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Abstract

Instantial variation (IV) refers to variation that is due not to population differ-
ences or errors, but rather to within-subject variation, that is the intrinsic and
characteristic patterns of variation pertaining to a given instance or the mea-
surement process. Although taking into account IV is critical for the proper
analysis of the results, this source of uncertainty and its impact on robustness
have so far been neglected in Machine Learning (ML). To fill this gap, we look at
how IV affects ML performance and generalization, and how its impact can be
mitigated. Specifically, we provide a methodological contribution to formalize
the problem of IV in the statistical learning framework. To prove the relevance
of our contribution, we focus on one of the most critical domains, healthcare,
and take individual (analytical and biological) variation as a specific kind of IV;
in this domain, we use one of the largest real-world laboratory medicine datasets
for the task of COVID-19 detection, to show that: 1) common state-of-the-art
ML models are severely impacted by the presence of IV in data; and 2) advanced
learning strategies, based on data augmentation and soft computing methods
(data imprecisiation), and proper study designs can be effective at improving
robustness to IV. Our findings demonstrate the critical relevance of correctly
accounting for IV to enable safe deployment of ML in real-world settings.

Keywords: Instantial Variation, Uncertainty, Robustness, Medical Machine
Learning, Soft Computing

1. Introduction

In recent years, the interest toward the application of Machine Learning
(ML) methods and systems to the development of decision support systems has
been steadily increasing.This interest has been mainly driven by the promising
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results obtained and reported by these systems in academic research for differ-
ent tasks [1, 2, 3, 4]. Despite these promising results, the adoption of ML-based
systems in real-world critical settings has been lagging behind [5], with these
systems often failing to meet the expectations and requirements needed for safe
deployment [6, 7], a concept that has been termed the last mile of implementa-
tion [8]. While reasons behind the gaps in this “last mile” are numerous, among
them we recall the inability of ML systems to reliably generalize in new con-
texts and settings [9, 10], as well as their lack of robustness to variation in data,
leading to poorer performance in real settings [11] and, ultimately, to what has
been called the replication crisis of ML [12].

In the ML literature, the notion of variation has usually been associated
with variance of the population data distribution, that is, with the variance
of the reference population, or of smaller samples taken from this latter, due
to the presence of outliers or anomalies [13], out-of-distribution instances [14,
15], evolvable feature sets [16] or concept/co-variate shifts and drifts [17, 18].
While these forms of variation are certainly relevant, however they are not
the only ones that can arise in real-world settings. Indeed, another source
of variation in data is the so-called instantial variation (IV) [19]: this denotes
variation that is not due to population differences or errors [20], but rather to the
intrinsic and characteristic (that is, individual) patterns of variation pertaining
to single instances, that is to within-subject variation [21] that can affect both
the target as well as the features'. Such patterns of variations arise from the
complex interplay between two distinct but intrinsically inseparable forms of
variation, namely measuring variation (i.e., exogenous variation that is related
to the measurement instrument and procedure) and measurand variation (i.e.,
endogenous variation that is intrinsic to the measured instances and features?).
This complex interplay makes dealing with IV particularly difficult: indeed,
while many works have focused on how to account for target variability and
uncertainty in the labels (e.g., [22, 23, 24, 25]), little research has been so far
devoted to IV affecting the data features. To put it in somewhat extreme but
frank terms, it is as if one of the most important assumptions of supervised
ML methodologies (albeit one of the most neglected) regarded the invariance
of the phenomena and objects to be classified. However, the feature values of an

IThe term ‘within-instance variation’ refers to the variation of data points within a sin-
gle instance or group of instances, while ‘between-instance variation’ refers to the variation
between different instances or groups of instances. In other words, within-instance variation
measures how much each instance varies internally, while between-instance variation measures
how much each instance differs from other instances.

2In many cases, what we call an instance, or object, is the perceivable manifestation and
expression of a set of highly complex and tightly coupled processes (as an example think
of biological entities -such as plants and animals- which are systems comprising numerous
apparatuses that interact with each other in complex and continuous patterns of exchange
of energy, matter and information). In a sense, what we can call “instantiality” is an emer-
gent property that depends on the level of analysis, description and relationship, and on the
characteristics (such as “time constants”, dimensions, perceptual capabilities) of an external
observer.



object rarely do not change over time, or are measured in the same way and
observed in the same conditions [26]. This discrepancy is particularly evident
in medical contexts and in laboratory data or other physiological signals and
biomarkers, and more generally in every phenomenon whose manifestations can
exhibit time-varying patterns.

In this article, we will focus on these latter settings as prime examples of the
problem of instantial variation, as well as of the potential impact of this issue
on the development of technological supports for real-world decision making:
thus this article will describe our research as a case study and hopefully as a
source of ideas about instantial variation that can be used in different settings,
including those that present less critical issues or have less impact on the lives
and well-being of individuals.

In medical settings, in particular, IV has been studied under the name of
individual variation, and the two related forms of measurand and measuring
variation manifest themselves in the form of, respectively, biological variation
(BV) [21], i.e. the intrinsic distribution of feature values for a given subject or
patient, and analytical variation (AV), i.e. the variation in the measurement
process and instrument itself. The presence of IV entails [27] that for each in-
dividual one can identify a “subject average” or central tendency (homeostatic
point) arising from such factors as personal characteristic of the individuals
themselves (e.g., genetic characteristics, age, phenotypic elements such as diet
and physical activity) or of the measurement instrument (e.g., calibration), and
a distribution of possible values, whose uncertainty is represented by the ex-
tent of the IV: crucially, only a snapshot (i.e., a sample) from this instantial
distribution can be accessed at any moment.

While the potential impact of IV on computer-supported diagnosis has been
known for a while [20] (for instance, in [28] authors reported that “computer
interpretations of electrocardiograms recorded 1 minute apart were significantly
(grossly) different in 4 of 10 cases”), only conjectures have so far been pro-
duced to estimate its extent. Nonetheless, IV has two strong implications for
ML applications. First, ML models trained on data affected by IV, even highly
accurate ones, can fail to be robust and properly generalize not only to new pa-
tients, but also to the same patients observed in slightly different conditions: for
example, an healthy patient could indeed be classified as healthy with respect
to the features actually observed for them, while they could have been classified
as non-healthy for a slightly different set of feature values, which nevertheless

3This simple result, if only for its evocative power, should not be underestimated and indeed
inspire similar controls in SOTA models in the automated diagnosis based on biological signals
and biomarkers. By assuming ML models sufficiently generalizable, such a result might suggest
to us that the nature of certain instances changes over time so quickly that deciding on the
basis of a picture taken at Tp might lead to very different conclusions if instead that picture
were taken at T3, a short time later. The assumption of constancy and low time-variance
could be wrong for many domains where things appear to be much more stable and regular
than they actually are.



would still be totally compatible with the distribution due to IV%. Second, dif-
ferently from distribution-related variation, collecting additional data samples,
which has been considered a primary factor in the continued improvement of
ML systems, can help only marginally in reducing the impact of IV [20], unless
specific study designs are adopted that allow to capture multiple observations
for each individuals across time [30, 31].

Despite these apparently relevant characteristics, the phenomenon of IV has
been so far largely overlooked in the ML literature: On a superficial analysis, the
two components of IV could remind of other sources of uncertainty. For instance,
AV (and, by extension, measuring variation) could be considered assimilable
to “attribute noise”, which has been widely studied in machine learning [32].
However, AV and attribute noise represent two intrinsically different notions, in
that attribute noise is usually interpreted as the result of a measurement error,
while AV is an intrinsic pattern of variation that is characteristic of both the
given measurement instrument used and the phenomenon of interest. For this
reason, to our knowledge no previous work has really investigated the impact of
IV on ML systems, nor has proposed viable techniques to improve robustness
and manage this source of perturbations.

In this article, we thus attempt to fill the above-mentioned gaps in the spe-
cialized literature. To this aim, this paper will consist of three parts. In the
first part we will address the theoretical structure of the problem of learning
from data affected by IV, by proposing a generalization of the statistical learn-
ing theoretic framework to this setting. The second part will focus on the
research question “can instantial variation significantly affect the accuracy, and
hence the robustness, of a machine model on a diagnostic task grounding on
laboratory medicine data” (H;)? Due to the pervasiveness of IV, proving this
hypothesis could suggest that most ML models could be seriously affected by
lack of robustness on real-world and external data. To this aim, we will apply
an expertise-grounded, generative model to simulate the effects of IV on data,
and we will show how commonly used classes of ML models fail to be robust
against it. More in particular, to provide a more self-contained and detailed
discussion, we will focus our experimental analysis on a specific setting, the
medical one, which is of particular relevance due to its critical characteristics
as well as due to it being one of the fields of applications of ML in which the
problem of IV has been more frequently acknowledged. Finally, the last part of
the paper will aim to build on the rubble left by the first part, and it will focus
on the hypothesis whether more advanced learning and regularization methods
(grounding on, either, data augmentation [33] or data imprecisiation [34]) will
achieve increased robustness in face of the same perturbations (Hs). To address
these two research questions, and motivated by the lack of datasets that rep-

4As we show in the following, this setting is a generalization of the usual one adopted in
ML theory [29]: not only we assume that the best model could have less than perfect accuracy,
but we also assume that any instance is represented as a distribution of vectors possibly lying
in opposite sides of the decision boundary.



resent and allow to investigate this complex form of uncertainty, we will rely
on a large gold-standard medical dataset that had been proposed for the task
of COVID-19 diagnosis, a major impactful concern, which was specifically con-
structed with the help of clinical laboratory medicine to study IV, grounding
on previous knowledge in this domain [30, 35, 36]. A graphical summary of the
role and impact of IV in ML, as well as of the general structure of this article,

is given in Figure 1.
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Figure 1: A graphical representation of the problem of instantial variation (IV) in ML. Each
instance (represented here as a stylized person) can be associated with a distribution, which
describes the uncertainty about the data for that instance due to IV. Then, since the above
mentioned distributions are unknown, in any experimental setting and for each individual
instance, we can either collect multiple samples (as shown in the rightmost part of figure) or
just a single sample (as shown in the leftmost part of the figure, and as is typically done in
ML studies, see also Section 3.2). Collecting multiple samples for each individual instance
allows to estimate the extent of IV and its components measurand and measuring variabilities
(see Section 2.1). The single samples, along with the estimated IV parameters, can be used
to obtain an empirical approximation of the unknown IV distribution for each patient, which
can then be used to train or evaluate data augmentation-based or imprecisiation-based ML
models, such as those described in Section 3.3.
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2. Background

As discussed in the previous section, the aim of this article is to evaluate and
address the potential impact of IV on ML models’ robustness. In this section,
we first provide basic background on IV, its importance in clinical settings, and
methods to compute it.



2.1. Instantial Variation in Medical Data

IV is considered one of the most important sources of uncertainty in clinical
data [21] and recent research has highlighted the need to take IV properly into
account in any use of medical data [27, 37] . IV can be understood as encom-
passing three main components: pre-analytical variation, analytical variation
and (within-subject) biological variation [21]. Pre-analytical variation denotes
uncertainty due to patients’ preparation (e.g., fasting, physical activity, use of
medicaments) or sample management (including, collection, transport, storage
and treatment) [38]; it is usually understood that pre-analytic variation can be
controlled by means of careful laboratory practice [19]. AV, by contrast, de-
scribes the un-eliminable uncertainty which is inherent to every measurement
technique, and is characterized by both a random component (i.e., variance,
that is the agreement between consecutive measurements taken with the same
instrument); and a systematic component (i.e., bias, that is the differences in
values reported by two different measurement instruments). Finally, BV de-
scribes the uncertainty arising from the fact that features or biomarkers can
change through time, contributing to a variance in outcomes from the same
individual that is independent of other forms of variation.

As already mentioned, IV can influence the interpretation and analysis of
any clinical data: for this reason, quantifying IV, also in terms of its compo-
nents, is of critical importance. However collecting reliable data about I'V is not
an easy task [39, 40]. To this aim, standardized methodologies have recently
been proposed [30, 31]: intuitively, IV can be estimated [41, 39, 42] by means
of controlled experimental studies that monitor reference individuals® [43] by
collecting multiple samples over time.

Formally speaking, let us assume that a given feature of interest x; has been
monitored in n patients for m time steps. At each time step, k > 2 repeated
measurements should be performed, so as to determine the AV component of IV.
Then, the IV of feature x;, for patient p, is estimated as IV, (z;) = StDev(a?),
while the AV component is defined as AV, (z;) = L 31" | StDev(a¥(t)), where
z¥ denotes the collection of values of z; for patient p, and z¥(¢) denotes the
collection of values of x; for patient p at the ¢-th time step. Then, the BV
component of IV is computed as BV),(x;) = \/IV,(z;)? — AV, (z;)2. The overall
variations IV, AV, BV finally, can be computed as the average of the variations
across the population of patients. While the above representation of IV, AV
and BV is given in absolute terms, typically these quantities are express in rel-
ative (or, percent) terms, defining the so-called coefficients of individual (resp.,

analytical, biological) variation, that is CVT(z;) = %, CVA(x;) = AVT(””)

and CVI(x;) = %@, where T; is the average of value of z; across all pa-

tients and all m time steps. The value of CVT, can then be used to model the
uncertainty about the observations obtained for any given patient p, for any

5The term reference individual denotes an individual that, for some reasons, can be con-
sidered representative of the population of interest (e.g., healthy patients).



given set of features z? = (27, ..., 2%), : indeed, any patient p, as a consequence
of the uncertainty due to IV, can be represented by a d-dimensional Gaussian
N, (2P, XP), where &P is a d-dimensional vector characteristic representation of
patient p, called value at the homeostatic point, and P is the diagonal covari-
ance matrix given by Ef,i = CVT(z;) » 2¥. More generally, having observed a
realization 2 of N, (2P, XP) for patient p, its distribution can be estimated as
N, (27, 3", where ff’i = CVT(z;) * z¥. We illustrate the computation of IV
(and its components AV and BV) according to the above-mentioned procedure,
along with the use of Gaussian distributions based on the IV as a way to model
uncertainty, through the following example, which considers a simple clinical
setting in which a single feature is monitored.

Example 1. Assume that we want to compute the IV of a given parameter of
interest (e.g., the White Blood Count, WBC) for a collection of two patients
p1,p2. To this aim, the value of WBC has been measured across three different
time steps (to estimate the BV component of 1V), with two measurements per
time step (to estimate the AV component of IV). A collection of such data, based
on the dataset described in Section 3.3, is represented in Table 1: here the data
for patient 1 was generated from a distribution for which wBc” =122 (the
value at the homeostatic point) and IV, (WBC) = ¥P* = 1, while the data
for patient 2 was generated from a distribution for which WBC” = 6.6 and
IV,,(WBC) = %P> = 1.

Patient | Time step WBC
Observation 1  Observation 2
tq 9.92 13.59
P t 11.83 12.45
t3 11.52 4.64
21 6.76 6.75
P2 t2 8.55 7.19
t3 5.46 5.44

Table 1: An example dataset to illustrate the computation of individual variability.

For each patient p;, we can compute the IV for the WBC parameter as
IV, ,(WBC) = StDev(W BC?#). Thus, IV, = 1.51 and IV,, = 1.06. Similarly,
we can then compute the AV for each patient as

StDev(W BCPi(t1)) + StDev(W BCPi(t3)) + StDev(W BCPi (t3))

AV,,,(WBC) = :

Thus, AV,, (WBC') = 1.23, while AV,,(WBC) = 0.23 Finally, we can compute
the BV, for each patient p;, by applying the formula

BY,,(WBC) = \/TV,,, (W BC) — AV,, (W BO).

Thus, BV,,(WBC) = 0.87 and BV,,(WBC) = 1.07. The average variations
AV, IV and BV can then be computed as IV = 1.27,AV = 0.73, BV = 0.95:



since the mean value of WBC is W BC = 9.51, we can derive the coefficients of
variation as CVT = 0.14,CV A = 0.08, CVI = 0.10. We can estimate the value
of WBC at the homeostatic point for patient p1 as wBo" = 12.33, and for ps
as WBC" = 6.69, and model the uncertainty about their observations through
the 1-dimensional Gaussian distributions Ny, (12.33,1.67) and N, (6.69,0.90).
Given an observation for a new patient ps, with W BCP3 = 10.82, we can
model the IV uncertainty for ps by the Gaussian distribution N,,(10.82,1.46).

Due to the complexity of design studies to obtain reliable IV estimates,
a few compiled sources of IV data, for healthy patients, are available: the
largest existing repositories in this sense, are the data originating from the
European Biological Variation Study (EuBIVAS) and the Biological Variation
Database (BVD) [44, 45|, both encompassing data about commonly used labo-
ratory biomarkers. In the following sections, we will rely on data available from
these sources in the definition of our experiments.

3. Methods

In this section, we describe the main proposed methodology. We first in-
troduce a theoretical contribution to frame the modeling of instantial variation
within the framework of statistical learning theory. Then, we will describe two
different experiments: in the first experiment, we evaluate how commonly used
ML models fare when dealing with data affected by IV; then, in the second
experiment, we evaluate the application of more advanced ML approaches to
improve robustness to I'V.

8.1. Instantial variation and Statistical Learning

One of the most simple yet remarkable results in Statistical Learning Theory
(SLT) is the error decomposition theorem [29] (also called bias-variance tradeoff,
or bias-complexity tradeoff), which states that the true risk Lp(h) of a function
h from a family H w.r.t. to a distribution D on the instance space Z = X x Y
can be decomposed as:

LD(h) _ 6Bayes + 6Bias + GESt (1)

where eBoves = mingerLp(f) is the Bayes error, i.e. the minimum error
achievable by any measurable function; €2 = miny c g Lp(h')—minserLp(f)
is the bias, i.e. the gap between the Bayes error and the minimum error achiev-
able in class H; €' = Lp(h) — minycgLp(h') is the estimation error, i.e.
the gap between the error achieved by A and the minimum error achievable in
H. This latter term can be further characterized by noting that, with proba-
bility 1 — 0 over the selection of a training set S = {(z1,¥1),-- -, (Zm,Ym)}, the
estimation error can be bounded by et < Lg(h) + O(Complezitysm(H)) —
minp e Lp(h'), where Lg(h) where is the error achieved by h on the training
set S and Complexitys,.,(H) is a measure of the capacity of a class of functions,
such as its Rademacher complexity or VC dimension [29].



A striking consequence of IV for ML tasks regards a generalization of the
error decomposition theorem due to the impossibility of accessing the true
distributional-valued representation of instances but only a sample drawn from
the respective distributions. To formalize this notion, as in the previous sec-
tion, denote with f, = N(&?,XP) the distributional representation due to IV
for instance p. Then, the learning task can be formalized through the definition
of a random measure [46] n defined over the Borel o-algebra (Z, B) on the in-
stance space Z = X x Y, which associates to each instance (z,y) a probability
measure N (z,X) x d,, where d, is the Dirac measure at y € Y. A training set
S = {(z',9"),..., (2™, y™)} is then obtained by first sampling n random mea-
sures f1,..., fn from 0™, and then, for each p, by sampling a random element
(xP,yP) ~ fp. Then, the IV-induced generalization of the error decomposition
theorem can be formulated as:

Ln(h) _ 67lfayes + 6Bias + eEst + 6IV (2)

n n n

Indeed, the true error of h w.r.t. n can be expressed as

1
Ln(h) = EFNW"L E Z E(mp,yp)wfpl(ha (xp’yp)) . (3)
foeF

Letting D be the probability measure over X x Y obtained as the intensity
measure [47] of n, and Lp(h) = Eg~pm Lg(h) be the expected error of h w.r.t.
to the sampling of a training set S from the product measure D™, then the
above expression can be derived by setting eff"yes = mingepLy(f), e,’?ms =

minp e Ly(W') — mingepLy(f), €)' = Lp(h) — minpycuLy(h') and €V is

defined as Epym s~pD [% S B o U (aPg) il (@, y")]|.

Thus, compared with Eq (1), Eq (2) includes an additional error term eV’

which measures the gap in performance due to the inability to use the IV-induced
distributional representation of the instances, bur rather only a single instanti-
ation of such distributions. This aspect is also reflected in the estimation error
component in which the reference miny cp Ly (h') is compared not with the true
error L, (h) but rather with the expected error over all possible instantiations
Lp(h). In the following sections, we will show, through an experimental study,
that the impact of IV can be significant and lead to an overestimation of any
ML algorithm’s performance and robustness.

8.2. Measuring the Impact of Instantial Variation on Machine Learning Models

In order to study whether and how the performance of a ML model could
be impacted by IV, we designed an experiment through which we evaluated
several commonly adopted ML models in the task of COVID-19 diagnosis from
routine laboratory blood exams, using a public benchmark dataset. Aside from
its practical relevance [35], we selected this task for three additional reasons.
First, blood exams are considered one of the most stable panels of exams [48]:
this allows us to evaluate the impact of IV in a conservative scenario where the



features of interest are affected by relatively low levels of variability. Second,
validated data about IV for healthy patients who underwent blood exams are
available in the specialized literature [49, 50, 51| and these exams have high
predictive power for the task of COVID-19 diagnosis [35]. Third, the selected
dataset was associated with a companion longitudinal study [36] that has been
used to estimate IV data for the COVID-19 positive patients: we believe this
to be particularly relevant since no information of this kind is available for non-
healthy patients, due to the complexity of designing studies for the collection
of IV data, which could nonetheless exhibit disease-specific patterns. Although
the estimation of IV is of paramount importance, both in medicine and other
safety-critical domains, the striking lack of datasets presenting information to
assess IV makes it a priority to devote further efforts and initiatives to make
such resources available to the ML research community to make their models
more robust and reliable. For this reason, the considered dataset was specif-
ically commissioned to clinical laboratory experts for the purpose of studying
the impact of IV in ML, as well as with the aim of developing a first public
benchmark dataset for further studies in this setting. Furthermore, we remark
that, while other longitudinal datasets have been made available for the specific
setting of COVID-19 diagnosis (see e.g. [52]), when taking into account data
coming from different populations and settings (such as the Italian and Chi-
nese ones), one must also consider the potential impact of covariate shifts and
out-of-distribution-related variability [53], as well as potential issues of harmo-
nization and pre-analytical variability (whereas both can instead be considered
negligible when considering data collected in the same setting and with the same
instrumentation): since in this article we were interested in assessing the specific
impact of IV, we focused only on the above-mentioned dataset.

More in particular, we used a dataset of patients who were admitted at the
emergency departments of the IRCCS Ospedale San Raffaele and IRCCS Istituto
Ortopedico Galeazzi, two of the major research hospitals in Italy, and underwent
a COVID-19 test [35, 53]. The dataset was collected between February and May
2020 and encompasses 18 continuous features and 3 binary features (including
the target). Since the dataset was affected by missing data, in order to limit the
bias due to data imputation, we discarded all instances having more than 25%
missing values: the resulting dataset encompasses 1422 instances, pertaining to
an equal number of different patients, and is described in Table 2.

Complete Blood Count data (i.e. features WBC, RBC, HCT, NE, LY, MO,
EO, BA) was obtained by analysis of whole blood samples by means of a Sysmex
XE 2100 haematology automated analyser. Biochemical data (ALT, AST, ALP,
GGT, LDH, CK, CA, GLU, UREA, CREA) was obtained by analysis of serum
samples by means of a Cobas 6000 Roche automated analyser. For each of the
considered patients, COVID-19 positivity was determined based on the result of
the molecular test for SARS-CoV-2 performed by RT-PCR on nasopharyngeal
swabs: on a set of 165 cases for which the RT-PCR reported uncertain results,
chest radiography and X-rays were also used to improve over the sensitivity of
the RT-PCR test by combination testing.

To evaluate the impact of IV, we used a biologically-informed generative

10



Table 2: The list of features, along with the target. Mean and standard deviation are reported
for continuous features, distribution of values is reported for discrete feature. For the discrete
features we report the distribution of values. For the laboratory blood data, we also report
the analytical (CVA) and biological (CVI) variation, differentiated by healthy vs non-healthy
patients, and missing rate.

Features \Acronym\ Units \Mean\ Std \Missing\CVA\CVIyZO\CVIyzl
Alanine
Transaminase
Aspartate
Transaminase
Alkaline
Phosphatase
Gamma,
Glutamyl GGT U/L |67.48 |140.52| 17.09 |0.035| 0.089 | 0.036
Transferase

ALT U/L |39.87[42.26| 0.07 |0.04| 0.093 | 0.051

AST U/L |46.90|51.90| 0.14 |0.04| 0.095 | 0.52

ALP U/L |[88.61|72.09| 16.24 {0.05| 0.054 | 0.045

Lactate LDH | U/L |[332.52|218.43| 8.02 |0.03| 0.052 | 0.024
Dehydrogenase

Creatine CK | U/L |184.47|382.02| 56.19 |0.05| 0.145 | 0.062

Kinase

Calcium CA | mg/dL | 2.20 | 0.17 | 0.84 |0.03] 0.018 | 0.018
Glucosium | GLU | mg/dL [119.12]55.80 | 0.42 [0.028] 0.047 | 0.026

Urea UREA | mg/dL | 48.64|42.69 | 31.01 | 0.03| 0.141 | 0.035

Creatinine | CREA | mg/dL | 1.19 | 1.01 | 0.07 |0.025| 0.044 | 0.022
Leukocytes | WBC | 109/L | 8.65 | 4.77 | 0.00 [0.019] 0.111 | 0.033
Erythrocytes | RBC | 10™2/L | 4.55 | 0.72 | 0.00 [0.009| 0.018 | 0.010
Hematocrit HCT % 39.47| 5.57 | 0.00 |0.018 0.024 | 0.019

Neutrophils NE % 72.48 13.35| 8.51 |0.03| 0.146 | 0.014
Lymphocytes LY % 18.58 | 11.11 | 8.51 |0.036] 0.11 | 0.043
Monocytes MO % 7.76 | 3.86 | 8.51 [0.063| 0.134 | 0.033
Eosinophils EO % 0.82 | 1.59 | 8.51 ]0.079| 0.156 | 0.098
Basophils BA % 0.34 | 0.27 | 851 ]0.031| 0.128 | 0.056
Sex i Female | 42% i i i i )
Male | 58%
Age - Years |61.19 | 18.89 - - - -

Target Positive | 53% )
arge ) Negative| 47% | ) i i

model whose aim was to simulate the effect of biological and analytical variation
on the measured features of the patients in the dataset. More in detail, based
on the definition and computation of IV described previously, the generative
model is defined by a case-dependent, class-conditional, multi-variate Gaussian

distribution N (x,%*¥), where we recall ¥*¥ = diag(x x ,/CV A2+ CVI2).

We note that the adopted generative model grounds on two weak assumptions:
first, that the percent BV coefficients of healthy and non-healthy patients are
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different; second, that the distributions of individual features are condition-
ally independent having observed the patients’ feature values and class label:
these assumptions are widely adopted in the specialized IV literature as well
as implicitly in the release format of the available IV data sources. More in
particular, for CV A and C'VI,—y we considered values previously reported in
the literature [49, 51, 50|, while the values of CVI,—; were estimated from the
longitudinal observation of the COVID-19 positive patients considered in this
study [36]: the considered dataset (see [36] and [54] for further details) encom-
passed multiple observations for staying day (for up to 31 staying days) for 1104
COVID-19 positive patients, which encompassed the popularion considered in
this article. Based on this data, estimates for CVT, CVA and CVI were compute
using the same methodology as described in the previous section and illustrate
in Example 1. All data, including the CVA and CVI estimates, is publicly
available at anonymizedurl.

We considered 7 different ML models, commonly used in medical settings
on tabular data, namely: Support Vector Machine (with RBF kernel) (SVM),
Logistic Regression (LR), k-Nearest Neighbors (KNN), Naive Bayes (NB), Ran-
dom Forest (RF), Gradient Boosting (GB), ExtraTrees (ET). We evaluated, in
particular, the scikit-learn implementations of the previous models, with default
hyper-parameters. We did not evaluate deep learning models, due to several lim-
itations of these latter for tabular data tasks, such as the one we consider in
this paper. Indeed, as a first limitation, deep learning models have been shown
to require much extensive hyper-parameter optimization compared to simpler
models in order to achieve acceptable performance [55, 56]. Most importantly,
several recent studies [55, 57, 56] and surveys [58], have shown deep learning
models to be out-performed by other models on tabular data. Furthermore, in
previous studies [35, 53, 36, 54] we showed that standard ML models, such as
those mentioned above, are able to achieve state-of-the-art performance for the
task of COVID-19 diagnosis from routine laboratory blood exams.

All code was implemented in Python v. 3.10.4, using numpy v. 1.23.0,
scikit-learn v. 1.1.1 and scikit-weak v. 0.2.0. For the above-mentioned ML
models, we considered the default hyper-parameter values as defined in scikit-
learn v. 1.1.1, with the exception of the random _state seed, which was set
to 99 for all evaluated models to ensure reproducibility, and the max depth
hyperparameters for Random Forest and Gradient Boosting, which were set to
10 to avoid over-fitting and reduce the running time.

The impact of IV on the performance of the above-mentioned ML models
was evaluated by means of a repeated cross-validation evaluation procedure: for
a total of 100 iterations, a 3-fold cross-validation procedure was applied. More
in detail, in each 3-fold cross-validation the two training folds were used to train
the ML models, while the test fold T'e was used to obtain a perturbed fold T'e,, as
follows: for each instance (z,y) € Te, a perturbed instance (z’,y) was obtained
to simulate the effect of instantial variation, by sampling ' from N(z, X%Y).
The trained ML model was then evaluated on both Te and Te, to measure the
impact of instantial variation, if any, by comparing the distribution of average
performance on the original test folds with that of the perturbed test folds. In
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terms of performance metrics, we considered the accuracy, the AUC and the F1
score. The robustness of the ML models to IV was evaluated by comparing the
average performance on the non-perturbed and IV perturbed data: in particular,
we considered a model to be robust to IV if the 95% confidence intervals for the
above-mentioned quantities overlapped (equivalently, the C.I. of the difference
included the value 0).

8.8. Data Augmentation and Imprecisiation Methods to Manage Instantial Vari-
ation

In light of the results for the traditional ML models, which show the lack of
robustness of standard ML models w.r.t. IV (see Section 4.1), we investigated
the application of more advanced methods that attempt to directly address the
representation of IV in data and hence tackle the error decomposition show in Eq
(2). In particular, we consider approaches based either on data augmentation, a
popular solution in modern ML to deal with data issues, or data imprecisiation,
a soft computing-inspired approach to deal with uncertainty in data. In both
cases, we adopted the experimental protocol described in the previous section.

Data augmentation [59, 33| refers to regularization techniques whose aim is
to increase the stability and robustness of a ML model by enriching the training
set with new instances. In our setting, the idea is to inject further information
related to the IV distribution within the model to improve generalization. Since
in the considered setting a generative model of IV was available, this latter
was used to simulate synthetic data to augment the original training set. For
each instance (z,y) in the training folds, we generated n = 100 new samples
from the distribution N(z, ¥*¥), so as to simulate the effect of having multiple
observations, perturbed by IV, for each patient. We considered, in particular,
the application of the above-mentioned data augmentation strategy to the SVM
(denoted as ACS) and Gradient Boosting (denoted as ACG) ML models, since
these latter two were shown to be more robust to IV (see previous section).
The pseudo-code for evaluating the data augmentation models is reported in
Algorithm 1.

By contrast, data imprecisiation [24, 34] refers to soft computing approaches
by which data affected by some form of uncertainty are transformed into im-
precise (soft) observations, that is distributions over possible instances, which
are then used to train specialized ML algorithms. Formally speaking, an impre-
cisiation scheme is a function is : X x Y  [0,1]%*Y where X is the feature
space. In the experiments, we considered two commonly adopted imprecisiation
schemes grounding on, respectively, probability theory and fuzzy set theory [60],
namely:

isprob * (€, y) = (N(z,5Y),y) (4)
iSposs © (2,y) — (Gauss(z, X%Y),y) (5)

where Gauss(a,b) denotes the Gaussian fuzzy vector, whose g-component is de-

fined as Gauss(a,b),(x) = e = . Intuitively, is,.op represents each instance
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Algorithm 1 The procedure to evaluate the impact of IV on the data
augmentation-based ML models.
procedure DATA AUGMENTATION EVAL(h: ML model, S: dataset, M:
metric, a : number of augmented instances)
for all iterations it = 1 to 100 do
Split S in 3 class-stratified folds
for all T'r: training fold, T'e : test fold do
Trqe =10
for all (z,y) € Tr do
for all iteration j =1 to a do
Add to Tr, (2',y), 2’ ~ N(x,X%Y)
end for
end for
Te' =10
for all (z,y) € Te do
Add to Te' (2',y), 2’ ~ N(x,X%Y)
end for
Train h on Tr,
Eval h on Te (M(h,Te)), Te' (M(h,Te"))
end for
end for
return The distributions of M (h,Te) and M (h,Te’)
end procedure

affected by IV as a Gaussian probability distribution over possible instances,
while ¢spss Tepresents each instance affected by IV as a Gaussian possibility dis-
tribution (i.e., a Gaussian fuzzy set) over possible instances. Thus, the general
idea of applying data imprecisiation in our setting is to model the uncertainty
due to IV by representing each instance as a soft cloud of points in the feature
space, whose distribution is determined by the IV parameters, as a form of soft
computing-inspired regularization.

We considered three ML algorithms proposed in the learning from imprecise
data literature, namely: k-Nearest Distributions (KND) [61], Support Measure
Machine (SMM) [62], Weighted re-Sampling Forest (WSF) [63].

KND denotes the generalization of kNN to distribution-valued instances,
namely we used the isp,op scheme® and Mahalanobis distance:

Tzwp,yp_l + Zw‘%yq_l

2

SMM, by contrast, refers to the generalization of SVM to instances repre-
sented as probability distributions (thus, only the isp.,, imprecisiation scheme

(2P — 29) (2P — 29) (6)

6Since Mahalanobis’ distance takes into account only the mean and scale, using isposs
scheme would result in the same algorithm.
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was considered). The SMM model grounds on the notion of a kernel mean em-
bedding [62], that is a generalization of the notion of kernel in ML to the the
space of probability distributions, which could thus be seen as a measure of
similarity between two imprecise instances. For computational complexity rea-
sons, we considered the RBF kernel, which for normally distributed imprecise
instances can be expressed in closed form as [62]:

@ —a)T (227 P 1x2® vt L L~ 1@ —s9)

RBF,,, , — % ’ (7)
Y>tSprob \/det(’yzmpvyp 4 ’}/qu’yq + I)

Finally, the WSF model is an approximation algorithm to solve the general-
ized risk minimization problem [24], a commonly adopted approach to deal with
imprecise. WSF is based on a generalization of bootstrapped tree ensembles to
instances represented as possibility distributions (thus, only the s,,ss imprecisi-
ation scheme was considered): in addition to the randomization w.r.t. the split
point selection and the bootstrap re-sampling of the instances, an additional
randomization on the feature values is considered. Specifically, for each tree in
the ensemble, each imprecise instance ispss(2, ) in the corresponding bootstrap
set is used to sample an instance (2/,y’), by means of a two-step procedure [64]:
first, a number « € [0, 1] is selected uniformly at random, then a random value is
drawn from the a-cut ispess (2, y)* = {(2',y) € X XY tispess(x,y) (2, y') > a}.
A pseudo-code description of WSF is reported in Algorithm 2. Further details
on the computational and statistical properties of WSF for the IV setting are
reported in Appendix A.

Algorithm 2 The WSF algorithm.
procedure WSF(S: dataset, ens: ensemble size, H model class)
Ensemble + ()
for all iterations it = 1 to ens do
Draw a boostrap sample S’ from S
T?"it — (Z)
for all (z,y) € S’ do
Sample a ~ U0, 1]
Add (2',y") ~ i8poss(z, )™ to Try
end for
Add model h;; € H trained on T'r;; to Ensemble
end for
return Ensemble
end procedure

The imprecisiation-based models were evaluated in a setup similar to the one
adopted for the data augmentation-based ML models, as shown in Algorithm 3.
All data augmentation-based and imprecisiation-based models were imple-
mented in Python v. 3.10.4, using numpy v. 1.23.0, scikit-learn v. 1.1.1 and
scikit-weak v. 0.2.0. The full code for the algorithms and evaluation procedures
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Algorithm 3 The procedure to evaluate the impact of IV on the data
imprecisiation-based ML models.
procedure DATA IMPRECISIATION EVAL(h: ML model, S: dataset, M:
metric, is: imprecisiation scheme)
for all iterations it = 1 to 100 do
Split S in 3 class-stratified folds
for all T'r: training fold, T'e : test fold do
Tro=0;Te, =0; Te' =0
for all (z,y) € Tr do
T'rq.append(is((z,y)))
end for
for all (z,y) € Te do
Tey.append(is((z,y)))
Sample (zp,y) ~ N(z, Z%Y)
Te'.append(is((z',y)))
end for
Train h on Tr,
Eval h on Te, (M(h,Tep)), Te' (M(h,Te"))
end for
end for
return The distributions of M (h,Te;) and M (h,Te’)
end procedure

is available on GitHub at anonymizedurl. In regard to the hyper-parameter
settings, for the data augmentation models we set the number of augmentation
rounds to 100: for ACS we used as base model a SVC with rbf kernel and
default hyper-parameters, while for ACG we used a GradientBoostingClassifier
with max_depth set to 0 and random _state set to 99 for consistency with the
classical case. For SMM we used as kernel the RBF kernel defined in (7) with
v = m, while for WSF we used ExtraTreeClassifier as base classifier,
we set the number of ensembled models to 100 and the random state seed to
99. Finally, for KND we set the number of neighbors k to 5.

4. Results and Discussion

In the next sections we report on the results of the experiments described in
Sections 3.2 and 3.3.

4.1. Measuring the Impact of Instantial Variation on Machine Learning Models

First of all, we assessed whether the perturbed data obtained by means of
the considered generative model was significantly different from the original
data. Ideally, to be realistic, IV-based perturbations should not influence too
much the overall data distribution.To this purpose, we considered a subset of
4 predictive features (namely LY, WBC, NE and AST), which were previously
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shown to be among the most predictive features for the considered task [35].
We compared the distributions of the above-mentioned features before and after
the IV perturbations, by means of the Kolmogorov-Smirnov test with o = 0.01.
The obtained p-values were, respectively, 1 (for LY, WBC and NE) and 0.104
(for AST): thus the null hypothesis of equal distributions for the IV perturbed
and non-perturbed data could not be rejected.

The impact of IV on the ML models is reported in Figure 2. The difference in
performance (baseline vs perturbed) was significant for all algorithms: indeed,
for all algorithms, the confidence intervals on the baseline and IV perturbed
data did not overlap. The best algorithms on the non-perturbed data were RF
and ET, w.r.t. all considered metrics (AUC: 0.87, Accuracy: 0.8, F1: 0.8); while
the best algorithms on the the IV perturbed data were SVM (w.r.t. AUC: 0.69,
and Accuracy: 0.5) and GB (w.r.t. F1: 0.5).

Data <> Baseline Perturbed
Accuracy | | AUC | | F1 ‘
ET : e @ @
GB : —— @ <
1
E RF i = © ©
- 1
T e i —— © ©
o !
= KN ] —— © ©
LR : ——— © ©
SVM : e @ @
0.4 0.2 00 0.2 0.4 0.4 06 08 0.4 06 08
Delta Baseline - Perturbated Score

Figure 2: Results of the experiments for measuring the impact of IV on the performance
of standard ML models. For each algorithm and metrics, we report the average and 95%
confidence interval for both baseline (that is, non-perturbed) and IV perturbed data.

These results highlight how, even though the distributions of highly predic-
tive feature were not significantly affected by IV, IV nonetheless had a significant
impact on the performance of all the considered ML algorithms, that were there-
fore not robust to IV-related uncertainty. Algorithms, however, were not equal
in their robustness (or lack thereof). In particular, the more robust models
were SVM (w.r.t. Accuracy, with average performance decrease 0.25, and AUC,
with average decrease 0.12) and GB (w.r.t. F1 score, with average performance
decrease 0.28). While this latter observation can be given a learning theoret-
ical justification”, we note that even SVM and GB had a significant decrease

"Both SVM and GB are margin-based classifiers [65, 66]. It is not hard to see
that the existence of a large margin on the non-perturbed data is a necessary (but
not sufficient) condition for robustness to IV: indeed, if the margin of the optimal
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in performance on the IV-perturbed data. Thus, even models that are usually
considered to be robust can nevertheless be strongly impacted by IV.

4.2. Data Augmentation and Imprecisiation Methods to Manage Instantial Vari-
ation

The results for data augmentation and imprecisiation-based ML models are
reported in Figure 3. For all models except SMM, the difference in performance
on baseline and IV perturbed data was not significant. The best models on
the non-perturbed data were SMM, WSF (w.r.t. AUC: 0.87) and WSF, ACG
(w.r.t. Accuracy: 0.8, F1: 0.81), while the best models on the IV perturbed
data were ACG and WSF (AUC: 0.86, Accuracy: 0.79, F1: 0.8). Comparing
these results with those shown in the previous section, it is easy to observe that
both data augmentation and data imprecisiation-based ML models were much
more robust to IV perturbations than the standard ML models. Indeed, the
most robust models (w.r.t. AUC: WSF and ACS, with average difference 0.003;
w.r.t. Accuracy and F1: WSF and ACG, with average difference 0.006) were
hardly impacted by IV. Even the least robust model (SMM) was much more
robust than the standard ML models (average differences w.r.t. AUC: 0.08;
w.r.t. Accuracy: 0.09, w.r.t. F1: 0.09).

Data <> Baseline Perturbated
Accuracy | ‘ AUC || F1 ‘
i
SMM i m—— = S
1
i
WSF Sl <
£ !
LS !
s ACG * + *
<) !
o I
< ACS e < ©
1
KND —;— @_ e
1
0.4 0.2 0.0 0.2 04 5 6 7 8 95 6 7 8 .9
Delta Baseline - Perturbated Score

Figure 3: Results of the experiments for measuring the impact of IV on the performance of
data augmentation-based and data imprecisiation-based ML models. For each algorithm and
metrics, we report the average and 95% confidence interval for both baseline (that is, non-
perturbed) and IV perturbed data.

In light of these results, we claim that data augmentation and imprecisiation
can be helpful to improve robustness under IV perturbations. We conjecture

classifier on the training set is smaller than A, then the existence of any two pa-
tients (z1,y1), (z2,y2) with different diagnosis and whose IV-induced distributions are s.t.
Pr[d(z},2h) < Alz} ~ N(z1,5%0%1), 24 ~ N(z2,5%2¥2)] > ¢, implies that the model is
not robust to IV.
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this to be due to directly taking into account information about IV in data
representation and model training, which allows to strike a trade-off among the
various components of the generalized error decomposition shown in Eq. (2)
(see also the Appendix for a more detailed theoretical justification for the WSF
algorithm). We note that these two approaches, while performing similarly in
terms of accuracy and robustness, have different characteristics that may influ-
ence their suitability in practical scenarios. Data augmentation methods allow
to use out-of-the-box ML models, since IV management is implemented as a pre-
processing step: this is not the case for data imprecisiation-based approaches,
which require specialized ML algorithms. By contrast, imprecisiation-based ap-
proaches have lower computational cost and may thus scale better on larger
datasets: e.g., if m is the training set size, d the number of features, and r the
augmentation rounds then, the time costs of SMM and WSF are O(m?d?) and
O(dm]log(m)); while those of ACS and ACG are, respectively, O(m?r?) and
O(dmrlog(mr)).

5. Conclusion

In this article we studied the impact of IV, an often neglected type of un-
certainty affecting data (as representations and proxies [67] of entities’ features
and behaviors), on the performance and robustness of ML models. Through a
realistic experiment on COVID-19 diagnosis, a problem of significant practical
interest which we take as paradigmatic of the class of applications with high
risk and impact on human subjects, we showed how standard ML algorithms
can be strongly impacted by the presence of IV, failing to generalize properly.
Such an issue can severely limit the applicability and safety of ML methods in
tasks where data are expected to be affected by IV, that is most applications in
real-world domains where the manifestations of the phenomena of interest could
exhibit varying patterns. Our results then imply that out-of-the-box methods
cannot be naively applied in such domains. Crucially, even though our example
is medical, we note that our analyses and methods are domain-independent and
apply to each and any setting in which our theoretical framework adequately
describes the structure and nature of data. Nonetheless, every cloud has a silver
lining, and we showed that more advanced learning methods, grounding on data
augmentation and soft computing-inspired data imprecisiation, can achieve bet-
ter robustness with respect to IV: this highlights the need to employ models that
take into account the generative history underlying the data acquisition process,
including the uncertainty due to IV, in their learning algorithms. Furthermore,
we believe that our results highlight the importance of adopting proper algorith-
mic and experimental designs for ML studies in medicine: due to the potential
impact of IV on the performance of ML models, data collection studies should
be designed so as to enable the estimation of IV values which could then be used
in the ML development phase. Thus, increasing emphasis should be placed on
longitudinal studies, or otherwise studies in which multiple samples are collected
for each involved patients under controlled conditions: as we described in Sec-
tion 2.1 and illustrated in Example 1 such longitudinal studies can be used to
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obtain precise and reliable estimation of IV, which can then be incorporated in
ML algorithm such as those we described in Section 3.3, that can harness such
information about the data generating mechanism to obtain more robust and
uncertainty-aware ML models (see Example 2).

Example 2. Assume that the data illustrated in Example 1 was collected and
used to obtain estimates of IV, as well as to train a data augmentation-based or
imprecisiation-based ML model h. Assume we observe new observations for three
patients ps, pa, ps, with WBCP3 = 10.82, W BCP4 = 6.45 and WBCP> = 8.67.
The previously computed IV can then be used to apply the probability-based and
possibility-based imprecisiation schemes: iSprop(ps) = N (10.82,1.46), iSposs(p3) =
Gauss(10.82,1.46), isprop(pa) = N(6.45,0.87),iSposs(ps) = Gauss(6.45,0.87)
and iSprop(ps) = N (8.67,1.17),iSposs(p5) = Gauss(8.67,1.17). These imprecisi-
fied instances can then be given be as input to an already trained data augmentation-
based or imprecisiation-based ML model h, such as those described in Section
3.8, to obtain a prediction that takes into account the uncertainty due to IV.

We believe that these results could pave the way for the investigation of IV
and its effects on the safety and robustness of ML models deployed in real-world
clinical settings, also to meet high-level requirements expressed in regulatory
principles in laws and regulations (e.g. the EU AI Act). To this purpose, our
study has been based on a large dataset specifically collected for the purpose of
studying the impact of IV on ML development, which is publicly available and
could thus be used as benchmark for future studies dealing with this problem.
Concluding, we summarize in what follows the open problems that might be of
interest to the ML community:

e In the introduction, we have defined IV as a combination of two different
terms: measurand and measuring variation. In the medical setting, we
have seen that these two forms of variation can be associated with the
notions of, respectively, biological and analytical (or, analytical and pre-
analytical) variation, and describe ways to compute such a decomposition
of IV in its two components. We believe it would be interesting to extend
such a decomposition in general settings, and to further develop the theo-
retical analysis introduced in Section 3.1 to account for the decomposition
of the €]V term (see Eq. (2)) into two terms that correspond to measurand
and measuring variation;

e In our experiments, we assumed the IV distributions to be Gaussian with
diagonal covariance. While this model is commonly adopted in the litera-
ture, we believe that further research should explore the relaxation of this
assumption, by considering more general models of IV accounting for non-
linear or causal relationships among features: to this aim, the use of deep
generative models [68] or causal models [69] could enable the construction
of more informative and expressive IV models;

e While we proposed and discussed a framework to model IV in SLT, the
theoretical side of this issue merits further study. In particular, even
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though the problem of learning from distributional data has recently been
investigated [70, 71, 62], this area is still in its infancy;

e Last, but not least, in this work we showed the impact of IV on COVID-
19 diagnosis from blood tests. Future work should extend our work to a
broader spectrum of applications. We believe this to be of primary im-
portance to advance the development of robust and sound ML systems:
in this sense, we hope and believe that our results would foster the col-
lection and sharing of datasets that allow to account for this important
characteristic of data in future research studies.
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Appendix A. Appendix A: Analysis of the WSF Algorithm

Pseudo-code for the WSF algorithm is reported in Algorithm 2, in the main
text. As described in the main text, the computational complexity of WSF is
O(nd|S|log(]S|)) where d is the dimensionality of the input space.

In regard to the generalization error of WSF w.r.t. the data generating
random measure, for each base model h;;, let

LS(hit) = Z E(ml,y)’\’isposs(m:y) []lh(l”)iy}
(z,y)€S

and Lp(hyt) = EswpmLg(h), where D is the intensity measure describe in
Section 3.1. Assume further, that for all h € H, with probability larger than
1-01if (z —2")X%(x —2') < Td27|5|_d(1 — ) it holds that h(x) = h(z'), where
T is Hotelling’s T-squared distribution [72]. Intuitively, this latter condition
can be understood as a strong form of stability [29] for models in H: if two
instantiations likely come from the same distribution due to IV, then with high
probability they will be classified in the same way by each h € H. Then, letting
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Vit be the out-of-bag sample for model h;;, by Hoeffding’s inequality and above
assumptions it follows that, with probability 1 — ¢, it holds that

2|V

Thus, the expected error of each model h;; in the WSF ensemble is close (with
high probability) to the respective out-of-bag-sample estimate, as long as the
dataset size is big enough. The per-base model error estimate calculated above
can also be directly used to provide an estimate for the expected error of the

WSF model. Let p = >, Lv;, (hit) + W < 1. Intuitively, p repre-
sents an upper bound on the joint probability of error the base models, which
is simply obtained by an application of the union bound [29]. Then, assum-
ing the h; err independently of each other, and noting that WSF errs on an

instance x iff at least ens/2 base models err, with probability greater than

— 2 the generalization error of WSF can be upper bounded through an ap-

plication of Chernoff’s bound for binomial distributions [73] by e—¢msKL(zllp),
where K L(a|[b) = alog ¢ + (1 — a)log =% is the Kullback-Leibler divergence.
Thus, intuitively, the expected error of WSF decreases rapidly with the number
of ensembled base models, as long as their total error is small and they are
independent: this theoretical results, thus, explains the good robustness to IV

exhibited by WSF on the considered task.
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