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Abstract

The system log generated in a computer system
refers to large-scale data that are collected si-
multaneously and used as the basic data for de-
termining errors, intrusion and abnormal behav-
iors. The aim of system log anomaly detection
is to promptly identify anomalies while minimiz-
ing human intervention, which is a critical prob-
lem in the industry. Previous studies performed
anomaly detection through algorithms after con-
verting various forms of log data into a standard-
ized template using a parser. Particularly, a tem-
plate corresponding to a specific event should be
defined in advance for all the log data using which
the information within the log key may get lost.
In this study, we propose LAnoBERT, a parser
free system log anomaly detection method that
uses the BERT model, exhibiting excellent natural
language processing performance. The proposed
method, LAnoBERT, learns the model through
masked language modeling, which is a BERT-
based pre-training method, and proceeds with un-
supervised learning-based anomaly detection us-
ing the masked language modeling loss function
per log key during the test process. In addition,
we also propose an efficient inference process to
establish a practically applicable pipeline to the
actual system. Experiments on three well-known
log datasets, i.e., HDFS, BGL, and Thunderbird,
show that not only did LAnoBERT yield a higher
anomaly detection performance compared to un-
supervised learning-based benchmark models, but
also it resulted in a comparable performance with
supervised learning-based benchmark models.

1School of Industrial Management Engineering, College of
Engineering, Korea University, Seoul, Korea. Correspondence to:
Pilsung Kang <pilsung kang@korea.ac.kr>.

1. Introduction
Owing to the recent advancement of the IT industry, a grow-
ing emphasis is placed on the importance of the system log
data for identifying problems when accidents or failures oc-
cur in programs (He et al., 2017). The system log comprises
large-scale data collected simultaneously in a computer sys-
tem and used as the basic data for determining anomalies;
thus it is a very critical and valuable resource. The log data
generated from various systems should be monitored in real-
time for system stability because they represent the current
status of a system. Real-time monitoring is conventionally
performed by operators; however, such a method entails the
possibility of including errors and bias depending on the op-
erator and is limited by being unable to promptly detect sys-
tem anomalies (Simache & Kaaniche, 2005). Subsequently,
anomaly detection using rule-based algorithms has been pro-
posed to reduce human error (Cinque et al., 2013). However,
rule-based methodologies also require human intervention;
therefore, research is being actively conducted on real-time
monitoring-based anomaly detection methods based on ma-
chine learning, which minimizes human intervention (Du
et al., 2017).

Log data are sequence data collected in real-time. They
consist of a combination of log keys, which can be consid-
ered as words, whereas log sequences can be considered
as sentences; a log sequence is generated through a series
of syntax rules (Du & Li, 2016). Also, since log data is
accumulated based on user actions at regular time intervals,
there are many duplicates in an actual log history. Hence,
although the total amount of log instances is very large, a
single log sequence is short and the number of unique log
keys are limited in general.

Machine learning-based log anomaly detection involves
three steps: 1) preprocessing log keys, 2) feature embedding,
and 3) anomaly detection. Preprocessing of log keys refers
to refining unstructured log keys and can be performed with
or without a log parser. Parsing-based log anomaly detec-
tion involves generating log data in a standardized template
format using a log parser. Feature embedding involves ex-
tracting features from preprocessed log sequences. Recent
methods (Nedelkoski et al., 2020) use transformer-based
models, whereas earlier methods used RNNs to treat log
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sequences as natural language (Brown et al., 2018; Du et al.,
2017; Kim et al., 2016). Anomaly detection involves find-
ing abnormal logs using the extracted features.

Previous log anomaly detection studies (Du et al., 2017;
Zhang et al., 2019; Huang et al., 2020; Nedelkoski et al.,
2020) showed remarkable performance on open datasets,
but have limitations in terms of practicality and extensibility.

• Reliance on Log Parsers: Parser-based log prepro-
cessing requires predefined templates for standardizing
log keys and manual refinement by experts (Du & Li,
2016). This method may result in loss of crucial infor-
mation during standardization (Huang et al., 2020) and
its performance becomes dependent on log parser com-
patibility rather than the logic of anomaly detection
models (Nedelkoski et al., 2020).

• Feature embedding with rich semantics for long-
term dependency: In the field of log anomaly de-
tection, previous feature embedding methods primar-
ily utilized RNN-based algorithms, which have been
successful in natural language processing (Vaswani
et al., 2017). However, these algorithms have difficul-
ties in handling long sequences, particularly with re-
gard to modeling long-term dependencies. To address
these limitations, current research is exploring the use
of transformer-based architecture (Nedelkoski et al.,
2020), which has recently demonstrated exceptional
performance in natural language processing (Vaswani
et al., 2017).

• Unrealistic problem formulation: In prior research,
log anomaly detection was mostly formulated as a
binary classification instead of anomaly detection
(Huang et al., 2020; Nedelkoski et al., 2020; Zhang
et al., 2019). However, in practical systems, the ma-
jority of logs are normal, with only a small amount
of abnormal logs. Formulating log anomaly detection
as a binary classification problem requires a sufficient
amount of abnormal data for model training, which
is unrealistic as abnormal data is rare in real-world
systems. Hence, a more practical approach is to train
the model using only normal log data and then uti-
lize abnormal data only during testing, better reflecting
real-world scenarios.

As a solution for the aforementioned problem, this study
proposes a new log anomaly detection model (LAnoBERT;
Log Anomaly detection based on BERT) established on
the following three improvement plans. In LAnoBERT, a
simple preprocessing approach utilizing regular expressions
was selected to mitigate information loss during the parsing
process and to minimize dependence on a specific log parser.
Contextualized embedding was extracted using the BERT

model, which was trained from scratch to learn the log key
sequences, in contrast to previous models which relied on
static embedding for feature extraction. Lastly, unsupervised
learning-based anomaly detection was performed under the
assumption that the context of normal logs differs from
that of abnormal logs. In the proposed model, LAnoBERT,
masked language modeling of BERT (Devlin et al., 2019)
was utilized to perform anomaly detection based on the
masking predictive probability. An efficient inference pro-
cess was also proposed, where a log dictionary database was
defined, and log key matching was performed for anomaly
detection. The model demonstrated superior performance
compared to previous models on benchmark datasets of
system logs (HDFS, BGL, and Thunderbird). It showed
the best performance among unsupervised learning-based
models and comparable performance to supervised learning-
based models, despite being trained in a less advantageous
environment. LAnoBERT satisfied both detection perfor-
mance and practicality by outperforming some supervised
learning-based models.

In summary, the main contributions of our study are as
follows.

• We propose LAnoBERT, a new BERT-based unsuper-
vised and log parser-free anomaly detection framework
for log data. Unlike previous studies, it is a log parser-
free and unsupervised learning-based model.

• To improve efficiency, an inference process utilizing
a log dictionary database is proposed to identify ab-
normal logs. This reduces the computational burden of
BERT and handles log sequences with lots of redun-
dant information.

• Despite being trained under less favorable conditions,
LAnoBERT demonstrated better or comparable per-
formance to supervised learning-based models. In ad-
dition, LAnoBERT effectively detects anomalies in
various types of logs, validating its practical useful-
ness.

This paper is organized as follows. In Section 2, previous
studies are reviewed by categorizing them based on neural
networks with parsing and free of parsing. In Section 3, the
background knowledge related to the research is introduced
in addition to the log parser and BERT model. Section 4
explains the proposed model, LAnoBERT, and its structure,
whereas Section 5 describes the experimental design, and
Section 6 describes the log anomaly detection performance.
Lastly, in Section 7, the conclusion of this study and future
research subjects are explained.
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2. Related Work
Log anomaly detection refers to a method for detecting
abnormal logs from a large log dataset. Studies in earlier
years (Cinque et al., 2013; Hansen & Atkins, 1993; Oprea
et al., 2015; Prewett, 2003; Yen et al., 2013) performed
anomaly detection by regarding specific parts of log data as
abnormal. However, these studies had a critical limitation of
requiring professional domain-specific knowledge. Recent
methodologies involve extracting log data features using a
neural network-based model and performing anomaly detec-
tion. Log data are unstructured data with a highly complex
structure; thus, log anomaly detection can be divided into
parsing-based or parsing-free depending on the preprocess-
ing method for the log data.

2.1. Parsing-based log anomaly detection

In these methods, a log parser is needed to perform log
anomaly detection. The Drain parser(He et al., 2017), which
is the most commonly used parser, classifies log messages
based on the length using a decision tree and then allocates
a log template by exploring the word similarity. In this
process, the similarity between the new log message and
the existing log template is calculated, and a new template
is allocated for the data with a different format from the
existing template.

DeepLog (Du et al., 2017) is the first neural network-based
log anomaly detection model in which an anomaly is de-
tected using an unsupervised learning-based LSTM model.
In the training phase, a log is generated in a standardized
template using the Drain parser and then a normal log tem-
plate pattern is learned. In the test phase, logs having a
pattern not trained with the normal data are determined as
anomalies. In other words, log patterns with low frequencies
are given low scores. The concept of the ‘top g candidate’
is introduced to discern log patterns where it is regarded as
normal if the log patterns are present within the candidate
or abnormal if not present; thus, the performance varies
depending on the candidate.

LogRobust (Zhang et al., 2019) is an attention-based bi-
LSTM model for detecting anomalies. After creating a log
with a standardized template using the Drain parser, the
log data features are extracted by generating TF-IDF and a
word semantic vector. Because this particular model detects
anomalies based on classification, it can be considered as a
classification problem.

HitAnomaly (Huang et al., 2020) is an anomaly detection
model using a transformer. It also conducts preprocessing
through the Drain parser. A template is standardized through
a log parser and the information substituted with a template
is defined as parameters. The substituted information refers
to the data that get lost without inclusion in the template.

Two types of information are separately encoded using a
transformer encoder, and two types of representation are
combined based on attention to detect anomalies through
classification. This model also performs classification-based
anomaly detection, thus entailing limitations.

LogBERT (Guo et al., 2021) is a BERT-based framework
for log data anomaly detection, utilizing a Drain parser for
log sequence refinement. It follows a similar approach to
DeepLog in detecting outliers but instead trains using only
normal log data through two tasks. The first task, masked log
key prediction (MLKP), trains normal log patterns via the
same objective function as masked language modeling. The
second task, Volume of Hypersphere Minimization (VHM),
aims to find the smallest sphere that contains normal logs.
In the inference stage, the top g predicted log keys are
selected as a candidate set from a randomly masked normal
log sequence, and the observed log key is considered as an
anomaly if it does not belong to the candidate set. The model
detects anomalies by applying BERT’s masked language
modeling, however, it has a limitation in that it cannot fully
consider the log sequence when masking due to the random
selection of a log key from the sequence.

In this study, we propose a log anomaly detection model that
does not depend on the log parser. Therefore, even when a
new log sequence is recorded, data is not parsed using the
log template, but the log sequence is refined using simple
preprocessing logic. This method can preserve the log se-
quence as much as possible by minimizing information loss
commonly occurred in the parsing process.

2.2. Parsing-free log anomaly detection

LogSy (Nedelkoski et al., 2020) is a transformer-based
anomaly detection model that uses a tokenizer to preprocess
log values; thus, it is free from the use of a log parser when
detecting anomalies. In LogSy, classification is performed
using normal data of a training log and abnormal log data
generated from a different system. In addition, training is
performed so that the distance between the normal and ab-
normal log increases through a distance-based loss function.
It is different from LogRobust and HitAnomaly because it
does not learn the normal and abnormal log generated in
one system based on classification like the previous models.
Hence, this model also entails various limitations to be used
in the industry as it adapts a classification-based approach.

Additionally, NeuralLog (Le & Zhang, 2021) is also a parser-
free and classification-based anomaly detection model.
While NeuralLog shares a similar structure with LogSy,
it distinguishes itself by employing both normal and abnor-
mal data from the target system, as well as a separate system,
during the training process. In contrast, LogSy addresses
the classification problem by relying solely on normal data
from the target system and abnormal data generated from a
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different system.

The proposed model is also a log parser-free methodology.
After refining the log through a simple preprocessing logic,
the log sequence is segmented using a word-piece tokenizer.
Through this, the log sequence is not categorized into one
of the predefined templates, but the log sequence itself is
used as an input of the anomaly detection model. Also, it
can be flexibly applied even if a new log sequence that has
not been processed ever.

3. Background
3.1. Log parser for anomaly detection

Log data are large-scale data collected in real-time, and raw
log messages are usually unstructured because developers
are allowed to write free-text log messages in the source
code (He et al., 2017). Therefore, a log sequence is unstruc-
tured data that must be converted to structured data. A log
parser (Du & Li, 2016; He et al., 2017) is a technique pro-
posed for this process. When a standardized log template is
generated from an actual log, highly complicated data are
simply preprocessed for substitution with very few events.
For example, 4,747,964 log messages generated from the
BGL system are converted to 376 events through the Drain
parser (He et al., 2017). Then, when anomaly detection is
performed with preprocessed data, the anomalies can be de-
tected through a simple process. However, the performance
of log anomaly detection models using a parser becomes
heavily dependent on a log parser (Nedelkoski et al., 2020).

3.2. BERT

BERT (Devlin et al., 2019) is a model consisting of a trans-
former (Vaswani et al., 2017) encoder, which achieved out-
standing performance in various natural language process-
ing tasks (Devlin et al., 2019). One of the major charac-
teristics of BERT is that pre-training is performed using
two unsupervised learning methods, which are masked lan-
guage modeling (MLM) and next sentence prediction (NSP).
MLM involves replacing certain tokens of an input sentence
with ‘[MASK]’ and predicting that they would appear in the
corresponding position. NSP involves combining two sen-
tences with the token ‘[SEP]’ in between, and then predict-
ing whether the two sentences are semantically connected
through the ‘[CLS]’ token positioned in the very front of
the input sentence. These two tasks do not require labeled
data as in a specific downstream task; thus, general-purpose
knowledge can be sufficiently learned through pre-training
using a massive unlabeled dataset (Clark et al., 2019; Jawa-
har et al., 2019; Tenney et al., 2019). BERT that has been
pre-trained is being applied in fields using sequence data
in addition to natural language processing; some of the ex-
amples include ProtTrans (Elnaggar et al., 2021) and ESM

(Rao et al., 2020).

3.3. BERT for anomaly detection

The system log can be deemed as sequence data because
it is a dataset with an order. Therefore, previous method-
ologies applied the techniques used for natural language
processing to extract the features of logs. The system log
data encompass both log messages and natural language. In
this study, we propose a BERT-based system log anomaly
detection system to overcome the limitations of existing
methodologies. Previous methodologies treated all log data
as sequence data, but applying BERT enables the learning
of both the log features and natural language. Moreover, a
tokenizer of BERT can be applied without using a separate
log parser during which natural language data that are lost
while converting to a template using a log parser can be
preserved. Additionally, a model capable of capturing the
semantics and context of the system log is necessary for
accurately detecting abnormal logs in the system log. It is
crucial to capture the semantics and context of the system
log because the words appearing in the system log may have
a different meaning from natural language. The goal of this
research is to implement an effective pre-training approach
for the system log utilizing masked language modeling in
a bi-directional context. Additionally, we present a novel
framework for identifying context anomalies by means of
the trained models’ MLM loss and predictive probability,
along with a log key matching technique during the infer-
ence stage.

4. Proposed Method
In this chapter, the major network used in the proposed
methodology and the architecture of the proposed model
are explained. The description and significance of the MLM
of BERT are presented in Section 4.1, and the training pur-
pose and execution procedure of the proposed model are
presented in Section 4.2 and 4.3, respectively.

4.1. Masked Language Model

The operation mechanism of LAnoBERT proposed in this
study is shown in Figure 1. Because LAnoBERT is exe-
cuted through MLM, which is a pre-training method of
BERT, MLM is explained in detail in this section, and the
log anomaly detection procedure is explained in depth in
Section 4.2.

MLM was inspired by the cloze task (Taylor, 1953) where
certain tokens of an input sentence are replaced with
[MASK] and then the words in the [MASK] tokens are
predicted. Entire sentences are replaced with the [MASK]
token at an arbitrary probability of 15%, and appropriate
words can be predicted only based on the context. Particu-
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Figure 1. The architecture of LAnoBERT.

larly, the MLM objective function can generate bidirectional
representations, unlike the pre-training of left-to-right lan-
guage models. Therefore, the proposed method can pre-train
the deep bidirectional transformer (Devlin et al., 2019).

According to XLNet (Yang et al., 2019), MLM can be de-
fined as an auto-encoding (AE) pre-training object. When
n is the sequence length and the i-th token is xi, the given
input sequence can be expressed as X = [x1, x2, ..., xn].
If the [MASK] token is defined as x̄ = [MASK] , the in-
put sequence containing noise can be expressed as X̂ =
[x1, [MASK], ..., xn]. In BERT, specific tokens are substi-
tuted with the special token [MASK] at a pre-determined
probability (15%). Here, the likelihood and objective func-
tion can be expressed as follows.

p(X̄|X̂) ≈
N∏

n=1

p(xn|X̂), (1)

Maxθ log p(x̄|X̂)

≈
N∑

n=1

mn log pθ(xn|X̂)

=

N∑
n=1

mn log
exp(Hθ((x̂)

⊺
ne(xn))∑

x′ exp(Hθ((x̂)
⊺
ne(x′))

pθ(xn|X̂)

(2)

In Eq. (2), mn indicates masking, where xn is the [MASK]
token when mn = 1. Furthermore, Hθ indicates the hidden
vector of a transformer encoder.

In this study, MLM was not only applied in the training
phase but also in anomaly detection to detect abnormal logs.
The reasons for using MLM in system log anomaly detection

are as follows. First, there is ample data available for train-
ing BERT because the log data are collected in real-time.
Most of the collected data are normal log data, which facili-
tates the effective pre-training of BERT. When a sufficient
number of data is given, BERT can obtain numerous contex-
tual and structural features during pre-training. Therefore,
performing anomaly detection using the proposed model
is expected to improve the generalization performance of
effectively detecting abnormal logs by adequately learn-
ing the features of a normal log system. Second, MLM
does not require the labeling of tasks and accords with the
purpose of anomaly detection where only normal data are
used for training. Because anomaly detection is an unsu-
pervised learning-based methodology where only normal
data are used for training, it is appropriate for application
to cases where normal data are predominantly greater than
abnormal data. Since anomaly detection is an unsupervised
learning-based approach that does not use label information
during the model training, it is more appropriate than a su-
pervised binary classification-based approach where there
is an overwhelming amount of normal data. Third, MLM is
an appropriate methodology to apply to anomaly detection
from the perspective of prompt-based learning (Raffel et al.,
2020; Petroni et al., 2019; Liu et al., 2021; Radford et al.,
2019; Schick & Schütze, 2021). In contrast to conventional
methods that require layers conforming to tasks to perform
downstream tasks, it is suitable for finding patterns of log
data in anomaly detection by comparing the actual log keys
and the generated log keys. Fourth, the context of abnormal
log data can be identified if MLM is performed using only
normal log data. Normal log data have a very similar form
as abnormal log data, but the probability of certain words
appearing varies if the context of surrounding words is con-
sidered. It was assumed that the MLM predictive probability
of abnormal log data is low when anomaly detection is per-
formed using the BERT model trained only with normal log
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data, and the performance result was relevant.

4.2. Problem Definition

The system log anomaly detection in this study can be de-
fined as follows. When slen is the sequence length, the log
key of the i-th token is wi (wi :wi ∈ V, i = 1, 2, ..., slen),
and an individual log sequence is l = (w1, w2, ..., wslen).
Also mask token is defined l̄ = [MASK]. The goal of the
proposed model f is to determine whether the input log
sequence is a normal or abnormal log. The log sequence
used during training consists of up to slen number of log
keys, and a unique set of log keys is defined as V. The log
sequences used for training are all normal logs.

Input Representation The input log sequence is defined as
l, and the BERT model is used. Accordingly, the input data
used in the train and test phases are configured as follows.

• Train phase : [CLS], w1, [MASK], w3, · · · , [SEP ]

• Test phase : [CLS], w1, [MASK], w3, · · · , [SEP ] *
slen-times

In the train phase, the existing log keys were substituted with
the [MASK] token at an arbitrary probability; masking was
conducted in this study at 20%. In the test phase, masking
was not performed at an arbitrary probability; however, each
log key was replaced with the [MASK] token when one log
sequence was given to generate an slen number of data for
the test.

Objective Function The objective function used for train-
ing is as follows, which is identical to Eq. (2). mi indicates
masking, where wi is the [MASK] token when mi = 1. Fur-
thermore, Hθ indicates the hidden vector of a transformer
encoder.

Maxθ log p(l̄|l̂)

≈
slen∑
i=1

mi log pθ(wi|l̂)

=

slen∑
i=1

mi log
exp(Hθ((l̂)

⊺

i e(wi))∑
w′ exp(Hθ((l̂)

⊺

i e(w
′))

pθ(wi|X̂)

(3)

4.3. LAnoBERT

4.3.1. OVERVIEW

LAnoBERT proposed in this study can be largely divided
into the following three parts: preprocessing, model training,
and abnormal score computation.

First, the minimum preprocessing of a log sequence was
performed in the preprocessing step. Numbers, IPs, and

dates are preprocessed, and information loss was minimized
using regular expressions. An initialized BERT was used
as the model. During the training process, MLM was per-
formed using only normal logs, and masking was randomly
performed at 20%. The NSP objective function was not
used in this study when training BERT. Recent studies have
pointed out that the NSP objective function interferes with
the performance improvement (Joshi et al., 2020; Lample &
Conneau, 2019; Liu et al., 2019; Yang et al., 2019), and it
was excluded as it was unnecessary in log anomaly detection.
Abnormal scores were calculated from the BERT model,
which had been trained using both normal and abnormal
logs during test.

4.3.2. PREPROCESSING

Because this study adopted a log parser-free method, simple
preprocessing is conducted using regular expressions. As
shown in Figure 3, the original log is highly complicated,
unstructured data. When the Drain parser is used (with a
log parser), the parts defined as a template are excluded
and eliminated, whereas certain parts are replaced with 〈*〉.
Conversely, this study did not use a log parser and instead
replaced the data with clear formats such as numbers, dates,
and IPs with the words ‘NUM’ or ‘IP’. Preprocessed log
sequences were tokenized using the WordPiece (Wu et al.,
2016) model used in BERT. The tokenizer for the log data
was also trained from scratch to ensure that the vocabulary
of the log data from each system could be learned. The
training was performed only for the normal logs, and the
tokenizer created in the training process was used as it was
during the test.

4.3.3. MODEL

The proposed model LAnoBERT executed anomaly detec-
tion based on a BERT Masked language model. The most
crucial assumption of this study is that “There is a dif-
ference between the context of a normal system log and
that of an abnormal system log.” In other words, language
models trained only with normal log data are expected to ex-
hibit significant errors and low predictive probability when
they encounter the context of abnormal logs during the test.
The prediction error defined in this study refers to a cross-
entropy loss that occurs between the label information and
logit value generated when the model predicts [MASK] as
a specific token. Additionally, the predictive probability is
defined as a value with the highest probability among the
words that can appear in the [MASK] token. When the prob-
ability of a predicted word is low, the respective context
is considered difficult to find in the normal context and is
identified as an anomaly. Therefore, the errors and predic-
tive probability calculated in this process can be utilized
in anomaly detection. The core assumption of this study
is as shown in Figure 2. BERT, which is trained only with
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Normal System Log Abnormal System Log

LOGn-1 (0.93)
High Prob.

😎
natural context!

Low Loss

LOGn-1 (0.2)
Low Prob.

🤔
unnatural context ..

High Loss

Figure 2. Anomaly score distribution difference between normal and abnormal log sequences.

With Log Parser (Drain)

Without Log Parser

BLOCK* NameSystem addStoredBlock  blockMap 
updated  10 <*> <*> <*> 50010 is added to blk <*>,1719740

081109 204005 35 INFO dfs.FSNamesystem: BLOCK* NameSystem.addStoredBlock: blockMap

updated: 10.251.73.220:50010 is added to blk_7128370237687728475 size 67108864

NUM NUM NUM INFO dfs.FSNamesystem: BLOCK* NameSystem.addStoredBlock: blockMap

updated: IP is added to blk_NUM size NUM

Original Log

Figure 3. Examples of preprocessing system log (HDFS dataset).

normal log data, produces low errors and high predictive
probability when performing MLM by receiving normal log
data as input because the commonly observed logs with a
normal pattern are understood as a familiar context. Contrar-
ily, large errors and low predictive probability are produced
when performing MLM by receiving abnormal log data as
input. The logs are understood as an unfamiliar context if
the patterns that are not found in normal logs are input.
Previous studies that performed anomaly detection using a
transformer defined anomaly detection as a classification
problem or adjusted the embedding space using additional
objective functions. However, when a log parser is not used
in the system log data where normal and abnormal log data
are almost identical, a highly complicated format is exhib-
ited and the unsupervised learning-based performance is
substantially reduced (Nedelkoski et al., 2020). In this study,
therefore, anomaly detection was performed by reflecting
the contextuality of the log data.

Train Phase Training is performed using the BERT Masked
language model for a log sequence that has been tokenized
through a tokenizer trained with normal data. Training is
initiated from scratch using the initialized BERT, and the
same parameters as the BERT-base-uncased are used for
the model. The training parameters are almost identical to

those of the original BERT (Devlin et al., 2019); the only
difference is that the masking probability is set to 0.2. As
an unsupervised learning-based anomaly detection model,
training is only performed for normal logs.

Test Phase In the test phase, the trained BERT is used to
verify the normal and abnormal logs. Unlike the training
phase, all log keys present in the log sequence are applied
with masking, and the predictive probability and error value
are calculated. At this time, the test is performed by the
number of log keys for one log sequence. An example of
this process is illustrated in Figure 4.

4.3.4. ABNORMAL SCORE

As the most important element of anomaly detection, the
final abnormal score of one log sequence is defined as the
collection of all abnormal scores calculated in the test phase.
Owing to the nature of log keys, normal and abnormal logs
exhibit almost similar aspects. Therefore, it is not appro-
priate to use all values calculated for each log key as the
abnormal score. If the values of all the log keys are used as
the abnormal score, it may cause confusion in recognizing
the scores of the abnormal and normal logs. Accordingly,
the values calculated from the Top-k number of log keys
were used to compute the abnormal score of a given text log
in the proposed LAnoBERT. In this study, k is set to 5.

The prediction error proposed in this study and the abnormal
score of the predictive probability can be defined as follows.
When a log sequence is defined as l = (w1, w2, . . . , wslen),
one sequence is generated by the number of log keys to cal-
culate the predictive probability and prediction error. The
tokens are then repeatedly replaced with the [MASK] token
each; if the i-th token is [MASK], the sequence can be de-
fined as l̂1 = (w1, w2, · · · , wi−1, [MASK], wi+1, wslen).
The number of log sequences used for prediction is identical
to the length of the log sequence; thus, the prediction error
of the i-th log sequence refers to the error value between the
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Figure 4. Test phase process of LAnoBERT. The proposed model calculates MASK Loss and Prob for each log key to detect anomalies in
one log sequence and obtains anomaly scores by aggregating top k values.

logit value calculated in l̂i and the label. Additionally, the
predictive probability of the i-th log sequence refers to the
maximum predictive probability of the word that belongs
to the [MASK] position as an answer in l̂i. The prediction
error and predictive probability, named errori and probi
respectively, can be obtained for N number of log sequences.
Top k values are selected from the set of calculated predic-
tion errors and predictive probabilities to computer the final
abnormal score. The equations for computing the abnormal
scores of a test log are shown in Eq. (4) and Eq. (5). The pro-
posed methodology independently computes the abnormal
score with regard to the prediction error and the prediction
probability to detect anomalies.

abnormalerror =
1

k

∑
i∈Top−k indices

errori, (4)

abnormalprob =
1

k

∑
i∈Top−k indices

probi. (5)

As mentioned in section 4.3.2, LAnoBERT assumed that the
abnormal logs would have a large prediction error or a low
prediction probability. The abnormal score calculated from
each log key is aggregated through the average of the top k
values, which becomes the abnormal score of a log sequence.
The larger the abnormalerror, the more likely abnormal a
given log sequence, whereas the lower the abnormalprob,
the more likely abnormal the log sequence.

However, as shown in Figure 4, when calculating the ab-
normal score by LAnoBERT for all log sequences existing
in the test dataset, the number of required computations
becomes the total number of log sequences × the length of
each log sequence. Therefore, if the above method is applied,
the computational cost increases and becomes inefficient
not sufficient to be applied in an actual system.

Inspired by the fact that information is accumulated very
frequently and there are many duplicates in log data,
we propose an efficient inference process by removing
repeated computations for duplicated log sequences.
Since a masked log sequence for ith token is defined as
‘[CLS], w1, w2, · · · , wi−1, [MASK], wi+1, · · · , wslen , [SEP ]’.
We build a log dictionary database with one log
sequence as a key value for the inference process.
In this database, the dictionary key is defined as
a set of KEY = {key0, key1, key2, · · · , keyn}.
Each key has its corresponding abnormalerror
and abnormalprob as values: DICT =
{key1 : (abnormalerror, abnormalprob), key2 :
(abnormalerror, abnormalprob), · · · , keyj :
(abnormalerror, abnormalprob)}. Whenever one log
data arrives, the log key matching is performed. If the
input key is not matched to any of the existing keys in
the current log dictionary, the values for the new key are
computed through inference, and then the log dictionary is
updated. On the other hand, when the input key is matched
to one of the log keys in the current dictionary, the stored
values are extracted as the abnormal score without an
actual inference process. The following process reduces
the unnecessary time required for detecting anomalies by
inference of duplicate logs multiple times. Therefore, it is
effective because it can be applied in a realistic scenario
and is expected to be effective in online anomaly detection
settings. An example of this inference process is illustrated
in Figure 5 and the algorithm of the entire process is shown
in Algorithm 1.
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Figure 5. Inference process for LAnoBERT

Algorithm 1 Inference Process
// Definition

KEY : a set of log sequence keys, DICT : the dictionary of the
log sequence keys,
slen: the sequence length of a log, d : embedding dimension,
{ln}Nn=1 : an individual log sequence (Rslen×d),
LAnoBERT : the proposed model, TOPK : the top-k aggregation
functions

// Initialization
KEY ← ∅ , DICT ← ∅ , j = 0

Input :ln
Output :abnormalloss , abnormalprob
for n = 1 to N do

// log key matching

if ln not in DICT then
scoreloss ← ∅ , scoreprob ← ∅

for i = 1 to slen do
ln,i = [MASK]

lossj , probj ← LAnoBERT(ln)
scoreloss ← scoreloss ∪ {lossi}
scoreprob ← scoreprob ∪ {probi}

end
abnormalloss ← TOPK(scoreloss)
abnormalprob ← TOPK(scoreprob)
keyj = ln

KEY ← KEY ∪ {keyj}
DICT [keyj ] = (abnormalloss , abnormalprob)

j ← j + 1

return abnormalloss , abnormalprob

else
abnormalloss , abnormalprob ← DICT [ln]

return abnormalloss , abnormalprob

end
end

5. Experimental Setting
5.1. Datasets

In this study, HDFS (Xu et al., 2009), BGL (Oliner & Stear-
ley, 2007) Thunderbird (Oliner & Stearley, 2007) were used
as the benchmark log datasets for a fair comparison with pre-

Table 1. Number of logs in each dataset used in LAnoBERT
Dataset Type Train Test

HDFS normal
8,712,418

(446,578 blocks)
2,463,201

(128,483 blocks)

abnormal -
138,410

(16,838 blocks)

BGL normal 3,496,193 903,310
abnormal - 348,460

Thunderbird normal 166,371,162 41,592,791
abnormal - 3,248,239

vious studies. The three datasets include answer labels, and
the generalization performance of the system log anomaly
detection model can be verified as the data are deduced
from different systems. HDFS, which is the Hadoop Dis-
tributed File System, is log data generated from a private
cloud environment where one log consists of multiple log se-
quences. BGL includes data that consist of logs generated by
the Blue Gene/L supercomputer, where each individual log
sequence is accompanied by a corresponding label indicat-
ing either a normal or an abnormal condition.Thunderbird
dataset was obtained from the Thunderbird supercomputer
system at Sandia National Laboratories (SNL) in Albu-
querque. This dataset includes alert and non-alert messages
that are identified by alert category tags. Among the three
datasets used in this study, the HDFS dataset is consid-
ered to have a relatively simple architecture (Nedelkoski
et al., 2020), while the Thunderbird dataset has the largest
number of log messages. The distribution of normal and
abnormal log sequences (or blocks) used in the training and
test datasets is presented in Table 1.

5.2. Benchmark Methods

In this section, we present the benchmark models for com-
parison with LAnoBERT’s performance among various log
anomaly detection models. The benchmark models were
selected based on the usage of a log parser and whether the
learning was supervised or unsupervised. The selected mod-
els were LogRobust, HitAnomaly, LogSy, Principal Com-
ponent Analysis (PCA) (Xu et al., 2009), One-Class SVM
(OCSVM) (Schölkopf et al., 2001), Isolation Forest (iForest)
(Liu et al., 2008), LogCluster (Lin et al., 2016), DeepLog,
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Figure 6. Benchmark models and LAnoBERT for log anomaly detection.

LogAnomaly (Meng et al., 2019), and LogBERT. Figure 6
illustrates the following aspects of the deep learning-based
baseline models: 1) structural differences among the mod-
els, 2) log data preprocessing method during training and
testing, and 3) anomaly detection method.

• LogRobust is a supervised learning-based model that
utilizes an attention-based bi-LSTM architecture. The
model employs a specialized log parser to preprocess
log data, generating a TF-IDF and word semantic vec-
tor to extract the features of the log data. For training,
both normal and abnormal log data are used in solving
a classification problem.

• HitAnomaly is a supervised learning-based model that
employs a transformer architecture. It utilizes a special-

ized log parser for log data to standardize templates
and encode log information as parameters. The model
combines two features of normal and abnormal log
data with an attention mechanism to classify the data.

• LogSy is a supervised learning-based anomaly detec-
tion model that utilizes a transformer architecture. It
does not require the use of a log parser, as log val-
ues are preprocessed using a tokenizer (Nedelkoski
et al., 2020). Both normal and abnormal log data are
utilized in the model, with data generated from differ-
ent systems and a distance-based loss function being
employed.

• NeuralLog is a transformer-based classification model
that utilizes a tokenizer. NeuralLog has a similar struc-
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ture to LogSy, but differs in its utilization of both nor-
mal and abnormal data from the target system and
a different system during the training process. This
approach sets it apart from LogSy, which solves the
classification problem by utilizing normal data from
the target system and abnormal data generated from
a different system. To evaluate the performance of
NeuralLog, several popular backbone models, namely
BERT, GPT2, and RoBERTa, were utilized. Among
these models, BERT achieved the highest performance.

• PCA is a linear transformation technique that trans-
forms a set of correlated variables into a set of uncor-
related variables, referred to as principal components.
This method builds a counting matrix for log sequence
frequency to detect anomalies, then reduces the origi-
nal counting matrix into a low-dimensional space for
the identification of abnormal sequences.

• OCSVM is a widely adopted one-class classification
model for log anomaly detection (Wang et al., 2004),
utilizing only normal log data. The model is designed
to identify the boundary that separates the majority of
input data from the remainder, represented as a hyper-
plane that separates normal data from outliers.

• iForest is a tree-based unsupervised learning algorithm
that utilizes the isolation of observations that are dis-
tinct from the remainder of the input data. The ap-
proach employs the formation of an ensemble of deci-
sion trees, each of which partitions the data into smaller
subsets.

• LogCluster is a clustering method for detecting fre-
quently occurring line patterns and abnormal events in
textual event logs.

• DeepLog is a deep learning-based unsupervised log
anomaly detection model based on an LSTM architec-
ture. A specialized log parser is used to generate the
input values for the LSTM, and the model predicts the
next word. If the next word appears in a trained pattern,
it is classified as normal, otherwise, it is considered
abnormal.

• LogAnomaly is proposed as a solution for detect-
ing anomalies in log streams. The model leverages
attention-based LSTM architecture to consider log data
as natural language sequences. To extract semantic in-
formation, the LogAnomaly model employs the tem-
plate2vec technique on log templates. This enables the
detection of both sequential and quantitative anomalies
in log data.

• LogBERT is BERT based anomaly detection model
that employs MLM and DeepSVDD (Ruff et al., 2018)
loss during training. Log data is preprocessed using the

Table 2. Anomaly detection evaluation criteria
Normal Abnormal

Normal True Negative False Positive
Abnormal False Negative True Positive

log parser, after which the LogBERT model identifies
anomalous patterns in the candidate set similar to the
DeepLog.

5.3. Evaluation Metrics

The F1 score which is dependent on the threshold and AU-
ROC, which is independent of the threshold, were used as
evaluation metrics in this study. Most studies on anomaly
detection use AUROC as the evaluation metric in general,
whereas previous studies that approached log anomaly de-
tection as a binary classification problem used the best F1
score to record the performance; hence, both these metrics
were used in this study for comparison with previous studies.
When the threshold of the models in anomaly detection is
determined, the confusion matrix presented in Table 2 is
generated depending on the actual anomaly case and the
anomaly detected by the models. The recall and precision
are calculated from the confusion matrix using precision and
recall, and the F1 score is calculated based on the harmonic
mean of the two metrics.

F1 score = 2 · precision · recall
precision + recall

, (6)

precision =
TP

TP + FP
, recall =

TP

TP + FN
,

TP : true positive, FP : false positive, FN : false negative.

The F1 score calculated using Eq. (6) is a metric influenced
by the threshold of a model and cannot guarantee the relia-
bility of the fundamental performance of an anomaly detec-
tion model; hence, AUROC, which is an evaluation metric
unaffected by the threshold was also calculated. AUROC
calculates the false positive rate (FAR) and true positive rate
(TPR) for all the threshold candidates, and then illustrates
a receiver operating characteristic curve with the FAR as
the x-axis and TPR as the y-axis to calculate the area of
the base side. The AUROC value is closer to 1 because the
anomaly detection model has a better performance, whereas
a random model has a value closer to 0.5.

The best F1 score threshold cannot be determined in advance
in this study because the log anomaly detection experiment
is conducted with only normal data for training. Therefore,
the best F1 score was calculated using the threshold that
represents the best performance theoretically for the test
dataset, and the same method was used to calculate the best
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F1 score of benchmark studies for a fair comparison. Addi-
tionally, benchmark studies examined the performance using
only the F1 score; however, this study also utilized AUROC,
which is an evaluation metric that is not affected by the
threshold to examine the performance. In this experiment,
the method of determining anomalies differs among the
benchmark models. Specifically, DeepLog and LogBERT
determine anomalies based on the presence of predicted
values in the top k candidate set, while LogRobust and Hi-
tAnomaly, being classification models, do not calculate an
abnormal score. On the other hand, LogSy, LogCluster, and
LogAnomaly define an abnormal score, but the AUROC
could not be calculated because no official implementation
code was available. Therefore, it is impossible to calcu-
late AUROC for the baseline models for comparison; the
F1 score and performance of AUROC of LAnoBERT are
presented in Tables 4 and 5.

6. Results
To verify the excellence of the proposed methodology, this
study compared a supervised and an unsupervised learning-
based anomaly detection model. Moreover, the use of a
parser was recorded for comparison because the perfor-
mance of the log anomaly detection significantly varies
depending on the use of a log parser.

6.1. Anomaly Detection Performance

Table 3 shows the F1-score for the proposed LAnoBERT
model and ten additional models, including both super-
vised learning-based models (LogSy, LogRobust, and Hi-
tAnomaly) and unsupervised learning-based models (PCA,
IForest, OCSVM, LogCluster, DeepLog, LogAnomaly, and
LogBERT). It is important to note that the performance re-
sults for the supervised models were obtained from their
respective original studies, whereas the performance of all
unsupervised models, except for the proposed LAnoBERT,
were obtained from the LogBERT study. As a result, the
performance results for LogRobust and HitAnomaly on the
Thunderbird dataset, as well as for LogSy on the HDFS
dataset, are not reported in this study due to the lack of
information in their respective original papers. The results
indicate that the performance of the BGL dataset was infe-
rior compared to the HDFS dataset due to its more complex
structure, as previously reported in Huang et al. (2020).

The performance of LogRobust and HitAnomaly, which are
based on supervised learning, was observed to be favorable
on the HDFS and BGL datasets. Both models underwent
preprocessing utilizing the Drain parser, and HitAnomaly,
which utilized parameters that were not part of the log tem-
plate, demonstrated strong performance on both datasets.
These results indicate that information loss during log pars-
ing can have a significant impact on model training. LogSy,

which employed a classification model built with normal and
abnormal data obtained from different systems, recorded
an F1 score of 0.6500 on the BGL dataset and 0.9900 on
the Thunderbird dataset. This highlights the advantage of
incorporating a more realistic representation of the system
into the model, as compared to LogRobust and HitAnomaly.
However, the performance of LogSy on the BGL dataset was
lower than expected. These results emphasize the limitations
of performing log anomaly detection without log parsing
on data from a specific system. NeuralLog demonstrated
high performance across three datasets - HDFS, BGL, and
Thunderbird, with scores of 0.9800, 0.9800, and 0.9600 re-
spectively. This performance was noteworthy, particularly
considering that it didn’t utilize a parser, yet still outper-
formed supervised learning-based models such as LogRo-
bust and HitAnomaly. This outcome can be interpreted as
a meaningful result in itself. However, a limitation of Neu-
ralLog is its reliance on both normal and abnormal logs
during the learning process, which could make it less suit-
able for real-world scenarios. This point can be identified as
a potential shortcoming of the model.

In the unsupervised learning models comparison, PCA, iFor-
est, OCSVM, and LogCluster showed lower performance
compared to DeepLog, LogAnomaly, and LogBERT which
utilized deep learning techniques. Specifically, DeepLog
outperformed LogAnomaly, demonstrating the effectiveness
of its ”top g candidate” logic. LogBERT demonstrated re-
markable performance with F1 scores of 0.8232 in HDFS,
0.9083 in BGL, and 0.9664 in Thunderbird, with especially
strong results in BGL. These results suggest that the BERT-
based LogBERT model effectively captures rich semantics
by understanding context-specific information to log data.
Furthermore, incorporating MLKP and VHM tasks has been
observed to improve the model’s ability to detect anomalies.

In Section 4.3.4, it was highlighted that BERT’s MLM al-
lows for the calculation of both mask loss and probabil-
ity. In order to evaluate the performance of the proposed
LAnoBERT, two abnormal scores were generated using
mask loss and probability. The results showed that the pre-
dictive loss score led to a performance of 0.9123 in HDFS,
0.6932 in BGL, and 0.5142 in Thunderbird. It was ob-
served that HDFS, with its shorter log sequence length and
fewer unique log keys, displayed acceptable detection per-
formance. Conversely, BGL and Thunderbird, characterized
by longer log sequence lengths and more complex struc-
tures, showed relatively lower performance than other deep
learning-based unsupervised models. This can be attributed
to the fact that the mask loss calculates the accuracy of
word-by-word predictions between the original and pre-
dicted log keys, resulting in low loss values only when the
log keys are predicted in the correct order. For example, if
the ground truth log key is ‘A-B-C-D-E’ and the model
predicts ‘B-C-D-E-F’, the loss value would be high due
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Table 3. F1-score on HDFS, BGL, and Thunderbird. † indicates the performance of benchmark models reported by LogBERT. The highest
performance is highlighted in bold and underlined, and the second-best performance is indicated in bold. Supervised comparisons
(Upper): the performance of LogRobust, HitAnomaly, LogSy, and NeuralLog are compared, and it is observed that LAnoBERT
demonstrates comparable or superior performance to these models, despite the fact that LogRobust, HitAnomaly, LogSy, and NeuralLog
allow for the use of abnormal data in their training, whereas LAnoBERT does not. Unsupervised comparisons (Lower): it is shown that
LAnoBERT, which is a log parser-free model, produces strong results compared to other unsupervised models.

Log Parser HDFS BGL Thunderbird
Supervised

LogRobust O 0.9700 0.8300 -

HitAnomaly O 0.9800 0.9200 -

LogSy X - 0.6500 0.9900
NeuralLog X 0.9800 0.9800 0.9600
Unsupervised

PCA† O 0.1112 0.1661 0.5439

iForest† O 0.6049 0.3065 0.0329

OCSVM† O 0.0495 0.0196 0.2548

LogCluster† O 0.5399 0.7663 0.5961

DeepLog† O 0.7734 0.8612 0.9308

LogAnomaly† O 0.5619 0.7409 0.9273

LogBERT O 0.8232 0.9083 0.9664
LAnoBERT
(Predictive Loss)

X 0.9123 0.6932 0.5142

LAnoBERT
(Predictive Prob.)

X 0.9645 0.8749 0.9990

to the incorrect prediction of all tokens. However, from
the perspective of the log sequence, the confidence in the
ordered prediction of the keys ‘B-C-D-E’ must be con-
sidered when evaluating an abnormal score. The previously
discussed example highlights the limitations of using the
predictive loss score on long and complex data.

When the predictive probability was used as the abnormal
score, LAnoBERT demonstrated superior performance to all
the other models, with HDFS scoring 0.9645, BGL scoring
0.8749, and Thunderbird scoring 0.9990, with the excep-
tion of BGL. The results showed that the abnormal score
based on the mask probability proposed by LAnoBERT
was a critical factor in performance improvement. These
results highlight the effectiveness of LAnoBERT, an unsu-
pervised learning-based method, compared to the parser-
based supervised learning methodologies LogRobust, Hi-
tAnomaly, and LogSy. Despite not using a parser during
training, LAnoBERT achieved higher performance than
LogRobust and LogSy, while being only 0.0451 lower than
HitAnomaly in BGL. This demonstrates the significance of

considering context and pre-training of MLM in the design
of LAnoBERT for log anomaly detection. Additionally, us-
ing predictive probability allows for the detection of cases
with unseen normal log data more accurately compared to
using predictive loss, making LAnoBERT more practical
and useful in real-world applications than benchmark mod-
els.

Furthermore, it is critical to perform log anomaly detection
on actual systems. Since logs are collected in real-time, the
majority of log data is comprised of normal logs. As a result,
conducting anomaly detection based on binary classification
using normal and abnormal log data poses a significant chal-
lenge for its practical implementation. Figure 7 illustrates
the selected benchmark models of supervised and unsuper-
vised learning, with and without the use of a parser. The first
quadrant, which represents the parser-involved supervised
case, represents the easiest scenario to ensure the perfor-
mance of a model, but it is also the most unrealistic. On the
other hand, the parser-free unsupervised case in the third
quadrant is the most realistic scenario but also the most chal-
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Figure 7. Comparison with LAnoBERT and four benchmark models in realistic scenarios.

lenging in terms of ensuring the performance of a model.
Despite these challenges, the proposed LAnoBERT model in
this study showed comparable performance (BGL) to bench-
mark models under the easiest assumption and even better
performance (HDFS, Thunderbird) than some benchmark
models in the most difficult scenario. Hence, the LAnoBERT
model proposed in this study appears to be a practical model
that can be applied in real-world systems.

As explained earlier, supervised learning-based models
are still proposed for system log anomaly detection. The
proposed model achieved better performance than LogSy,
which is a supervised learning-based model, and the LogRo-
bust model, which uses a parser and is a supervised learning-
based model. LAnoBERT recorded excellent detection per-
formance than certain supervised learning-based baseline
models in the most unfair comparison environment. In other
words, LAnoBERT is a model trained in the most realis-
tic yet disadvantageous environment and is a robust model
exhibiting more outstanding or similar performance com-
pared to other baseline models in the most unrealistic and
advantageous environment.

Table 4 lists the F1 score and AUROC performance of
LAnoBERT. The performance of benchmark models was
not measured using AUROC, which is a frequently used
evaluation metric in anomaly detection. benchmark models
may score highly for the best F1 score to exhibit the best per-
formance; however, they are limited in identifying whether
the model has high reliability regardless of the threshold.
Therefore, the performances of the two evaluation metrics
were determined for LAnoBERT, and the results showed
that the F1 score is similar to that of the other models eval-
uated in a relatively more advantageous environment. By
contrast, a high AUROC value closer to 1, which indicates
that a model is most idealistic, was obtained. Consequently,
even if threshold-dependent detection performance metrics
other than the F1 score are used, LAnoBERT can be re-
garded as a highly reliable system log anomaly detection

model with remarkably outstanding performance.

6.2. Performance according to the BERT learning
method

BERT includes models pre-trained with natural language,
and the pre-trained model typically resulted in an excellent
performance in various natural language processing tasks.
Therefore, a comparative experiment was conducted for
LAnoBERT, which was pre-trained with natural language.
The proposed LAnoBERT was trained to utilize an initial-
ized BERT model. In order to investigate the impact of the
pre-training model and provide a practical alternative for
real-world log anomaly detection, we conducted an addi-
tional experiment in which the pre-trained BERT model
with natural language is employed instead of training BERT
from scratch. The results of this experiment are documented
in Table 5.

When the BERT model pre-trained with natural language
was used, MLM was additionally performed after import-
ing the pre-trained model. Pre-training has already been
performed with massive natural language data, and thus, it
can be interpreted that task adaptive pre-training (Gururan-
gan et al., 2020) was conducted with the log data. Table 5
presents the result of training 6,000 steps with a batch size
of 15 per 2080 ti for a total of two 2080 ti’s.

When the BERT model pre-trained with natural language
was used, the F1 score in the BGL data was 0.9020, which
was improved by 0.0271 compared to the model trained
from scratch; by contrast, the F1 score in the HDFS data
was 0.9304, which was decreased by 0.0341 compared to
the model trained from scratch. These results indicate that
the HDFS data consisting of a very simple log structure
have degraded performance when a model that has learned
the context of natural language is used. The number of vo-
cabularies in the HDFS dataset after preprocessing is only
200, which is very few for expressing the context of natural
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Table 4. Performance of our model (F1 Score, AUROC)

Log Parser
HDFS BGL Thunderbird

F1 Score AUROC F1 Score AUROC F1 Score AUROC
Unsupervised
LAnoBERT
(Predictive Prob.)

X 0.9645 0.9901 0.8749 0.9721 0.9990 0.9520

Table 5. Performance of initialized LAnoBERT and pre-trained LAnoBERT

Log Parser Training
HDFS BGL Thunderbird

F1 Score AUROC F1 Score AUROC F1 Score AUROC
Unsupervised
LAnoBERT
(Predictive Prob.)

X Initialized 0.9645 0.9901 0.8749 0.9721 0.9990 0.9520

LAnoBERT
(Predictive Prob.)

X pre-trained 0.9304 0.9659 0.9020 0.9912 0.8954 0.3505

language; hence, the pre-training presumably had a negative
effect on anomaly detection. Conversely, BGL data with a
relatively more complicated structure has a total of 1,000
vocabularies after preprocessing. This supports the fact that
the BGL dataset is a more complicated dataset than HDFS,
and there are cases where natural language is included in
the log data with this number of vocabularies. Therefore, if
appropriate training is performed additionally for a model
that has learned the context of natural language, the anomaly
detection performance can be improved compared to other
models that have not been pre-trained. The experimental
results in Table 5 show that the log data containing natu-
ral language can have a similar form as human language
and that pre-trained BERT can be effectively applied. In
conclusion, the results demonstrate that incorporating the
LAnoBERT framework with a pre-trained BERT model is a
viable alternative.

7. Conclusion
This study proposed LAnoBERT, which is an unsupervised
learning-based system log anomaly detection model where
a parser is not used. The proposed LAnoBERT learned the
context of normal log data using MLM, and abnormal logs
were detected based on the prediction error and predictive
probability during the test. In terms of the nature of the
system log, normal and abnormal data have similar charac-
teristics; thus, a new score calculation method is proposed
for defining the abnormal score based on the top-k predictive
probability. The proposed model exhibited the best perfor-
mance compared to the unsupervised models, and superior
or similar performance compared to supervised learning-
based models. In addition, the efficient inference process
proposed in this study is expected to work well in an actual
system. Although the performances of benchmark models
are heavily dependent on the use of log parser, our proposed

LAnoBERT can be a robust and parser-independent log
anomaly detection model.

The proposed LAnoBERT framework exhibits promising
results in log anomaly detection, however, there are limita-
tions that need to be addressed in future research. Firstly,
LAnoBERT requires individual training for each log dataset.
A unified framework, as outlined in UniAD (You et al.,
2022), is needed to cater to diverse log structures in differ-
ent systems like distributed systems, supercomputers, and
server applications. Secondly, LAnoBERT’s Transformer-
based architecture incurs higher computational costs com-
pared to RNN-based models due to its self-attention layer
(O(n2 · d) complexity) versus the recurrent layer of RNN
(O(n · d2) complexity). To resolve the computational in-
efficiency, incorporating recent parameter-efficient learn-
ing methods such as LoRA (Hu et al., 2022) and Adapter
(Houlsby et al., 2019) is crucial in developing a real-time
log anomaly detection model. Finally, in this study, only
minimal preprocessing was performed using regular expres-
sions and tokenization using Wordpiece tokenizer. The Log
Parser-free methodology can be improved by templating
log sequences into the natural language via prompt tuning
(Brown et al., 2020; Lester et al., 2021) which could en-
able anomaly detection with a pre-trained tokenizer and
language model, without the need for further preprocessing
or training.

Acknowledgements
This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government
(MSIT) (NRF-2022R1A2C2005455). This work was also
supported by Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by
the Korea government (MSIT) (No. 2021-0-00471, Devel-



LAnoBERT: System Log Anomaly Detection based on BERT Masked Language Model

opment of Autonomous Control Technology for Error-Free
Information Infrastructure Based on Modeling & Optimiza-
tion).

References
Brown, A., Tuor, A., Hutchinson, B., and Nichols, N. Re-

current neural network attention mechanisms for inter-
pretable system log anomaly detection. In Proceedings of
the First Workshop on Machine Learning for Computing
Systems, MLCS’18, pp. 8, New York, NY, USA,
2018. Association for Computing Machinery. ISBN
9781450358651. doi: 10.1145/3217871.3217872. URL
https://doi.org/10.1145/3217871.3217872.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H., Ran-
zato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Cinque, M., Cotroneo, D., and Pecchia, A. Event logs for
the analysis of software failures: A rule-based approach.
IEEE Transactions on Software Engineering, 39(6):806–
821, 2013. doi: 10.1109/TSE.2012.67.

Clark, K., Khandelwal, U., Levy, O., and Manning,
C. D. What does BERT look at? an analysis of
BERT’s attention. In Proceedings of the 2019 ACL
Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP, pp. 276–286, Florence, Italy,
August 2019. Association for Computational Linguistics.
doi: 10.18653/v1/W19-4828. URL https://aclanthology.
org/W19-4828.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
BERT: Pre-training of deep bidirectional transformers
for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pp. 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi:
10.18653/v1/N19-1423. URL https://aclanthology.org/
N19-1423.

Du, M. and Li, F. Spell: Streaming parsing of system event
logs. In 2016 IEEE 16th International Conference on

Data Mining (ICDM), pp. 859–864, 2016. doi: 10.1109/
ICDM.2016.0103.

Du, M., Li, F., Zheng, G., and Srikumar, V. Deeplog:
Anomaly detection and diagnosis from system logs
through deep learning. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’17, pp. 1285–1298, New York, NY, USA,
2017. Association for Computing Machinery. ISBN
9781450349468. doi: 10.1145/3133956.3134015. URL
https://doi.org/10.1145/3133956.3134015.

Elnaggar, A., Heinzinger, M., Dallago, C., Rehawi, G.,
Yu, W., Jones, L., Gibbs, T., Feher, T., Angerer, C.,
Steinegger, M., Bhowmik, D., and Rost, B. Prottrans:
Towards cracking the language of lifes code through self-
supervised deep learning and high performance comput-
ing. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pp. 1–1, 2021. doi: 10.1109/TPAMI.2021.
3095381.

Guo, H., Yuan, S., and Wu, X. Logbert: Log anomaly
detection via bert. In 2021 International Joint Conference
on Neural Networks (IJCNN), pp. 1–8, 2021. doi: 10.
1109/IJCNN52387.2021.9534113.
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