
Graphical Abstract

Generalizing Supervised Deep Learning MRI Reconstruction to
Multiple and Unseen Contrasts using Meta-Learning Hypernet-
works

Sriprabha Ramanarayanan, Arun Palla, Keerthi Ram, Mohanasankar Sivaprakasam

ar
X

iv
:2

30
7.

06
77

1v
1 

 [
ee

ss
.I

V
] 

 1
3 

Ju
l 2

02
3



Highlights

Generalizing Supervised Deep Learning MRI Reconstruction to
Multiple and Unseen Contrasts using Meta-Learning Hypernet-
works

Sriprabha Ramanarayanan, Arun Palla, Keerthi Ram, Mohanasankar Sivaprakasam

• A multi-modal meta-learning model for image reconstruction that pro-
vides mode-specific inductive bias closer to the target data distribution
with deviated acquisition settings.

• Provides evolutionary capabilities of hypernetworks to dynamically pre-
dict weights that modulate the base reconstruction network weights for
multimodal image reconstruction.

• Gradient-based meta-learning to optimize the kernel modulation hy-
pernetworks in the contextual space.

• Extensive experimentation for multi-contrast MRI reconstruction to
showcase the superior adaptation capabilities on-the-fly and via fine-
tuning in a few gradient steps to unseen multi-contrast datasets.

• Superior reconstruction performance over joint training, other meta-
learning methods, and various context-specific MRI reconstruction net-
works.

• Representational analysis showing that kernel modulation induces max-
imummode-specific features in the high-resolution layers of the encoder-
decoder base network.
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Abstract

Meta-learning has recently been an emerging data-efficient learning technique
for various medical imaging operations and has helped advance contemporary
deep learning models. Furthermore, meta-learning enhances the knowledge
generalization of the imaging tasks by learning both shared and discrimina-
tive weights for various configurations of imaging tasks during training. How-
ever, existing meta-learning models attempt to learn a single set of weight ini-
tializations of a neural network that might be fundamentally restrictive under
the heterogeneous (multimodal) data scenario. This work aims to develop a
multimodal meta-learning model for image reconstruction, which augments
meta-learning with evolutionary capabilities to encompass diverse acquisi-
tion settings of heterogeneous data. Our proposed model called KM-MAML
(Kernel Modulation-based Multimodal Meta-Learning), has hypernetworks
(auxiliary learners) that evolve to generate mode-specific (or context-specific)
weights. These weights provide the mode-specific inductive bias for multi-
ple modes by re-calibrating each kernel of the base network for image re-
construction via a low-rank kernel modulation operation. Furthermore, we
incorporate gradient-based meta-learning (GBML) in the contextual space
to update the weights of the hypernetworks based on different modes. The
hypernetworks and the base reconstruction network in the GBML setting
provide discriminative mode-specific features and low-level image features,
respectively. We extensively evaluate our model for multi-contrast magnetic
resonance image reconstruction considering the essential research directions
in fastMRI for multimodal and rich transfer learning capabilities across var-
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ious MRI contrasts. Our comparative studies show that the proposed model
(i) exhibits superior reconstruction performance over joint training, other
meta-learning methods, and various context-specific MRI reconstruction ar-
chitectures, and (ii) better adaptation to 80% and 92% of unseen multi-
contrast data contexts with improvement margins of 0.1 to 0.5 dB in PSNR
and around 0.01 in SSIM, respectively. Besides, a representation analysis
with U-Net as the base network shows that kernel modulation infuses 80%
of mode-specific representation changes in the high-resolution layers. Our
source code is available at https://github.com/sriprabhar/KM-MAML/.

Keywords: hypernetwork, evolution, meta-learning, kernel modulation,
mode-specific inductive bias, multi-contrast MRI reconstruction

1. Introduction

Deep learning methods have seen remarkable improvements in various
imaging tasks like image classification, recognition, and reconstruction. The
success of these methods has vastly been in scenarios where the model is
trained and tested on a homogeneous dataset representing a specific concept
like similar objects, characteristic features, image structures, and contrast
levels. The homogeneous conditions across training and test data limit the
robustness of the model when the image data deviates due to shifts in scan
settings and contrasts [1]. For instance, in diverse medical imaging systems
like magnetic resonance imaging (MRI), devising robust models that general-
ize to multi-scanner data is crucial for transferring these models into clinical
practice [2]. Recent advances aim to improve the robustness of the model
by exploring in two promising directions [3], (i) At the data level, obtain-
ing heterogeneous modalities (multimodal image data) with multiple imaging
settings to learn from diverse data (ii) At the model level, incorporating adap-
tive learning mechanisms to improve the generality of the model to varying
imaging conditions. To handle challenging scenarios with multi-modal data
distributions encompassing diverse acquisition settings, an adaptive learning
model that can provide the shared knowledge and discriminative features of
varied modalities is required [4, 5, 6].

Multimodal image data refers to the outputs of image acquisition devices
(like sensors or acquisition technologies) with multiple intensity representa-
tions of visual concepts [3] (Figure 1(left)). Integrating multiple perspectives
of concepts using multimodal data enhances the knowledge generalization
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Figure 1: Graphical abstract of MRI data sources and learning methods (best viewed in
color). Left: The multimodal MRI data sources (datasets), each represented by various
shapes and colors. Each row corresponds to a specific mode of the multimodal MRI
data and covers a specific contrast, with different acquisition settings like different types
and amounts of under-sampling degradation. Right: Joint training has a single level of
optimization of the base network by combining the training samples from the datasets.
Meta-learning has inner (gray arrow) and outer (green arrow) levels of optimization. We
categorize each dataset corresponding to each contrast and scan setting as a training task
for the neural network. Each task consists of support and query partitions of the dataset.
The inner and outer levels of optimization use the support and query partitions of each
task data.

of the concept by learning a shared representation across modalities, elimi-
nating models trained independently for each modality [7, 8]. The learning
approach commonly adopted to integrate multimodal data is joint training
using stochastic gradient descent (SGD) (Figure 1 (right)), Joint training).
However, due to statistical shifts across various modes [7], the shared knowl-
edge gained by joint training from image samples alone might be inadequate
and could underfit modalities with deviations in the acquisitions settings
from the training data [7, 4]. Secondly, the learning process does not con-
sider discriminative features, meaning that it lacks an adaptive mechanism
of learning unique sets of weights for each modality and encapsulating rela-
tionships across modalities in a common weight space [6].

Recently, meta-learning methods [9] have emerged as a data-efficient
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Figure 2: Concept diagram of the bi-level optimization of MAML and KM-MAML (best
viewed in color). Left: MAML involves bi-level optimization (gray arrows for the inner loop
and green arrows for the outer loop) of the base learner (blue box). Different from MAML,
KM-MAML involves two networks - a base learner for the imaging task and an auxiliary
network called the kernel modulation (KM) network to infer mode-specific weights. The
two levels of optimization are 1) outer loop or meta-weight updates of the base network θ
and the KM network ω shown as green arrows backward. 2) The inner loop or task-specific
adaptation via a few gradient updates of the KM network (gray arrows within the pink
box). The meta-parameters of the KM network infuse mode-specific knowledge to the
base learner via kernel modulation to create an improved base learner. (Right) Weight
update process in the task space. KM-MAML provides mode-specific initializations (red
arrows pointing to multi-colored hexagons) that coarsely capture the target MRI data
distribution, unlike MAML, which has a single meta-initialization. Fine-tuning the base
network or the hypernetwork by a few gradient steps (gray arrows) refines the model closer
to the target data distribution (Algorithm 1 shows the training details).
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adaptive learning technique for regression and classification methods, both at
the task (a unique mode) and the sample level. Model-agnostic meta-learning
(MAML) [10] learns a common prior knowledge across tasks and the task-
specific parameters of a network in a bi-level interleaved optimization process
(Figure 1 (right bottom)), enabling faster adaptation to new tasks using the
learned prior (Figure 2, MAML). MAML outperforms conventional learning
[11]; however, when the data distribution of tasks is multimodal, the knowl-
edge gained by MAML is fundamentally restricted by a single initialization
that is learned by a single (base) network [12] performing an imaging opera-
tion. For instance, it would be infeasible to seek a common initialization for
an imaging task with continuously varying acquisition settings.

Within the premises of heterogeneous data, the data samples occupy dif-
ferent regions in the same high dimensional space as clusters that correspond
to the modes of the data. However, the clusters might not lie closer to each
other as the degree of similarity between them might be vastly different.
Due to variations in the acquisition settings, different modes are endowed
with complementary properties that might contribute differently to the learn-
ing process. This motivates the need for adaptive context-aware (or mode-
specific) initializations to provide reliable and selective meta-knowledge closer
to the target data distribution with deviated acquisition settings. We con-
sider the problem of image restoration using a single model that can scale to
multiple acquisition settings of multi-modal data by generating mode-specific
initializations for rapidly adapting to unseen data.

Task-aware modulation of the model weights using Multi-modal meta-
learning (MMAML) [13] is a promising direction that infers mode-specific
latent representations to capture the features corresponding to the modes of
heterogeneous data distribution. Our method uses auxiliary networks to ex-
ecute mode-specific modulation of the weights of a base convolutional neural
network (CNN) using the MMAML approach, in contrast to adaptive strate-
gies that adjust the activations of the base CNN. In order to improve upon
MMAML, our focus lies on how optimally the two networks learn together
with two objectives. The objective of the auxiliary networks is to provide
the high-level inductive bias [10] of multiple modes of heterogeneous data,
and the objective of the base network is to solve the imaging tasks. Unlike
previous MMAML methods [13, 12], which infuse adaptive mechanism only
on the base network via meta-learning, our approach infuses adaptive learn-
ing on both the networks at the model and optimization levels to achieve the
two objectives.
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(i) Model level: Inspired by the evolutionary computing [14, 15] capabili-
ties of weight-learning networks [16, 8, 6], we propose adaptive hypernetworks
[17], called kernel modulation (KM) hypernetworks, consisting of a low-rank
KM layer to provide mode-specific inductive bias to the base CNN. The
human brain exhibits attentional modulation, wherein modulatory signals
representing behavioral goals evolving in brain regions are sent to sensory
neurons in the cortex for perception and contextual modulation [18]. Sim-
ilarly, the proposed KM hypernetworks evolve to generate different weights
to modulate kernels in the base network for dynamically re-calibrating the
behavior of the base network.

(ii) Optimization level: We categorize the hypernetworks’ weights as
context-based, and the base network’s weights as image feature-based. The
KM hypernetworks are optimized using bi-level gradient-based meta-learning
inspired by the learning-to-learn [16] approach in the contextual space. The
base network is optimized via both gradient updates, and mode-specific ker-
nel modulation parameters from hypernetworks [19] (Figure 2 KM-MAML).
At test time, the base network is adapted on-the-fly or fine-tuned using KM
for multi-modal imaging tasks.

We demonstrate the efficacy of our approach in multi-contrast magnetic
resonance image (MC-MRI) reconstruction [20]. MC-MRI captures diverse
and complementary perspectives of a single subject using multiple MRI con-
trasts, each representing a mode. As charted out in the fastMRI reconstruc-
tion challenge results [21], the pre-existing MC-MRI deep learning models
[22, 23, 24] lack scalability to different contrasts and exhibit inadequate trans-
fer capabilities across MRI modalities. We take a kernel modulation-based
meta-learning approach to identify the modes of each MRI contrast and scale
to multiple contrast-specific models. We summarize our contributions as,

1. We propose a meta-learning model called KM-MAML, that learns via
context-aware kernel modulation for multimodal image reconstruction.
The proposed model has a base reconstruction network and layer-wise
hypernetworks, which dynamically modulate each kernel of a base re-
construction network based on the mode of the multimodal data.

2. The proposed model is optimized with two training objectives, extract-
ing (i) the mode-specific inductive bias from hypernetworks by adopting
learning-to-learn in the contextual space of heterogeneous data and (ii)
low-level image features from the base network.

3. Extensive experimentation on MC-MRI reconstruction shows that the
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proposed model provides superior reconstruction performance over other
learning methods, generality to 80% and 92% of unseen multi-contrast
contextual settings in PSNR and SSIM, with improvement margins of
around 0.1 dB in PSNR and 0.01 in SSIM, respectively. Our approach
also matches the performance of various context-specific MRI recon-
struction architectures.

4. Our analysis of the representational similarity between pre and post
kernel modulation features shows that with U-Net as the base network,
kernel modulation induces maximum (of 80%) discriminative mode-
specific representations in the top (highest resolution) layers of the
encoder and decoder.

This paper is organized as follows. Section 2 describes the related works.
Section 3 provides the material and methods with algorithm and architecture
details. Section 4 and 5 provides the dataset, implementation details, and
results. Section 6 briefly summarizes our findings and conclusion.

2. Related Work

The concept of meta-learning is originally developed by the learning-
to-learn [16, 9, 25] approach which is further extended using evolutionary
computing (EC) [26, 27, 28, 15] methods to learn the rules. The emerging
directions in multimodal learning have shown that the training data acquired
from one modality can benefit from the shared knowledge across different
modalities [29, 30]. The focus of multimodal meta-learning is to effectively
learn a mode-specific prior using cross-modal discriminative features to adapt
to several unseen multimodal data [3].

2.1. Evolutionary computing and Meta-learning

Recent works that relate evolutionary computing and deep learning, in-
clude differentiable compositional pattern producing network (DPPN) [31],
hypernetworks [17, 32], and population-based meta-learning (PBML) [33].
DPPN and hypernetworks use a multi-layer perceptron (MLP) network to
directly evolve the structure and weights of another neural network. PBML
relates EC with optimization-based meta-learning (MAML) by sharing the
paradigm of learning to learn. The authors of PBML show that MAML
manifests adaptive evolvability [34] and provides inductive biases that bal-
ance exploration and exploitation along various dimensions of mutation func-
tions. In this context, we motivate that ours is an evolutionary deep learning
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model with weight learning capability and adaptive evolvability using hyper-
networks and MAML, respectively, for image reconstruction.

2.2. Hypernetworks

Hypernetworks are mainly inspired by HyperNEAT [35], a neuroevolu-
tion framework wherein a network could be more intuitively evolved, node
by node, and connection by connection to produce connectivity patterns. Ini-
tially developed for model compression [17], hypernetworks find various imag-
ing applications like video frame prediction [36], point-cloud up-sampling
[37], and multiple parameterized image restoration operators [6, 8]. These
are model-based meta-learning methods [16, 38] wherein the hyper-networks
predict all the parameters of the imaging task-oriented base network. In our
work, the KM hypernetworks are not the sole source of base network weights.
As a result, our model benefits from context-invariant knowledge learned by
the base network. In interactive image restoration applications [39, 5, 40],
hypernetworks are used to modulate the activations of the base convolution
layer. In our model, the hypernetworks provide mode-specific inductive bias
via kernel modulation for multi-modal imaging operations.

2.3. Gradient-based Meta-learning

Several variants of gradient-based meta-learning (GBML) or MAML [41,
42, 43, 44, 45] have shown promising results in few-shot learning, owing to its
potential for rapid adaptation and feature reuse capabilities to future tasks
[46]. MAML methods that focus on improving inner loop optimization us-
ing a part of the network architecture for classification and regression tasks
exist in the literature. These methods, namely MeTAL [47], HyperMAML
[19], and ALFA [48] use hypernetworks to learn task adaptive loss function,
task-specific gradient updates, and inner loop regularization hyperparame-
ters respectively. The meta-modulated CNN for snapshot compressive sens-
ing (Meta-SCI) [49] uses a set of parameters that are used for KM based on
different mask settings during test-time adaptation. The conditional neural
adaptive process (CNAP) [4] uses a linear classifier as an adaptation network
for classification tasks. In context adaptation via meta-learning (CAVIA)
[50], a set of contextual parameters are meta-learned for adaptation to mul-
tiple tasks.

Multi-modal meta-learning methods, task-aware modulation (MMAML)
[13], and contrastive knowledge distillation meta-learning (CAML) [12] mod-
ulate the base network layer with a single mode-specific parameter. Unlike
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these works, which focus on bi-level optimization of only the base network,
our work efficiently utilizes both the networks based on task-specific weight
updates via kernel modulation of the base network and bi-level gradient de-
scent updates of our proposed KM hypernetwork. The KM layer outputs
modulation weights based [49, 51] on each sample to modulate each kernel
of the base network.

2.4. Hypernetworks for MRI reconstruction

Methods that use hypernetworks for MRI reconstruction include the Hyper-
recon network [52, 53] and the MAC-ReconNet [8]. The MAC-ReconNet pro-
vides scalable reconstructions for multiple acquisition settings. The Hyper-
recon network provides regularization-agnostic hyperparameters for image
reconstruction. Unlike these methods, we use both the base network and
the modulation networks with GBML to provide a good initialization for
adapting to unseen tasks.

The hypernetwork-based methods aforementioned [8, 5] lack interaction
with the base network weights to achieve mode-specific weight initializations.
As introduced before, different MRI contrasts exhibit different intensity prop-
erties and contribute to the learned features differently. This inspires us to
employ MMAML for enhancing the generalization ability of the base neural
network using meta-learned hypernetworks. Existing MMAML-based meth-
ods exhibit a resemblance to vanilla MAML as the modulation network is
optimized in the outer level of optimization, emphasizing context-invariant
learning. Secondly, MMAML infers a single mode-specific value that globally
modulates all the kernels of the base network layer. Thirdly, these methods
focus on classification tasks and inherently assume the presence of ground
truth labels at test time for fine-tuning. We address these limitations by
employing 1) low-rank kernel modulation offering multiplicative interactions
[54] by dynamically modulating each kernel of the base network with differ-
ent heterogeneous context-specific weights 2) two-level optimization of the
hypernetworks’ weights to lay emphasis on contextual learning. Further-
more, to support fine-tuning and on-the-fly adaptation to unseen contexts,
our method employs only the input images to generate the task embeddings
for conditioning the hypernetworks.
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3. Material and Methods

3.1. Problem Formulation

The data acquisition forward model of the MR image reconstruction prob-
lem [55] can be formulated as:

Ax+ ϵ = y (1)

where, x ∈ CN denotes the desired image, y ∈ CM’ is the under-sampled
(US) measurement from the MRI scanner, ϵ ∈ CM’ is the noise and A : CN →
CM’ represents the forward operator of the MRI acquisition process that
causes aliasing artifacts due to k-space under-sampling. The under-sampled
image reconstruction is ill-posed because the problem is under-determined
(M ′ << N) and the operator A is ill-conditioned. The under-sampled or
zero-filled (ZF) image is given by, xUS = FH

USy where FUS is the under-
sampled Fourier encoding matrix. The reconstruction of the under-sampled
image is achieved by introducing an apriori knowledge of x into the uncon-
strained optimization [55] given as:

min
x
||Ax− y||22 +R(x) (2)

where, ||Ax− y||22 is the data fidelity term [56] and R is a regularization
term.

Deep learning-based MRI reconstruction involves training a deep learn-
ing (DL) model using a single-level optimization on the average loss of all
observed data samples. This supervised joint training can be formulated as:

θ∗ = argmin
θ

E
(xUS ,xFS)∈

⋃
i
Di

[||xFS − f(xUS; θ)||22] (3)

where, Di represents the dataset of the i
th configuration of MRI contrast,

under-sampling mask type, and acceleration factor, consisting of ground
truth or fully sampled (FS) image xFS and its corresponding under-sampled
image xUS. Here, f is the DL model parameterized by θ with k-space data
fidelity. Unlike iterative methods in Eq. 2, the formulation in Eq. 3 infers
an optimal parameter set θ∗ [16].

In MAML-based MRI reconstruction, we consider each combination of
MRI contrast, under-sampling mask type, and acceleration factor for under-
sampling as a task. We partition the data of each task M into support
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(xM
US,spt, xFS,spt) and query (xM

US,qry, xFS,qry) samples. The parameters of the
network, θ, in Fig. 2 (MAML) are called meta-initializations. For every task
M, MAML uses the support samples to perform a few gradient-descent steps
(adaptation) from meta-initializations to obtain task-specific parameters ϕM

(Eq. 5). The loss due to task-specific parameters on query data is aggregated
over all train tasks (T ), to provide supervision for meta-initializations (Eq.
4). The MAML optimization [16] is given as:

θ∗ = argmin
θ

∑
M∈T

||xFS,qry − f(xM
US,qry;ϕM)||22 (4)

s.t ϕM = argmin
θ
||xFS,spt − f(xM

US,spt; θ)||22 ∀M ∈ T (5)

In the proposed KM-MAML, the parameters of the KM hypernetworks
are optimized in the bi-level optimization and the parameters of the base
network are optimized in the outer loop as shown in Fig. 2 (KM-MAML).
The KM-MAML formulation is given by:

ω∗, θ∗ = argmin
ω, θ

∑
M∈T

||xFS,qry − f(xM
US,qry; ΩM , θ)||22 (6)

s.t ΩM = argmin
ω
||xFS,spt − f(xM

US,spt;ω, θ)||22 ∀M ∈ T (7)

The training process of KM-MAML is illustrated in Algorithm 1. On
every task’s support samples, KM-MAML performs adaptation of the KM
hypernetworks to result in a task-specific KM hypernetwork model that is
characterized by weights ΩM (Eq. 7), and this constitutes the inner level
optimization in the bi-level MAML process (steps 5 to 14 in Algorithm 1).
Step 13 in Algorithm 1 describes the L1 image reconstruction loss due to the
task-specific parameters ΩM

u at the uth inner step and the modulated base
network weights θmod using support data D

M
spt of task M. The loss due to task-

specific parameters on query data, L([ΩM
U−1, θmod], D

M
qry) is aggregated over

all train tasks (T ) in step 20, to provide supervision for meta-initializations ω
and θ (Eq. 6 and steps 22 and 23). The low-rank modulation weights α and
β and the modulated base network weights θmod at the uth inner update are
shown in steps 10 to 12 and for the outer loop, in steps 18 to 20 for each task
(⊙ denotes element-wise multiplication). The outer loop or meta-update of
the base network and the hypernetworks weights are shown in steps 22 and
23, respectively. These weights, θ and ω form the meta-initializations of the
proposed network.
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Algorithm 1 KM-MAML Training Algorithm

Require: Learning rates η1, η2 and p(T ): Multimodal train task distribution
Require: CE(.): Context encoder
1: Randomly initialize ω: modulation network weights and θ: base network

weights
2: for e = 1 to max epochs do
3: Sample a task mini-batch: Tbatch ∼ p(T )
4: Lmeta = 0
5: for each training task M in Tbatch do
6: Sample a mini-batch of support data: DM

spt = {xM
US,n, xFS,n}Nspt

n=1

7: Initialize ΩM
0 ← ω

8: for u = 0 to U − 1 do
9: Context embedding: γ = CE(xM

US) ▷ Support data
mini-batch input

10: α, β = KM Hypernetwork(γ; ΩM
u )

11: WM = β ⊗outer α ▷ Modulation weights of task M
12: θmod = θ ⊙WM ▷ Mode-specific initialization (KM)
13: L1 = L([ΩM

u , θmod], D
M
spt)

14: ΩM
u+1 ← ΩM

u − η2∇ΩM
u
L1 ▷ mode-specific weight updates

15: end for
16: Sample a mini-batch of query data: DM

qry = {xM
US,n, xFS,n}Nqry

n=1

17: α, β = KM Hypernetwork(γ,ΩM
U−1)

18: WM = β ⊗outer α ▷ ⊗outer denotes outer product
19: θmod = θ ⊙WM

20: Lmeta ← Lmeta + L([ΩM
U−1, θmod], D

M
qry)

21: end for
22: θ ← θ − Adam[η1,Lmeta]
23: ω ← ω − Adam[η1,Lmeta] ▷ Meta-updates
24: end for

3.2. Architecture

The architecture of KM-MAML consists of a context encoder, a base re-
construction network, and layer-wise KM hypernetworks as shown in Figure
3. The context encoder is a simple auto-encoder that learns to map the
under-sampled MRI input image to output in an unsupervised manner. The
latent layer of the context encoder has c channels which are averaged to
obtain a latent c-dimensional embedding vector which is passed to the KM
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hypernetworks. The input and output of the base reconstruction network
are the under-sampled, and the predicted fully sampled MRI images, re-
spectively. The base reconstruction network is an encoder-decoder network,
U-Net [57, 58], a popular benchmark for MRI reconstruction [21]. The base
network has seven layers with three sub-sampling levels of the encoder and
decoder each and a bottleneck layer.

There are seven KM hypernetworks corresponding to each layer of the
base network. Each KM hypernetwork is a linear multi-layer perceptron net-
work with three layers - an input layer with c units, a bottleneck layer, and
an output layer with a size equal to the number of filters in the correspond-
ing layer of the base network. The KM hypernetwork of layer l gives two
rectangular matrices as output, βl ∈ Rnl

out×r and αl ∈ Rr×nl
in where nl

out

and nl
in are the number of output and input channels of the base network

layer l and r is the rank. The outer product operation between βl and αl

is computed in the KM layer (shown in steps 11 and 18 in Algorithm 1) to
obtain modulation weights, W l

M given as,

W l
M = βl ⊗outer α

l (8)

The modulation weights are specific to each kernel of the base network
and are element-wise multiplied. For instance, if the base network filter size
is 64 × 32 × 3 × 3, then the corresponding KM hypernetwork has 64 + 32
output neurons, 64 for β and 32 for α. The outer product at the output gives
modulation weights W l

M of size 64× 32 for kernel modulation.

4. Experiments and Results

4.1. Datasets and Implementation Details

4.1.1. Datasets

We use three multi-contrast MRI datasets consisting of axial brain images,
namely MRBrainS [59], IXI1 and SRI24 Atlas [60, 22].

1) MRBrainS dataset: We consider 336 slices of T1 and FLAIR con-
trasts from 7 volumes of T1 and FLAIR (fluid-attenuated inversion recovery)
with T1: TR = 7.9 ms, TE = 4.5 ms and FLAIR: TR = 11s and TE = 125
ms acquired on a Philips scanner. The repetition and echo times, TR, and

1https://brain-development.org/ixi-dataset/

13



256 64
128

64 1
64

32

16 8
3232

64
128

128

32
64

Context encoder

Hypernetwork with kernel modulation layer

KM 
Hypernetwork

KM 
Hypernetwork

KM 
Hypernetwork

KM 
Hypernetwork

KM 
Hypernetwork

KM 
Hypernetwork

Context embedding

Layer weights Modulated weights
Rank-1 modulation 

weights

 𝞪

 𝞫   𝞫      outer    𝞪

KM 
Hypernetwork

xUS

xCNN

Data flow 

3x3 Convolution layer + 
instance norm + ReLU

2x2 max pool

Kernel modulation 
(element-wise multiplication)

Residual connection

Upsampling by 2

3x3 Convolution 
layer

1x1 Convolution 
layer

Evolutionary 
computing module

Base reconstruction 
network

xUS

Architecture Block Diagram of KM-MAML
KM 

Hypernetwork
𝞪, 𝞫

      𝞫          outer    𝞪

Figure 3: Network architecture of KM-MAML: The context-encoder CNN provides em-
bedding vectors to represent each mode. The KM hypernetworks constitute the evolution-
ary computing module which predicts layer-wise weights that modulate the base network
weights via low-rank kernel modulation layer (orange block), shown with rank r = 1 in
the top right. The base CNN performs the multimodal image reconstruction task. XCNN

denotes the predicted image of the base network.

TE denote the contrast-specific MRI settings. All the images have a size of
240× 240.

2) IXI dataset: We consider 1400 slices of T2 and Proton density (PD)
weighted contrasts acquired from 14 volumes with T2: TR = 5725 ms, TE =
100 ms, and PD: TR = 5725 ms, TE = 8 ms acquired on a Philips scanner.
The images are preprocessed by cropping to a size of 240× 240.

For training the models we consider T1, FLAIR and T2 and PD contrasts
from MRBrainS and IXI datasets.

3) SRI24 Atlas dataset: 135 slices of T1, T2, and PD-weighted MRI
images with T1: TR = 6.5 ms, TE = 1.54 ms and T2, PD: TR = 10s, TE =
14/98 ms acquired on a GE scanner. All the images have a size of 240× 240.
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For testing the models on unseen scenarios, we use T1, T2, and PD from
SRI24 Atlas dataset.

For comparison with other MRI reconstruction architectures, we use the
following datasets:

4)Automated Cardiac Diagnosis Challenge (ACDC) [61] cardiac
MRI dataset which consists of 150 and 50 patient records with 1841 and 1076
slices for training and validation respectively. The 2D slices are extracted and
cropped to 150×150. The masks for radial under-sampling are taken from
RefineGAN2 repository

5) The knee dataset contains 200 training and validation single channel
slices of 10 subjects, each obtained from a 15-element coil knee data[62]
cropped to 320×320.

6) For training on large-scale data, we use the fastMRI [21] dataset with
7040 training and 3317 validation slices of 200 and 99 volumes, respectively,
of coronal proton-density without (PD) and with fat suppression (PDFS).
We split the validation slices into 437 slices from 18 volumes for adaptation
and 2880 slices for evaluation. The slices have multiple resolution levels -
640×368, 640×372, 640×400, 640×454, and mask patterns different from
the training data.

4.1.2. Implementation Details

Training details: For training and evaluating the models, we use four
MRI contrasts - T1, FLAIR, T2, and PD. In addition, we augment the
datasets based on two types of under-sampling mask patterns - Cartesian and
Gaussian masks with three different acceleration factors for under-sampling
namely, 4x, 5x, and 8x. We pose each configuration of contrast, mask type,
and acceleration factor as a task for meta-learning. The configurations above
are combined to form 24 tasks. The US input images are obtained by retro-
spectively under-sampling the fully sampled k-space [63]. Each task M has
samples split into support DM

spt and query DM
qry images for meta-training.

For evaluating the adaptability to unseen tasks (from SRI24 Atlas), we
choose three contrasts - T1, T2, and PD, two mask types, and five accel-
erations - 5x, 6x, 7x, 8x, and 9x to obtain 30 tasks. For adaptation via
fine-tuning, we split the test images into test support for fine-tuning and test
query images for evaluation. Table 1 shows the details of the number of sam-

2https://github.com/tmquan/RefineGAN
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Table 1: Details of cross-scanner datasets, and the number of samples used for training
and testing the models. Note that for SGD the support and query samples are mixed.

Dataset
type

Dataset / scanner
name

Contrast
Number of data samples

Support Query Testing

Training
datasets

MRBrainS / Philips
T1 3456 2304 2304

FLAIR 3456 2304 2304

IXI / Philips
PD 4800 4800 24000
T2 4800 4800 24000

Unseen
datasets

SRI24 Atlas / GE
T1 - - 1350
T2 - - 1350
PD - - 1350

ples used for training the models. All MAML models are trained with one in-
ner loop gradient step. The batch size for support and query data (Nspt, Nqry)
is 10. The task mini-batch size is chosen as 3. The loss function is L1 norm be-
tween the model’s prediction and ground truth. We have chosen the learning
rates η1, η2 of 0.001 with 600 epochs for training. For SGD, the learning rate
is chosen as 0.001. All models are implemented using PyTorch and trained on
NvidiaRTX − 3090 GPU with 24 GB memory. We have chosen the context
embedding vector size as 256 and the rank r = 1 for kernel modulation. Our
source code is available at https://github.com/sriprabhar/KM-MAML/.

Evaluation metrics: Our evaluation metrics are Peak Signal-to-Noise
Ratio (PSNR), Structural Similarity Index (SSIM), to assess the performance
of the models, and Centered Kernel Alignment (CKA) [64] to quantify the
% change in the mode-specific features pre and post kernel modulation.

K-space Data fidelity: The output of the base network is fed to a k-
space data fidelity unit to ensure consistency with the acquired k-space [56]
(Appendix A.1).

Architecture-based Comparison: We compare our method with im-
age domain MRI reconstruction CNNs, DAGAN [55], DC-CNN [56], DC-
DEN [65], DC-RDN [66], DC-UNet [58], MICCAN [67], and MAC-ReconNet
[8]. We use the source code of DC-CNN3, DAGAN4 and MAC-ReconNet5 for
implementation. We have also compared our method with recent state-of-
the-art methods that have been proposed for MRI reconstruction. These are
OUCR (Over-complete and under-complete CNNs) [68], vision transformer-
based methods, ViT [69], and SWIN transformer [70] models, and a knowl-

3https://github.com/js3611/Deep-MRI-Reconstruction
4https://github.com/tensorlayer/DAGAN
5https://github.com/sriprabhar/MAC-ReconNet
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edge distillation-based MRI reconstruction method, SFT-KD-Recon6 [71].
For DC-UNet, DC-RDN, MICCAN, DC-DEN, ViT and SWIN transformers,
we replace the CNN in DC-CNN with UNet from the fastMRI repository7,
dilated convolutions with recursive connection, channel attention, dense con-
nection blocks, vision transformers and SWIN transformers respectively [72].

4.2. Results and Discussion

We extensively evaluate our approach by comparing it with three repre-
sentative models, joint training using SGD, MAML [10], and MMAML [13]
for MC-MRI reconstruction. Our experiments showcase (i) the scalability
of the models in MC-MRI reconstruction, (ii) generalization to unseen con-
trasts via adaptation on the fly and fine-tuning, (iii) the contribution of KM
and the benefits of GBML using comparative studies and representational
similarity measures, (iv) an ablative study with and without meta-learning,
(v) performance comparison with several MRI reconstruction architectures
for specific and multiple acquisition contexts, and (vi) fine-tuning to new
anatomies and image resolution levels.

4.2.1. Multi-modal MRI reconstruction performance

We evaluate the scalability of the meta-initializations of the model to
training tasks. Table 2 shows the quantitative results for 12 out of 24 tasks.
From the table, our observations are. (i) MAML-based models enrich the
learning process compared to joint training indicated by improved SSIM
metrics. (ii) KM-MAML consistently performs better than other methods
for 96% of tasks in SSIM and 80% in PSNR. (iii) MMAML performs on
par with MAML due to its closer resemblance to MAML, constraining the
meta-training process to only the base network. (iv) KM-MAML consistently
performs better than MMAML, highlighting the importance of meta-learning
the auxiliary network for efficient adaptation.

The box plots for each configuration of contrast, mask types, and accel-
eration factors (Figure 4(a - d)) and each MRI contrast separately (Figure
4 (e)) together show that KM-MAML can provide improved accuracy met-
rics for multiple modes. The reliability of KM-MAML is demonstrated with
relatively lesser deviations in box plots as compared to other methods. The

6https://github.com/gayathrimatcha/sft-kd-recon
7https://github.com/facebookresearch/fastMRI
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Table 2: Quantitative comparison of ZF, SGD, MAML, MMAML, and KM-MAML for
multiple training tasks combining various contrasts, acceleration factors, and mask types.
Green and blue colors indicate the best and the second best metrics respectively. The tasks
are denoted in short as contrast type - mask type - acceleration factor (T1C8 indicates T1
contrast with Cartesian mask pattern and 8x acceleration). FL denotes FLAIR MRI

ZF SGD MAML MMAML KM-MAML
Task

PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM
T1C5 31.38 / 0.665 35.03 / 0.866 35.22 / 0.875 35.14 / 0.876 35.58 / 0.895
T1G4 32.24 / 0.545 40.07 / 0.913 40.59 / 0.922 40.71 / 0.927 41.02 / 0.935
T1G8 29.17 / 0.451 35.03 / 0.805 35.33 / 0.820 35.51 / 0.841 35.96 / 0.859
FLC4 28.40 / 0.642 34.12 / 0.879 34.40 / 0.885 34.23 / 0.882 34.40 / 0.889
FLC8 26.49 / 0.589 30.83 / 0.813 31.02 / 0.828 30.89 / 0.824 31.20 / 0.841
FLG8 26.36 / 0.426 33.40 / 0.802 33.73 / 0.811 33.56 / 0.820 33.93 / 0.832
PDC4 25.68 / 0.625 32.76 / 0.877 33.06 / 0.882 32.96 / 0.879 33.24 / 0.888
PDC8 23.40 / 0.551 29.07 / 0.803 29.48 / 0.814 29.32 / 0.804 29.64 / 0.819
PDG4 26.88 / 0.541 37.78 / 0.908 37.98 / 0.911 37.81 / 0.908 38.04 / 0.914
T2C4 25.94 / 0.634 32.01 / 0.873 32.43 / 0.880 32.26 / 0.875 32.55 / 0.884
T2G4 27.16 / 0.543 37.27 / 0.910 37.48 / 0.912 37.21 / 0.906 37.59 / 0.916
T2G5 25.71 / 0.500 34.83 / 0.860 35.06 / 0.863 34.82 / 0.855 35.24 / 0.870

comprehensive view within each contrast shows the fidelity of our model
across mask patterns and different amounts of under-sampling.

Figures 5 and 6 provides the qualitative reconstruction results for T1
and FLAIR MRI reconstruction. The T1 target image shows the cerebellum
region in the hindbrain while the FLAIR image shows regions around the cor-
pus callosum. The visual results show that (i) KM-MAML is able to recover
fine structures much better when compared with other methods for both con-
trasts and exhibits the least residual error. (ii) MMAML prediction suffers
from a blur in the T1 highlighted region as compared to other methods. (iii)
The residual images of MAML-based methods show lesser errors than joint
training. These observations emphasize the importance of discriminating
the representations at the contextual and image levels. The KM hypernet-
works capture the semantic relationship between various modes, while the
base network is optimized for the image reconstruction task (multi-objective
training).

4.2.2. On-the-fly adaptation to unseen multimodal MRI contrasts

To verify that KM-MAML can balance flexibility and robustness, we as-
sess the capabilities of on-the-fly adaptation without fine-tuning to unseen
multi-contrast MRI datasets. In this experiment, we consider 24 tasks com-
bining unseen T1, T2, and PD contrasts and unseen acceleration factors, 6x,
7x, 8x, and 9x, with Cartesian and Gaussian mask patterns. Table 3 shows
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(a) T1 MRI

(b) T2 MRI

(c) PD MRI

(d) FLAIR MRI

(e) All  contrasts

Figure 4: SSIM plots showing the performance of models for training tasks with varying
contrasts, mask types, and acceleration factors (a) T1 (b) T2 (c) PD, and (d) FLAIR
respectively. C denotes the Cartesian mask type, and G denotes the Gaussian mask type.
For instance, G5 indicates a Gaussian mask pattern with 5x acceleration. Figure (e) shows
the consolidated performance of each contrast. FL indicates FLAIR MRI contrast

the performance for twelve of them. Our observations are as follows. (i) Both
MMAML and KM-MAML exhibit better generalization than vanilla MAML
and joint training. This observation indicates that task-aware modulation is
an essential principle in improving the performance of MAML on heteroge-
neous tasks. (ii) MAML and MMAML show better generalization compared
to joint training with respect to SSIM. (iii) KM-MAML can encompass a vari-
ety of distribution shifts in contrasts, acceleration factors, and mask patterns
with higher improvement margins of over 0.1dB in PSNR and 0.01 SSIM for
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PSNR / SSIM 22.16 / 0.667 26.90 / 0.834 27.82 / 0.916 27.77 / 0.919 28.70 / 0.938GT inset

Figure 5: Qualitative comparison of the reconstruction performance for T1 MRI. From the
left: the ground truth (GT) image with the region of interest (ROI) highlighted as yellow
box, GT inset, ZF image, joint training, MAML, MMAML, and KM-MAML. The yellow
arrows in the image highlight the improved structure recovery of KMMAML. The residual
images with respect to the target indicate that KM-MAML recovers details better than
other learning methods.

PSNR / SSIM 23.11 / 0.651 28.20 / 0.903 28.98 / 0.915 28.96 / 0.916 29.43 / 0.932GT inset

Figure 6: Qualitative comparison of the reconstruction performance for FLAIR MRI. From
the left: the ground truth (GT) image with ROI, GT inset, ZF image, joint training,
MAML, MMAML and KM-MAML. As pointed out by yellow arrows, KM-MAML is able
to recover structures closer to the target better than other learning methods. This is also
evident from the residual images. MMAML and MAML provide better reconstruction
quality than SGD but with missing structures around the regions of interest.

most tasks. These observations indicate that the KM hypernetworks exhibit
an improved representational capacity to learn discriminative features effec-
tively. At the same time, the hypernetworks learn task-to-task similarities
and re-use the information for related tasks with drifts in degradation levels
and contrast types.

The box plots in Figure 7 show the comparative study of PSNR and SSIM
metrics for the twelve unseen tasks specified in Table 3. We see that joint
training, MAML, and MMAML exhibit a drop in performance for PD, T2,
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Table 3: Quantitative comparison of SGD, MAML, MMAML, and KM-MAML for on-the-
fly adaptation to various unseen tasks combining multiple contrasts, acceleration factors,
and mask types with deviated acquisition settings. Green and blue colors indicate the
best and the second best metrics respectively. The tasks are denoted in short as contrast
type - mask type - acceleration factor

SGD MAML MMAML KM-MAML
Task

PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM
T1C6 31.33 / 0.837 31.20 / 0.837 31.23 / 0.832 31.42 / 0.842
T1C7 32.65 / 0.846 32.60 / 0.849 32.50 / 0.843 32.79 / 0.851
T1C8 30.63 / 0.833 30.61 / 0.834 30.60 / 0.830 30.87 / 0.842
T1C9 30.07 / 0.824 30.16 / 0.826 30.08 / 0.822 30.32 / 0.834
T2G6 35.20 / 0.866 34.72 / 0.855 35.10 / 0.869 35.27 / 0.870
T2G7 33.98 / 0.851 33.50 / 0.839 33.82 / 0.855 34.18 / 0.855
T2G8 33.37 / 0.837 33.00 / 0.827 33.23 / 0.838 33.57 / 0.845
T2G9 32.31 / 0.819 31.78 / 0.804 32.06 / 0.820 32.41 / 0.823
PDC6 31.70 / 0.862 31.77 / 0.864 31.70 / 0.867 31.95 / 0.871
PDC7 30.45 / 0.843 30.83 / 0.852 30.86 / 0.855 31.11 / 0.861
PDC8 31.30 / 0.853 31.43 / 0.857 31.53 / 0.862 31.85 / 0.868
PDC9 28.67 / 0.806 28.93 / 0.814 28.81 / 0.812 29.20 / 0.827

and T1, respectively while KM-MAML gives the highest scores in all unseen
contrasts. Out of the 24 unseen tasks overall, our method gives the highest
scores for 80% of the tasks in terms of PSNR and 92% of the tasks in SSIM.

Figures 8, and 9 show the visual results for the unseen contrasts high-
lighting the regions around the central lobule of the brain image. In both
T1 and PD, the recovery of repeated patterns is much closer with respect to
the target image than in other methods. Secondly, in the case of PD (Figure
9), the highlighted region indicated by a yellow arrow in the zero-filled input
image (third from left) shows a structure with discontinuity due to aliasing.
We notice that other methods still show discontinuity in the image structure
while KM-MAML exhibits superior structure recovery. These observations
are on par with the least residual error for KM-MAML.

From the quantitative and qualitative results, we see that (i) the meta-
initializations of the KM hypernetworks evolve a structure of weights for con-
tinuous image generation by extrapolating and interpolating between various
contextual settings. (ii) kernel modulation provides a way to re-calibrate the
weights by learning global information of multi-modal data and dynamically
emphasizing informative features in the base network at each subsampling
level. This aspect is very similar to the attention and gating mechanisms
[73, 67] applied on CNN features to focus on important regions of the image
features.
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Figure 7: PSNR and SSIM plots comparing on-the-fly adaptation performance of joint
training, MAML, MMAML, and KM-MAML for 12 unseen tasks for T1, T2, and PD
MRI data shown in Table 3 with deviations from training data. C denotes the Cartesian
mask type, and G denotes the Gaussian mask type.

4.2.3. Adaptation via fine-tuning to unseen multimodal MRI contrasts

The purpose of this experiment (Table 4) is twofold. (i) To compare
the adaptation capabilities of the models via fine-tuning to a few gradient
steps (ii) To understand whether the weights of the KM hypernetworks are
extensible and favorable for rapid adaptation to unseen tasks. We analyze
the second aspect with an ablative study of adapting either the base network
(columns 4 and 5 in Table 4 and Refer Algorithm 2 in Appendix) or the
KM hypernetworks (columns 6 and 7 in Table 4) in MMAML and KM-
MAML. A possible scenario wherein adapting the KM hypernetworks would
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PSNR / SSIM 25.58 / 0.690GT inset 32.32 / 0.885 32.05 / 0.879 31.85 / 0.881 32.47 / 0.895

Figure 8: Qualitative comparison of the on-the-fly adaptation capabilities of the methods
to unseen contrasts (T1 MRI). From the left, we have GT image, GT ROI, ZF, joint
training, MAML, MMAML, and KM-MAML. The figure shows the superior recovery of a
pair of structures in the culmen region of the axial T1 MRI for KM-MAML while other
methods exhibit relatively more blur in the region.

PSNR / SSIM 25.70 / 0.812 32.13 / 0.917 32.12 / 0.916 32.17 / 0.915 33.00 / 0.933GT inset

Figure 9: Qualitative Results for PD MRI comparing the target image, zero-filled recon-
struction, joint training, MAML, MMAML, and KM-MAML with respect to the on-the-fly
adaptation capabilities of the models to multiple contrasts. The two region pointed out by
the yellow arrows in the predicted images show that KM-MAML exhibits better recovery
of fine details over other methods.

be faster and more efficient is when the base network is very deep with more
parameters while the hypernetworks are lightweight with relatively lesser
weights. We evaluate the adaptation performance on 16 unseen tasks with
T1 and PD contrasts with unseen acceleration factors 5x, 6x, 7x, and 9x and
unseen mask patterns.

Our observations from the table are as follows: (i) Our first objective
is met, wherein KM-MAML exhibits better adaptation over other methods,
improving further upon KM (refer to box plots in Figure 10). This observa-
tion shows that the proposed model provides stronger mode-specific meta-
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Table 4: Quantitative comparison of SGD, MAML, MMAML, and KM-MAML for adap-
tation via fine-tuning with 10 gradient steps for various unseen contrasts, acceleration
factors, and mask types. Ablative studies for adapting either the base or the modulation
network for MMAML and KM-MAML

Adapt base n/w Adapt modulation n/w
SGD MAML MMAML KM-MAML MMAML KM-MAML

Task PSNR /
SSIM

PSNR /
SSIM

PSNR /
SSIM

PSNR /
SSIM

PSNR /
SSIM

PSNR /
SSIM

T1C5 33.77/ .872 33.94/ .876 33.48/ .867 33.67/ .874 33.44/ .866 33.65/ .874
T1C6 31.33/ .837 31.21/ .837 31.30/ .837 31.45/ .844 31.25/ .835 31.43/ .844
T1C7 32.67/ .847 32.62/ .850 32.47/ .843 32.90/ .854 32.39/ .840 32.82/ .851
T1C9 30.08/ .824 30.18/ .827 30.05/ .821 30.34/ .834 30.05/ .821 30.33/ .834
T1G5 35.88/ .852 35.86/ .854 35.75/ .852 36.01/ .858 35.75/ .852 35.97/ .857
T1G6 34.72/ .841 34.57/ .837 34.41/ .834 34.73/ .843 34.26/ .831 34.71/ .841
T1G7 32.45/ .794 32.38/ .792 32.15/ .789 32.56/ .801 32.11/ .788 32.44/ .798
T1G9 30.99/ .779 30.99/ .781 30.83/ .780 30.90/ .785 30.70/ .775 30.89/ .785
PDC5 32.22/ .869 32.54/ .876 32.39/ .875 32.72/ .883 32.37/ .875 32.70/ .883
PDC6 31.71/ .862 31.77/ .864 31.76/ .868 32.00/ .872 31.74/ .867 31.99/ .872
PDC7 30.49/ .844 30.85/ .852 30.90/ .856 31.15/ .861 30.89/ .856 31.15/ .861
PDC9 28.72/ .807 28.95/ .815 28.86/ .813 29.20/ .827 28.83/ .812 29.20/ .827
PDG5 36.46/ .894 36.35/ .895 36.50/ .900 37.10/ .908 36.50/ .900 37.03/ .907
PDG6 33.84/ .852 33.57/ .848 33.87/ .858 34.26/ .865 33.81/ .856 34.25/ .865
PDG7 32.99/ .838 32.72/ .832 32.85/ .840 33.29/ .852 32.72/ .836 33.27/ .851
PDG9 31.50/ .804 31.32/ .804 31.38/ .809 31.91/ .824 31.30/ .805 31.90/ .824

initializations to adapt in a few gradient steps. (ii) Our ablative study shows
that KM-MAML outperforms MMAML in both cases of adapting either the
base or the modulation network. Also, comparing columns 4 and 7, KM-
MAML is better than MMAML. This observation shows that fine-tuning the
KM hypernetworks enables adaptation to unseen related tasks in the con-
textual space while preserving the image reconstruction features learned by
the base network. (iii) Adapting the KM hypernetworks gives a competitive
performance with adapting the base network.

The qualitative results for adaptation through fine-tuning are shown in
Figures 11 and 12. Figures show that KM-MAML provides better reconstruc-
tions when compared with other methods. The improvement is consistent as
compared to MMAML in both cases of adapting either the base network or
the modulation network to unseen tasks.

4.2.4. Interpreting the kernel modulation-based meta-learning

To gain insights into kernel modulation, we analyze KM-MAML by com-
paring the nearness between the on-the-fly adaptation versus adaptation in
few gradient steps. Furthermore, we perform a representational analysis us-
ing Centered Kernel Alignment (CKA) [64, 46] metric to understand the abil-
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Figure 10: PSNR and SSIM plots comparing generalization through adaptation in few
gradient steps for joint training, MAML, MMAML, and KM-MAML for 12 tasks with
deviated contrasts, acceleration factors, and mask types for T1, T2, and PD respectively
deviated from training data. C denotes the Cartesian mask type, and G denotes the
Gaussian mask type. For instance, T2C7 indicates an unseen task with T2 MRI contrast
with a Cartesian mask pattern with 7x acceleration.

ity of the kernel modulation network in learning mode-specific discriminative
features. The CKA gives a number between 0 and 1 to quantify the corre-
lation between representations. For instance, a CKA value of 0.7 between
pre and post modulation features of a base network layer means that 30% of
discriminative knowledge associated with a task is induced post-modulation.
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26.65 / 0.714 33.93 / 0.919 33.76 / 0.914 33.85 / 0.914 34.49 / 0.928PSNR / SSIM 33.71 / 0.912 34.45 / 0.927

Adapt  base Adapt  KM Adapt base Adapt KM

Figure 11: Qualitative Results for T1 MRI comparing (from the top left) the target image,
ZF image, joint training, MAML, MMAML (pink box), and KM-MAML (green box) with
respect to the adaptation capabilities in a few gradient steps for multiple contrasts. The
structure pointed out by the yellow arrow shows that the missing structure in the under-
sampled input is inadequately captured by other methods while KM-MAML is able to
recover the structure with improved accuracy. In the ablative studies, the pink box shows
the visual results of MMAML, and the green box shows the results for KM-MAML.

26.67 / 0.859 32.02 / 0.941 31.90 / 0.940 31.97 / 0.942 32.37 / 0.944PSNR / SSIM 31.95 / 0.941 32.36 / 0.944

Adapt  base Adapt  KM Adapt base Adapt KM

Figure 12: Qualitative Results for PD MRI comparing the target image, ZF image, joint
training, MAML, MMAML, and KM-MAML with respect to the adaptation capabilities in
a few gradient steps for multiple contrasts. The structure pointed out by the yellow arrow
shows that other methods exhibit artifacts present in the ZF image while in KM-MAML
the reconstruction is closer to the target. In the ablative studies, the pink box shows the
visual results of MMAML, and the green box shows the results for KM-MAML.

4.2.4.1 Comparing on-the-fly adaptation with fine-tuning

We compare the on-the-fly adaptation performance with adaptation via fine-
tuning of the KM network to understand the contribution of gradient-based
meta-learning for fine-tuning. Table 5 compares on-the-fly adaptation (or
the post modulation step) and adaptation via fine-tuning to 10 and 30
gradient steps further after post-modulation. The post-modulation perfor-
mance improves with adaptation (highlighted in green). The results show
that with mode-specific initializations provided by the KM, gradient-based
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Table 5: Quantitative comparison of on-the-fly adaptation and adaptation through fine-
tuning to 10 and 30 gradient steps. The table shows the adaptation performance for
various configurations of T2 and PD MRI contrasts. Note that blue indicates the similarity
between on-the-fly and fine-tuning performance. Green showcases the benefits of gradient-
based meta-learning by improving the accuracy via fine-tuning in few gradient steps.

KM-MAML
(On-the-fly)

KM-MAML
(10 STEPS)

KM-MAML
(30 STEPS)

TASK
PSNR / SSIM PSNR / SSIM PSNR / SSIM

T2C4 36.20 / 0.929 36.25 / 0.928 36.31 / 0.929
T2C5 35.58 / 0.919 35.66 / 0.918 35.69 / 0.919
T2C7 31.73 / 0.857 31.80 / 0.858 31.84 / 0.858
T2C9 30.60 / 0.860 30.61 / 0.859 30.66 / 0.861
T2G4 39.07 / 0.921 39.15 / 0.922 39.19 / 0.923
T2G5 36.66 / 0.889 36.79 / 0.891 36.84 / 0.892
T2G7 34.18 / 0.855 34.27 / 0.857 34.30 / 0.857
T2G8 33.57 / 0.845 33.65 / 0.847 33.70 / 0.848
PDC4 33.95 / 0.904 33.98 / 0.904 33.95 / 0.904
PDC5 32.70 / 0.883 32.71 / 0.883 32.72 / 0.883
PDC6 31.95 / 0.871 32.00 / 0.872 32.02 / 0.873
PDC7 31.11 / 0.861 31.15 / 0.861 31.17 / 0.862
PDG4 39.31 / 0.934 39.34 / 0.935 39.40 / 0.936
PDG5 37.02 / 0.906 36.97 / 0.905 37.16 / 0.910
PDG6 34.23 / 0.864 34.26 / 0.865 34.24 / 0.864
PDG7 33.26 / 0.851 33.29 / 0.852 33.32 / 0.853

meta-learning can further improve the performance on unseen tasks. We
also note that the SSIM values post-modulation exhibit closeness to post-
adaptation (metrics highlighted in blue), implying that context-aware meta-
initializations have gained highly reusable features for new MRI contrasts
with deviated acquisition settings.

4.2.4.2 Representational Similarity Analysis

We study the extent to which the base neural network’s latent representations
(activations) change based on task-specific kernel modulation. Following the
recent works [46, 64], we measure the changes in the representations before
and after KM based on the CKA metrics to compare similarities in patterns.
Figure 13 shows the CKA plots for the three down-sampling layers, the bot-
tleneck layer, and the three upsampling layers of the encoder-decoder base
network. The plots show the mean CKA values taken across the 24 unseen
MRI tasks. From the plot, our observations are: (i) The CKA metrics are
the least, with around 0.2 to 0.3 in the highest levels of the encoder and de-
coder. This observation shows that these layers, which play a crucial role in
recovering fine-grained image details [74] for reconstruction, obtain around
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Figure 13: CKA similarity scores between the representations of the seven layers of the
encoder-decoder base reconstruction network pre and post kernel modulation. Low CKA
similarity at the top layers of the encoder and decoder shows that these layers must
change significantly to recover structures according to different modes of the MRI con-
trasts. The CKA similarity gradually increases with its peak in the latent layer which
shows that low frequency details of related multi-contrast images exhibit hight similarity.
In the figure conv down 0 and conv up 2 are the top most levels of the encoder-decoder
network. conv down 1 and conv up 1 form the second sub-sampling level and so on. The
latent layer is the bottleneck convolution layer. Note that the variations in the box plots
are small indicating that hill-like profile is consistent across all the unseen contrasts (T1,
T2, and PD).

70 to 80% mode-specific discriminative knowledge post KM. (ii) Representa-
tional similarity increases over sub-sampling levels and reaches a maximum
of about 0.78 at the bottleneck layer from the encoder. This observation
indicates that lower resolution layers capture low-frequency details that are
mode-invariant. Each KM hypernetwork of the corresponding base layer
takes varying roles of learning mode-specific and mode-invariant knowledge
wherein the top layers learn more mode-specific features while the bottom
layer learns more mode-invariant features. (iii) CKA values gradually de-
crease in the decoder layers as we move towards the output layer to around
28%. This observation is very similar to the CKA analysis in Almost no inner
loop (ANIL)[46] for classification tasks wherein the head of the network ex-
hibits the least CKA similarity while the intermediate layers exhibit higher
CKA scores. This analysis provides an architecture-level interpretation of
kernel modulation of the base network.
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PSNR / SSIM 22.16 / 0.667 26.90 / 0.893 27.82 / 0.916 28.70 / 0.938

Figure 14: Qualitative results for the ablative study. Top: From the left are ZF image, and
the predictions of U-Net, U-Net + GBML, and U-Net + KM + GBML. Bottom: From
the left, target inset, residual error images with respect to the target for ZF, U-Net, U-Net
+ GBML, and U-Net + KM + GBML

Table 6: Ablative study showing the role of the base network alone with SGD (single level
of optimization), base network alone with gradient-based meta-learning which has two
levels of optimization, and the proposed model with base network and kernel modulation
network as the architecture and gradient-based meta-learning as the learning process. T1
denotes T1 MRI contrast, C - Cartesian mask pattern, and G - Gaussian mask pattern.
For example, T1C8 indicates T1 MRI image with Cartesian mask under-sampling at 5x
acceleration.

U-Net w/o
GBML

U-Net +
GBML

U-Net + KM
+ GBML

Task
PSNR / SSIM PSNR / SSIM PSNR / SSIM

T1C4 36.09 / 0.889 36.45 / 0.900 36.75 / 0.915
T1C5 34.78 / 0.861 35.22 / 0.875 35.58 / 0.895
T1C8 32.52 / 0.817 32.99 / 0.839 33.37 / 0.864
T1G4 40.20 / 0.913 40.59 / 0.922 41.02 / 0.935
T1G5 38.20 / 0.874 38.67 / 0.887 39.05 / 0.906
T1G8 34.85 / 0.802 35.33 / 0.820 35.96 / 0.859

4.2.5. Ablative study of the model and the learning process

We perform an ablative study to understand the role of meta-learning
and kernel modulation. We consider 6 acquisition contexts with T1 MRI im-
ages, Cartesian and Gaussian mask patterns, and acceleration factors 4x, 5x,
and 8x. Table 6 and Figure 14 show the quantitative and qualitative results,
respectively, for the ablative study considering three cases, 1) Only the base
network with conventional joint training involving a single level of optimiza-
tion, 2) Only the base network trained with gradient-based meta-learning
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Table 7: Quantitative comparison with context-specific deep cascaded MRI reconstruction
architectures for fixed anatomy under study (cardiac), acceleration factors 4x and 5x, and
Cartesian mask type. Green indicates that our model can operate on multiple acquisition
contexts while matching the performance of context-specific models.

4x 5x
Method PSNR / SSIM PSNR / SSIM

ZF 24.27 / 0.699 23.82 / 0.674
DAGAN [55] 28.52 / 0.841 28.02 / 0.825
DC-CNN [56] 32.75 / 0.920 31.75 / 0.905
DC-DEN [65] 33.22 / 0.925 32.30 / 0.913
DC-RDN [66] 32.95 / 0.923 32.09 / 0.912
DC-UNet [58] 33.17 / 0.928 32.55 / 0.919
MICCAN [67] 33.38 / 0.930 32.52 / 0.918

MAC-ReconNet [8] 32.98 / 0.923 32.07 / 0.910
OUCR [68] 32.98 / 0.923 32.07 / 0.910
ViT [69] 28.55 / 0.828 27.86 / 0.806

SWIN [70] 30.15 / 0.869 29.24 / 0.848
SFT-KD-Recon [8] 32.03 / 0.907 30.93 / 0.888

KM-MAML 33.40 / 0.930 32.64 / 0.919

involving two-level optimization at the task level, and 3) With both base
and kernel modulation networks within the gradient-based meta-learning
process. From the results, it is clear that under variations in the contexts,
GBML can provide better meta-initializations as compared to conventional
joint training. Furthermore, combining model-based meta-learning via the
context-specific kernel modulation using hypernetworks and optimization-
based meta-learning enhances the learning with improvement margins of ∼1
dB in PSNR and ∼0.01 in SSIM.

5. Model-based Comparative Studies

5.0.1. Comparison against context-specific MRI reconstruction architectures

We provide architecture-based performance comparisons to show that our
method can operate in multiple acquisition context-based configurations as
well as match the reconstruction performance of other context-specific net-
works. We perform kernel modulation using a single set of KM hypernetworks
on the base network (U-Net) in deep cascaded mode [56]. We compare our
network against DAGAN, and various deep cascaded CNNs that are trained
for a specific context - cardiac anatomy, a fixed Cartesian under-sampling
pattern, and a specific acceleration factor (4x or 5x). We train the adaptive
MRI reconstruction models, MAC-ReconNet and KM-MAML on ten acquisi-
tion configurations with the cardiac anatomy, varying mask types - Gaussian
and Cartesian, and varying acceleration factors - 2x, 3.3x, 4x, 5x, and 8x.
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PSNR / SSIM
Target image

24.11/ 0.8091
DAGAN 

26.33/ 0.8882
DC-CNN

26.54/ 0.8926
DC-RDN

26.82/ 0.8963 
DC-DEN

28.46/ 0.9131
MICCAN

28.76/ 0.9190
KM-MAML

Target inset

19.98/ 0.6906
ZF

28.37/ 0.9148
DC-UNet

27.71/ 0.9021
MAC-ReconNet

26.65/ 0.8897
OUCR

24.54/ 0.8126
ViT

25.07/ 0.8289
SWIN

24.97/ 0.8623
SFT-KD-Recon

Figure 15: Qualitative comparison of KM-MAML in deep-cascaded mode against ZF,
context-specific and adaptive MRI reconstruction architectures. The yellow arrows in the
figures point below the ventricle region of the cardiac MRI anatomy with a heavy aliasing
on the ZF image. KM-MAML recovers finer details much closer to the target as compared
to other methods where the aliasing artifacts are still present.
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Table 8: Comparative study of scalability of context-specific networks (DC-Unet and DC-
DEN) and the proposed network when combining multiple anatomies with different image
resolution levels, mask patterns, and acceleration factors. T1 denotes T1 contrast, and
PD denotes proton density-weighted contrast. B and K denote brain and knee anatomies.
C and G denote Cartesian and Gaussian mask patterns. For example, the task PDKC5
denotes the context with PD knee, Cartesian, 5x acceleration.

Task
DC-Unet DC-DEN KM-MAML

PSNR / SSIM PSNR / SSIM PSNR / SSIM
T1BC5 42.67 / 0.984 42.87 / 0.987 43.64 / 0.990
T1BC8 38.81 / 0.967 38.25 / 0.967 39.33 / 0.974
T1BG5 49.10 / 0.990 50.48 / 0.996 51.50 / 0.998
T1BG8 46.27 / 0.986 46.44 / 0.991 47.99 / 0.994
PDKC5 35.64 / 0.921 35.39 / 0.916 35.83 / 0.923
PDKC8 32.81 / 0.877 32.18 / 0.865 32.96 / 0.880
PDKG5 37.42 / 0.935 37.20 / 0.929 37.82 / 0.940
PDKG8 34.58 / 0.895 33.00 / 0.869 35.00 / 0.902

Table 7 shows that our model can operate in multiple configurations and
outperform the context-specific models in terms of PSNR and SSIM. We also
note that as compared to MAC-ReconNet our model performs better when
trained in multiple contexts. Unlike our network which has both context-
specific weights provided by the KM hypernetworks and context-invariant
weights of the base network, MAC-ReconNet lacks context-invariant weights
of the base network, as all the weights of the base network are predicted
by the hypernetworks. The qualitative results (Figure. 15) reveal that KM-
MAML is able to reconstruct images closer to the target image as compared
to other methods.

5.0.2. Multiple Acquisition Contexts - Multiple Anatomies and Image Reso-
lution levels

As the main goal of this work is to enable more capabilities to approxi-
mate diverse contexts, we compare the scalability of our network with other
networks when combining multiple anatomies, contrasts, and image resolu-
tion levels ( 320×320 and 240×240), mask pattern and acceleration factors,
making to 12 contexts in a single training. For our comparative study, we take
two of the top-performing architectures from Table 7, the DC-Unet (encoder-
decoder CNN like MICCAN) and DC-DEN (DenseNet CNN configuration).
Table 8 shows the comparative study of the scalability of these models and
our method to multiple acquisition contexts. Under diverse data settings,
the modulated weights in the proposed method provide context-adaptive re-
construction and exhibit better metrics than DC-UNet and DC-DEN.
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GT Image
PSNR / SSIM

DC-DEN
38.68 / 0.973

DC-UNet
38.75 / 0.978

KM-MAML
39.92 / 0.983

GT inset

Figure 16: Qualitative comparison of KM-MAML with DC-DEN and DC-UNet when
combining multiple anatomies, mask patterns, and acceleration factors. The yellow arrows
pointing at the medial meniscus and ligament regions of the knee MRI anatomy show that
KM-MAML reconstructs the image much closer to the target as compared to DC-DEN
and DC-UNet under heterogeneous data scenario.

The improvement margins over DC-UNet are ∼ 0.8 dB in PSNR and ∼
0.006 in SSIM, while the improvement margins over DC-DEN are ∼ 1 dB
in PSNR and ∼ 0.01 in SSIM. We believe the main reason for this obser-
vation is that DC-DEN and DC-UNet learn a single set of shared weights
that pull the reconstruction towards an average of the possible reconstruc-
tions equidistant from all diverse acquisition contexts considered at train
time. These weights are inadequate to scale to multiple diverse contexts.
On the other hand, KM-MAML exhibits dynamic context-specific weights
at inference time. The qualitative results for the knee context in Figure 16
show that the reconstructed image corresponding to DC-DEN shows missing
structures and that corresponding to DC-UNet shows smudged regions, while
the predicted image of KM-MAML is much closer to the target image.

5.0.3. Fine-tuning Vs. Transfer learning with Context-specific networks

In this experiment, we have taken the models trained on multiple anatomies
and contrasts (proton density knee 320× 320 and T1 brain 240× 240), mask
patterns, and acceleration factors (as shown in Section 5.0.2) as the pre-
trained models. The models are fine-tuned (one or two epochs i.e. visiting
the samples once or a maximum of two times) and transfer learned (ten
epochs) to unseen contexts covering cardiac anatomy with Cartesian, radial
(unseen mask pattern) and Gaussian mask patterns with acceleration factors
3.3x, 5x, and 10x and image resolution level of 150 × 150. From the quan-
titative results shown in Table 9, our observations are as follows. 1) The
performance of KM-MAML after adaptation is, in general, better than the
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Table 9: Comparative study of context-specific networks (DC-Unet and DC-DEN) and the
proposed network when transfer learning from knee 320×320 and brain 240×240 contexts
to cardiac 150× 150 with Gaussian, radial and Cartesian mask patterns and acceleration
factors 3.3x, 5x and 10x. CC, CR, and CG indicate the cardiac anatomy with Cartesian,
radial, and Gaussian mask under-sampling patterns, respectively. For instance, task CR5
denotes cardiac anatomy undersampled with radial masks with 5x under-sampling. The
numbers highlighted in green show that the fine-tuning performance (Epoch 1 and 2)
of KM-MAML matches the transfer learned performance (Epoch 10) of context-specific
networks.

DC-DEN DC-UNet KM-MAML
Epoch

1
Epoch

10
Epoch

1
Epoch

10
Epoch

1
Epoch

2
Epoch

10
Task

PSNR/
SSIM

PSNR/
SSIM

PSNR/
SSIM

PSNR/
SSIM

PSNR/
SSIM

PSNR/
SSIM

PSNR/
SSIM

CC3.3
33.58/
.934

34.30/
.941

34.24/
.943

34.61/
.946

34.43/
.945

34.58/
.946

34.82/
.948

CC5
30.73/
.888

31.60/
.903

31.83/
.909

32.23/
.915

32.01/
.910

32.16/
.913

32.45/
.917

CC10
24.98/
.727

25.54/
.749

25.93/
.765

26.31/
.778

26.12/
.770

26.26/
.775

26.49/
.783

CR3.3
37.47/
.961

38.31/
.966

38.22/
.967

38.90/
.971

38.71/
.970

38.90/
.971

39.18/
.973

CR5
33.86/
.923

34.66/
.933

34.72/
.936

35.14/
.941

34.92/
.939

35.07/
.941

35.34/
.944

CR10
27.95/
.794

28.64/
.816

29.02/
.832

29.43/
.842

29.15/
.834

29.33/
.839

29.57/
.846

CG3.3
39.16/
.975

39.94/
.978

39.85/
.978

40.34/
.980

40.29/
.980

40.42/
.981

40.62/
.982

CG5
35.89/
.951

36.63/
.957

36.72/
.958

37.27/
.962

37.05/
.961

37.21/
.962

37.46/
.963

CG10
29.20/
.845

30.21/
.868

30.73/
.880

31.19/
.888

30.89/
.880

31.03/
.884

31.37/
.890

other two methods in both fine-tuning (Epoch 1 and 2) and transfer learning
cases (Epoch 10) for all mask patterns and acceleration factors. 2) When the
fine-tuning (Epoch 1 and Epoch 2) performance of KM-MAML is compared
with DC-UNet, and DC-DEN after transfer learning (Epoch 10), we note
that KM-MAML is competitive with DC-UNet models for 5 out of 8 cases at
epoch 1 and almost all the cases at epoch 2. These cases are highlighted in
green in Table 9. 3) KM-MAML fine-tuning shows significant improvement
over DC-DEN after transfer learning. These observations reveal superior
meta-learning capabilities of KM-MAML with context-specific learning us-
ing kernel modulation as compared to other models. The qualitative results
in Figure 17 comparing the transfer learning performance of DC-DEN and
DC-UNet with the Epoch 2 fine-tuning performance of KM-MAML show
that our model has the capabilities to generalize via faster adaptation to
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GT Image
PSNR / SSIM

DC-DEN
34.09 / 0.959

DC-UNet
34.51 / 0.963

KM-MAML
35.14 / 0.968

GT inset

Figure 17: Qualitative comparison of KM-MAML with DC-DEN and DC-UNet when
adapting from knee and brain to cardiac contexts with 5x acceleration. The yellow arrows
pointing at the ventricle regions show that KM-MAML is able to recover fine structures
and textures with less blur than other methods.

unseen data domains. The visual quality of KM-MAML prediction is much
closer to the target with respect to the recovered textures and patterns as
compared to DC-DEN and DC-UNet.

5.0.4. Comparative Study using large scale clinical data

We demonstrate our comparative study of the transfer learning perfor-
mance of DC-UNet and the on-the-fly adapted performance of KM-MAML
on the fastMRI dataset [21], a large-scale collection of clinical MR images.
The dataset consists of coronal PD and PDFS images with varying Carte-
sian mask patterns for 4x and 8x accelerations. The validation set consists of
mask patterns and varying image resolution levels different from the training
dataset. The quantitative results for DC-UNet are PSNR / SSIM: 31.11 /
0.852, and DC-UNet + transfer learned to 10 epochs are, PSNR / SSIM: 31.14
/ 0.854. The quantitative results for KM-MAML in the one-the-fly adapta-
tion setting (i.e. without fine-tuning) are, PSNR / SSIM: 31.16 / 0.855.
The qualitative results are shown in Figure 18. The results demonstrate the
consistency in generalization capabilities of dynamic weight prediction and
kernel modulation of the base network across varying mask patterns and
resolution levels when trained on large-scale training data.

6. Summary and Conclusion

In this work, we adaptively learn the structure of multimodal data distri-
butions using KM-MAML, a learning model that combines the strengths
of model-based evolutionary deep learning and optimization-based meta-
learning. The hypernetworks output low-rank approximation weights to
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GT Image
PSNR / SSIM

DC-UNet
33.44 / 0.950

KM-MAML
33.55 / 0.958 GT inset

DC-UNet (adapted)
33.50 / 0.957

Figure 18: Qualitative comparison of KM-MAML with DC-UNet when trained on large
scale data (fastMRI) and adapting to few samples of images under-sampled on unseen
mask patterns and image resolution levels of knee MRI.

modulate the base network based on different modalities of the acquired im-
age data. The training objectives include learning the inductive bias of mul-
tiple modes of heterogeneous data and low-level image features. To achieve
the multi-objective training, our model optimally utilizes the hypernetworks
via kernel modulation and gradient-based meta-learning (Figure 2 and 3).

We have demonstrated the efficacy of our method for MC-MRI reconstruc-
tion considering the two essential fastMRI research directions: multimodal
and transfer learning across MRI scanners. We considered benchmark MC-
MRI datasets, such as MRBrainS, SRI24 Atlas, and IXI datasets, to compare
the scalability of the learning methods and the cardiac ACDC dataset, and
fastMRI knee datasets to compare the reconstruction performance against
various acquisition context-specific MRI reconstruction networks. Scalabil-
ity to numerous multimodal acquisition settings for clinical use is facilitated
through hypernetworks (Figure 4) that impart the necessary context-aware
bias into base CNN and is further enhanced by discriminatively fine-tuning
to the shifted target distribution. Representation similarity analysis pro-
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vides insights into mode-specific knowledge in the high-resolution layers of
the base network (Figure 13). Our proposed KM-based architecture out-
performs various context-specific MRI reconstruction architectures (Tables 7
and 8) and the adaptive MRI reconstruction architecture, MAC-ReconNet
in the multiple context-based setting quantitatively and qualitatively.

Our future research directions include analyzing the model in terms of
better context embedding, extending the work for multi-coil reconstruction
with self-supervision, other regression tasks like image imputation in MRI,
and contrast augmentation techniques to improve the generalization capabil-
ities of the model.
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[19] M. Przewiȩźlikowski, P. Przybysz, J. Tabor, M. Ziȩba, P. Spurek, Hyper-
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Appendix A. Appendix

Appendix A.1. Data Fidelity Operation in MRI reconstruction

The proposed architecture of KM-MAML has a data fidelity (DF) block
[56] in k-space domain after the CNN base network to ensure that the CNN
reconstruction is consistent with the acquired k-space measurements. The
data fidelity operation fdf can be expressed as,

x̂df =

{
x̂CNN(k) k /∈ Ω
x̂CNN (k)+λx̂u(k)

1+λ
k ∈ Ω

(A.1)

Here, x̂CNN = FfxCNN , x̂u = Ffxu, Ω is the index set of sampled k-space
data, Ff is the Fourier encoding matrix, and x̂df is the corrected k-space and
the data fidelity weight λ → ∞. The reconstructed image is obtained by
inverse Fourier encoding of x̂df , i.e. xdf = FH

f x̂df (Figure A.19).

Appendix A.2. Glossary of Technical Terms

Meta-initialization or meta-parameters θ - globally shared initial-
ization point of parameters (weights) of a task-oriented base neural network
trained on various tasks (for example, different classes in classification tasks)
using gradient-based meta-learning, such that a few gradient steps from the
initialization parameters can generalize to new related tasks (new classes in
classification tasks).

Task-specific parameters ϕM - In meta-learning, task-specific param-
eters refer to the parameters of a neural network that are obtained after
rapidly adapting the network to a specific task M encountered during the
inner loop of the meta-testing phase. These parameters are different from
the meta-initialization parameters that are optimized in the outer loop across
tasks [10].

Multimodal MRI data - Multimodal data refers to the data collected
through different acquisition technologies. The output of each acquisition
technology is represented as a mode in the form of a dataset associated with
a medium of expression, such as vision, audio or text. Multimodal MRI
data refers to the use of multiple imaging techniques within a single MRI
examination to gather complementary information about the structure and
function of interest.

Hypernetworks - Hypernetworks are used to adaptively generate weights
to initialize or update the parameters of another network, called a base or

46



Data fidelity (DF) Operation  fdf for k-space consistency

Ff - Fourier encoding matrix

Ff
H - Inverse Fourier encoding matrix

xREC = xDF, Nc

 Ff  fdf

 y = x̂US

 Ff
H

xCNN

x̂CNN x̂DF xDF

Figure A.19: K-space Data fidelity for MRI reconstruction

backbone network [17]. Hypernetworks form the basis for model-based meta-
learning [16].

Inductive bias - Inductive bias refers to the prior knowledge or assump-
tions that a learning algorithm uses to make predictions or generalize from
training data to unseen data. The meta-learning process learns the induc-
tive bias in the form of the meta-initializations, which allow the model to
generalize by adapting quickly to new tasks with limited data [50].

Mode-specific inductive bias - Meta-initializations closer to the given
target data mode in multimodal data.

Rank-1 kernel modulation - Element-wise multiplication of the base
network kernels with the predicted weights of the hypernetwork. The pre-
dicted weights are two vectors corresponding to the number of input channels
Cin and output channels Cout of the corresponding base network layer. For
example, if the base network layer has Cout × Cin kernels each of size k × k,
then the hypernetwork predicts two vectors of sizes Cout×1 and 1×Cin, such
that the outer product of these two vectors gives a matrix of size Cout×Cin.
The hypernetwork predicts Cout+Cin weights rather than Cout×Cin weights
to modulate each kernel of the convolution layer differently.
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Table A.10: Quantitative comparison of SGD, MAML, MMAML and KM-MAML on 24
training tasks combining four MRI contrasts - T1, FLAIR, T2 and PD, two under-sampling
mask types - Cartesian and Gaussian and three acceleration factors 4x, 5x and 8x. Tasks
are encoded in contrast type - mask type - acceleration factor value. FL denotes FLAIR
MRI contrast

SGD MAML MMAML KM-MAML
Task

PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM
T1C4 36.14 / 0.891 36.45 / 0.900 36.45 / 0.903 36.75 / 0.915
T1C5 35.03 / 0.866 35.22 / 0.875 35.14 / 0.876 35.58 / 0.895
T1C8 32.69 / 0.822 32.99 / 0.839 32.96 / 0.842 33.37 / 0.864
T1G4 40.07 / 0.913 40.59 / 0.922 40.71 / 0.927 41.02 / 0.935
T1G5 38.18 / 0.877 38.67 / 0.887 38.70 / 0.894 39.05 / 0.906
T1G8 35.03 / 0.805 35.33 / 0.820 35.51 / 0.841 35.96 / 0.859
FLC4 34.12 / 0.879 34.40 / 0.885 34.23 / 0.882 34.40 / 0.889
FLC5 32.87 / 0.849 33.18 / 0.860 32.96 / 0.854 33.16 / 0.864
FLC8 30.83 / 0.813 31.02 / 0.828 30.89 / 0.824 31.20 / 0.841
FLG4 39.25 / 0.911 39.42 / 0.907 39.23 / 0.908 39.30 / 0.911
FLG5 36.95 / 0.875 37.19 / 0.873 36.97 / 0.876 37.15 / 0.881
FLG8 33.40 / 0.802 33.73 / 0.811 33.56 / 0.820 33.93 / 0.832
PDC4 32.76 / 0.877 33.06 / 0.882 32.96 / 0.879 33.24 / 0.888
PDC5 31.17 / 0.835 31.60 / 0.845 31.39 / 0.840 31.66 / 0.845
PDC8 29.07 / 0.803 29.48 / 0.814 29.32 / 0.804 29.64 / 0.819
PDG4 37.78 / 0.908 37.98 / 0.911 37.81 / 0.908 38.03 / 0.914
PDG5 35.14 / 0.857 35.39 / 0.863 35.21 / 0.857 35.37 / 0.863
PDG8 31.27 / 0.783 31.72 / 0.791 31.51 / 0.780 31.69 / 0.789
T2C4 32.01 / 0.873 32.43 / 0.880 32.26 / 0.875 32.55 / 0.884
T2C5 30.58 / 0.825 30.96 / 0.834 30.74 / 0.825 31.07 / 0.839
T2C8 28.24 / 0.787 28.56 / 0.797 28.45 / 0.791 28.71 / 0.803
T2G4 37.27 / 0.910 37.48 / 0.912 37.21 / 0.906 37.59 / 0.916
T2G5 34.83 / 0.860 35.06 / 0.863 34.82 / 0.855 35.24 / 0.870
T2G8 31.06 / 0.779 31.50 / 0.788 31.22 / 0.774 31.61 / 0.795

PSNR / SSIM 27.65 / 0.743 33.17 / 0.921 33.83 / 0.938 33.30 / 0.924 34.08 / 0.945GT inset

Figure A.20: Qualitative Comparison of the reconstruction performance for T2 MRI.
From the left: the ground truth (GT) image with the region of interest (ROI), GT inset,
ZF image, joint training, MAML, MMAML, and KM-MAML. The yellow arrows and the
residual images indicate that KM-MAML can recover repeating patterns much better than
other methods.
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Table A.11: Quantitative comparison of on-the-fly adaptation performance of SGD,
MAML, MMAML, and KM-MAML to 24 unseen tasks with deviated acquisition set-
tings

SGD MAML MMAML KM-MAML
Task

PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM
T1C6 31.33 / 0.837 31.20 / 0.837 31.23 / 0.832 31.42 / 0.842
T1C7 32.65 / 0.846 32.60 / 0.849 32.50 / 0.843 32.79 / 0.851
T1C8 30.63 / 0.833 30.61 / 0.834 30.60 / 0.830 30.87 / 0.842
T1C9 30.07 / 0.824 30.16 / 0.826 30.08 / 0.822 30.32 / 0.834
T1G6 34.72 / 0.841 34.57 / 0.837 34.34 / 0.832 34.70 / 0.842
T1G7 32.44 / 0.794 32.37 / 0.792 32.12 / 0.788 32.41 / 0.797
T1G8 31.69 / 0.785 31.68 / 0.786 31.28 / 0.774 31.69 / 0.791
T1C9 30.98 / 0.779 30.96 / 0.780 30.68 / 0.773 30.89 / 0.785
T2C6 32.00 / 0.872 31.94 / 0.871 31.97 / 0.875 32.16 / 0.877
T2C7 31.68 / 0.848 31.68 / 0.850 31.83 / 0.857 31.73 / 0.857
T2C8 30.63 / 0.833 30.67 / 0.833 30.88 / 0.844 30.76 / 0.842
T2C9 30.47 / 0.854 30.46 / 0.855 30.66 / 0.862 30.6 / 0.860
T2G6 35.20 / 0.866 34.72 / 0.855 35.10 / 0.869 35.27 / 0.870
T2G7 33.98 / 0.851 33.50 / 0.839 33.82 / 0.855 34.18 / 0.855
T2G8 33.37 / 0.837 33.00 / 0.827 33.23 / 0.838 33.57 / 0.845
T2G9 32.31 / 0.819 31.78 / 0.804 32.06 / 0.820 32.41 / 0.823
PDC6 31.70 / 0.862 31.77 / 0.864 31.70 / 0.867 31.95 / 0.871
PDC7 30.45 / 0.843 30.83 / 0.852 30.86 / 0.855 31.11 / 0.861
PDC8 31.30 / 0.853 31.43 / 0.857 31.53 / 0.862 31.85 / 0.868
PDC9 28.67 / 0.806 28.93 / 0.814 28.81 / 0.812 29.20 / 0.827
PDG6 33.80 / 0.851 33.51 / 0.846 33.77 / 0.854 34.23 / 0.864
PDG7 32.98 / 0.838 32.71 / 0.831 32.72 / 0.836 33.26 / 0.851
PDG8 32.51 / 0.831 32.27 / 0.828 32.52 / 0.833 32.97 / 0.845
PDG9 31.46 / 0.803 31.26 / 0.802 31.28 / 0.805 31.88 / 0.824

PSNR / SSIM 27.65 / 0.743 33.17 / 0.921 33.83 / 0.938 33.30 / 0.924 34.08 / 0.945GT inset

Figure A.21: Qualitative Comparison of the reconstruction performance for PD MRI.
From the left: the ground truth (GT) image with the region of interest (ROI), GT inset,
ZF image, joint training, MAML, MMAML, and KM-MAML. The yellow arrows and the
residual images indicate that KM-MAML can recover details better than other methods.
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Table A.12: Quantitative comparison of SGD, MAML, MMAML, and KM-MAML in fine-
tuning to 10 gradient steps from the meta-initializations to unseen contrasts.

adapt base n/w adapt modulation n/w
SGD MAML MMAML KM-MAML MMAML KM-MAMLTask

PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM
T1C4 34.91 / 0.872 34.94 / 0.875 34.73 / 0.869 34.90 / 0.874 34.71 / 0.869 34.90 / 0.874
T1C5 33.77 / 0.872 33.94 / 0.876 33.48 / 0.867 33.62 / 0.874 33.44 / 0.866 33.61 / 0.873
T1C6 31.33 / 0.837 31.21 / 0.837 31.30 / 0.837 31.42 / 0.844 31.25 / 0.835 31.41 / 0.844
T1C7 32.67 / 0.847 32.62 / 0.850 32.47 / 0.843 32.75 / 0.850 32.39 / 0.840 32.73 / 0.849
T1C8 30.64 / 0.834 30.62 / 0.835 30.62 / 0.832 30.82 / 0.842 30.62 / 0.832 30.82 / 0.842
T1C9 30.08 / 0.824 30.18 / 0.827 30.05 / 0.821 30.24 / 0.832 30.05 / 0.821 30.24 / 0.832
T1G4 37.87 / 0.892 37.82 / 0.893 37.90 / 0.897 37.91 / 0.895 37.84 / 0.895 37.88 / 0.895
T1G5 35.88 / 0.852 35.86 / 0.854 35.75 / 0.850 35.92 / 0.856 35.75 / 0.852 35.92 / 0.856
T1G6 34.72 / 0.841 34.57 / 0.837 34.41 / 0.834 34.69 / 0.842 34.26 / 0.831 34.65 / 0.841
T1G7 32.45 / 0.794 32.38 / 0.792 32.15 / 0.789 32.38 / 0.796 32.11 / 0.788 32.37 / 0.796
T1G8 31.72 / 0.786 31.72 / 0.788 31.24 / 0.772 31.56 / 0.786 31.18 / 0.770 31.56 / 0.785
T1G9 30.99 / 0.779 30.99 / 0.781 30.83 / 0.780 30.87 / 0.785 30.70 / 0.775 30.84 / 0.784
PDC4 33.64 / 0.897 33.71 / 0.899 33.68 / 0.900 33.98 / 0.904 33.66 / 0.899 33.98 / 0.904
PDC5 32.22 / 0.869 32.54 / 0.876 32.39 / 0.875 32.71 / 0.882 32.37 / 0.875 32.70 / 0.882
PDC6 31.71 / 0.862 31.77 / 0.864 31.76 / 0.868 32.00 / 0.872 31.74 / 0.867 31.99 / 0.872
PDC7 30.49 / 0.844 30.85 / 0.852 30.90 / 0.856 31.15 / 0.861 30.89 / 0.856 31.15 / 0.861
PDC8 31.30 / 0.853 31.43 / 0.857 31.57 / 0.863 31.89 / 0.868 31.54 / 0.863 31.88 / 0.868
PDC9 28.72 / 0.807 28.95 / 0.815 28.86 / 0.813 29.20 / 0.827 28.83 / 0.812 29.20 / 0.826
PDG4 38.74 / 0.925 38.91 / 0.928 39.06 / 0.931 39.34 / 0.935 38.93 / 0.929 39.30 / 0.934
PDG5 36.46 / 0.894 36.35 / 0.895 36.50 / 0.900 36.97 / 0.905 36.50 / 0.900 36.97 / 0.905
PDG6 33.84 / 0.852 33.57 / 0.848 33.87 / 0.858 34.26 / 0.865 33.81 / 0.856 34.25 / 0.864
PDG7 32.99 / 0.838 32.72 / 0.832 32.85 / 0.840 33.29 / 0.852 32.72 / 0.836 33.27 / 0.851
PDG8 32.53 / 0.832 32.30 / 0.829 32.48 / 0.832 32.98 / 0.846 32.48 / 0.832 32.96 / 0.845
PDG9 31.50 / 0.804 31.32 / 0.804 31.38 / 0.809 31.91 / 0.824 31.30 / 0.805 31.90 / 0.824

Table A.13: Quantitative comparison of MAML, MMAML and KM-MAML for five-layer
CNN. Meta-training is done on two contrasts (two modes) consisting of T1 and FLAIR
contrasts.

MAML MMAML KM-MAML
Tasks

PSNR / SSIM PSNR / SSIM PSNR / SSIM
T1C4 35.97 / 0.9132 35.98 / 0.9115 36.38 / 0.9189
T1C5 33.81 / 0.8569 33.91 / 0.8568 34.16 / 0.8660
T1C8 31.86 / 0.8248 32.33 / 0.8402 32.38 / 0.8417
T1G4 40.16 / 0.9357 40.80 / 0.9441 40.93 / 0.9473
T1G5 37.96 / 0.8967 38.21 / 0.8964 38.30 / 0.9024
T1G8 33.92 / 0.8232 34.24 / 0.8330 34.56 / 0.8380
FLC4 33.32 / 0.8827 33.35 / 0.8829 33.46 / 0.8832
FLC5 31.15 / 0.8213 31.23 / 0.8230 31.30 / 0.8253
FLC8 29.21 / 0.7947 29.69 / 0.8051 29.74 / 0.8004
FLG4 37.97 / 0.8972 38.50 / 0.9129 38.79 / 0.9158
FLG5 35.77 / 0.8611 35.62 / 0.8607 35.80 / 0.8643
FLG8 31.85 / 0.7875 31.82 / 0.7869 32.20 / 0.7914
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Table A.14: Quantitative comparison of SGD, MAML, MMAML, and KM-MAML for
DenseNet. Meta-training is done on four contrasts consisting of T1, FLAIR, T2, and PD
contrasts.

Task
SGD MAML MMAML KM-MAML

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM
T1C5 32.55 / 0.8014 32.15 / 0.7868 33.15 / 0.8271 33.66 / 0.8384
T1C8 31.14 / 0.7809 30.80 / 0.7594 31.25 / 0.7880 31.51 / 0.7975
T1G5 36.61 / 0.8467 35.98 / 0.8279 37.51 / 0.8771 37.80 / 0.8763
T1G8 32.59 / 0.7560 32.09 / 0.7316 33.35 / 0.7899 33.93 / 0.8091
FLC5 30.80 / 0.7947 31.12 / 0.8073 31.25 / 0.8199 31.33 / 0.8149
FLC8 28.99 / 0.7767 29.09 / 0.7734 29.26 / 0.7881 29.17 / 0.7762
FLG5 35.64 / 0.8385 35.95 / 0.8488 36.01 / 0.8513 36.06 / 0.8483
FLG8 31.49 / 0.7672 31.82 / 0.7757 32.14 / 0.7927 32.46 / 0.7949
PDC5 28.90 / 0.7565 29.47 / 0.7865 29.34 / 0.7720 30.01 / 0.7898
PDC8 26.08 / 0.7106 26.48 / 0.7276 26.47 / 0.7214 27.15 / 0.7371
PDG5 33.16 / 0.7729 33.90 / 0.8105 33.69 / 0.7958 34.00 / 0.7998
PDG8 28.40 / 0.6787 29.08 / 0.7154 28.98 / 0.6939 30.05 / 0.7222
T2C5 28.68 / 0.7595 29.08 / 0.7780 28.85 / 0.7669 29.30 / 0.7801
T2C8 26.23 / 0.7124 26.47 / 0.7248 26.43 / 0.7225 26.73 / 0.7306
T2G5 33.26 / 0.7883 33.80 / 0.8113 33.51 / 0.7992 33.86 / 0.8038
T2G8 28.83 / 0.6983 29.38 / 0.7239 29.14 / 0.6986 29.87 / 0.7203

PSNR / SSIM 26.20 / 0.791 31.87 / 0.898 31.74 / 0.895 32.06 / 0.903 32.49 / 0.919GT inset

Figure A.22: Qualitative Results for T2 MRI comparing the target image, ZF image, joint
training, MAML, MMAML, and KM-MAML with respect to the on-the-fly adaptation
capabilities of the models to multiple contrasts. The images show that the recovery of
repeated image patterns in the predictions of KM-MAML is better than other methods.
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Figure A.23: PSNR and SSIM plots comparing joint training, MAML, MMAML, and
KM-MAML with DenseNet as the base network for four MRI contrasts - T1, FLAIR, PD,
and T2. FL denotes FLAIR

Algorithm 2 KM-MAML Fine-tuning the base network for test-time tasks

Require: Learning rate η2 and p(T ): Multimodal test task distribution
Require: CE(.): Context encoder
Require: Meta-trained model, ω: modulation network weights and θ: base

network weights
1: Sample a test task mini-batch: T test

batch ∼ p(T )
2: for each test task M in T test

batch do
3: Sample a mini-batch of test support data: DM,test

spt =

{xM,test
US,n , xFS,n}

Ntest
spt

n=1

4: for u = 0 to U − 1 do
5: Context embedding: γ = CE(xM,test

US ) ▷ Support data mini-batch
input

6: α, β = KM Hypernetwork(γ;ω)
7: WM,test = β ⊗outer α ▷ Modulation weights of task M
8: θmod = θ ⊙WM,test ▷ Mode-specific initialization (KM)

9: Initialize ϕM,test
0 ← θmod

10: L1 = L([ϕM,test
u , ω], DM,test

spt )

11: ϕM,test
u+1 ← ϕM,test

u − η2∇ϕM,test
u
L1 ▷ mode-specific weight updates

12: end for
13: end for
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Figure A.24: Validation Mean Square Error (MSE) plots comparing the transfer learn-
ing performance of DC-DEN, DC-UNet, with the fine-tuning performance of KM-MAML.
Plots show that the validation error values at Epochs 1 and 2 of KM-MAML are compa-
rable with Epochs 8 to 10 of DC-UNet.
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Table A.15: List of factors influencing the computation overhead in the training process.
For meta-learning methods, the task mini-batch size is set to 3 out of a total of 24 tasks.
NA stands for ’Not Applicable’ in SGD due to single-loop optimization. ’ms’ and ’sec’
denote milliseconds and seconds, respectively. For SGD, there is only a single loop for
processing the mini-batch of samples. For the meta-learning methods, MAML, MMAML,
and KM-MAML, there is a task mini-batch and for each task, there are inner and outer
loop iterations. Also, we see that KM-MAML is slightly faster than MMAML in terms of
epoch time, as the hypernetworks are meta-learning instead of the base network

Overhead type SGD MAML MMAML KM-MAML
Inner loop

optimization
NA Yes Yes Yes

Outer loop
optimization

NA Yes Yes Yes

Outer product
computation

(Rank 1
approximation)
of predicted

weights

No No No Yes

Kernel
modulation
(model-based

meta-learning)?

No No Yes Yes

Task mini
batch?

NA Yes Yes Yes

No. of
optimization loops

1 2 2 2

Which network
weights are
optimized in
two loops?

Base
network

Base
network

Base
network

Hypernetworks

Time taken
per iteration

(approximately)

5ms per
iteration

Inner loop:
4ms per
task

Outer loop:
1.8 sec
per task

mini-batch

Inner loop:
7 ms per

task

Outer loop:
3 sec

per task
mini-batch

Inner loop:
8 ms per

task

Outer loop:
2.2 sec
per task

mini-batch
Time taken

per epoch in sec
(approaximately)

32 39 59 47
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