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Abstract—General fuzzy min-max neural network (GFMMNN)
is one of the efficient neuro-fuzzy systems for data classification.
However, one of the downsides of its original learning algorithms
is the inability to handle and learn from the mixed-attribute
data. While categorical features encoding methods can be used
with the GFMMNN learning algorithms, they exhibit a lot of
shortcomings. Other approaches proposed in the literature are
not suitable for on-line learning as they require entire training
data available in the learning phase. With the rapid change in
the volume and velocity of streaming data in many application
areas, it is increasingly required that the constructed models
can learn and adapt to the continuous data changes in real-
time without the need for their full retraining or access to the
historical data. This paper proposes an extended online learning
algorithm for the GFMMNN. The proposed method can handle
the datasets with both continuous and categorical features. The
extensive experiments confirmed superior and stable classification
performance of the proposed approach in comparison to other
relevant learning algorithms for the GFMM model.

Index Terms—General fuzzy min-max neural network, clas-
sification, mixed-attribute data, online learning, neuro-fuzzy
classifier.

I. INTRODUCTION

CLASSICAL batch learning algorithms usually require the
complete availability of data at the training time. These

algorithms do not constantly accommodate new information
to the built models. Instead, we need to reconstruct the model
from scratch when the underlying data changes. This operation
is time-consuming, especially in the case of massive data,
and the constructed models are more likely to be outdated
in dynamically changing environments. Taking an advertising
recommendation system as an example, this system constructs
a customer preference model based on the tracking information
about the shopping and browsing behaviors of the users. The
buying activities and preferences are temporary and continu-
ously changing. For example, the pandemic such as COVID-
19 has dramatically changed the online shopping behaviors
of customers where people tend to purchase things they have
never bought before. Therefore, the learning models trained
on consumer behavior data prior to the pandemic have been
deteriorated or crashed. As a result, these models need to
be retrained on new (normal?) behavior data. In this context,
and many others characterised by streaming data in changing
environments, it is desirable or even necessary to have online
learning algorithms that can learn constantly new information
without retraining from scratch.
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With the increase in the data volume and the rapid change
of the environmental conditions nowadays, online learning
algorithms are in high demand [1], [2]. These algorithms
require smaller or no data storage as they only need one or
few newest training samples at one time to rapidly update the
constructed model. Hence, the online learning models are ideal
candidates for the systems with frequently updating demands.
General fuzzy min-max (GFMM) neural network [3], [4] is
such an incremental learning model, which can be effectively
utilized for data classification problems. This type of learning
model combines the artificial neural network with the fuzzy set
theory to form a consolidated framework. The model creates
new hyperboxes or adjusts the existing hyperboxes to cover
new samples in its structure. Each hyperbox is defined by the
minimum and maximum points in an n-dimensional space. The
degree-of-fit of an input pattern to a hyperbox is identified by
a membership function.

GFMM neural network [3] is a significant enhancement
of the FMNN [5]. Unlike the FMNN, the GFMM model
can handle the uncertainty associated with the input data by
accepting the input patterns not only as single points but
also hyperboxes. In addition, it can handle both labeled and
unlabeled data samples in a single model. The GFMMNN still
maintains the online learning ability from the FMNN using a
single-pass through training samples learning algorithms to
expand or create new hyperboxes. To avoid the ambiguity in
the classification phase, the original online learning algorithm
proposed in [3] does not allow the overlap between hyperboxes
representing different classes. Therefore, after expanding a
hyperbox to cover the input pattern, a hyperbox contraction
procedure must be performed if there is an overlapping re-
gion between two hyperboxes belonging to different classes.
However, the hyperbox contraction operation can lead to
undesirable classification errors as shown in the original paper
and subsequent publications [3], [6], [7], [8], [9]. As a result,
in a recent study, we have proposed an improved online
learning algorithm for the GFMM model (IOL-GFMM) [9] to
overcome this limitation by not using the hyperbox contraction
step during the learning process. This algorithm integrates the
strong points of the batch learning algorithm proposed in [6]
and the incremental learning ability of the original algorithm
into a single algorithm.

However, both the original online learning algorithm [3]
and the IOL-GFMM algorithm [9] work well on the datasets
with only numerical features. To perform classification for
the datasets with mixed-type features, we would need to use
the encoding methods to transform the categorical values
into numerical values. As shown in a recent study [10],
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each encoding method has its own drawbacks and except
for the CatBoost [11] and label encoding techniques, all of
the remaining encoding approaches need to use the entire
training set to encode the categorical features. Therefore,
they are not appropriate for incremental learning algorithms,
where the new values can appear during the operation time.
In addition, according to the empirical results in [10], the
classification performance of the online learning algorithms
using the CatBoost or label encoding method for the GFMM
model is quite poor. It is because the label encoding method
imposes an artificial distance metric for categorical groups,
in which this distance is not correspondent to the correlation
among original categorical values [12]. Not only this poses a
serious problem but the CatBoost encoding method is sensitive
to the order of training samples presentation and a shift in the
encoded values between training and testing data as well as
between training samples have been observed. For the same
categorical value, its encoded value in the training data may be
distinct from that in the testing data. Even in the training set,
the same categorical value may be mapped into many different
encoded values depending on the historical patterns prior to
the current training pattern. Our proposed method in this paper
avoids all of these issues by not using any encoding methods
for discrete attributes in the first place.

Many real-world datasets are in the form of mixed-type
features. The mixed-attribute data contain both continuous
and discrete (or categorical) features. Nowadays, the mixed-
attribute data are more and more popular in a wide range of
applications from the credit approval data to medical diagnos-
tic data [13]. Hence, to apply the GFMMNN to such problems,
we need to extend its current learning algorithms so that they
can deal effectively with mixed-attribute data. Although there
are a large number of improved algorithms of the FMNN
model, only two existing studies have focused on expanding
the learning algorithms for both categorical and numerical
features as shown in a recent survey paper [14]. The first study
was proposed in [15] (denoted by Onln-GFMM-M1 in this
paper) using the correlation between the occurrence frequency
of categorical values and classes to determine the similarity
degrees among categorical values for each categorical feature.
After that, the authors proposed to extend the original online
learning algorithm [3] for mixed-attribute data. The second
idea of expanding the original online learning algorithm of the
FMNN model for both numerical and categorical features was
introduced in [16], called Onln-GFMM-M2 in this paper. It
uses the one-hot encoding method for the categorical features
and logical operators such as AND and OR to operate on
the categorical groups. However, the main weak point of both
algorithms is the use of the entire training set to encode or
compute the similarity degree between categorical values. If a
new value occurs without being encountered during a training
process before, these algorithms cannot handle such situation
and produce a valid prediction. Different from these two
approaches, this paper proposes a new incremental learning
algorithm for both continuous and categorical features. The
proposed method does not use any encoding methods for
categorical values. Instead, it uses a union operator of a set to
add new categorical value to the current set of values in each

categorical feature of a hyperbox. The decision on expanding
a selected hyperbox to accommodate a new input pattern is
based on the change in the entropy for each categorical feature.
We also modify the membership function to handle both
categorical and numerical attributes. The membership degree
for all categorical features is computed from the average
probability of categorical values in the input sample with
regard to all of the existing discrete values stored in discrete
features of the hyperbox. In short, our main contribution in
this paper can be summarized as follows:
• We propose a novel online learning algorithm for the

GFMMNN able to learn from mixed-attribute data. To
the best of our knowledge, this is the first online learning
algorithm for the family of fuzzy min-max neural net-
works which can handle both continuous and categorical
features without using any encoding methods.

• We present and prove several properties of the proposed
method with regard to the categorical/discrete attributes.

• We conduct extensive experiments to prove the effec-
tiveness of the proposed method in comparison to other
relevant methods.

• We assess the impact of hyper-parameters on the classifi-
cation performance of the proposed method and propose
a simple method for the parameter estimation.

The rest of this paper is structured as follows. Section II
summarizes briefly the architecture of the GFMMNN and its
improved online learning algorithm. Section III is devoted to
describing the proposed method and its properties. Experimen-
tal results and discussion are shown in Section IV. Section V
concludes the key findings in this paper and informs potential
research directions.

II. PRELIMINARIES

A. General fuzzy min-max neural network

The GFMMNN [3] are composed of three layers, i.e.,
input, hyperbox (hidden), and output layers. The input layer
in the GFMM model can accept both real valued point and
interval (hyperbox-typed) based input samples. If each input
pattern has n dimensions, there will be 2n nodes in the input
layer, in which the first n nodes are for the lower bounds
and the remaining n nodes represent the upper bounds. The
hidden layer contains hyperboxes dynamically generated in
the learning process. The connection weights between the
lower bound nodes and a hyperbox Bi form a vector Vi
storing the minimum coordinates for that hyperbox. Similarly,
the connection weights from the upper bound input nodes to
a hyperbox Bi are represented by a vector Wi containing
the maximum coordinates of that hyperbox. The values of
matrices V and W for all hyperboxes are tuned during the
learning process. Each hyperbox Bi in the hidden layer is
fully connected to all output nodes. The connection weights
between the hyperbox layer and output layer are kept in a
matrix U and each of its element uij is computed as follows:

uij =

{
1, if class(Bi) = cj

0, otherwise
(1)

where cj is the j-th class node in the output layer.
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Each hyperbox Bi = [Vi,Wi], where Vi = [vi1, . . . , vin]
and Wi = [wi1, . . . , win] are the minimum and maximum
points respectively, is associated with a membership function
bi(X,Bi). This membership function is used to calculate the
degree-of-fit for each input pattern X = [X l, Xu] to the hy-
perbox Bi, where X l = [xl1, . . . , x

l
n] and Xu = [xu1 , . . . , x

u
n]

are the lower and upper bounds of an input pattern suitably
normalised within an n-dimensional unit hypercube [0, 1]n.
The membership function is given as follows:

bi(X,Bi) =
n

min
j=1

(min([1− f(xuj − wij , γj)],

[1− f(vij − xlj , γj)]))
(2)

where f(ξ, γ) is a ramp function defined in (3):

f(ξ, γ) =





1, if ξ · γ > 1

ξ · γ, if 0 ≤ ξ · γ ≤ 1

0, if ξ · γ < 0

(3)

with γ = (γ1, γ2, ..., γn) a sensitivity parameter controlling the
decreasing speed of the membership degree, and 0 ≤ bi ≤ 1.
If bi(X,Bi) = 1, then X is fully contained in the core of the
hyperbox Bi.

B. An improved online learning algorithm

The learning process in GFMM consists of creating and
adjusting hyperbox fuzzy sets on the basis of the presented
input patterns. There have been a number of fundamental
GFMM learning algorithms proposed in the literature which
fall into one of two key categories: (i) incremental/on-line
learning algorithms where the hyperboxes are adjusted, if
needed, after every presentation of a single pattern [3], [9] and
(ii) batch learning algorithms which assume the full training
data is available from the beginning of the training process for
the training algorithm to use [6], [17], [7]. The performance
of the original online algorithm [3] is sensitive to the order
of training data presentation and the maximum hyperbox size
hyper-parameter setting. When inappropriate maximum size of
hyperbox is selected and combined with the existing hyperbox
contraction process, it can lead to undesired classification
errors as analysed and illustrated in [9]. Therefore, in a recent
study, we proposed an improved version of the original online
learning algorithm, in which, similarly to the agglomerative
algorithms in [6], the contraction process is not used during
the learning process. The algorithm contains only two main
steps, i.e., creation or expansion of hyperboxes and overlap
test. In the original online learning algorithm, if a selected
hyperbox candidate fulfills the expansion condition related to
the maximum hyperbox size, it will be expanded. Then, if
the overlap between the newly expanded hyperbox and the
existing hyperboxes belonging to other classes occurs, the
relevant hyperboxes are contracted. In contrast, in the IOL-
GFMM algorithm, if the undesired overlap would happen after
the expansion, the selected candidate will not be expanded.

For a training sample X = [X l, Xu, cX ], the algorithm
first filters all existing hyperboxes with the same class as
cX . After that, the membership values between X and these
hyperboxes are computed and sorted in descending order.

Hyperbox candidates will be then checked with regard to
meeting the expansion conditions beginning from the hyperbox
with the highest membership degree. If the maximum mem-
bership value is one, i.e. X is contained in the hyperbox, the
learning algorithm continues with the next training sample.
Otherwise, the expansion condition checking process only
terminates when there is a hyperbox candidate which can be
expanded to cover X or no further hyperbox candidates exist.
If none of the existing candidates can be expanded, a new
hyperbox is generated with the same coordinates as X . The
first expansion condition is the maximum hyperbox size. For
the hyperbox candidate Bi, first, the maximum hyperbox size
condition given in (4) is checked:

max(wij , x
u
j )−min(vij , x

l
j) ≤ θ, ∀j ∈ [1, n] (4)

where n is the number of features. If this condition is met, the
hyperbox Bi is temporarily expanded to new size as follows:

wnewij = max(woldij , x
u
j )

vnewij = min(voldij , x
l
j), ∀j ∈ [1, n]

(5)

Then, the newly expanded Bi will be tested for undesired
overlaps with all of the hyperboxes representing the other
classes (i.e. different from the class associated with Bi).
There are four overlap test cases shown in [3]. If there is
no overlapping area occurring, the new size of Bi is kept.
Otherwise, Bi is reverted to the coordinates before expanding
and the next hyperbox candidate is considered.

For an unseen pattern, its predicted class is the class of
the hyperbox representing the highest membership value for
that input pattern among all existing hyperboxes in the model.
In the case when many hyperboxes representing K different
classes have the same maximum membership degree (bwin),
an additional criterion is used to find the appropriate class for
X . The final class of X is the class ck with the highest score
of P(ck|X) given by:

P(ck|X) =

∑
j∈Ikwin

nj · bj∑
i∈Iwin

ni · bi
(6)

where k ∈ [1,K] and Iwin = {i, if bi = bwin} comprises
the indexes of all hyperboxes with the maximum membership
value of bwin, Ikwin = {j, if class(Bj) = ck and bj = bwin}
is a subset of Iwin containing indexes of the k-th class, and ni
is the number of training samples covered by hyperbox Bi. We
would like to refer the interested readers to references [9] and
[18] for the detailed algorithm as well as its time complexity.

III. PROPOSED METHOD

A. Formal Description

Let TN = {(X l
i , X

u
i , X

d
i , ci)}Ni=1 be N training patterns,

where ci is the class of the i-th pattern, X l
i = (xli1, . . . , x

l
in)

and Xu
i = (xui1, . . . , x

u
in) are n continuous attributes (de-

termined in a unit hyper-cube [0, 1]n) of lower bound X l
i

and upper bound Xu
i for the i-th training sample, Xd

i =
(xdi1, . . . , x

d
ir) represent r discrete attributes for the i-th train-

ing sample, xdij is a categorical value of the j-th categorical
feature (Adj ) at the i-th training sample, xdij ∈ DOM(Adj ) =



4

{a1j , a2j , . . . , anjj}, where DOM(Adj ) is a domain of discrete
values for the categorical attribute Adj and nj is the number of
symbolic values of Adj . This paper proposes an online learning
algorithm to train an efficient GFMM classifier from TN .
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Fig. 1. The extended architecture of GFMMNN for mixed-attribute data

1) Architecture of GFMMNN for Mixed-Attribute Data:
First of all, we need to expand the architecture of the

GFMMNN for mixed-attribute data. Instead of using 2n input
nodes as in the GFMM model for continuous data, we will
need 2n + r nodes for the input layer. The first 2n nodes
are lower bound and upper bound nodes for n numerical
features, respectively. The last r remaining nodes correspond
to r categorical features in each input pattern. These r input
nodes are connected to m hyperboxes by connection weights
stored in a matrix D. New architecture of the GFMMNN
is shown in Fig. 1. Beside the minimum points Vi and the
maximum points Wi, each hypebox Bi in the hidden layer
also contains a vector Di storing r discrete-valued sets. Each
element dij ∈ Di (1 ≤ j ≤ r) is a set of symbolic values
with their cardinalities for the j-th categorical dimension of
the hyperbox Bi. For example, di1 = {apple : 5, orange : 1}
means that the first categorical feature of the hyperbox Bi
contains 5 values of apple and 1 value of orange. The values of
vectors Vi, Wi, and Di for each hyperbox Bi are generated and
adjusted during the learning process. The membership function
of each hyperbox Bi with regard to each input pattern with
mixed-attribute X = (X l, Xu, Xd, cX) is modified as follows:

bi(X,Bi) = α ·
n

min
j=1

(min([1− f(xuj − wij , γj)],

[1− f(vij − xlj , γj)])) +
1− α
r
·
r∑

j=1

Pj(x
d
j ∈ dij)

(7)

where α (α ∈ [0, 1]) is a trade-off factor regulating the
contribution level of numerical features part and categorical
features part to the membership score, and Pj(x

d
j ∈ dij)

is a probability of encountering a symbolic value xdj in the

j-th categorical attribute of the hyperbox Bi. This probability
is formally defined as follows:

Pj(x
d
j ∈ dij) =

|{a ∈ dij |a = xdj}|
|dij |

(8)

where |·| is the cardinality of a set. For the above example, we
obtain Pj({orange} ∈ di1) = 1/6, Pj({apple} ∈ di1) = 5/6,
and Pj({banana} ∈ di1) = 0. Unlike the numerical part in
the membership function, we use an average operation for
the categorical part to reduce sensitivity to the membership
value. If we also use the min operator for the categorical part,
the membership value for the categorical features will get the
value of zero when there is only one discrete feature getting
a new symbolic value.

2) Extended Improved Online Learning Algorithm for
Mixed-Attribute Data Classification:

To create new hyperboxes or adjust existing hyperboxes to-
wards learning mixed-attribute training samples in the GFMM
model, we need to expand the current improved learning
algorithm presented in subsection II-B, denoted by EIOL-
GFMM in this paper. The proposed modifications include
the expansion condition for categorical features, the way of
accommodating a categorical value into the hyperbox, and the
overlap test for categorical features.

For each training sample, X = [X l, Xu, Xd, cX ] ∈ TN ,
the algorithm first filters all of the existing hyperboxes repre-
senting the same class as cX . Then, the membership values
of X in these selected hyperboxes are calculated and sorted
in descending order. After that, in turn, we select expand-
able hyperbox candidates starting from the hyperbox with
the highest membership degree if the highest membership
score is smaller than one. Assuming that Bi is the currently
considered hyperbox, the numerical features of Bi are checked
for the maximum hyperbox size condition as shown in (4). If
the expansion condition for continuous features is satisfied,
the algorithm continues to check the constraint for discrete
features.

Entropy-based measures can be used to assess the het-
erogeneity of data in clusters, and they are appropriate for
clustering of categorical data due to the lack of explicit
distance measures between discrete values [19]. We propose
to use the change in the entropy value of categorical values
contained in the hyperbox to decide whether the current
hyperbox can be expanded to accommodate the categorical
values of a new training sample. Given a categorical attribute
j, let Hj(Bi) be the current entropy of hyperbox Bi for the
j-th categorical feature, computed from the probability of
all current categorical values stored in the j-th attribute as
follows:

Hj(Bi) = −
Nj∑

l=1

Pj(al ∈ dij) · log2 Pj(al ∈ dij) (9)

where Nj is the number of different categorical values (al) in
the j-th attribute, and Pj is defined in (8). It is clear that if
we add a new sample to the hyperbox for which most of the
sample’s categorical values existed in the categorical attributes
of the hyperbox, the change in the entropy of that hyperbox
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is small. In contrast, if we add a sample into the hyperbox
for which most of the sample’s categorical values are new
symbolic values to the set of existing discrete attributes of the
hyperbox, the homogeneity of this hyperbox is significantly
changed, and so the entropy will increase. As a result, we
can use the change in the entropy of the hypebox as an
expansion condition for categorical attributes. This entropy
changing value is defined in (10) for each discrete feature
j of each hyperbox candidate Bi.

Zj = Hj(Bi ∪ {X})−
ni

ni + 1
Hj(Bi) (10)

where Hj(Bi ∪ {X}) is the entropy of the hyperbox Bi on
the j-th attribute after covering the input pattern X , computed
using (9), ni is the number of samples contained in the
hyperbox Bi (ni is also equal to the summation of cardinalities
of categorical values on the dimension j).

Based on Zj , we have two ways to construct the expansion
condition for categorical attributes:
• The first method is similar to the expansion condition

for continuous features. The extended algorithm using
this way is denoted by EIOL-GFMM-v1 in this paper.
We require the change in the entropy for every categor-
ical attribute smaller than a maximum entropy changing
threshold δ for all categorical dimensions:

Zj ≤ δ (11)

• The second approach to build the expansion condition for
categorical features uses a weaker condition compared
to the first way. The proposed online learning algorithm
adopting this condition is called EIOL-GFMM-v2 in this
paper. This method requires the average change in the
entropy of all of the r categorical attributes smaller than
a maximum average entropy changing threshold δ:

r∑

j=1

Zj ≤ δ (12)

If both conditions for categorical and numerical features
are met for the hyperbox Bi, it will be temporarily expanded
to new coordinates. The expansion of numerical features is
performed using (5). Each categorical feature dij of Bi is
expanded as follows:

dnewij =

{
doldij ∪ {xdj : 1}, if @aj ∈ doldij : aj = xdj
doldij .update(aj), if ∃aj ∈ doldij : aj = xdj

(13)

where update(aj) is a function to increase the number of
elements of the categorical value aj by 1. After that, an overlap
checking procedure is performed for the newly expanded Bi to
examine whether Bi overlaps with any hyperboxes belonging
to other classes. In the improved online learning algorithm
for numerical features, only four overlap test cases are used
as in the original online learning algorithm. However, these
four cases are not sufficient to identify all potential overlap
cases between two hyperboxes. Therefore, in this extended
version, we will deploy a similarity measure between two
hyperboxes based on their smallest gap introduced in [6] to
check the overlap for numerical features between Bi and other

hyperboxes Bk representing different classes. This similarity
measure sik is defined in (14).

sik =
n

min
j=1

[min(1−f(vkj−wij , 1), 1−f(vij−wkj , 1))] (14)

where n is the number of continuous features, f is a ramp
function given in (3). If Bi and Bk overlap with each other,
sik = 1; otherwise, sik < 1. If Bi does not overlap with any
Bk representing other classes on the numerical features, we
do not need to check the overlap conditions for their discrete
features. Otherwise, we have to verify the overlap for the
discrete features between Bi and hyperboxes Bk overlapping
with Bi on the continuous features. Let Ωij and Ωkj be the
set of categorical values on the j-th discrete attribute of two
hyperboxes Bi and Bk, respectively. Bi overlaps with Bk on
the j-th categorical feature if and only if:

Ωj = Ωij ∩ Ωkj 6= ∅ and
∃aj ∈ Ωj : Pj(aj ∈ dij) = Pj(aj ∈ dkj)

(15)

where Pj is defined in (8). Bi overlaps with Bk on discrete
attributes if the equation (15) is true for all of the r categorical
features of these two hyperboxes.

If the hyperbox candidate Bi does not overlap with any
hyperboxes Bk representing other classes on either categorical
or continuous features, the new coordinates of Bi remain
unchanged and the algorithm continues with the next training
sample. Otherwise, the coordinates of Bi are reverted to
the previous values and the hyperbox candidate with the
next highest membership value is selected as an expandable
hyperbox candidate, and the above steps are re-iterated.

If none of the hyperbox candidates can be extended to
accommodate the input pattern X , a new hyperbox Bi is
generated as follows. For each numerical feature j, we set
vij = xlj , wij = xuj ,∀j ∈ [1, n], and for each categorical
feature j, we assign dij = {xdj : 1},∀j ∈ [1, r].

The classification phase of the EIOL-GFMM algorithm
remains unchanged as in the original IOL-GFMM algorithm.
We can see that the way of working of EIOL-GFMM algorithm
itself can explain the reason leading to the classification results
based on the selection of the hyperbox with the maximum
membership degree.

B. Properties of the Change in Entropy of Categorical Fea-
tures when Accommodating New Training Samples

This section presents several interesting properties related
to the change of the entropy on each categorical attribute of a
hyperbox Bi when accommodating a new training sample X .

Property 1. When covering an input pattern, the change of the
entropy on each discrete attribute j of Bi obtains its maximum
value if and only if that attribute j includes a new categorical
value which does not exist in the list of its current categorical
values. Formally,

dnewij = doldij ∪ {xdj : 1} ⇒ Zj 7→ max (16)

Proof. See Section I in the supplemental material.



6

Property 2. The upper bound of the change in the entropy for
every categorical dimension j of Bi depends on the current
number of samples included in Bi. That is:

Zj ≤ log2(ni + 1)− ni

ni + 1
log2 ni (17)

Proof. See Section II in the supplemental material.

Property 3. The change of the entropy for each categorical
dimension j always falls in the range of [0, 1]:

0 ≤ Zj ≤ 1; ∀j ∈ [1, r]

Proof. See Section III in the supplemental material.

Property 3 also confirms that 0 ≤ δ ≤ 1.

Property 4. When the number of samples contained in Bi
approaches infinity, the change of the entropy for every cate-
gorical dimension will be limited at 0. Formally,

lim
ni→+∞

Zj = 0, ∀j ∈ [1, r] (18)

Proof. See Section IV in the supplemental material.

Property 4 indicates that when the number of samples in-
cluded in each hyperbox Bi increases, the expansion condition
for categorical attributes of this hyperbox becomes easier to
be satisfied.

IV. EXPERIMENTAL RESULTS

The main purposes of the experiments in this section are to

• Analyze the critical roles of parameters α and δ on
classification accuracy for the proposed method

• Compare the performance of the proposed method to
relevant approaches of GFMMNN for mixed-attribute
data using fixed settings and tuning parameters

• Assess several different methods to estimate the values
of α if we have sufficient samples at the training time.

These experiments were conducted on 14 datasets taken
from the UCI machine learning repository 1. These datasets
were used in [10] to evaluate different methods to handle
mixed-attribute data using the GFMMNN. We used the same
datasets to compare our proposed approach to the results
presented in that research. The details of these datasets can
also be found in subsection V.A in the supplemental document.
All of the experimental datasets in this paper are class-
imbalanced, so we will use the class balanced accuracy (CBA)
metric to assess the performance of classification algorithms.
The superior facets of the CBA in comparison to other metrics
for the class-imbalanced datasets were shown in [10] and [20].

1https://archive.ics.uci.edu/ml/datasets.php

A. Analyzing the Sensitivity of Parameters

There are three important parameters affecting the classifi-
cation performance of the proposed method, i.e., the maximum
hyperbox size for continuous attributes (θ), the trade-off factor
(α) regarding the contribution levels of continuous and discrete
attributes to the membership function, and the maximum
entropy changing threshold (δ) for discrete attributes. The role
of θ was analyzed in a recent study [21], in which smaller
values of θ usually result in better performance than the use
of larger values of θ does. However, the smaller values of θ
are, the more complex the final model is (i.e. the larger number
of generated hyperboxes). In this section, we only study the
influence of two new parameters introduced in our proposed
method, i.e., δ and α.

1) Parameter α:
To evaluate the impact of α on the performance of the

EIOL-GFMM algorithms, we have changed the values of α
from 0 to 1 with step 0.1 and recorded the average CBA scores
using 10 times repeated stratified 4-fold cross-validation for 11
mixed-attribute datasets. The impact of α is studied for two
cases, i.e., large-sized hyperboxes and small-sized hyperboxes.
To obtain the large-sized hyperboxes, we established the
parameters θ = δ = 1 so that the expansion process of
hyperboxes is not constrained. To achieve small-sized resulting
hyperboxes, we used the small values for both θ and δ, i.e.,
θ = δ = 0.1 in this experiment. Fig. 2 shows the change in
the CBA for different values of α in the case of large-sized
hyperboxes. For δ = 1, the behaviors of the EIOL-GFMM-v1
and EIOL-GFMM-v2 algorithms are identical. Fig. 3 presents
the change in the CBA results for different values of α in
the case of small-sized hyperboxes for both EIOL-GFMM
algorithms. We only present the results for a representative flag
dataset. The results of the remaining datasets are presented in
Figs. S1, S2 and S3 in the supplemental document.
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Fig. 2. The change in the class balanced accuracy according to the different
values of α for the flag dataset (θ = 1, δ = 1).

In general, the CBA values of both proposed learning
algorithms at α = 0 (using categorical features only) and
α = 1 (using numerical features only) are usually smaller
than the results of using both types of features. The impact
of α on both EIOL-GFMM-v1 and EIOL-GFMM-v2 algo-
rithms are similar for many datasets. It can be observed that
the influence of α on the GFMM models with small-sized
hyperboxes is significantly higher than that with large-sized
hyperboxes. This is demonstrated by the degree of oscillation
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(b) EIOL-GFMM-v2

Fig. 3. The change in the class balanced accuracy according to the different
values of α for the flag dataset (θ = 0.1, δ = 0.1).

in classification accuracy among different values of α in Fig.
2 and Fig. 3. It is because the value of α affects the results of
the membership function, and the membership value in turn
impacts the selection of the final hyperbox for each unseen
pattern. In the case of small-sized hyperboxes, the number of
hyperboxes is high and the small change in the membership
value can lead to a significant change in the selected hyperbox.

As can be seen, the selection of α can result in the change
in the classification performance, thus this parameter needs to
be tuned in the learning process. However, for a large number
of training samples, performing a hyper-parameter tuning step
for α is time-consuming. For the online learning process, we
also face another scenario, where we do not have sufficient
samples at the training time. In this case, we cannot conduct
the tuning process using a cross-validation technique to select
an appropriate α for the learning algorithms. Therefore, we
usually use a fixed setting for α. From the empirical results
in Figs. 2, 3 and Figs. S1, S2, and S3 in the supplemental
document, it is interesting to observe that the highest CBA
results are usually obtained for the value of α near the
threshold n/(n + r). Therefore, in the case of using a fixed
setting for α, we will set α = n/(n+r). With this setting, each
feature is treated as equally important in decision making.

2) Parameter δ:
In this subsection, we will assess the impact of the max-

imum entropy changing threshold (δ) for discrete attributes
on the classification performance. To rule out the influence of
θ, we set θ = 1 so that numerical features can be expanded
without any limitation. From the above experimental results,
we used α = n/(n + r). Therefore, the performance of the
learning algorithms depends on the selection of δ. We changed
δ from 0.05 to 0.1 and kept the change step of 0.1 up to 1.
The impact of δ on the IOL-GFMM-v1 and IOL-GFMM-v2
algorithms is illustrated in Fig. 4 for the flag dataset. The
results for the remaining datasets can be found in Figs. S4
and S5 in the supplemental document.

From these results, it can be observed that the change in
the CBA results for the EIOL-GFMM-v1 using δ < 0.7 is
very small. For α ≥ 0.7, its impact on the classification
performance of the EIOL-GFMM-v1 on a number of datasets
such as autralian, heart, and post operative is significant,
especially in the case of δ = 1. In general, the classification
error for δ ≥ 0.7 in the EIOL-GFMM-v1 is relatively high.
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Fig. 4. The change in the class balanced accuracy according to the different
values of δ for the flag dataset (θ = 1, α = n/(n+ r)).

For the EIOL-GFMM-v2, however, the change in CBA
values is small for δ < 0.2 and δ ≥ 0.7. In contrast, the
classification performance has significantly changed for the
values of δ from 0.2 to 0.7. It can be seen that the impact
of δ on the performance of the EIOL-GFMM-v2 algorithm
is higher than that on the EIOL-GFMM-v1 algorithm. It
is because the hyperbox expansion procedure for discrete
features in the EIOL-GFMM-v2 algorithm can be performed
much easier than that in the EIOL-GFMM-v1 algorithm. As
a result, the number of generated hyperboxes in the EIOL-
GFMM-v1 algorithm is higher than that of hyperboxes in
the EIOL-GFMM-v2 algorithm, and so it can capture better
the underlying data distribution. For the EIOL-GFMM-v1
algorithm, each discrete feature can only accommodate a new
categorical value if the number of samples for the current
categorical values is sufficiently large according to Properties 1
and 2. As a result the homogeneity for each categorical feature
of hyperboxes in the EIOL-GFMM-v1 is higher compared to
that in the EIOL-GFMM-v2. Therefore, the change in the
classification performance among the different values of δ
in the first version of the proposed method is smaller in
comparison to the second version.

B. Comparing the Performance of the EIOL-GFMM Algo-
rithms with Other Methods using the Fixed-Parameter Settings

As we assume that there will not be sufficient number
of training samples up front in the considered online learn-
ing scenarios, as discussed earlier, we will use a fixed set-
ting for certain hyper-parameters which cannot be reliably
tuned/optimised using available data. This section is to assess
the proposed method in comparison to other solutions to deal
with mixed-attribute data for the GFMMNN shown in [10]
using previously evaluated fixed values of hyper-parameters.
In particular, the proposed method will be compared with two
learning algorithms with the mixed-attribute handling ability
for the GFMM model including the Onln-GFMM-M1 [15] and
the Onln-GFMM-M2 [16]. We will also compare the proposed
method to the use of the original IOL-GFMM algorithm along
with various encoding methods for categorical features.

1) Algorithms with Mixed-Attribute learning ability:
In [10], the different learning methods were compared to

each other using three different settings for θ, i.e., a small
size θ = 0.1, a large size θ = 0.7, and an extreme case θ = 1.
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To compare the proposed method to the previous solutions,
we also used the same settings for the θ parameter. For the γ
parameter, we set γ = 1 as recommended in [22]. In addition
to θ and γ, the existing learning algorithms for the GFMMNN
with mixed-feature handling ability have their own hyper-
parameters. The Onln-GFMM-M1 algorithm depends on the
η parameter, which represents the maximum hyperbox size
for discrete features. We used η ∈ {0.1, 0.7, 1} as shown in
[10]. The Onln-GFMM-M2 algorithm has the β parameter to
control the minimum number of categorical features matched
between the selected hyperbox and the input pattern so that
hyperbox can be expanded to cover the input pattern. Similarly
to [10], we used β ∈ {25%, 50%, 75%} of the total number
of features for each dataset. To be fair in the comparison, we
used the parameter δ ∈ {0.1, 0.7, 1} and α = n/(n + r) for
the proposed learning algorithms.

The average CBA values over 10 times repeated stratified
4-fold cross-validation with different parameter settings are
shown in Table S.II in the supplemental document. It can be
easily observed that in extreme cases (the largest values of
parameters), the classification performance of our proposed
method significantly outperforms the Onln-GFMM-M1 and
Onln-GFMM-M2 algorithms. To facilitate the comparison of
results, for each value of θ, we will use the best results
of the remaining parameter to rank four algorithms over 14
datasets. For example, for θ = 0.7, the Onln-GFMM-M1
usually obtains the best performance using η = 0.1, the Onln-
GFMM-M2 achieve its best results with β = 0.75r, and two
proposed methods attain their best results using δ = 0.1.
The average ranking of algorithms using their best settings
is shown in Table I.

TABLE I
THE AVERAGE RANK FOR THE ALGORITHMS USING THEIR BEST

SETTINGS

θ Method Other parameters Average rank

0.1

Onln-GFMM-M1 η = 0.1 3
Onln-GFMM-M2 β = 0.75r 3.214
EIOL-GFMM-v1 δ = 0.1 1.893
EIOL-GFMM-v2 δ = 0.1 1.893

0.7

Onln-GFMM-M1 η = 0.1 2.429
Onln-GFMM-M2 β = 0.75r 3.857
EIOL-GFMM-v1 δ = 0.1 1.607
EIOL-GFMM-v2 δ = 0.1 2.107

1

Onln-GFMM-M1 η = 0.1 2.429
Onln-GFMM-M2 β = 0.75r 3.857
EIOL-GFMM-v1 δ = 0.1 1.679
EIOL-GFMM-v2 δ = 0.1 2.036

It can be seen that the classification performance of our
proposed methods is better than that of two existing algorithms
with the mixed-attribute learning ability for three different
thresholds of θ. To conclude if there are statistically signif-
icant differences among algorithms, we will carry out a non-
parametric test procedure as recommended in [23] employing
the Friedman rank-sum test with a confidence level of 95%
(a significance level ε = 0.05). The null hypothesis is “there
are no statistical differences between learning algorithms”, and
if this hypothesis is rejected, then we perform the Nemenyi
post-hoc test to determine the particular differences. For Z
datasets and M algorithms, the Friedman statistic distribution
is computed using average ranks Rj(j ∈ [1,M ]) of each

algorithm j as follows:

χ2
F =

12Z

M · (M + 1)



M∑

j=1

R2
j −

M · (M + 1)2

4


 (19)

From χ2
F , a F-distribution with M−1 and (M−1) ·(N−1)

degrees of freedom can be calculated using (20).

FF =
(Z − 1) · χ2

F

Z · (M − 1)− χ2
F

(20)

The rejection of the null hypothesis occurs with the sig-
nificance level ε if FF is smaller than a critical value of
F (M − 1, (M − 1) · (N − 1), ε). In this experiment, we
used 14 datasets and four learning algorithms, so FF is
distributed according to the F-distribution with 4 − 1 = 3
and (4 − 1) · (14 − 1) = 39 degrees of freedom. The critical
value of F (3, 39) for ε = 0.05 is 2.845.

CD = 1.254

4 3 2 1

1.893 EIOL-GFMM-v1
1.893 EIOL-GFMM-v23Onln-GFMM-M1

3.214Onln-GFMM-M2

Fig. 5. Critical difference diagram for four learning algorithms (θ = 0.1).

For θ = 0.1, we obtain FF = 5.5539 > 2.845, and
so the null hypothesis is rejected. This means that there
are significant differences between the results of learning
algorithms. Using the Nemenyi post-hoc test, we obtain a
critical difference (CD) diagram in Fig. 5. The groups of
algorithms that are not significantly different from each other
are connected by a solid line. We can see that our proposed
methods are statistically better compared to the Onln-GFMM-
M2 algorithm with the selected settings. However, there is no
statistically significant difference in the classification perfor-
mance between the proposed methods and the Onln-GFMM-
M1 algorithm.

CD = 1.254

4 3 2 1

1.607 EIOL-GFMM-v1
2.107 EIOL-GFMM-v22.429Onln-GFMM-M1

3.857Onln-GFMM-M2

Fig. 6. Critical difference diagram for four learning algorithms (θ = 0.7).

For θ = 0.7, we have FF = 16.5238 > 2.845, and so the
null hypothesis is also rejected. Applying the Nemenyi post-
hoc test, we have a CD diagram in Fig. 6. We can observe
that there are no statistically significant differences among the
obtained empirical results in the groups of two proposed learn-
ing algorithms and the Onln-GFMM-M1 algorithm. However,
the algorithms in this group significantly outperform the Onln-
GFMM-M2 algorithm.

Similarly, for θ = 1, we obtain FF = 15.7716 > 2.845,
and so the null hypothesis is rejected as well. Fig. 7 shows the
CD diagram using the Nemenyi post-hoc test. In this case, the
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CD = 1.254

4 3 2 1

1.679 EIOL-GFMM-v1
2.036 EIOL-GFMM-v22.429Onln-GFMM-M1

3.857Onln-GFMM-M2

Fig. 7. Critical difference diagram for four learning algorithms (θ = 1).

statistical difference in the classification performance among
the four methods is the same as in the case of θ = 0.7.

For the complexity of the resulting GFMM models using
these learning algorithms, the average number of generated
hyperboxes for each method is shown in Table S.III in the
supplemental document. We can see that in most of the cases,
the complexity of the model using the Onln-GFMM-M2 algo-
rithm is lowest, while the complexity of the GFMMNN using
the EIOL-GFMM-v1 is highest. The number of generated
hyperboxes using the EIOL-GFMM-v2 algorithm is usually
smaller than that using the Onln-GFMM-M1 algorithm.

2) Comparing the Proposed Method to the Original Learn-
ing Algorithm using Encoding Methods:

In this subsection, we will compare the EIOL-GFMM al-
gorithms to the original IOL-GFMM algorithm using different
encoding techniques. In [10], there are eight encoding methods
used to transform the categorical features into numerical
features, i.e., Leave-One-Out (LOO), CatBoost, label, one-hot,
target, James-Stein, Helmert, and Sum encoding techniques.
Similarly to the above experiment, we will consider three
different thresholds for θ including 0.1, 0.7, and 1. To be fair
in the comparison, we established the value of δ equal to θ.

The average CBA values over 10 times repeated stratified
4-fold cross-validation of these approaches are shown in Table
S.IV, and their ranks are presented in Table S.V in the
supplemental document. The average rank for these methods
for different thresholds of θ is shown in Table II, in which
the best results are highlighted in bold. In general, we can see
that the average performance of our proposed method is better
than that using the original IOL-GFMM algorithm along with
encoding techniques. One of the strong points of our proposed
method is that it does not use any encoding method for discrete
attributes.

TABLE II
THE AVERAGE RANKS FOR THE PROPOSED METHOD AND THE ORIGINAL

IOL-GFMM USING DIFFERENT ENCODING TECHNIQUES

Method θ(= δ)
0.1 0.7 1

IOL-GFMM + CatBoost 5.357 5.071 5
IOL-GFMM + One-hot 8.179 8.036 7.536
IOL-GFMM + LOO 4.857 4.786 5.643
IOL-GFMM + Label 5.107 5.607 5.464
IOL-GFMM + Target 5.464 4.464 5.429
IOL-GFMM + James-Stein 5.250 4.536 5.214
IOL-GFMM + Helmert 7.893 7.750 7.179
IOL-GFMM + Sum 5.607 5.750 7.821
EIOL-GFMM-v1 3.679 3.536 2.857
EIOL-GFMM-v2 3.607 5.464 2.857

Similarly to the above experiments, we will use a statistical
test procedure to analyze the statistical difference among the

methods. The critical value of F (9, 117) for 10 methods and
14 datasets at ε = 0.05 is 1.9608.

For θ(= δ) = 0.1, we obtain FF = 4.289 > 1.9608,
and so there are statistically significant differences among
methods. Using the Nemenyi post-hoc test, we obtain a CD
diagram in Fig. 8. We can see that the proposed method is
significantly better than the original IOL-GFMM algorithm
using the one-hot or Helmert encoding method. However, there
are no statistical differences between the proposed methods
and the IOL-GFMM algorithm using the remaining encoding
techniques.

CD = 3.620

10 9 8 7 6 5 4 3 2 1

3.607 EIOL-GFMM-v2
3.679 EIOL-GFMM-v1
4.857 IOL-GFMM + LOO
5.107 IOL-GFMM + Label

5.25 IOL-GFMM + James-Stein5.357IOL-GFMM + CatBoost

5.464IOL-GFMM + Target

5.607IOL-GFMM + Sum

7.893IOL-GFMM + Helmert

8.179IOL-GFMM + One-hot

Fig. 8. Critical difference diagram for the proposed method and the original
algorithm using encoding methods (θ = 0.1).

For θ(= δ) = 0.7, we have FF = 3.6596 > 1.9608, and
so there are also statistically significant differences among
methods in this case. Employing the Nemenyi post-hoc test,
we obtain a CD diagram in Fig. 9. In this case, the EIOL-
GFMM-v1 is significantly better than the original IOL-GFMM
algorithm using the one-hot or Helmert encoding method as
well, but it does not statistically outperform the original al-
gorithm using the remaining encoding approaches. Moreover,
in this case, there is not sufficient evidence to conclude that
the EIOL-GFMM-v2 is statistically better than the original
algorithm employing encoding methods.

CD = 3.620

10 9 8 7 6 5 4 3 2 1

3.536 EIOL-GFMM-v1
4.464 IOL-GFMM + Target
4.536 IOL-GFMM + James-Stein
4.786 IOL-GFMM + LOO
5.071 IOL-GFMM + CatBoost5.464EIOL-GFMM-v2

5.607IOL-GFMM + Label

5.75IOL-GFMM + Sum

7.75IOL-GFMM + Helmert

8.036IOL-GFMM + One-hot

Fig. 9. Critical difference diagram for the proposed method and the original
algorithm using encoding methods (θ = 0.7).
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2.857 EIOL-GFMM-v1
2.857 EIOL-GFMM-v2

5 IOL-GFMM + CatBoost
5.214 IOL-GFMM + James-Stein
5.429 IOL-GFMM + Target5.464IOL-GFMM + Label

5.643IOL-GFMM + LOO

7.179IOL-GFMM + Helmert

7.536IOL-GFMM + One-hot

7.821IOL-GFMM + Sum

Fig. 10. Critical difference diagram for the proposed method and the original
algorithm using encoding methods (θ = 1).
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For the extreme case θ(= δ) = 1, we obtain FF =
6.2138 > 1.9608, and so the null hypothesis is also rejected.
Fig. 10 shows the CD diagram, in this case, using the Nemenyi
post-hoc test. It can be observed that there are no statistical
differences among the original algorithms using encoding
methods. Our proposed methods significantly outperform the
original learning algorithm using the one-hot, sum, or Helmert
encoding method. However, there are no statistical differences
between our proposed methods and the original IOL-GFMM
algorithm using the remaining encoding approaches.

C. Evaluating the Role of the Hyper-Parameter Tuning on the
Performance of the EIOL-GFMM Algorithms

1) Hyper-Parameter Tuning and the Estimation of α:
In the case that we are given a large number of samples at

the training time to build an initial model, we can perform a
hyperparameter tuning step for α but this process is time-
consuming. Meanwhile, the empirical results in subsection
IV-A1 indicate the relation between suitable values of α
and the ratio of the number of continuous features over the
total number of features. In this subsection, we propose a
simple way to estimate the appropriate value of α in a data-
driven manner. The estimation method does not loop through
predefined values of α as in the tuning process, and so they
will run faster than the hyper-parameter tuning step for α.

For each training fold Ti, we split it into three inner
folds. To estimate the value of α for each training fold Ti,
we will repeat the learning process three times. Each time
two inner folds are used to build the GFMM model and
the remaining inner fold is used as a validation set. For
each inner training fold Tij(j ∈ [1, 3]), we split it into two
separate parts, in which each part contains either continuous
attributes or discrete attributes. Then, we will construct two
separate GFMM models using the EIOL-GFMM algorithm
from these two training parts. After that, we compute the
CBA value for each trained model using the inner validation
fold Vij . Let CBAij1 and CBAij2 be the CBA scores for
the GFMM models trained on continuous features only and
discrete features only, respectively. We have two ways to
estimate the value of α for each training fold Ti. The first
way uses both the CBA values and the number of features,
denoted Est-α-v1 in this paper, as follows:

α̂ =

3∑
j=1

CBAij1 · n

3∑
j=1

CBAij1 · n+
3∑
j=1

CBAij2 · r
(21)

The second estimation way of α uses only the obtained CBA
values, called Est-α-v2, as follows:

α̂ =

3∑
j=1

CBAij1

3∑
j=1

CBAij1 +
3∑
j=1

CBAij2

(22)

Two ways of estimating α are summarized in Fig. S6 in the
supplemental material. After obtaining the value of α, we use it

to train a final model using the whole mixed-attribute training
fold Ti and evaluate its performance using the i-th testing
fold. The above process is repeated 40 times (10 times repeated
stratified 4-fold cross-validation) to compare the average CBA
values among different methods.

This section will compare the effectiveness of two above
estimation methods to the fixed setting of α = n/(n+ r) and
the parameter tuning method for α. In the parameter tuning
method, for each training fold Ti, we split Ti into three inner
training folds. Two inner training folds are used to build the
GFMM model using the proposed EIOL-GFMM algorithm
and the remaining fold is used as a validation fold. We will
iterate this process three times to obtain three CBA values from
three validation folds for each value α ∈ {0, 0.1, . . . , 0.9, 1}.
The value of α resulting in the highest average CBA value over
three inner validation folds is used to build the final GFMM
model on the whole training fold Ti, and the trained model is
assessed by the CBA value on the i-th testing fold. The whole
process is repeated 40 times for different training folds Ti.

The average CBA results of 40 GFMM models trained using
the proposed algorithms with two estimation methods of α,
the parameter tuning method and the fixed setting of α for 11
datasets are shown in Table S.VI in the supplemental material.
The rank for these methods is presented in Table S.VII in
the supplemental document. It is noted that the results are
reported over 11 out of 14 experimental datasets because these
datasets contain both continuous and discrete features while
three remaining datasets consist of only discrete features. The
average rank over 11 datasets for different methods of finding
the value of α for the GFMM model trained using the proposed
algorithm is shown in Table III. Similarly to subsection IV-A1,
we compare the methods of finding α in two cases, i.e., small-
sized hyperboxes (θ = δ = 0.1) and large-sized hyperboxes
(θ = δ = 1). The best rank in each row is highlighted in bold.
In the case of θ = δ = 1, the behavior of both EIOL-GFMM-
v1 and EIOL-GFMM-v2 is the same, and so they lead to the
same results.

TABLE III
AVERAGE RANK FOR DIFFERENT METHODS USED TO FIND THE VALUES

FOR PARAMETER α

Algorithm θ = δ Tuning α Est-α-v1 Est-α-v2 α = n/(n+ r)
EIOL-GFMM-v1 0.1 2.727 2 3 2.273
EIOL-GFMM-v2 0.1 2.545 2.318 2.727 2.409
Both 1 2.273 2.773 2.273 2.682

We can observe that for small values of θ and δ, the
estimation method using the CBA values from two separate
models along with the number of features usually results in
the best average CBA values in comparison to the second es-
timation method, the parameter tuning approach, and the fixed
setting of α for both learning algorithms. However, the second
estimation method without using the number of features often
leads to the worst results. Interestingly, in this case, the fixed
value of α = n/(n+ r) shows slightly better results than the
hyper-parameter tuning method. In the case of generating the
largest hyperbox sizes, the best predictive results belong to the
models using the hyper-parameter tuning method and the Est-
α-v2 method. Meanwhile, the first estimation method usually



11

leads to the worst classification performance.
To explain these facts, we will examine the distribution

of the obtained values of α through 40 iterations and the
change in the corresponding CBA values. Fig. 11 shows the
distribution of the obtained α values for different methods in
the case of largest-sized hyperboxes for the flag dataset. The
results in the case of θ = δ = 0.1 are presented in Fig. 12.
Similar results for all of the remaining datasets can be found
in Figs. S7, S8, and S9 in the supplemental material.
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Fig. 11. The distribution of the obtained α values for different methods used
to find α and the CBA values for the flag dataset (θ = 1, δ = 1).
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Fig. 12. The distribution of the obtained α values for different methods used
to find α and the CBA values for the flag dataset (θ = 0.1, δ = 0.1).

We can see that, in both cases, the use of the hyper-
parameter tuning method returns a wide range of values for
α, in which the obtained median value of α locates near the
α value resulting in the best classification result. In the case
of small-sized hyperboxes, it can be seen that the deviation
in the classification results among adjacent values of α is
high. Therefore, a wide range of α values usually leads to
a low average classification result compared to the use of a
narrow range of α values near the best results. We can see
from Fig. 12, the obtained α values employing two estimation
methods are distributed in a narrower area than that using
the hyper-parameter tuning approach. Also, the range of the
obtained α values of the Est-α-v2 is wider than that using
the Est-α-v1 method. However, the range of the obtained α
values using the Est-α-v1 is nearer the α value leading to the
best classification performance than one using the Est-α-v2.
Hence, in this case, the Est-α-v1 method usually gives the best
classification results among the four methods.

In the case of largest-sized hyperboxes, the difference in the
performance among different values of α is small. Therefore,
the wide range of the obtained α values using the hyper-
parameter tuning method regularly leads to a better average
classification result compared to the outcomes employing other

methods. As can be seen from Fig. S7 in the supplemental
document that two estimation methods return a narrower range
of the obtained α values in comparison to the use of the hyper-
parameter tuning approach. However, in this case, the obtained
α values using the Est-α-v2 usually locates nearer the α values
leading to much better performance than those in the case of
using the Est-α-v1 method. Therefore, the performance of the
GFMM model using the Est-α-v2 outperforms that adopting
the Est-α-v1 method.

In short, the second estimation method is appropriate for
the model having a small number of hyperboxes, while the
first estimation method should be used in the case when the
resulting model has a large number of hyperboxes.

2) Comparing the EIOL-GFMM Algorithms to Other Algo-
rithms with the Mixed-Attribute Learning Ability:

In this experiment, we will compare the classification
performance of our proposed method and two existing al-
gorithms with the mixed-attribute learning ability using the
hyper-parameter tuning procedure for important parameters
in each learning algorithms. For the θ value in all learn-
ing algorithms, we will find its best parameter value in
the range of {0.1, 0.2, . . . , 0.9, 1} for each training fold.
The η parameter for the Onln-GFMM-M1 algorithm is
searched in the range of {0.1, 0.3, 0.5, 0.9, 1}. The search-
ing range of the β parameter for the Onln-GFMM-M2 is
{10%, 30%, 50%, 70%, 90%, 100%} of the total number of
categorical features. For the two proposed algorithms in
this paper, the δ parameter is searched in the range of
{0.1, 0.3, 0.5, 0.9, 1}, while the α value is sought in the range
of {0, 0.1, . . . , 0.9, 1}.

Each training fold Ti is split into three inner folds, in which
two inner folds are used for training a GFMM model using
learning algorithms. Then, we use the remaining fold to obtain
the CBA value. This process is repeated three times for every
inner validation fold. The combination of parameters resulting
in the best average CBA values through three validation folds
is used to train the final GFMM model using the whole
training fold Ti. After that, this model is evaluated using the
corresponding testing fold. This process is iterated 40 times
(10 times repeated stratified 4-fold cross-validation) for each
dataset. The average CBA results for four learning methods
using the above hyper-parameter tuning approach are shown
in Table S.VIII and their ranks are presented in Table S.IX in
the supplemental document. The average rank for each method
over 11 mixed-attribute datasets is shown in Table IV.

TABLE IV
AVERAGE RANKS FOR THE LEARNING ALGORITHMS USING THE

HYPER-PARAMETER TUNING APPROACH

Algorithm Average rank
Onln-GFMM-M1 3.182
Onln-GFMM-M2 2.909
EIOL-GFMM-v1 1.5
EIOL-GFMM-v2 2.409

We can observe that the two proposed learning algorithms
outperform two existing learning algorithms with the mixed-
attribute handling ability, in which the best performance be-
longs to the EIOL-GFMM-v1 algorithm. For the experimental
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results in subsection IV-B1, we can see that the Onln-GFMM-
M1 algorithm is better than the Onln-GFMM-M2 algorithm
using the fixed-parameter settings. However, by using the
hyper-parameter tuning method, the Onln-GFMM-M2 algo-
rithm overcomes the Onln-GFMM-M1. This is because of
the difference in the distribution between the inner training
set used to find the best combination of parameters and the
training fold used to build the final model. The Onln-GFMM-
M1 needs to use the entire training data to find the distance
between categorical values based on the relationship between
the occurrence frequency of discrete values and classes. These
distance values are deployed to build membership functions.
Therefore, when the training data change, the best combination
of parameters on the inner training folds no longer maintains
the superior classification performance when used on the
training fold Ti. Our proposed methods do not use the training
samples to build the similarity measure among categorical
features, and so they still achieve the best performance as in
the case of using the fixed parameter settings.

Interestingly, the classification performance of learning al-
gorithms using the hyper-parameter tuning method in several
datasets such as cmc, cmc, zoo, australian, and japanese credit
is worse than those using fixed parameter settings presented in
subsection IV-B1. This is because the representativeness and
distribution of the inner validation sets used to find the best
combination of parameters are different from the training and
testing folds. Therefore, the best parameters obtained from the
inner validation folds may not lead to the best classification
accuracy on the testing set. As a result, the hyper-parameter
tuning method does not always result in better performance
than the use of fixed parameters.

To verify the statistical difference in the performance among
the learning algorithms, we will use the above Friedman rank-
sum test. For 11 datasets and 4 learning algorithms, FF is
distributed according to the F-distribution with 4− 1 = 3 and
(4− 1) · (11− 1) = 30 degrees of freedom. The critical value
of F (3, 30) at a significant level ε = 0.05 is 2.9223. In this
case, we obtain FF = 4.884 > 2.9223. Therefore, there are
statistically significant differences among the four considering
algorithms. Using the Nemenyi post-hoc test, we achieve a
CD diagram in Fig. 13.

CD = 1.414

4 3 2 1

1.5 EIOL-GFMM-v1
2.409 EIOL-GFMM-v22.909Onln-GFMM-M2

3.182Onln-GFMM-M1

Fig. 13. A CD diagram of four learning algorithms using the hyper-parameter
tuning method.

We can see that there is a statistically significant difference
in the classification performance between the EIOL-GFMM-
v1 and the Onln-GFMM-M1 algorithms in this case. For
CD = 1.414, we can also conclude that the EIOL-GFMM-v1
algorithm significantly better than the Onln-GFMM-M2 al-
gorithm. However, the EIOL-GFMM-v2 does not statistically

outperform both existing learning algorithms with the mixed-
attribute learning ability.

V. CONCLUSION AND FUTURE WORK

This paper presented a new online learning algorithm for the
GFMMNN with mixed-attribute data. The proposed method
expands the current membership function for both continuous
and discrete features. We also extend the current architecture
of the GFMM model for mixed-attribute data and introduce
a new way of learning for categorical dimensions based on
the change in the entropy when accommodating new discrete
values without using any encoding methods. The experimental
results confirmed the superior classification performance of
our proposed method in comparison to the current solutions
to handle the mixed-type datasets for the GFMMNN.

Although the GFMMNN for mixed-attribute data itself can
explain the predicted results using the membership function to
select the appropriate hyperbox, to make it friendly and easy-
to-read for users, it is necessary to extract and optimize if-then
rule sets from the resulting hyperboxes for both continuous
and discrete features in the future studies. The interpretability
of predictive models is a critical factor when applying the
machine learning algorithms for high-stakes applications such
as medicine, finance, or criminal justice [24]. Furthermore, the
classification accuracy depends on the selection of parameters,
thus the next research should assess the use of optimization
algorithms such as genetic algorithms [25] to evolve the hy-
perboxes and optimize their hyperparameters simultaneously.
When applying the online learning algorithms for applications
in dynamic changing environments, these learning algorithms
need to detect and adapt to the change of the underlying
data distribution [4], [7], [26], [27], [28]. Therefore, one of
the potential research directions is to integrate the adaptation
ability into the proposed algorithm.
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I. PROOF OF PROPERTY 1 FROM THE MAIN PAPER

Property 1. When covering an input pattern, the change of the entropy on each discrete attribute j of Bi obtains its maximum
value if and only if that attribute j includes a new categorical value which does not exist in the list of its current categorical
values. Formally,

dnewij = doldij ∪ {xdj : 1} ⇒ Zj 7→ max

Proof. From the main paper, the current entropy of categorical values for the discrete feature j is computed as follows:

Hj(Bi) = −
Nj∑

l=1

Pj(al ∈ dij) · log2 Pj(al ∈ dij)

We have:

Pj(al ∈ dij) =
|{a ∈ dij |a = al}|

|dij |
=
ϕ(al)

ni

where ϕ(al) is a function returning the number of elements of al on the discrete dimension dij of Bi and ni is the number
of samples included in the hyperbox Bi. Therefore,

Hj(Bi) = −
Nj∑

l=1

ϕ(al)

ni
· log2

ϕ(al)

ni

Case 1: The j-th discrete feature includes a new categorical value xdj which does not exist in the current list of categorical
values of dij .

In this case, the number of categorical values on the discrete attribute j after including xdj is Nj + 1 and ϕ(al)(l ∈ [1, Nj ]

is unchanged. The number of samples contained in Bi is ni + 1. As a result, we obtain: Pj(xdj ∈ dij) =
1

ni + 1
Now, the new entropy on the discrete feature j when including xdj is:

H
(1)
j (Bi ∪ {X}) = −

Nj∑

l=1

Pj(al ∈ dij) · log2 Pj(al ∈ dij)− Pj(x
d
j ∈ dij) · log2 Pj(xdj ∈ dij)

= −
Nj∑

l=1

ϕ(al)

ni + 1
· log2

ϕ(al)

ni + 1
− 1

ni + 1
· log2

1

ni + 1

Case 2: The j-th discrete feature includes a categorical value xdj existed in the current list of categorical values of dij .
In this case, the number of distinct categorical values, Nj , storied on each of the j-th discrete dimension is unchanged,

while the number of samples included in Bi increases by 1. Without loss of generality, we assume that xdj = aNj
, then

ϕ(al) (l ∈ [1, Nj − 1] is unchanged, while ϕ(xdj ) = ϕnew(aNj ) = ϕold(aNj ) + 1. Therefore, Pj(xdj ∈ dij) =
ϕold(aNj ) + 1

ni + 1
The new entropy on the discrete feature j when including xdj is:

H
(2)
j (Bi ∪ {X}) = −

Nj−1∑

l=1

Pj(al ∈ dij) · log2 Pj(al ∈ dij)− Pj(x
d
j ∈ dij) · log2 Pj(xdj ∈ dij)

= −
Nj−1∑

l=1

ϕ(al)

ni + 1
· log2

ϕ(al)

ni + 1
− ϕold(aNj

) + 1

ni + 1
· log2

ϕold(aNj
) + 1

ni + 1

= −
Nj−1∑

l=1

ϕ(al)

ni + 1
· log2

ϕ(al)

ni + 1
− ϕold(aNj

)

ni + 1
· log2

ϕold(aNj
) + 1

ni + 1
− 1

ni + 1
· log2

ϕold(aNj
) + 1

ni + 1
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Because 1 ≤ ϕold(aNj
), we have − log2

ϕold(aNj
) + 1

ni + 1
< − log2

ϕold(aNj
)

ni + 1
and − log2

ϕold(aNj
) + 1

ni + 1
< − log2

1

ni + 1
Hence,

H
(2)
j (Bj ∪ {X}) <−

Nj−1∑

l=1

ϕ(al)

ni + 1
· log2

ϕ(al)

ni + 1
− ϕold(aNj

)

ni + 1
· log2

ϕold(aNj
)

ni + 1
− 1

ni + 1
· log2

1

ni + 1

= −
Nj∑

l=1

ϕ(al)

ni + 1
· log2

ϕ(al)

ni + 1
− 1

ni + 1
· log2

1

ni + 1
= H

(1)
j (Bj ∪ {X})

As a result, the change in the entropy for the hyperbox Bi on the j-th discrete attribute:

Z
(2)
j = H

(2)
j (Bj ∪ {X})−Hj(Bj) < H

(1)
j (Bj ∪ {X})−Hj(Bj) = Z

(1)
j

Therefore, the change in the entropy for each discrete dimension of the hyperbox Bi will takes its maximum value if the
categorical value on that categorical dimension of the input pattern does not appear in the current list of categorical values
stored on that discrete dimension. This property is proved.

II. PROOF OF PROPERTY 2 FROM THE MAIN PAPER

Property 2. The upper bound of the change in the entropy for every categorical dimension j of Bi depends on the current
number of samples included in Bi. That is:

Zj ≤ log2(ni + 1)− ni

ni + 1
log2 ni

Proof. Based on the Property 1, we know that the maximum entropy change occurs on the j-th categorical dimension when
it accommodates a new categorical value which does not exist in its current values. Hence, we obtain:

Zj ≤ Z(1)
j = H

(1)
j (Bi ∪ {X})−

ni

ni + 1
Hj(Bi)

= −
Nj∑

l=1

ϕ(al)

ni + 1
· log2

ϕ(al)

ni + 1
− 1

ni + 1
· log2

1

ni + 1
+

ni

ni + 1
·
Nj∑

l=1

ϕ(al)

ni
· log2

ϕ(al)

ni

= − 1

ni + 1

Nj∑

l=1

[ϕ(al) · [log2 ϕ(al)− log2(ni + 1)]] +
log2(ni + 1)

ni + 1
+

1

ni + 1
·
Nj∑

l=1

ϕ(al) · [log2 ϕ(al)− log2 ni]

=
log2(ni + 1)

ni + 1

Nj∑

l=1

ϕ(al) +
log2(ni + 1)

ni + 1
− log2 ni

ni + 1
·
Nj∑

l=1

ϕ(al)

=
log2(ni + 1)

ni + 1



Nj∑

l=1

ϕ(al) + 1


− log2 ni

ni + 1
·
Nj∑

l=1

ϕ(al)

We have:
Nj∑
l=1

ϕ(al) = ni. Hence,

Z
(1)
j =

log2(ni + 1)

ni + 1
(ni + 1)− log2 ni

ni + 1
· ni = log2(ni + 1)− ni

ni + 1
· log2 ni

As a result,

Zj ≤ log2(ni + 1)− ni

ni + 1
· log2 ni

The property is proved.

III. PROOF OF PROPERTY 3 FROM THE MAIN PAPER

Property 3. The change of the entropy for each categorical dimension j always falls in the range of [0, 1]:

0 ≤ Zj ≤ 1; ∀j ∈ [1, r]

Proof. First of all, we need to prove that Zj ≤ 1; ∀j ∈ [1, r]

Let f(n) = log2(n+ 1)− n

n+ 1
· log2 n; (n ≥ 1). We have the first order derivative of f(n):

f
′
(n) =

1

(n+ 1) ln 2
− log2 n

(n+ 1)2
− 1

(n+ 1) ln 2
= − log2 n

(n+ 1)2
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Therefore, f
′
(n) ≤ 0, ∀n ≥ 1. As a result, f(n) is decreasing on the interval [1,+∞]. This leads to f(n) ≤ f(1) = 1; ∀n ≥ 1.

Hence, log2(ni + 1)− ni

ni + 1
· log2 ni ≤ 1; ∀ni ≥ 1. From the Property 2, we obtain

Zj ≤ log2(ni + 1)− ni

ni + 1
· log2 ni; ∀j ∈ [1, r]

As a result, Zj ≤ 1; ∀j ∈ [1, r] is proved.
Next, we need to prove that Zj ≥ 0; ∀j ∈ [1, r]. From the Property 1, we can see that the change in the entropy on each

discrete dimension j takes a smaller value if the included value xdj has already been in the current categorical values of dij
in the hyperbox Bi. Hence, we only need to prove Zj ≥ 0 for this case. We obtain:

Zj = H
(2)
j (Bi ∪ {X})−

ni

ni + 1
·Hj(Bi)

= −
Nj∑

l=1

Pj(al ∈ dij |Bi ∪ {X}) · log2 Pj(al ∈ dij |Bi ∪ {X}) +
ni

ni + 1
·
Nj∑

l=1

Pj(al ∈ dij |Bi) · log2 Pj(al ∈ dij |Bi)

= −
Nj∑

l=1

ϕ(al|Bi ∪ {X})
ni + 1

· log2
ϕ(al|Bi ∪ {X})

ni + 1
+

ni

ni + 1
·
Nj∑

l=1

ϕ(al|Bi)
ni

· log2
ϕ(al|Bi)

ni

To prove Zj ≥ 0, we need to prove that:

ni ·
ϕ(al|Bi)

ni
· log2

ϕ(al|Bi)
ni

≥ (ni + 1) · ϕ(al|Bi ∪ {X})
ni + 1

· log2
ϕ(al|Bi ∪ {X})

ni + 1
,∀l ∈ [1, Nj ]

⇔ ϕ(al|Bi) · log2
ϕ(al|Bi)

ni
≥ ϕ(al|Bi ∪ {X}) · log2

ϕ(al|Bi ∪ {X})
ni + 1

,∀l ∈ [1, Nj ]

(SE.1)

Let x = ϕ(al|Bi) ≥ 1, then ϕ(al|Bi ∪ {X}) = x + 1 or ϕ(al|Bi ∪ {X}) = x because the number of elements of al on the
j-th discrete feature can remain unchanged or increase by 1 when Bi includes X . In the case that ϕ(al|Bi ∪ {X}) = x, we
have:

(SE.1)⇔ x · log2
x

ni
≥ x · log2

x

ni + 1

This inequality is obviously true because x ≥ 1 and
x

ni
≥ x

ni + 1
⇔ log2

x

ni
≥ log2

x

ni + 1
.

In the case that ϕ(al|Bi ∪ {X}) = x+ 1, we need to prove that:

x · log2
x

ni
≥ (x+ 1) · log2

x+ 1

ni + 1
(SE.2)

Let a1, . . . , am and b1, . . . , bm be non-negative numbers, and a =
m∑
k=1

ak, b =
m∑
k=1

bk, the log-sum inequality states that

m∑

k=1

ai · log2
ai

bi
≥ a · log2

a

b

Based on this log-sum inequality, we obtain:

x · log2
x

ni
+ 1 · log2

1

1
≥ (x+ 1) · log2

x+ 1

ni + 1

We have 1 · log2
1

1
= 0, thus the inequality (SE.2) is true.

From all above proofs, we obtain: 0 ≤ Zj ≤ 1; ∀j ∈ [1, r]. The property is proved.

IV. PROOF OF PROPERTY 4 FROM THE MAIN PAPER

Property 4. When the number of samples contained in Bi approaches infinity, the change of the entropy for every categorical
dimension will be limited at 0. Formally,

lim
ni→+∞

Zj = 0, ∀j ∈ [1, r] (SE.3)

Proof. From the properties 2 and 3, we have:

0 ≤ Zj ≤ log2(ni + 1)− ni

ni + 1
· log2 ni
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To prove this property, therefore, we need to show that:

lim
ni→+∞

log2(ni + 1)− ni

ni + 1
· log2 ni = 0

Let f(n) = log2(n+ 1)− n

n+ 1
· log2 n =

(n+ 1) · log2(n+ 1)− n · log2 n
n+ 1

, then lim
n→+∞

f(n) is the indeterminate form
∞
∞.

Let’s apply L’Hospital’s rule:

lim
n→+∞

f(n) = lim
n→+∞

(n+ 1) · log2(n+ 1)− n · log2 n
n+ 1

= lim
n→+∞

[
log2(n+ 1) +

1

ln 2
− log2 n−

1

ln 2

]
= lim
n→+∞

log2(1 +
1

n
) = 0

The property is proved.

V. ADDITIONAL RESULTS

A. Datasets

Table S.I shows the detailed information about the datasets used for the experiments in this study. These datasets were used
in the previous research regarding different solutions to learn from mixed-attribute data for the general fuzzy min-max neural
network. These datasets show the diversity in the numbers of samples, classes, and features. All datasets are class-imbalanced.

TABLE S.I
EXPERIMENTAL DATASET

ID Dataset # Patterns # Classes # Continuous attributes # Discrete attributes Summary of discrete attributes
1 abalone 4177 28 7 1 1 feature: 3 values
2 australian 690 2 6 8 4 features: 2 values, 2 features: 3 values, 1 feature: 15 values, 1

feature: 8 values
3 cmc 1473 3 2 7 2 features: 4 values, 3 features: 2 values, 2 features: 4 values
4 dermatology 358 6 1 33 1 feature: 2 values, 1 feature: 3 values, 31 features: 4 values
5 flag 194 8 10 18 1 feature: 4 values, 1 feature: 6 values, 1 feature: 7 values, 1

feature: 10 values, 2 features: 8 values, 12 features: 2 values
6 german 1000 2 7 13 4 features: 4 values, 3 features: 5 values, 1 feature: 10 values, 3

features: 3 values, 2 features: 2 values
7 heart 270 2 7 6 3 features: 2 values, 1 feature: 4 values, 2 features: 3 values
8 japanese credit 653 2 6 9 4 features: 2 values, 3 features: 3 values, 1 feature: 14 values, 1

feature: 9 values
9 molecular biology 3190 3 0 60 All features: 4 values

10 nursery 12960 5 0 8 4 features: 3 values, 1 feature: 5 values, 2 features: 4 values, 1
feature: 2 values

11 post operative 87 3 1 7 5 features: 3 values, 2 features: 2 values
12 tae 151 3 1 4 1 feature: 2 values, 1 feature: 25 values, 1 feature: 26 values, 1

feature: 2 values
13 tic tac toe 958 2 0 9 All features: 3 values
14 zoo 101 7 1 15 All features: 2 values

B. Additional Experimental Results for the Main Paper

This section provides the interested readers with the detailed results for the experiments presented in the main paper.
Fig. S1 to Fig. S3 show the change in the average class balanced accuracy (CBA) scores for different values of α. These

results support the contents in subsection IV.A.1 from the main paper. Fig S4 presents the change in the CBA values for
different values of δ using the IOL-GFMM-v1 algorithm. Meanwhile, Fig. S5 shows similar results for the IOL-GFMM-v2
algorithm. These figures consolidate the comments in subsection IV.A.2 from the main paper. Fig S6 provides a graphical
illustration for two ways of estimating the value of α shown in subsection IV.C.1 from the main paper.

Figs. from S7 to S9 show the distribution of the obtained values of α using different methods to find the suitable values for
α. The best results in each row of the tables in this document are highlighted in bold. These figures support the explanation
in subsection IV.C.1 from the main paper related to the effectiveness of each method of finding α.

Table S.II presents the average class balanced accuracy for different learning algorithms with mixed-attribute handling
ability over 40 iterations (10 times repeated stratified 4-fold cross-validation). The number of generated hyperboxes from these
algorithms is shown in Table S.III. These are the results for the experiment mentioned in subsection IV.B.1 from the main
paper.

Table S.IV shows the average CBA for the proposed methods and the original improved online learning algorithm using
different encoding techniques to transform the discrete features into numerical features. The ranks for these methods are
presented in Table S.V. These results supplement to the claims in subsection IV.B.2 from the main paper.
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Table S.VI describes the average CBA values for the different methods to find the appropriate values for α using the proposed
learning algorithms. Their ranks are shown in Table S.VII. These are the detailed empirical results for the experiment presented
in subsection IV.C.1 from the main paper.

Table S.VIII shows the average CBA values for four learning algorithms using the hyper-parameter tuning approach. The
ranks for these results are presented in Table S.IX. These results add more details to the content in subsection IV.C.2 from the
main paper.
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Fig. S1. Class balanced accuracy values for different values of α (θ = 1, δ = 1).
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Fig. S2. Class balanced accuracy values for different values of α using the IOL-GFMM-v1 algorithm (θ = 0.1, δ = 0.1).
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Fig. S3. Class balanced accuracy values for different values of α using the IOL-GFMM-v2 algorithm (θ = 0.1, δ = 0.1).
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Fig. S4. Class balanced accuracy values for different values of δ using the IOL-GFMM-v1 algorithm (θ = 1, α = n/(n+ r)).
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Fig. S5. Class balanced accuracy values for different values of δ using the IOL-GFMM-v2 algorithm (θ = 1, α = n/(n+ r)).
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TABLE S.II
AVERAGE CLASS BALANCED ACCURACY FOR THE PROPOSED EIOL-GFMM ALGORITHMS AND TWO EXISTING ALGORITHMS WITH THE

MIXED-ATTRIBUTE LEARNING ABILITY

Dataset θ
Onln-GFMM-M1 Onln-GFMM-M2 EIOL-GFMM-v1 EIOL-GFMM-v2

η = 0.1 η = 0.7 η = 1 β = 0.25r β = 0.5r β = 0.75r δ = 0.1 δ = 0.7 δ = 1 δ = 0.1 δ = 0.7 δ = 1

abalone
0.1 0.10182 0.10156 0.1039 0.10195 0.10195 0.10195 0.10592 0.09893 0.0951 0.10592 0.09893 0.0951
0.7 0.09182 0.08919 0.07923 0.08662 0.08662 0.08662 0.09384 0.07846 0.08748 0.09384 0.07846 0.08748
1 0.08831 0.08357 0.0729 0.08455 0.08455 0.08455 0.094 0.07766 0.08545 0.094 0.07766 0.08545

australian
0.1 0.77345 0.76536 0.75532 0.62766 0.6276 0.6425 0.77871 0.77871 0.74137 0.77871 0.73931 0.74137
0.7 0.7939 0.69939 0.62978 0.54578 0.53535 0.50845 0.80259 0.78758 0.77546 0.78005 0.77846 0.77546
1 0.79382 0.69821 0.60577 0.55546 0.55456 0.50156 0.80242 0.78793 0.7771 0.78057 0.7771 0.7771

cmc
0.1 0.4003 0.39828 0.37507 0.39889 0.40054 0.41933 0.40938 0.41002 0.2987 0.40936 0.30153 0.2987
0.7 0.39879 0.31526 0.28304 0.24961 0.24822 0.31226 0.36564 0.32006 0.32407 0.34705 0.33095 0.32407
1 0.39603 0.31665 0.29373 0.28774 0.28759 0.19917 0.35431 0.31151 0.29882 0.32979 0.29882 0.29882

dermatology
0.1 0.89702 0.88468 0.87987 0.80026 0.80026 0.80822 0.91871 0.91871 0.81362 0.92217 0.81362 0.81362
0.7 0.897 0.87034 0.86026 0.51967 0.51967 0.53411 0.91871 0.91871 0.86642 0.9095 0.86642 0.86642
1 0.897 0.87097 0.85932 0.45787 0.45787 0.51649 0.91871 0.91871 0.91473 0.91284 0.91473 0.91473

flag
0.1 0.20758 0.2098 0.21106 0.27048 0.27417 0.27848 0.31378 0.31378 0.25518 0.31398 0.25518 0.25518
0.7 0.20707 0.21187 0.22017 0.28746 0.2849 0.25168 0.31232 0.31232 0.27507 0.30981 0.27569 0.27507
1 0.20722 0.21272 0.21607 0.25298 0.25797 0.2513 0.31301 0.31301 0.28709 0.31044 0.28691 0.28709

german
0.1 0.59853 0.5947 0.5906 0.49704 0.50612 0.53338 0.57323 0.57323 0.58901 0.57247 0.58943 0.58901
0.7 0.59975 0.56437 0.53981 0.51698 0.51199 0.52676 0.57175 0.57175 0.57531 0.5759 0.57426 0.57531
1 0.60161 0.54852 0.51234 0.37304 0.37304 0.43286 0.56632 0.56632 0.5969 0.58602 0.5969 0.5969

heart
0.1 0.72107 0.72131 0.73083 0.7632 0.75282 0.74892 0.74995 0.74995 0.73615 0.74995 0.73522 0.73615
0.7 0.72325 0.71335 0.64509 0.59566 0.55006 0.54566 0.7445 0.73701 0.73827 0.73341 0.72268 0.73827
1 0.72291 0.71955 0.60935 0.56718 0.53851 0.53506 0.74169 0.76615 0.74998 0.74213 0.74415 0.74998

japanese credit
0.1 0.77503 0.7741 0.75015 0.65456 0.64753 0.67543 0.78084 0.78084 0.70476 0.78116 0.70675 0.70476
0.7 0.798 0.7099 0.60187 0.52062 0.51952 0.51664 0.80483 0.78195 0.75976 0.74552 0.76258 0.75976
1 0.79766 0.7024 0.59146 0.50578 0.50578 0.50519 0.80554 0.78266 0.75584 0.74095 0.75584 0.75584

molecular biology - 0.54925 0.53621 0.4805 0.43242 0.43218 0.17394 0.62653 0.63410 0.47090 0.63435 0.45035 0.47090
nursery - 0.84465 0.38292 0.21174 0.50402 0.50402 0.50402 0.78223 0.78223 0.33203 0.78223 0.33203 0.33203

post operative
0.1 0.33633 0.31583 0.28579 0.27155 0.31368 0.35604 0.30645 0.30645 0.12997 0.30645 0.11659 0.12997
0.7 0.33491 0.28111 0.2672 0.23059 0.23783 0.24881 0.30748 0.30748 0.1589 0.30748 0.15175 0.1589
1 0.33491 0.28598 0.27953 0.24144 0.23603 0.27637 0.30888 0.30888 0.15504 0.30888 0.11313 0.15504

tae
0.1 0.54089 0.49741 0.43901 0.48868 0.52062 0.53408 0.54668 0.54668 0.43773 0.54668 0.39556 0.43773
0.7 0.54286 0.42037 0.3789 0.32134 0.35273 0.45906 0.55159 0.55159 0.36061 0.55159 0.35133 0.36061
1 0.53996 0.39701 0.3698 0.31717 0.3535 0.44079 0.55181 0.55181 0.35503 0.55181 0.31224 0.35503

tic tac toe - 0.85823 0.8238 0.49501 0.44417 0.44417 0.44417 0.95561 0.95561 0.57448 0.95561 0.57448 0.57448

zoo
0.1 0.55787 0.55787 0.67455 0.86093 0.86093 0.86093 0.8647 0.86375 0.90143 0.80119 0.90143 0.90143
0.7 0.6146 0.6146 0.61193 0.7827 0.7827 0.78776 0.8647 0.85801 0.86369 0.79869 0.86369 0.86369
1 0.6146 0.6146 0.57089 0.7396 0.7396 0.73202 0.8647 0.85801 0.85744 0.79869 0.85744 0.85744

Numerical features

Categorical features

Training data
Learned model

Numerical features

Categorical features

Validation

CBA 1

CBA 2

Inner Fold 1

Numerical features

Categorical features

Training data
Learned model

Numerical features

Categorical features

Validation

CBA 3

CBA 4

Inner Fold 2

Numerical features

Categorical features

Training data
Learned model

Numerical features

Categorical features

Validation

CBA 5

CBA 6
Inner Fold 3

Estimated 

=
𝐶𝐵𝐴1+𝐶𝐵𝐴3+𝐶𝐵𝐴5

𝐶𝐵𝐴1+𝐶𝐵𝐴2+𝐶𝐵𝐴3+𝐶𝐵𝐴4+𝐶𝐵𝐴5+𝐶𝐵𝐴6

=
𝐶𝐵𝐴1+𝐶𝐵𝐴3+𝐶𝐵𝐴5 ×𝑛

𝐶𝐵𝐴1+𝐶𝐵𝐴3+𝐶𝐵𝐴5 ×𝑛+(𝐶𝐵𝐴2+𝐶𝐵𝐴4+𝐶𝐵𝐴6)×𝑟

𝑛: number of numerical features
𝑟: number of categorical features

CBA: Class Balanced Accuracy

Fig. S6. A demonstration for the methods used to estimate the values for parameter α.
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TABLE S.III
THE AVERAGE NUMBER OF GENERATED HYPERBOXES FROM THE PROPOSED METHOD AND OTHER EXISTING ALGORITHMS WITH MIXED-ATTRIBUTE

LEARNING ABILITY

Dataset θ
Onln-GFMM-M1 Onln-GFMM-M2 EIOL-GFMM-v1 EIOL-GFMM-v2

η = 0.1 η = 0.7 η = 1 β = 0.25r β = 0.5r β = 0.75r δ = 0.1 δ = 0.7 δ = 1 δ = 0.1 δ = 0.7 δ = 1

abalone
0.1 693.95 591.725 522.825 704.15 704.15 704.15 1675.2 1318.925 919.45 1675.2 1318.925 919.45
0.7 77.225 56.875 46.75 79.375 79.375 79.375 1665.075 605.25 934.1 1665.075 605.25 934.1
1 63.3 45.275 37.375 65.275 65.275 65.275 1662.125 599.225 932.375 1662.125 599.225 932.375

australian
0.1 472.15 348.225 222.6 198.775 206.05 279.025 493.225 493.225 203.2 493.225 204.7 203.2
0.7 260.275 95.825 42.7 11.675 12.875 21.875 334.45 207.5 11.85 250.55 12 11.85
1 253.25 86.4 35.725 2 2.675 6.95 329.225 198.475 2 243.35 2 2

cmc
0.1 880.95 447.85 202.325 118.05 127.05 240 925.925 924.9 131.625 925.9 137.6 131.625
0.7 496.325 117.2 38.675 10.85 11.775 24.475 736.475 184.975 14.25 341.1 14.5 14.25
1 471.1 99 28.8 3 3.025 8.275 734.7 130.725 3 267.6 3 3

dermatology
0.1 268.5 212.65 105.975 38.65 38.675 71.2 268.5 268.5 46.225 255.1 46.225 46.225
0.7 267.375 164.825 68.025 7.8 7.8 20 267.425 267.425 12.125 220.825 12.125 12.125
1 267.375 163.85 67.1 6 6 19.05 267.425 267.425 6 220.35 6 6

flag
0.1 143.2 137.5 107.825 101.95 105.075 124.35 143.2 143.2 101.95 141.175 101.95 101.95
0.7 140.975 123.3 44.725 23.55 25.475 49.5 140.975 140.975 23.55 132.675 23.825 23.55
1 140.675 116.625 34.2 8 9.65 31.55 140.675 140.675 8 131.5 8.025 8

german
0.1 747.925 711.3 549.55 524.225 547.45 669.3 748.225 748.225 523.7 744.975 526.225 523.7
0.7 726.225 299.575 115.225 32.25 36.375 87.725 738.825 738.825 32.6 666.725 32.975 32.6
1 714.925 201.1 69.575 2 2.125 10.3 735.425 735.425 2 516 2 2

heart
0.1 198.675 197.475 181.375 181.225 183.525 188.5 199.1 199.1 181.425 199.1 182.3 181.425
0.7 92.05 71.5 16.9 12.5 13.4 17.425 103.45 73.175 12.725 97.625 13.1 12.725
1 74.925 53.625 7.25 2 3.375 4.85 89.85 50.8 2 76.925 2.2 2

japanese credit
0.1 451.175 340.15 219.775 198.65 202 233.25 468.875 468.875 202.55 468.3 203.725 202.55
0.7 252.775 95.675 42.475 12.35 12.95 15.775 320.425 210.3 12.725 197.325 12.95 12.725
1 246.7 87.475 35.275 2 2 4.425 315.675 198.4 2 183.9 2 2

molecular biology - 2271.125 2034.025 1060.925 3.9 178.425 1743.325 2279.6 2279.6 3 2195.1 5.55 3
nursery - 5434.325 156.4 33.075 5 5 5.175 9720 9720 5 9720 5 5

post operative
0.1 58.575 38.9 13.2 7 9.05 19.1 59.25 59.25 7 59.25 8.7 7
0.7 55.1 30.075 8.7 4.825 5.175 11.15 56.125 56.125 4.45 56.125 5.05 4.45
1 55.05 29.375 7.475 2.75 3.95 9.425 56.05 56.05 2.75 56.05 3.625 2.75

tae
0.1 80.75 47.15 35.125 22.125 32.325 68.775 84.15 84.05 23.325 84.05 26.45 23.325
0.7 70.55 29 21.55 5.025 6.95 37.125 77.35 77.225 6.225 77.225 6.775 6.225
1 69.95 28.425 20.575 3.025 4.625 33.325 76.75 76.625 3 76.625 3.8 3

tic tac toe - 639.125 239.275 18.175 2 2 2.05 718.5 718.5 2 718.5 2 2

zoo
0.1 48.4 48.4 13.375 13.375 13.375 14.5 49.35 45.625 13.375 26.65 13.375 13.375
0.7 44.975 44.975 8 8 8 8.55 46 39.95 8 19.275 8 8
1 44.975 44.975 7 7 7 7.25 46 39.95 7 18.15 7 7
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TABLE S.IV
THE AVERAGE CLASS BALANCED ACCURACY FOR THE PROPOSED METHOD AND THE IOL-GFMM ALGORITHM USING ENCODING TECHNIQUES

Dataset θ(= δ) CatBoost One-hot LOO Label Target James-Stein Helmert Sum EIOL-GFMM-v1 EIOL-GFMM-v2

abalone
0.1 0.1077 0.11216 0.08367 0.11217 0.11161 0.11161 0.11216 0.11215 0.10592 0.10592
0.7 0.11117 0.04521 0.04599 0.07214 0.0544 0.0544 0.04521 0.03942 0.07846 0.07846
1 0.11041 0.03651 0.05247 0.07843 0.07027 0.07027 0.02491 0.02491 0.08545 0.08545

australian
0.1 0.79148 0.6283 0.70876 0.77303 0.77283 0.77321 0.62855 0.79163 0.77871 0.77871
0.7 0.81259 0.63919 0.60169 0.79844 0.80302 0.80712 0.63943 0.80088 0.78758 0.77846
1 0.72686 0.36155 0.45375 0.38134 0.63626 0.64024 0.36384 0.36405 0.7771 0.7771

cmc
0.1 0.27015 0.39891 0.39403 0.4124 0.40797 0.40849 0.39891 0.4095 0.40938 0.40936
0.7 0.24563 0.38885 0.23629 0.37042 0.37329 0.3739 0.38885 0.40109 0.32006 0.33095
1 0.28563 0.14279 0.13443 0.14279 0.14482 0.14482 0.14301 0.14301 0.29882 0.29882

dermatology
0.1 0.7371 0.05674 0.87801 0.55851 0.87721 0.85747 0.05674 0.28197 0.91871 0.92217
0.7 0.75532 0.05674 0.87791 0.60397 0.88038 0.86116 0.05674 0.34796 0.91871 0.86642
1 0.74119 0.75364 0.81876 0.80716 0.82864 0.81965 0.82665 0.24084 0.91473 0.91473

flag
0.1 0.2597 0.06655 0.2218 0.13868 0.14268 0.14573 0.06655 0.12138 0.31378 0.31398
0.7 0.21977 0.06655 0.2205 0.13571 0.1382 0.14176 0.06655 0.12031 0.31232 0.27569
1 0.12787 0.2391 0.15268 0.13549 0.17076 0.17001 0.24299 0.24084 0.28709 0.28709

german
0.1 0.57516 0.35944 0.57602 0.5219 0.58811 0.5854 0.35944 0.46208 0.57323 0.57247
0.7 0.54573 0.35944 0.57281 0.51857 0.59267 0.59057 0.35944 0.43172 0.57175 0.57426
1 0.3895 0.38493 0.40407 0.37334 0.36717 0.36736 0.35404 0.35404 0.5969 0.5969

heart
0.1 0.76571 0.6405 0.71338 0.69879 0.67343 0.69832 0.64175 0.68189 0.74995 0.74995
0.7 0.74487 0.66551 0.72538 0.69216 0.69781 0.72236 0.66635 0.6776 0.73701 0.72268
1 0.64107 0.32977 0.42858 0.47927 0.55031 0.54678 0.32641 0.32641 0.74998 0.74998

japanese credit
0.1 0.77653 0.62878 0.74217 0.77063 0.7745 0.77262 0.62878 0.80086 0.78084 0.78116
0.7 0.81413 0.63782 0.70741 0.80831 0.80203 0.80616 0.63782 0.81319 0.78195 0.76258
1 0.70607 0.36353 0.44061 0.49254 0.5359 0.54993 0.36467 0.36554 0.75584 0.75584

molecular biology
0.1 0.45006 0.30092 0.68158 0.54743 0.54642 0.51235 0.30092 0.40823 0.62742 0.63435
0.7 0.18284 0.30092 0.68161 0.52217 0.54689 0.54447 0.30092 0.364 0.62742 0.47625
1 0.38381 0.17398 0.39789 0.47431 0.27719 0.22743 0.17405 0.17398 0.46948 0.46948

nursery
0.1 0.34878 0.075 0.773 0.70924 0.7625 0.76726 0.075 0.45355 0.78033 0.78033
0.7 0.34219 0.075 0.70922 0.63043 0.58198 0.58197 0.075 0.55267 0.78033 0.33111
1 0.34404 0.3361 0.41684 0.42149 0.49159 0.49174 0.3361 0.3361 0.33111 0.33111

post operative
0.1 0.37532 0.31386 0.34674 0.34483 0.32674 0.32082 0.31386 0.29886 0.30645 0.30645
0.7 0.37125 0.31386 0.34063 0.35297 0.33419 0.32633 0.31386 0.3535 0.30748 0.15175
1 0.34648 0.3423 0.3623 0.36426 0.36205 0.36685 0.34087 0.34087 0.15504 0.15504

tae
0.1 0.27737 0.54896 0.41787 0.54959 0.53362 0.5414 0.57858 0.58822 0.54668 0.54668
0.7 0.29342 0.54896 0.32724 0.40225 0.42256 0.4233 0.57922 0.51246 0.55159 0.35133
1 0.29217 0.28113 0.17504 0.343 0.22983 0.28051 0.31731 0.28113 0.35503 0.35503

tic tac toe
0.1 0.40253 0.32672 0.86118 0.49864 0.84898 0.84898 0.32672 0.50738 0.95561 0.95561
0.7 0.21604 0.32672 0.85408 0.52528 0.85278 0.85278 0.32672 0.61887 0.95561 0.57448
1 0.21598 0.32672 0.34482 0.32672 0.32672 0.32672 0.32672 0.32672 0.57448 0.57448

zoo
0.1 0.73326 0.47723 0.89851 0.47723 0.47723 0.47723 0.47723 0.47723 0.8647 0.80119
0.7 0.72461 0.47723 0.89851 0.47723 0.47723 0.47723 0.47723 0.47723 0.85801 0.86369
1 0.66473 0.65154 0.87506 0.65154 0.65154 0.65154 0.65154 0.65154 0.85744 0.85744
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TABLE S.V
THE RANKS FOR THE PROPOSED METHOD AND THE ORIGINAL IOL-GFMM ALGORITHM USING ENCODING TECHNIQUES

Dataset θ(= δ) CatBoost One-hot LOO Label Target James-Stein Helmert Sum EIOL-GFMM-v1 EIOL-GFMM-v2

abalone
0.1 7 2.5 10 1 5.5 5.5 2.5 4 8.5 8.5
0.7 1 8.5 7 4 5.5 5.5 8.5 10 2.5 2.5
1 1 8 7 4 5.5 5.5 9.5 9.5 2.5 2.5

australian
0.1 2 10 8 6 7 5 9 1 3.5 3.5
0.7 1 9 10 5 3 2 8 4 6 7
1 3 10 6 7 5 4 9 8 1.5 1.5

cmc
0.1 10 7.5 9 1 6 5 7.5 2 3 4
0.7 9 2.5 10 6 5 4 2.5 1 8 7
1 3 8.5 10 8.5 4.5 4.5 6.5 6.5 1.5 1.5

dermatology
0.1 6 9.5 3 7 4 5 9.5 8 2 1
0.7 6 9.5 3 7 2 5 9.5 8 1 4
1 9 8 6 7 3 5 4 10 1.5 1.5

flag
0.1 3 9.5 4 7 6 5 9.5 8 2 1
0.7 4 9.5 3 7 6 5 9.5 8 1 2
1 10 5 8 9 6 7 3 4 1.5 1.5

german
0.1 4 9.5 3 7 1 2 9.5 8 5 6
0.7 6 9.5 4 7 1 2 9.5 8 5 3
1 4 5 3 6 8 7 9.5 9.5 1.5 1.5

heart
0.1 1 10 4 5 8 6 9 7 2.5 2.5
0.7 1 10 3 7 6 5 9 8 2 4
1 3 8 7 6 4 5 9.5 9.5 1.5 1.5

japanese credit
0.1 4 9.5 8 7 5 6 9.5 1 3 2
0.7 1 9.5 8 3 5 4 9.5 2 6 7
1 3 10 7 6 5 4 9 8 1.5 1.5

molecular biology
0.1 7 9.5 1 4 5 6 9.5 8 3 2
0.7 10 8.5 1 5 3 4 8.5 7 2 6
1 5 9.5 4 1 6 7 8 9.5 2.5 2.5

nursery
0.1 8 9.5 3 6 5 4 9.5 7 1.5 1.5
0.7 7 9.5 2 3 4 5 9.5 6 1 8
1 5 7 4 3 2 1 7 7 9.5 9.5

post operative
0.1 1 6.5 2 3 4 5 6.5 10 8.5 8.5
0.7 1 7.5 4 3 5 6 7.5 2 9 10
1 5 6 3 2 4 1 7.5 7.5 9.5 9.5

tae
0.1 10 4 9 3 8 7 2 1 5.5 5.5
0.7 10 3 9 7 6 5 1 4 2 8
1 5 6.5 10 3 9 8 4 6.5 1.5 1.5

tic tac toe
0.1 8 9.5 3 7 4.5 4.5 9.5 6 1.5 1.5
0.7 10 8.5 2 7 3.5 3.5 8.5 5 1 6
1 10 6.5 3 6.5 6.5 6.5 6.5 6.5 1.5 1.5

zoo
0.1 4 7.5 1 7.5 7.5 7.5 7.5 7.5 2 3
0.7 4 7.5 1 7.5 7.5 7.5 7.5 7.5 3 2
1 4 7.5 1 7.5 7.5 7.5 7.5 7.5 2.5 2.5
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TABLE S.VI
THE AVERAGE CLASS BALANCED ACCURACY FOR DIFFERENT METHODS USED TO FIND THE VALUES FOR PARAMETER α

Dataset Algorithm θ = δ Tuning α Est-α-v1 Est-α-v2 α = n/(n+ r)

abalone
EIOL-GFMM-v1 0.1 0.10452 0.10571 0.10589 0.10592
EIOL-GFMM-v2 0.1 0.10452 0.10571 0.10589 0.10592
Both 1 0.08795 0.08498 0.08307 0.08545

australian
EIOL-GFMM-v1 0.1 0.7806 0.77979 0.77416 0.77871
EIOL-GFMM-v2 0.1 0.78038 0.77991 0.77406 0.77871
Both 1 0.77654 0.77734 0.77784 0.7771

cmc
EIOL-GFMM-v1 0.1 0.43148 0.41052 0.41074 0.40938
EIOL-GFMM-v2 0.1 0.43168 0.41074 0.41414 0.40936
Both 1 0.29941 0.29907 0.29967 0.29882

dermatology
EIOL-GFMM-v1 0.1 0.91653 0.91871 0.88963 0.91871
EIOL-GFMM-v2 0.1 0.91763 0.92217 0.89801 0.92217
Both 1 0.91446 0.91473 0.91315 0.91473

flag
EIOL-GFMM-v1 0.1 0.3206 0.32098 0.30551 0.31378
EIOL-GFMM-v2 0.1 0.32063 0.32267 0.30648 0.31398
Both 1 0.28035 0.28494 0.28583 0.28709

german
EIOL-GFMM-v1 0.1 0.59599 0.57887 0.55533 0.57323
EIOL-GFMM-v2 0.1 0.59563 0.5794 0.5568 0.57247
Both 1 0.5998 0.59663 0.59677 0.5969

heart
EIOL-GFMM-v1 0.1 0.73854 0.74783 0.7465 0.74995
EIOL-GFMM-v2 0.1 0.73854 0.7462 0.74909 0.74995
Both 1 0.75397 0.75177 0.75383 0.74998

japanese credit
EIOL-GFMM-v1 0.1 0.76721 0.78298 0.77622 0.78084
EIOL-GFMM-v2 0.1 0.76642 0.78392 0.77529 0.78116
Both 1 0.75572 0.75755 0.7563 0.75584

post operative
EIOL-GFMM-v1 0.1 0.30712 0.30645 0.33384 0.30645
EIOL-GFMM-v2 0.1 0.30712 0.30645 0.33384 0.30645
Both 1 0.1627 0.1555 0.16801 0.15504

tae
EIOL-GFMM-v1 0.1 0.512 0.54668 0.54421 0.54668
EIOL-GFMM-v2 0.1 0.512 0.54668 0.54421 0.54668
Both 1 0.35715 0.35499 0.35216 0.35503

zoo
EIOL-GFMM-v1 0.1 0.84196 0.8647 0.85161 0.8647
EIOL-GFMM-v2 0.1 0.82726 0.79839 0.85708 0.80119
Both 1 0.91994 0.84655 0.94256 0.85744

TABLE S.VII
THE RANKS FOR DIFFERENT METHODS USED TO FIND THE VALUES FOR PARAMETER α

Dataset Algorithm θ = δ Tuning α Est-α-v1 Est-α-v2 α = n/(n+ r)

abalone
EIOL-GFMM-v1 0.1 4 3 2 1
EIOL-GFMM-v2 0.1 4 3 2 1
Both 1 1 3 4 2

australian
EIOL-GFMM-v1 0.1 1 2 4 3
EIOL-GFMM-v2 0.1 1 2 4 3
Both 1 4 2 1 3

cmc
EIOL-GFMM-v1 0.1 1 3 2 4
EIOL-GFMM-v2 0.1 1 3 2 4
Both 1 2 3 1 4

dermatology
EIOL-GFMM-v1 0.1 3 1.5 4 1.5
EIOL-GFMM-v2 0.1 3 1.5 4 1.5
Both 1 3 1.5 4 1.5

flag
EIOL-GFMM-v1 0.1 2 1 4 3
EIOL-GFMM-v2 0.1 2 1 4 3
Both 1 4 3 2 1

german
EIOL-GFMM-v1 0.1 1 2 4 3
EIOL-GFMM-v2 0.1 1 2 4 3
Both 1 1 4 3 2

heart
EIOL-GFMM-v1 0.1 4 2 3 1
EIOL-GFMM-v2 0.1 4 3 2 1
Both 1 1 3 2 4

japanese credit
EIOL-GFMM-v1 0.1 4 1 3 2
EIOL-GFMM-v2 0.1 4 1 3 2
Both 1 4 1 2 3

post operative
EIOL-GFMM-v1 0.1 2 3.5 1 3.5
EIOL-GFMM-v2 0.1 2 3.5 1 3.5
Both 1 2 3 1 4

tae
EIOL-GFMM-v1 0.1 4 1.5 3 1.5
EIOL-GFMM-v2 0.1 4 1.5 3 1.5
Both 1 1 3 4 2

zoo
EIOL-GFMM-v1 0.1 4 1.5 3 1.5
EIOL-GFMM-v2 0.1 2 4 1 3
Both 1 2 4 1 3
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Fig. S7. Class balanced accuracy values and range of obtained α for different ways of estimating α (θ = 1, δ = 1).
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Fig. S8. Class balanced accuracy values and range of obtained α for different ways of estimating α (using EIOL-GFMM-v1 with θ = 0.1, δ = 0.1).
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Fig. S9. Class balanced accuracy values and range of obtained α for different ways of estimating α (using EIOL-GFMM-v2 with θ = 0.1, δ = 0.1).
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TABLE S.VIII
THE AVERAGE CLASS BALANCED ACCURACY FOR THE LEARNING ALGORITHMS USING THE HYPER-PARAMETER TUNING METHOD

Dataset Onln-GFMM-M1 Onln-GFMM-M2 EIOL-GFMM-v1 EIOL-GFMM-v2
abalone 0.10072 0.09932 0.10431 0.10431
australian 0.78501 0.79201 0.79484 0.78588
cmc 0.39265 0.40692 0.42634 0.42522
dermatology 0.87378 0.83522 0.91563 0.91497
flag 0.21735 0.27828 0.30107 0.28806
german 0.58233 0.55034 0.60345 0.59929
heart 0.72481 0.7772 0.76922 0.75861
japanese credit 0.763 0.76685 0.79294 0.79211
post operative 0.32856 0.29945 0.3582 0.31890
tae 0.48682 0.4853 0.47482 0.44618
zoo 0.67941 0.8648 0.87179 0.85685

TABLE S.IX
THE RANK FOR THE LEARNING ALGORITHMS USING THE HYPER-PARAMETER TUNING METHOD

Dataset Onln-GFMM-M1 Onln-GFMM-M2 EIOL-GFMM-v1 EIOL-GFMM-v2
abalone 3 4 1.5 1.5
australian 4 2 1 3
cmc 4 3 1 2
dermatology 3 4 1 2
flag 4 3 1 2
german 3 4 1 2
heart 4 1 2 3
japanese credit 4 3 1 2
post operative 1 4 3 2
tae 1 2 3 4
zoo 4 2 1 3
Average 3.182 2.909 1.5 2.409


