1.23E+11 1.25E+11 1.26E+11 1.07E+11 1.22E+11 1.21E+11 1.12E+11 1.30E+11 1.31E+11 1.31E+11 

SD 4.43E+09 2.28E+09 1.20E+09 3.74E+09 1.71E+09 3.08E+09 3.23E+09 3.14E+09 9.20E+08 4.07E+08 

FR 6.23  5.60  4.17  9.83  6.13  7.57  9.13  3.27  1.93  1.13  

Note: SD denotes the standard deviation, FR represents the Friedman rank. 
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Table 4 Statistical inverted generational distance (IGD) for each truss problem 

Algorithm MOPSO NSGA-II MOEA/D MOGOA MOMVO MOWCA MOSSA UPSEMOA SHAMODE Proposed 

10- 

bar 

Best 1.06E+03 4.37E+02 1.39E+03 5.12E+02 2.46E+02 1.76E+03 1.02E+03 7.61E+02 1.37E+02 7.92E+01 

Mean 2.12E+03 1.05E+03 2.81E+03 2.04E+03 4.52E+02 4.94E+03 2.82E+03 1.39E+03 2.88E+02 1.35E+02 

Worst 3.36E+03 1.93E+03 5.10E+03 3.75E+03 8.61E+02 7.68E+03 4.22E+03 2.48E+03 4.89E+02 2.13E+02 

SD 5.98E+02 4.13E+02 8.39E+02 9.18E+02 1.61E+02 1.80E+03 7.85E+02 4.01E+02 8.26E+01 3.91E+01 

FR 6.77  4.53  8.03  6.77  2.97  9.50  8.07  5.20  2.17  1.00  

25- 

bar 

Best 4.85E+01 1.17E+02 4.29E+01 1.86E+02 7.53E+01 1.63E+02 1.01E+02 1.67E+02 2.71E+01 2.07E+01 

Mean 1.28E+02 4.19E+02 4.66E+02 6.18E+02 1.14E+02 1.50E+03 3.38E+02 3.19E+02 4.04E+01 2.60E+01 

Worst 2.88E+02 8.02E+02 1.02E+03 1.42E+03 1.65E+02 2.15E+03 9.75E+02 9.10E+02 8.53E+01 5.36E+01 

SD 5.93E+01 1.66E+02 2.52E+02 3.55E+02 2.42E+01 5.01E+02 1.86E+02 1.33E+02 1.14E+01 5.62E+00 

FR 3.77  7.23  7.27  7.77  3.63  9.53  6.27  6.50  2.00  1.03  

37- 

bar 

Best 2.63E+02 1.66E+02 1.57E+02 1.45E+02 6.29E+01 2.94E+02 2.83E+02 1.76E+02 4.10E+01 1.42E+01 

Mean 4.01E+02 2.99E+02 4.92E+02 3.61E+02 1.27E+02 5.54E+02 5.11E+02 3.27E+02 7.79E+01 2.95E+01 

Worst 5.09E+02 4.94E+02 7.81E+02 5.39E+02 3.29E+02 9.54E+02 8.99E+02 4.98E+02 1.25E+02 5.95E+01 

SD 6.50E+01 8.49E+01 1.18E+02 9.26E+01 5.90E+01 1.67E+02 1.49E+02 8.41E+01 2.59E+01 1.02E+01 

FR 6.83  5.17  8.33  6.27  2.93  8.50  8.13  5.70  2.10  1.03  

120- 

bar 

Best 8.67E+03 2.96E+03 1.17E+04 7.75E+03 1.45E+03 6.96E+03 8.11E+03 4.97E+03 7.45E+02 5.05E+02 

Mean 1.69E+04 7.54E+03 1.96E+04 1.45E+04 2.36E+03 3.51E+04 1.63E+04 1.22E+04 2.50E+03 1.02E+03 

Worst 2.35E+04 1.81E+04 3.04E+04 2.50E+04 4.54E+03 5.79E+04 3.18E+04 2.09E+04 5.43E+03 2.31E+03 

SD 3.57E+03 3.33E+03 5.10E+03 4.54E+03 7.63E+02 1.34E+04 5.49E+03 3.86E+03 1.17E+03 4.26E+02 

FR 7.43  4.37  8.23  6.83  2.47  9.50  6.90  5.70  2.40  1.17  

200- 

bar 

Best 3.22E+03 2.24E+03 4.07E+03 3.89E+03 2.08E+03 3.05E+03 4.36E+03 2.05E+03 7.36E+02 1.70E+02 

Mean 5.62E+03 4.25E+03 5.74E+03 6.61E+03 3.76E+03 5.83E+03 6.20E+03 3.70E+03 2.13E+03 4.27E+02 

Worst 8.26E+03 6.40E+03 7.13E+03 9.00E+03 4.97E+03 9.33E+03 8.02E+03 5.73E+03 3.78E+03 8.15E+02 

SD 1.26E+03 1.03E+03 7.65E+02 1.24E+03 7.21E+02 1.46E+03 1.06E+03 9.14E+02 7.03E+02 1.78E+02 

FR 7.00  4.73  7.60  8.53  4.10  7.27  8.30  4.27  2.20  1.00  

942- 

bar 

Best 5.57E+03 3.75E+03 9.73E+03 1.36E+04 7.87E+03 6.97E+03 1.14E+04 1.57E+03 2.90E+03 5.04E+02 

Mean 9.79E+03 8.28E+03 1.48E+04 1.67E+04 1.20E+04 1.10E+04 1.47E+04 3.08E+03 4.57E+03 7.69E+02 

Worst 1.32E+04 1.27E+04 2.04E+04 2.02E+04 1.78E+04 1.51E+04 1.97E+04 5.95E+03 6.74E+03 1.39E+03 

SD 1.97E+03 2.10E+03 2.79E+03 1.58E+03 2.17E+03 2.14E+03 1.88E+03 7.97E+02 9.85E+02 1.84E+02 

FR 5.50  4.57  8.27  9.47  6.93  5.97  8.30  2.07  2.93  1.00  
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Table 5 Statistical spacing-to-extent (STE) for each truss problem 

Algorithm MOPSO NSGA-II MOEA/D MOGOA MOMVO MOWCA MOSSA UPSEMOA SHAMODE Proposed 

10- 

bar 

Best 6.18E-03 5.08E-03 3.52E-03 1.11E-03 5.25E-03 9.13E-03 3.50E-03 3.35E-03 4.02E-03 4.25E-03 

Mean 1.37E-02 1.38E-02 7.82E-03 7.63E-03 8.36E-03 3.54E-02 8.31E-03 1.25E-02 5.95E-03 5.56E-03 

Worst 2.59E-02 5.66E-02 2.59E-02 1.73E-02 1.19E-02 9.34E-02 1.38E-02 3.12E-02 8.50E-03 7.12E-03 

SD 4.97E-03 1.11E-02 4.61E-03 3.68E-03 1.57E-03 2.12E-02 2.61E-03 6.52E-03 1.28E-03 7.33E-04 

FR 7.73  6.73  3.97  4.70  5.47  9.60  4.97  6.77  2.77  2.30  

25- 

bar 

Best 4.94E-03 5.43E-03 3.00E-03 2.05E-05 6.12E-03 6.54E-03 3.31E-03 7.71E-04 3.94E-03 3.22E-03 

Mean 9.72E-03 1.81E-02 4.94E-03 5.84E-03 8.96E-03 2.68E-02 9.00E-03 1.47E-02 5.12E-03 4.57E-03 

Worst 1.64E-02 6.81E-02 1.13E-02 1.14E-02 1.24E-02 9.25E-02 1.63E-02 4.51E-02 7.36E-03 6.30E-03 

SD 2.66E-03 1.21E-02 1.66E-03 3.37E-03 1.49E-03 1.97E-02 3.33E-03 8.73E-03 7.18E-04 6.27E-04 

FR 6.43  8.53  2.53  3.77  6.20  9.03  5.73  7.60  3.00  2.17  

37- 

bar 

Best 7.12E-03 5.14E-03 3.17E-03 4.79E-04 6.07E-03 5.14E-03 3.01E-03 9.92E-04 3.55E-03 3.99E-03 

Mean 1.21E-02 1.28E-02 6.03E-03 7.33E-03 8.21E-03 1.80E-02 8.97E-03 1.38E-02 5.98E-03 5.28E-03 

Worst 2.36E-02 2.41E-02 1.75E-02 1.14E-02 1.29E-02 4.32E-02 1.50E-02 6.70E-02 1.05E-02 6.82E-03 

SD 3.91E-03 4.72E-03 3.53E-03 2.30E-03 1.64E-03 8.16E-03 2.62E-03 1.22E-02 1.78E-03 8.28E-04 

FR 7.50  7.37  3.07  4.50  5.33  8.87  5.87  6.67  3.20  2.63  

120- 

bar 

Best 7.32E-03 2.88E-03 4.04E-03 7.16E-04 6.02E-03 7.99E-03 3.72E-03 2.66E-03 4.12E-03 4.60E-03 

Mean 1.20E-02 1.42E-02 7.82E-03 6.23E-03 8.67E-03 4.08E-02 9.98E-03 1.69E-02 5.88E-03 5.76E-03 

Worst 2.38E-02 2.53E-02 2.43E-02 1.29E-02 1.12E-02 8.89E-02 3.36E-02 3.58E-02 1.10E-02 8.36E-03 

SD 3.85E-03 5.87E-03 4.74E-03 3.59E-03 1.25E-03 2.60E-02 6.02E-03 8.09E-03 1.39E-03 9.60E-04 

FR 7.13  7.27  3.63  3.37  5.27  9.37  5.50  7.87  2.87  2.73  

200- 

bar 

Best 4.50E-03 4.05E-03 3.01E-03 5.66E-04 4.62E-03 5.33E-03 2.61E-03 2.16E-03 3.04E-03 3.28E-03 

Mean 9.16E-03 1.44E-02 6.70E-03 6.36E-03 6.94E-03 1.24E-02 8.24E-03 8.87E-03 7.79E-03 4.88E-03 

Worst 1.66E-02 4.71E-02 2.99E-02 1.48E-02 1.10E-02 2.74E-02 2.28E-02 4.88E-02 2.17E-02 8.21E-03 

SD 3.25E-03 9.08E-03 4.97E-03 3.27E-03 1.58E-03 5.07E-03 3.90E-03 8.49E-03 4.05E-03 1.25E-03 

FR 6.63  8.57  3.47  4.27  5.20  8.03  5.93  5.03  5.33  2.53  

942- 

bar 

Best 4.00E-03 4.21E-03 4.24E-03 1.65E-03 4.16E-03 6.29E-03 2.92E-03 2.67E-03 3.62E-03 2.86E-03 

Mean 6.34E-03 9.89E-03 9.82E-03 6.96E-03 9.85E-03 1.16E-02 9.21E-03 5.74E-03 4.82E-03 3.87E-03 

Worst 9.34E-03 3.94E-02 3.56E-02 2.69E-02 4.17E-02 2.58E-02 2.92E-02 3.08E-02 6.81E-03 5.49E-03 

SD 1.36E-03 7.32E-03 5.99E-03 5.29E-03 7.38E-03 4.09E-03 5.16E-03 4.92E-03 8.86E-04 5.08E-04 

FR 5.33  6.93  7.00  4.83  6.87  8.63  6.63  3.47  3.50  1.80  
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6.2 10-bar truss 

This subsection considers the 10-bar truss example as the first benchmark (Fig. 3), which was 

evaluated by the proposed MO-SHADE-MRFO and 9 compared multi-objective metaheuristic algorithms. 

The details of loads, elements and dimensions are summarized in Table 1. The statistical results of HV, 

IGD and STE in the 10-bar truss problem solved by all metaheuristic algorithms are reported in Tables 

3-5, while the best results of metrics are highlighted in bold. 

According to the results of HV in 10-bar truss from Table 3, the proposed algorithm obtains the first 

rank among 10 algorithms, with the best Friedman rank value (FR=1.10). It achieves the best statistical 

values of HV, while the mean HV value is 2.38E+09. The second and third algorithms are MOSHADE 

(FR=1.90) and MOMVO (FR=3.27), respectively. In comparison, three classical algorithms (MOPSO, 

NSGA-II and MOEA/D) provide unstable HV results in the 10-bar truss problem. Table 4 summarizes the 

statistical IGD values by each algorithm in the 10-bar truss, while the best, mean, worst and SD values of 

IGD by the proposed algorithm are also better than the results from comparing algorithms. The proposed 

algorithm ranks first with the FR value 1.0, while the second algorithm is SHAMODE with the FR value 

2.17, the third algorithm is MOMVO with the FR value 2.97. For STE values from Table 5, the mean, 

worst and SD values of STE from the proposed algorithm are also better than other algorithms. Obviously, 

the proposed algorithm ranks first among 10 algorithms, with the FR value 2.30, followed by SHAMODE 

and MOEA/D. 

To illustrate the convergence of the proposed algorithm, the iterative curves of metrics in 10-bar 

truss are displayed in Fig. 10(a)-(c). It can be seen that the proposed algorithm and SHAMODE have 

good consistency and convergence rate in HV and IGD curves, but the initial convergence speed of the 

proposed algorithm is better than SHAMODE. Moreover, unstable results or oscillation of three metrics 

among search history occur in some compared algorithms, such as MOPSO, NSGA-II, MOWCA, 

MOSSA and UPSEMOA. In addition, the obtained Pareto fronts for 10-bar truss are displayed in Fig. 

10(d). The proposed algorithm can provide smooth and well-distributed Pareto solutions, while the Pareto 

solutions of NSGA-II, MSSA, MOWCA and UPSEMOA are scattered and non-continuous.  

It can be concluded that MO-SHADE-MRFO is better than the compared algorithms in this problem 

with high convergence and coverage. The good convergence of MO-SHADE-MRFO is achieved by the 

operators from SHADE and MRFO. In the mutation and crossover phases, the success-based history 

parameter adaptation in SHADE can ensure convergence in the objective space, while the operators 

(cyclone, chain, somersault) in MRFO embedded into the SHADE can enhance the diversity and 

convergence in the objective space. Moreover, the good coverage of the proposed algorithm can be 

attributed to its archive maintenance. Therefore, the proposed algorithm can perform well on the 10-bar 

truss problem. 
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(a) HV iterative curves 

 

(b) IGD iterative curves 

 

(c) STE iterative curves 

 

(d) Pareto front 

Fig. 10. Iterative curves and Pareto front of 10-bar truss problem 

 

6.3 25-bar truss 

A 25-bar truss is the second problem depicted in Fig. 4. The density and elastic modulus in this 

problem are 7850 kg/m3 and 200 GPa, respectively, and the allowable tensile and compressive stresses are 

400 MPa. The cross-sectional areas of 25 elements are grouped as 8 design variables. The details of 

boundaries, design variables, and properties are summarized in Table 1.  

The statistical results of three metrics (HV, IGD, STE) in the 25-bar truss problem obtained by all 

multi-objective metaheuristic algorithms are summarized in Tables 3-5. The proposed algorithm ranks the 

first in IGD (FR=1.03) and STE (FR=2.17), and the second in HV (FR=1.93), outperforming the 

compared algorithms. For comparison, SHAMODE ranks the first in HV values, the second in IGD 

values, and the third in STE values; NSGA-II and WOWCA are the last two algorithms in three metrics. 

The statistical results of three metrics demonstrate the superior performance of the proposed algorithm. 
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Figs. 11(a-c) display the convergence curves of three metrics (HV, IGD, STE) of each algorithm in 

the 25-bar truss problem, respectively. UPSEMOA, MOWCA and NSGA-II generate unstable 

convergence curves in the HV metric during the optimization process, as shown in Fig. 11(a), while 

MOGOA and MOSSA provide premature convergence. MOPSO, MOMVO, SHAMODE and the 

proposed algorithm can achieve stable convergence curve, while the proposed algorithm has the best 

convergence rate in the HV metric. Based on the convergence curves of IGD shown in Fig. 11(b), 

UPSEMOA, NSGA-II, MOEA/D, MOSSA and MOWCA have oscillation curves during optimization, 

while the proposed algorithm has the stable and fast convergence rate in IGD metric. Fig. 11(c) indicates 

the proposed algorithm provides good performance of STE convergence, with satisfactory 

competitiveness among the compared algorithms. The Pareto front of 25-bar truss problem calculated by 

each algorithm is also illustrated in Fig. 11(d). MSSA, NSGA-II and MOMVO provide discontinuous 

Pareto fronts, and the best Pareto fronts obtained by the proposed algorithm are well-distributed. 

 

(a) HV iterative curves 

 

(b) IGD iterative curves 

 

(c) STE iterative curves 

 

(d) Pareto front 

Fig. 11. Iterative curves and Pareto front of 25-bar truss problem 
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6.4 37-bar truss 

The third benchmark problem is 37-bar truss problem, as shown in Fig. 5. The details of boundaries, 

design variables, and properties are summarized in Table 1. The cross-sectional areas of 37 bars are 

grouped as 15 discrete design variables. The statistical results are summarized in Tables 3-5. 

The results of the HV metric in Table 3 illustrate that both SHAMODE and the proposed algorithm 

achieve good convergence in HV values. The mean HV value by the proposed algorithm is 1.47E+08, 

which is equal to SHAMODE and better than other compared algorithms. MOPSO, MOMVO, NSGA-II 

and MOEA/D are inferior to the proposed algorithm, and MOSSA ranks the last in the HV metric. In the 

IGD results from Table 4, the proposed algorithm achieves the first rank with the FR value 1.03, which is 

far better than other algorithms. SHAMODE and MOMVO are the follower algorithms with FR values 

2.10 and 2.93, respectively. Table 5 also illustrates that the proposed algorithm performs well on the STE 

metric, especially in the mean, worst and SD values of STE, which achieves the first rank with the FR 

value 2.63, followed by MOEA/D and SHAMODE. In all, the proposed algorithm has very competitive 

performance in the HV, IGD and STE metrics in the 37-bar truss problem. 

According to the HV and IGD curves from Fig. 12(a) and (b), the proposed algorithm has good 

convergence performance in the convergence rate in the HV and IGD metrics, while SHAMODE and 

MOMVO followed as the second and third at the convergence ability. UPSEMOA, MOWCA, NSGA-II, 

MOSSA and MOGOA have premature convergence or oscillation curves. Fig. 12(c) shows the 

convergence curve of STE. Some compared algorithms cannot provide good convergence, but the 

proposed algorithm can achieve good convergence ability. Fig. 12(d) displays the Pareto fronts obtained 

by each algorithm, and the proposed algorithm can perform a smooth and well-distributed Pareto 

solutions, which is better than the other compared algorithms. The results indicate that the 

MO-SHADE-MRFO helps in preventing the local optima trap due to the good balance between global 

diversification and local intensification. 

 

(a) HV iterative curves 

 

(b) IGD iterative curves 
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(c) STE iterative curves 

 

(d) Pareto front 

Fig. 12. Iterative curves and Pareto front of 37-bar truss problem 

 

6.5 120-bar truss 

A 120-bar truss problem is considered as the fourth benchmark problem, which is depicted in Fig. 6. 

The details of the 120-bar truss problem are listed in Table 1. The cross-sectional areas of 120 elements 

are grouped as 7 discrete design variables. The statistical results of three metrics (HV, IGD, STE) by 10 

algorithms are summarized in Tables 3-5. 

From the statistical results of HV in Table 3 for the 120-bar truss, the proposed algorithm ranks the 

first in the HV values with the FR value 1.43, while the second and third algorithms are SHAMODE 

(FR=1.57) and MOMVO (FR=3.07), respectively. The classical algorithms including MOPSO (FR=5.33), 

NSGA-II (FR=7.30) and MOEA/D (FR=6.10) rank the median among 10 algorithms, while MOWCA 

ranks the last in the HV values (FR=9.07). The IGD values of the 120-bar truss problem are also 

displayed in Table 4, illustrating that the proposed algorithm has superior performance and ranks the first 

(FR=1.17) among 10 algorithms. Based on the STE values in Table 5, the mean, worst and SD values of 

STE by the proposed algorithm are better than the results from other algorithms. The proposed algorithm 

also achieves the first rank with the FR value 2.73, followed by SHAMODE (FR=2.87) and MOGOA 

(FR=3.37). Thus, the proposed algorithm has superior performance in the convergence and coverage 

abilities for the 120-bar truss problem. 

The convergence curves of HV shown in Fig. 13(a) illustrate that MOWCA, NSGA-II, UPSEMOA 

and MOSSA may have the oscillating curves. Meanwhile, the premature occurs in algorithms MOEA/D, 

MOPSO, MOGOA, and MOMVO. SHAMODE and the proposed algorithm outperforms other algorithms, 

and the proposed algorithm has faster convergence rate than SHAMODE. In Figs. 13(b-c), the proposed 

algorithm provides very competitive convergence capacities in the IGD and STE metrics, which is 

superior to most algorithms. The results of Pareto fronts illustrated in Fig. 13(d) show that the proposed 
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algorithm can provide spread, consistent and smooth Pareto solutions.  

 

(a) HV iterative curves 

 

(b) IGD iterative curves 

 

(c) STE iterative curves 

 

(d) Pareto front 

Fig. 13. Iterative curves and Pareto front of 120-bar truss problem 

 

6.6 200-bar truss 

This subsection comprises the 200-bar truss example (Fig. 7), to test the performance of the 

proposed algorithm. Table 1 gives the details of loads, elements, and dimensions of the 200-bar truss. The 

200-bar truss, which has 200 elements (meaning 200 constraints in the truss optimization problem) and 29 

design variables.  

The statistical results of HV, IGD and STE of 200-bar truss problem are summarized in Tables 3-5, 

demonstrating that the proposed algorithm achieves the best values of HV (FR=1.30), IGD (FR=1.00) and 

STE (FR=2.53) metrics among 10 algorithms. Fig. 14 displays the iterative curves of HVs, IGDs, STEs 

and the obtained Pareto fronts of 10 algorithms for this problem. The performance of the proposed 

algorithm is far better than the compared algorithms, especially in HV and IGD curves. In addition, the 
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proposed algorithm can provide a well-spread and smooth Pareto front in this problem. 

 

(a) HV iterative curves 

 

(b) IGD iterative curves 

 

(c) STE iterative curves 

 

(d) Pareto front 

Fig. 14. Iterative curves and Pareto front of 200-bar truss problem 

 

6.7 942-bar truss 

The 3D tower truss structure is the last benchmark problem in this study, depicted in Fig. 8, with 942 

elements and 942 constraints, which greatly limits the search space of the design variables. The total 942 

elements are grouped to 59 parts based on the structural symmetry, so this problem is typically a 

high-dimensional optimization problem. All properties of loads, elements and dimensions are listed in 

Table 1.  

The statistical results of three metrics (HV, IGD, STE) of the 942-bar truss are summarized in Tables 

3-5. According to the HV results from Table 3, the proposed algorithm achieves good performance in the 

HV metric, with the mean HV value 1.30E+11 and the FR value 1.13, which is better than the compared 

algorithms. The SHAMODE and UPSEMOA achieve the second and the third algorithm, with the FR 
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value 1.93 and 3.27, respectively. Table 4 summarizes the statistical results of IGD, illustrating that the 

proposed algorithm ranks the first among 10 algorithms, with the FR value 1.00, while the second and 

third algorithms are UPSEMOA (FR=2.07) and SHAMODE (FR=2.93), respectively. The results of STE 

values in Table 5 illustrate that the proposed algorithm ranks the first (FR=1.80) among the 10 algorithms, 

while SHAMODE (FR=3.47) and UPSEMOA (FR=3.50) rank 2nd and 3rd, respectively. To sum up, the 

proposed algorithm has superior performance in the statistical results of three metrics for this problem. 

The convergence capacities of three metrics are also analyzed to evaluate the proposed algorithm. 

Fig. 15(a) illustrates the HV iterative curves of the proposed algorithm and other compared algorithms. It 

is obvious that the proposed algorithm has the fastest convergence rate, better than other compared 

algorithms. Fig. 15(b) illustrates the IGD iterative curves, demonstrating the good convergence ability of 

the proposed algorithm. In all, the proposed algorithm has good performance in solving complex 

multi-objective truss optimization problem. 

According to the convergence behaviors of algorithms in different multi-objective truss optimization 

problems, some compared algorithms such as NSGA-II, MOEA/D, MOPSO, UPSEMOA and MOWCA 

give unstable convergence behaviors of HV and IGD metrics in several tested problems, illustrating their 

insufficient capacity of exploration and exploitation for multi-objective truss optimization problems. 

However, the proposed algorithm can provide the table and fast convergence behavior of HV and IGD 

metrics in all tested optimization problems, by using the updating rules of MO-SHADE-MRFO to ensure 

the exploration capacity, which can obtain and update high-quality Pareto solutions. It should be noted 

that although the convergence behaviors of SHAMODE and MO-SHADE-MRFO are similar, the 

obtained HV and IGD values of MO-SHADE-MRFO are better than those of SHAMODE, which benefits 

from the hybridization of SHADE and MRFO in the updating mechanism. 

 

(a) HV iterative curves 

 

(b) IGD iterative curves 

Fig. 15. Iterative curves of 942-bar truss problem 
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7 Conclusions 

A hybrid multi-objective metaheuristic algorithm called MO-SHADE-MRFO is developed to solve 

structural design problems, utilizing two powerful metaheuristic algorithms, the success-history based 

parameter adaptive differential evolution (SHADE) and manta ray foraging optimizer (MRFO). 

MO-SHADE-MRFO is a Pareto-based algorithm, using the external archive to save and update the 

obtained Pareto fronts, which is convenient to handle the conflict objectives in the multi-objective 

optimization. Besides, the updating rules of cyclone, chain and somersault foraging behaviors from 

MRFO are combined with the SHADE to balance the exploration and exploitation in the 

MO-SHADE-MRFO, which can improve the convergence capacity for multi-objective structural design 

problems. 

In the experiments, 6 truss optimization problems with 10-bar, 25-bar, 37-bar, 120-bar, 200-bar and 

942-bar are implemented to verify the proposed algorithm, considering two objectives of minimizing the 

weight and compliance, under the constraints of elemental stress. The proposed algorithm is also 

compared with 9 different multi-objective metaheuristic algorithms, consisting of MOPSO, NGSA-II, 

MOEA/D, MOGOA, MOMVO, MOWCA, MOSSA, UPSEMOA and SHAMODE, where the 

performances is measured by the metrics of HV, IGD and STE. The experimental results indicate that 

MO-SHADE-MRFO achieves the best rank of three metrics and outperforms the compared algorithms. 

The convergence behaviors of HV, IGD and STE from MO-SHADE-MRFO are also better than those of 

the compared algorithms, and the well-distributed Pareto fronts are also obtained by MO-SHADE-MRFO. 

It can be concluded that MO-SHADE-MRFO is very competitive in solving multi-objective truss 

optimization problems. 

In our future works, high-dimensional optimization problems with many-objectives are interested to 

handle by the proposed algorithm. Besides, more hybridization of different operators can be extended into 

the proposed algorithm. 
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