
BACKPROPAGATION-FREE 4D CONTINUOUS ANT-BASED
NEURAL TOPOLOGY SEARCH

A PREPRINT

AbdElRahman ElSaid ∗

elsaida@uncw.edu

Karl Ricanek ∗

ricanekk@uncw.edu
Zeming Lyu †

zl7069@rit.edu
Alexander Ororbia †

ago@cs.rit.edu
Travis Desell †

tjdvse@rit.edu

February 1, 2024

ABSTRACT

Continuous Ant-based Topology Search (CANTS) is a previously introduced novel nature-inspired
neural architecture search (NAS) algorithm that is based on ant colony optimization (ACO). CANTS
utilizes a continuous search space to indirectly-encode a neural architecture search space. Syn-
thetic ant agents explore CANTS’ continuous search space based on the density and distribution of
pheromones, strongly inspired by how ants move in the real world. This continuous search space
allows CANTS to automate the design of artificial neural networks (ANNs) of any size, removing
a key limitation inherent to many current NAS algorithms that must operate within structures of a
size that is predetermined by the user. This work expands CANTS by adding a fourth dimension to
its search space representing potential neural synaptic weights. Adding this extra dimension allows
CANTS agents to optimize both the architecture as well as the weights of an ANN without applying
backpropagation (BP), which leads to a significant reduction in the time consumed in the optimiza-
tion process: at least an average of 96% less time consumption with very competitive optimization
performance, if not better. The experiments of this study - using real-world data - demonstrate that
the BP-Free CANTS algorithm exhibits highly competitive performance compared to both CANTS
and ANTS while requiring significantly less operation time.

1 Introduction

Hand-crafting artificial neural network architectures has been an obstacle in the advancement of machine learning
(ML) as it is time-consuming, prone to trial-and-error, and requires significant domain expertise from model ar-
chitects [43]. Exacerbating the problem, even slight alterations to problem-specific meta-parameters or topologi-
cal features can lead to degradation in a model’s performance [15, 2]. This leads to the need for problem-specific
model-optimization, however, the optimization of deep neural networks (DNN), with potentially millions of structural
elements and a large number of hyperparameters, is considered an NP hard problem and limited by computational
resources [1]. Optimal architectures cannot be directly obtained by applying a continuous function because unlike
the optimization of neural network parameters (weights) using a loss-function, an explicit function to measure the
architecture-optimization is not available [23], due to the combinatorial and non-differentiable nature of architecture
possibilities. Therefore, a number of meta-heuristic based neural architecture search (NAS) [14, 22, 34, 39, 24, 43] and
neuroevolution (NE) [36, 5] methods have been developed to automate the process of ANN design. Recently, nature-
inspired neural architecture search (NI-NAS) algorithms have shown increasing promise, including the Artificial Bee
Colony (ABC) [19], Bat [41], Firefly [40], and Cuckoo Search [21] algorithms.

∗Department of Computer Science, University of North Carolina Wilmington
†Software Engineering Department, Rochester Institute of Technology

ar
X

iv
:2

30
5.

06
71

5v
3 

 [
cs

.N
E

] 
 3

0 
Ja

n 
20

24



BP-free CANTS A PREPRINT

Ant colony optimization (ACO) - originally introduced as a graph optimization method [10] - has proven itself to be a
successful NI-NAS strategy. The reason ACO operates as a strongly feasible NAS method is rooted in the concept of its
application as a graph optimization method, providing impressive results [26, 3, 9, 25, 10, 7, 8, 33]. As the structure of
neural networks themselves are in essence directed graphs, this makes ACO well-suited towards the problem of NAS.

Initially, ACO for NAS was limited to small Jordan and Elman RNN neural structures [6] or was used to select the
network inputs [27]. ACO was also used for optimizing the synaptic connections (weights) within RNN memory cell
structures [11] and then later expanded to optimize entire RNN architectures within an algorithmic framework called
Ant-based Neural Topology Search (ANTS) [13].

ANTS utilizes a massively connected neural structure as a discrete structural search space. Although the approach
has shown success, the main critique for the strategy is the limitation of discreteness of the search space. Other NAS
methods are mostly evolutionary-based; instead of operating within fixed bounds, they are constructive and continually
add and removing nodes/edges during the evolutionary process [37, 28, 31]. Although that constructive NAS methods
do not suffer from the limitations of a discreet search space -like ANTS - they are still more prone to falling into
(early/poor) local minima or consume considerable time to evolve structures.

This work introduces a novel ant colony inspired algorithm, the
BackPropagation-Free Continuous Ant-based Neural Topology Search (BP-Free CANTS), which utilizes a
continuous search domain that flexibly facilitates the design of ANNs of any size to address the aforementioned
challenges. Synthetic continuous ant (cant) agents roam explore the search space exploiting on the density and
distribution of pheromone signals, emulating how ants swarm in the real world. The paths resulting from the agents
exploration are used to construct nodes and edges of the RNN architectures. BP-Free CANTS (as well as the original
CANTS algorithm [12], which we will call BP-CANTS in this work for clarity) is a distributed, asynchronous
algorithm, which facilitates scalable usage of high performance computing (HPC) resources, and also utilizes
communal intelligence to reduce the amount of training required for candidate evolved networks.

This work compares BP-Free CANTS to state-of-the-art benchmark NAS designing strategies for applied on
RNN time series data prediction: ANTS [13] and BP-CANTS [12]. In addition to relaxing the requirement for
pre-determined architecture bounds, BP-Free CANTS is shown to yield results that improve upon ANTS and BP-
CANTS at a significantly lower computational cost. The BP-Free CANTS algorithm also provides an advancement
to the field of NI-NAS is that it is able to efficiently both select for high performing architectures while at the same
time finding well performing weights without backpropagation. While ACO has been applied to continuous domain
problems before [35, 20, 38, 18, 4], to the authors’ knowledge, BP-FREE CANTS is one of the first to simulate and
apply the movements of ants through a unbounded 4D continuous space to search for optimal neural parameters and
architectures. BP-Free CANTS has the capacity to optimize the neural topology and the neural synaptic parameters
without applying the time consuming backpropagation and gradient-descent process required for memetic algorithms
such as CANTS or other NE-based methods, further reducing required computational power and time consumption.
BP-FREE CANTS also provides means for its cants agents to evolve during the optimization process, which enhances
the chances of reaching better performing models, while requiring fewer hyperparameters that are associated with
cants’ behavior.

2 Methodology

Figure 2: The CANTS asynchronous design.

Figure 1 presents a abstract-level illustra-
tion for how the BP-Free CANTS algorithm
works. An asynchronous, distributed “work-
stealing” strategy is applied (see pseudo-
code in Algorithm 1) for scalable use on
HPC clusters3. When receiving a request
from a worker process (assignee), the man-
ager (assignor) process generates new archi-
tectures. When requesting a new architec-
ture, worker reports the fitness of the archi-
tecture it trained and evaluated. A fixed pop-
ulation of the best RNNs discovered by the
workers is maintained by the manager pro-
cess. The manager process also rewards the

3Source code is implemented in Python and is offered as an open-source project on https://github.com/a-
elsaid/CANTS public.git

2

https://github.com/a-elsaid/CANTS_public.git
https://github.com/a-elsaid/CANTS_public.git


BP-free CANTS A PREPRINT

Algorithm 1: Continuous Ant-guided Neural Topology Search Algorithm
procedure WorkAssignor

▷ Build 4D space with:
▷ inputs at yaxis = 0
▷ output at yaxis = 1
▷ zaxis: recurrent time steps
▷ xaxis: x component of neuron position
space← new SearchSpace
for i← 1 . . . optimization rounds do

nn← Swarm()
to assignee(nnnew, assignee.id)
nn, fitness← fitness from assignee()
if nn fit < population.worst member then

population.pop(population.worst member)
population.join(nn)
DopositePheromone(nn)

for cant← 1 . . . no cants do
cant.evovle(fitness)

procedure Assignee
nn← from assignor()
fit← train evaluate nn(nn)
to assignor(nn, fit)

procedure Swarm
for cant← 1 . . . no cants do

TakePath(cant)

▷ Cluster paths vertices using DBscan
segments← PathsDBS(cants)
▷ Construct architecture from segments
rnn← BuildRNN(segments) return rnn

procedure TakePath(cant)
▷ Input chosen discretely
PickInput(cant)
while cant.ycurr < 0.99 do

r ← randuni(0, total pheromone− 1)
cant.levelcurr ← cant.go up
if r > ant.explore intuition or space[cant.levelcurr] not Empty then

spot← PutFootPrint(cant.radiussense)
cant.path.add(spot)
space.add(spot)

else
spot← locateCenterOfMass(cant.poscurr, cant.radiussense)
if spot not in space[cant.levelcurr] then

cant path.add(spot)

PickOutput(cant)

3



BP-free CANTS A PREPRINT

procedure cant.Evolve(fitness)
B = cant.behaviorcurr
if fitness < behaviors.worst then

Bnew ← (cant.rateexplore exploit, cant.radiussense, cant.r1, cant.r2)
behaviors.join(Bnew)

if cant.best bahaviors < 10 or randomuni(0, 1) < σmutation then
B ←Mutate(B)

else
B ← CrossOver(B, cant.behaviorbest 1, cant.behaviorbest 2)

procedure Mutate(behavior)
behavior.rateexplore exploit ← random(0, 1)
behavior.ratesense ← random(0, 1);
behavior.r1← randomuni(−1, 1)
behavior.r2← randomuni(−1, 1)

procedure CrossOver(behavior, behavior1, behavior2)
behavior ←

(
(behavior2− behavoir1)× random(0, 1)

)
+ behavior1

procedure PickInput(cant)
▷ Probabilistically with pheromones density
total pheromone← sum(inputs.pheromones)
r ← randomuni(0, total pheromone− 1)
cant.input← 0
while r > 0 do:

if r < inputs.pheromones[cant.input] then
cant.input← +1
break

else
r ← r − inputs.pheromones[cant.input]
cant.input += 1

procedure PickOutput(cant)
▷ Probabilistically with pheromones density
total pheromone← sum(outputs.pheromones)
r ← randomuni(0, pheromone sum− 1)
ant.input← 0
while r > 0 do:

if r < outputs.pheromones[cant.output] then
cant.output← 1
break

else
r ← r − outputs.pheromones[cant.output]
cant.output += 1

procedure PathsDBS(cants)
for cant← 1 . . . cants count do

for spot← 1 . . . cant path do
segments[cant].insert(PickSpot(spot))

return segments

procedure PickSpot(spot)
[node, clusterspots]← PathDBS(spot, space[point.level])
node.edgesfanout.weight← (AverageWeights(clusterspots))
space.add(node) return node

procedure DepositPheromone(nn)
for each node ∈ nn.nodes do

space[node].pheromone += const
space[node].weight← Average(node.weight, space[node].weight)
if space[node].pheromone > THRESHOLD then

space[node].pheromone = PHEROMONE

4



BP-free CANTS A PREPRINT

lat
era
l

Longitudinal

la
g

Weights

Asynchronous 4-D RNN Search NN Testing

Forming RNN from Space-points

Rewarding cants Paths

Evolving cants

Figure 1: The BP-free CANTS schematic graph.

paths that the ant agents took to generate the
RNN architecture by depositing pheromones
in the continuous search space it manages. This computation design allows workers to evaluate and report the perfor-
mance of the a single generated architecture at a time, without blocking waiting on results from other workers, offering
a naturally load-balanced algorithm. Additionally, this allows BP-Free CANTS increased scalability over synchronous
parallel evolution strategies because it can support a number of worker processes greater than the population size. The
population managed by the manager process houses the best fitness (mean squared error on validation data) of the
discovered RNNs reported by workers. This population is held at a fixed size and updated as in steady-state evolution-
ary algorithms, where the worst member of the population is removed and replaced any newly discovered RNN that
performs better.

Candidate neural architectures are sampled from a search space comprised of stacked 2D continuous planes, where
each 2D plane represents a particular time step t (see Figure 3a), and crucially in BP-Free CANTS, the fourth dimen-
sion of a given point in the search space represents the weight value of that point. The input features at each time step,
represented as the input nodes, are uniformly distributed at the zero point of one of the axes of the search space. A
synthetic continuous ant agent (or cant) discretely selects an input node position to start its path to an output node. The
cant then moves on its path through the continuous space based on the current density and distribution of pheromone
traces. On a given plane (lag-level) in the search space, a cant can only move forward toward the side of the outputs,
or jump up to any lag-level above, but it is not permitted to moving to lower lag-levels in the stack, or to move back-
wards on the same lag-level. As paths (recurrent connections) moving up the stack represent passing information from
neurons at previous time step to neurons at a future time step, the reverse would dictates passing unavailable future
information to a previous time step of the RNN, which is not possible. Although cants are restricted to move only for-
ward on a given plane, they are allowed to move backwards when they do a jump to a higher lag-level since recurrent
connections can feed information from an architecture layer-level to lower layer-level that has a higher lag-level. This
enforced (overall) forward movement on the planes (through layer-level) and upward on the stack (through lag-levels)
ensures the continuous progress of cants towards the outputs, and alleviates the cycles in the search space.

Figure 3 shows scenarios of cants movement through the search space starting from an input to an output. The shown
movements illustrate cants exploration of new spots in the search space, cants exploitation of previously searched
areas, attracted by previous pheromone deposits, and how cant-paths are translated into a final candidate architecture
(refer to [12] for more details).

Cant Agent Input Node and Layer Selection: Each level in the search space has a level-selection pheromone value,
pl, where l is the level. These are initialized to pl = 2 ∗ l where the top lag-level for the current time step is l = 1, the
next lag-level for the first time lag is l = 2 and so on. A cant selects its starting lag-level according to the probability
of starting at lag-level l under P (l) = pl

ΣL
l=1pl

, where L is the total number of lag-levels. This scheme encourages
cants to start at lower lag-levels of the stack at the beginning of the search. After selecting a lag-level, the cant selects
its input node in a similar fashion, based on the pheromones for each input node location on that lag-level. When a

5



BP-free CANTS A PREPRINT
PR

OD
UC

ED
 BY

 AN
 AU

TO
DE

SK
 ST

UD
EN

T V
ER

SIO
N

PRODUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTODESK STUDENT VERSION

(a) cant picking 1st spot (explore move)

PR
OD

UC
ED

 BY
 AN

 AU
TO

DE
SK

 ST
UD

EN
T V

ER
SIO

N

PRODUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTODESK STUDENT VERSION

(b) cant picking a spot (exploit move)

PR
OD

UC
ED

 BY
 AN

 AU
TO

DE
SK

 ST
UD

EN
T V

ER
SIO

N

PRODUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTODESK STUDENT VERSION

(c) cant picking a spot in higher level

PR
OD

UC
ED

 BY
 AN

 AU
TO

DE
SK

 ST
UD

EN
T V

ER
SIO

N

PRODUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTODESK STUDENT VERSION

(d) moving to the new spot

PR
OD

UC
ED

 BY
 AN

 AU
TO

DE
SK

 ST
UD

EN
T V

ER
SIO

N

PRODUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTODESK STUDENT VERSION

(e) another spot

PR
OD

UC
ED

 BY
 AN

 AU
TO

DE
SK

 ST
UD

EN
T V

ER
SIO

N

PRODUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTODESK STUDENT VERSION

(f) picking an output

PR
O

D
U

C
ED

 B
Y 

AN
 A

U
TO

D
ES

K 
ST

U
D

EN
T 

VE
R

SI
O

N

PRODUCED BY AN AUTODESK STUDENT VERSION

PR
O

D
U

C
ED

 BY AN
 AU

TO
D

ESK STU
D

EN
T VER

SIO
N

PRODUCED BY AN AUTODESK STUDENT VERSION

(g) cants paths

P
R

O
D

U
C

E
D

 B
Y

 A
N

 A
U

TO
D

E
S

K
 S

TU
D

E
N

T 
V

E
R

S
IO

N

PRODUCED BY AN AUTODESK STUDENT VERSION

P
R

O
D

U
C

E
D

 B
Y

 A
N

 A
U

TO
D

E
S

K
 S

TU
D

E
N

T V
E

R
S

IO
N

PRODUCED BY AN AUTODESK STUDENT VERSION

(h) cants path after condensation

Figure 3: CANTS paths & Architecture Building

6



BP-free CANTS A PREPRINT

PRODUCED BY AN AUTODESK STUDENT VERSION

PR
OD

UC
ED

 BY
 AN

 AU
TO

DE
SK

 ST
UD

EN
T V

ER
SIO

N

PRODUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTODESK STUDENT VERSION

(i) 2D projection of a cant path

PRODUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTODESK STUDENT VERSION

PR
OD

UC
ED

 BY
 AN

 AU
TO

DE
SK

 ST
UD

EN
T V

ER
SIO

N

(j) 2D projection of cants paths

Figure 3: CANTS paths & Architecture Building (continued):

candidate RNN is inserted into the population, the lag-level pheromones for each lag-level, utilized by that RNN, are
incremented.

Cant Agent Movement: The movement of cants in the search space is a balance between exploitation and explo-
ration, which is reached by imitating real-world ants, who follows clues to communicate information about a target.
When a cant takes a step, it first decides if it will climb to higher lag-level in the planes stack, which is done similarly
to how they select the initial lag-level with levels options limited to only the higher planes up the stack. When the cant
determines if the next move will be a climb or not, it will make a choice to whether the move will be an exploration
or exploitation step. The movement type (exploration or exploitation) is decided by the cant based on its explo-
ration/exploitation parameter, which is initially generated using a uniform random distribution, and then later evolves
through the generation of neural architectures, as one the agent’s behaviors (see Section Cants Evolution below).

In exploitation moves, i.e., following pheromone traces/clues, a cant will first sense the pheromone traces around,
that is lying within its sensing radius, ρ. If the move is decided to be on the same lag-level, the cant will ignore
previously-deposited pheromone that is behind it, otherwise, the whole pheromone distribution inside the sensing
radius will be considered by the cant to determine the next location in its path. The center-of-mass of the pheromone
distribution inside the sensing radius is calculated by the cant as the location of the next step in its path. Cants’ path
points are saved by the their candidate generated RNN for later pheromone deposit, for future communication with
other cants, if the RNN made it to the population of best discovered RNNs. Applying the center-of-mass in cants
selection to their next move makes the placement of pheromone at individual points a peripherally effective factor in
cant-to-cant communication compared to the concentration of pheromone in a region in the space, which resembles
real-ants foraging in nature.

When an exploration move is decided by a cant, it will pick a random point lying within its sensing radius for its next
location. The exploration search for a new point will start after the cant decides if it will stay on the same lag-level
or jump to a higher level. If it is moving on the same level, the cant will generate a random number between [0, 1]
as an angle bisector, or between [−1, 1] if jumping to a higher level. An angle is then calculated using the bisector:
θ = angle bisect× π, which will be the direction of the cant’s next coordinate move using these formulae:

xnew ← xold + ρ ∗ cos(θ); ynew ← yold + ρ ∗ sin(θ)

Cants Evolution: Individual CANTS agents, cants, are born/initialized with uniformly distributed random explo-
ration/exploitation and sensing-range coefficients. In addition, two more parameters are introduced to control the

7



BP-free CANTS A PREPRINT

speed at which a cant will move (for one step) by controlling the size of the sensing radius using this 2nd degree
polynomial formula:

sense rangeprecieved = max
(
sense radius−

(
y2 × r1 + y × r2

)
, 0.1

)

Figure 4: Potential cant speed pattern based on its y position, r1, and
r2 values.

where r1 and r2 parameters control the size
of the single cant’s perceived sensing range
based on how far the cant is from the input
node(s) (y spacial distance from inputs). The
bigger the sensing range, the more the cant
is able to conceptually move longer steps
at a time, and the smaller the sensing rage,
the smaller the steps the cant can do, and
yet, the lowest range value is set at 0.1 to
guarantee that the agent will not completely
loose its pheromone sense and halt in posi-
tion. The polynomial aspect of the formula
used will eventually control the pattern of the
cant movement speed: a) slower at the beg-
ging and faster as it approaches the outputs,
or b) slower at the begging, speeds up in the
middle, and slows as it approaches the out-
puts. Figure 4 illustrates those patterns.

Although these cants parameters are uniquely generated for the individual cants, they evolve between the CANTS
iterations using a genetic algorithm that evolves those parameters through mutation and cross-over operations, based
on the best performing generated NN (see cant.Evolve() in Algorithm 1).

Incorporating the above behavioral traits provides more flexibility to the optimization agents themselves and devising
this evolution mechanism makes those parameters self-tune during evolution instead of being treated as extra hyper-
parameters.

Condensing Cant Paths to RNN Nodes: The points on different cants paths can be in a spacial proximity that can
be also mapped to neural proximity, thus, represent a type of redundancy. To avoid having extraneous neurons in the
neural space, the points on the cants’ paths are clustered using the DBSCAN algorithm [16], condensing the resulting
clusters to centriods. After that, the points of neighborhood inside a given cluster are represented by the centriod of
the cluster, and the centriod is translated to a neuron in the generated neural architecture (see Figures 3g and 3h). The
node types are picked by a pheromone-based discrete local search, as is done in the discrete space ANTS algorithm.
Each of these node types at the selected point will have their own pheromone values that drive probabilistic selection.

Communal Weight Sharing: To avoid retraining the neural parameters of newly-generated RNN from scratch, BP-
Cants uses a communal-weight-sharing strategy is deployed to offer an advanced starting point to the generated RNNs,
exploiting parametric values of previously trained RNNs. (refer to [12] for more details). In BP-Free CANTS, the
generated RNNs are only tested without BP training, thus, the communal weight sharing is carried throughout the
optimization process without requiring any updates from the generated RNNs.

Pheromone Deposit: When a candidate RNN wins a place in the population, the manager process increments the
pheromone values of the architecture’s corresponding space centroids by a constant value as a reward. Since they
contribute to the creation of centroids by their pheromone values, the points in proximity to centroids, i.e. the cluster
of points used to generate the centroid, are also rewarded by increasing their pheromone levels by a fraction of the
same constant value, depending on their distance from the centroid. The space points’ pheromone values is capped
at a maximum threshold to avoid having points of super-attraction to cants, causing the optimization to prematurely
conclude.

Pheromone Volatility: Pheromones regularly decay through the process iterations, regardless of the RNNs’ perfor-
mance reported by workers. The decay occurs by a constant value and, after a predetermined minimum threshold,
the point vanishes from the search space. Wiping out points with faint pheromone traces allows the search space to
git rid of pheromones tiny residual that might impede cant-to-cant communication as well as dragging the overall
optimization process. This pheromone degradation also prevents the algorithm from getting prematurely stuck in local
minima.

8



BP-free CANTS A PREPRINT

Time Complexity of the Algorithms: While the time complexity of the various ANTS algorithms is important, it
should be noted that the time spent generating recurrent neural networks with these algorithms is orders of magnitude
less than the time to evaluate the fitness of the generated neural networks (which requires training and validation for
ANTS and BP-CANTS, and only validation for BP-Free CANTS). This is highlighted in Figure 7.
For ANTS and BP-CANTS, each generated recurrent neural network (which may have tens of thousands of train-
able parameters) needs to be trained using backpropagation through time for a number of epochs. As all the ANTS
algorithms use an asynchronous distributed/parallel execution strategy, training potentially hundreds of RNNs simul-
taneously on distributed compute nodes while the master process which generates new RNNs spends most of its time
waiting for more work requests from the workers (it may take fractions of a second to generate a network, however,
training them and then evaluating them on the validation dataset can take multiple minutes, even for few number of
epochs). For BP-Free CANTS, the forward pass of the network over the validation data to evaluate the network with-
out backpropagation is still orders of magnitude faster than the time for the algorithm to generate the networks.
The time complexity of BP-Free CANTS is O(P log P ), where P is the number of pheromone points in the search
space. This is due to the complexity being bound by the DBSCAN operation on the pheromones in the search space (all
other operations, e.g., network construction are linear based on the clusters generated by DBSCAN). New pheromone
values are added every time cant agents move through the search space. These pheromone values degrade over time,
and are removed when they fall below a given threshold. Unfortunately, due to the stochastic nature of the algorithm
it is not possible to compute an upper bound on the maximum number of pheromones possible. That being said, given
our experimental results presented in Figure 7 and discussed in Section 3.2.2, RNN generation time did not appear to
grow in an unbounded manner in our experiments. A potential area of future work (if this proves to be a computational
bottleneck) would be to add in strict limits to the possible number of pheromones present in the search space at any
time, by for example removing the oldest pheromones or combining clustered pheromone traces.

3 Results

This work compares BP-Free CANTS to the previous state-of-the-art ANTS and BP-CANTS algorithms on three real
world datasets related to power systems. All three methods were used to perform time series data prediction for a
parameter, which have been used as benchmarks in prior work. For the coal plant data, note that net plant heat rate
was used from the coal plant’s boiler. Experiments were also performed to investigate the effect the number of cants.

Computing Environment The results for ANTS, BP-CANTS), and BP-Free CANTS were obtained by scheduling
the experiment on Rochester Institute of Technology’s high performance computing cluster with 64 Intel® Xeon®

Gold 6150 CPUs, each with 36 cores and 375 GB RAM (total 2304 cores and 24 TB of RAM). The experiments used
3 nodes (108 cores) and also took approximately 4 weeks to complete the experiments.

Datasets The dataset used, which is derived from coal-fired power plant sensor readings, has been previously made
publicly available on the EXAMM repository to encourage further study in time series data prediction and repro-
ducibility 4. The dataset comes from measurements collected from 12 burners of a coal-fired power plant.

The dataset is multivariate and non-seasonal, with 12 input variables (potentially dependent). These time series are
very long, with the burner data separated into 7000 time step chunks. The dataset is sampled and separated into a
training set of 1875 steps and a test set of 625 steps (per minute recordings).

3.1 On the Number of Cant Agents

An experiment was conducted to determine the effect that the number of cant agents would have on the performance
of the BP-Free CANTS algorithm. The experiment focused on the net plant heat rate feature from the coal-fired power
plant boilers dataset. The number of ants that were simulated and evaluated were 5, 10, 15, 25, 35, and 50.

3.2 Algorithm Benchmark Comparisons

To compare the three different NAS strategies, each experiment was repeated 10 times (trials) to facilitate a statistical
comparison and the algorithms were set to the following amounts of computational processing: the ANTS and BP-
CANTS (the memetic algorithms) were simulated over 1000 total steps with 30 epochs of local backpropagation
applied (to tune candidate RNNs), whereas for the proposed non-memetic BP-Free CANTS, 3000 steps were simulated
without any backpropagation. BP-free CANTS was given more optimization iterations because it is faster to finish (as
will be discussed later in the section), while BP-CANTS and ANTS consume more time since they perform BP epochs

4https://github.com/travisdesell/exact/tree/master/datasets/

9

https://github.com/travisdesell/exact/tree/master/datasets/


BP-free CANTS A PREPRINT

5 10 15 25 35 50
Number of Ant Agents

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fi
tn

es
s 

(M
S

E
)

BP-CANTS
BP-Free CANTS
ANTS

Figure 5: BP-free CANTS Performance (as a function of the number of agents/particles) of BP-Free CANTS
compared to CANTS and ANTS. Note that a lower value of the fitness/loss is better (given that optimization is
focused on minimization).

Average Fitness (MSE)
No. Agents BP-Free CANTS BP CANTS ANTS

5 0.0035 0.0018 0.0455
10 0.0044 0.0058 0.0379
15 0.0063 0.0073 0.0207
25 0.0068 0.0082 0.0436
35 0.0064 0.0082 0.0216
50 0.0067 0.0083 0.0156

Table 1: Average Fitness

per round/iterations of their respective optimization process. For both BP and BP-Free CANTS, the sensing radii of
the cant agents and exploration instinct values were generated uniformly via ∼ U(0.01, 0.98) when the cants were
created/initialized, initial pheromone values were set to 1 and the maximum was kept at 10 with a pheromone decay
rate set to 0.05. For the DBSCAN module, clustering distance was set to 0.05 with a minimum point value of 2. The
population size used was 10. ANTS, BP-CANTS, and BP-Free CANTS had a maximum recurrent depth of 5 and
the predictions were made over a forecasting horizon of 1. The generated RNNs were each allowed 30 epochs of
back-propagation for local search/fine-tuning for the memetic algorithms ANTS and BP-CANTS. ANTS utilized the
hyper-parameters previously reported to yield best results [31, 13].

3.2.1 Performance Benchmarking

The results shown in Figure 5 - which compare the performance of
BP-Free CANTS, BP-CANTS, and ANTS as described in the experimental settings above - are measurements of the
range of mean squared error (MSE) of each algorithm’s best-found RNNs. The figure uses a box-plot to illustrate
the minimum, maximum, median (line in interquartile range), and average (star markers) of the different trails of

10



BP-free CANTS A PREPRINT

5 10 15 25 35 50
Number of Ant Agents

10
1

10
0

10
1

Av
g.

 T
im

e 
pe

r C
P

U
 (H

ou
rs

)

type
ANTS
BP-Free CANTS
BP-CANTS

Figure 6: Time consumed by the BP-free CANTS , CANTS, and ANTS algorithms (lower/closer to zero is better).
Note that the y-axis is a logarithmic scale, which shows BP-Free CANTS operating orders of magnitude faster than
BP-CANTS and ANTS.

the experiments, without showing the outliers. The shadow-shapes bound the area between the maximum and the
minimum values of the fitness within the different trails of experiments (but with the outliers counted). Table 1
depicts the average MSE for the 3 methods, showing that BP-Free CANTS is at the lead in the vast majority of the
experiments.

Desirably, both BP-CANTS and the proposed BP-Free CANTS - outperformed ANTS in all of the experiment trails.
The mean and the average of the ANTS results over the different number of ants/agents seemed to consistently im-
prove from 5 ants to 15 ants, but then some less accurate results started to show up/appear when 25 ants were used.
Nevertheless, the ANTS results continued to improve as the trend continued past 35 and 50 ants. Generally, the ANTS
algorithm’s performance exhibits improved MSE as more agents were used.

While BP-CANTS slightly outperformed BP-free CANTS with 5 cants, the latter exhibited consistently better perfor-
mance than the former for all other numbers of agents. The saturation of the performance curve of CANTS against the
number of cants indicates that for the dataset used, the optimum number of optimization agents was with the fewest
number of cants 5, however BP-Free CANTS was finding still finding comparative best newtworks at 35 and 50 cants.
Note that BP-Free CANTS obtained these good-quality results (with respect to fitness/loss) using a higher number of
optimization iterations but crucially at a significantly lower computational time cost (see next section).

3.2.2 Time Benchmarking

Figure 6 illustrates the average time consumed by a CPU in the experiments done for each optimization method
(ANTS, BP-CANTS, BP-Free CANTS) across the different trails of the experiments. As observed in the figure, there
is a significant gap between the time periods taken by BP-Free CANTS and both ANTS and BP-CANTS. Not only
was the performance of BP-Free CANTS significantly better than CANTS for most of the used agent counts, even with
the increased evolution operations undertaken by BP-CANTS to evolve its agents during the simulated optimization
iterations, it still finished orders of magnitude faster than ANTS and BP-CANTS because it did not have to apply BP
during its iterations. The total operation time of CANTS (with BP) and ANTS were notably similar to each other,
however this is to be expected given both were allowed to perform the same number of optimization iterations and BP
epochs. Table 2 depicts the large gap between the BP-Free CANTS average consumed time at different number of

11



BP-free CANTS A PREPRINT

agents utilization, and the BP-CANTS and ANTS, which both use backprobagation in their optimization process. On
average, BP-Free CANTS is faster than and BP-CANTS and ANTS by 98.5%, and 96.1% respectively.

0 25 50 75 100 125 150 175 200

Iterations

10 3

10 2

10 1

100

101

102

Ti
m

e 
pe

r I
te

ra
to

in
 (h

ou
r)

BP-CANTS
BP-Free CANTS
Create Neural Structure
Evaluate RNN
Accumlative Time

Figure 7: Time Consumed by BP-Free CANTS vs. Time Consumed by BP-CANTS: Time consumed to generate
neural structures (dotted lines) is about the same for both methods. BP-CANTS consumes more evaluation time
(dashed lines) because they use BP. Adding the accumulative generation and evaluation time gives the solid curves for
both BP-CANTS and BP-Free CANTS.

Figure 7 illustrates the time consumption-difference of BP-Free CANTS and BP-CANTS. The two methods were
allowed to generate 200 neural structures using 8 CPUs and 35 agents. The figure shows the time consumed to
generate the neural structure, where the two methods timing were very close with BP-Free CANTS taking a bit more
time to process due to the extra 4th dimension. Observably, the evaluation time of BP-CANTS was an order of
magnitude higher than that of the BP-Free CANTS because the former used BP, while the latter does not. The figure
also shows the accumulative time of neural-structure-generation and the RNN-evaluation of the two methods as the
iterations progress. The great difference between the accumulative time of BP-CANTS and BP-Free originates from
the time consumed by BP. The slope of the cumulative time is higher at early iterations compared to later ones because
the search space is fairly empty (no pheromone deposits) at the beginning of the iterations, but as iterations increase,
the search space is gradually filled, causing the agents to create more neurons, which increases the evaluation time.
The curves then saturates a bit because of the pheromone-evaporation effect, which maintains the pheromone traces at
about constant level.

4 Discussion and Future Work

This work proposes the backpropagation-free continuous ant-based neural topology search (BP-Free CANTS), a novel,
nature-inspired, and non-memetic optimization method that employs a 4D continuous space to conduct unbounded
neural architecture search (NAS). CANTS provides a unique strategy to overcome the key limitations of constructive
neuro-evolutionary strategies (which are often prematurely trapped at local minimas) as well as other NAS strategies
bonded by search space limits . Moreover, BP-Free CANTS expands over previous ACO-centric approaches by
crucially mapping the search space of the synaptic weights of the evolved neural networks as a fourth dimension in a
4D space, unifying both the search for optimal neural structure and synaptic weight values.

Experimental evaluations were carried on BP-Free CANTS to validate its performance in automatically designing
recurrent neural networks (RNNs) used in time-series predictions, using a real-world dataset in the power systems

12



BP-free CANTS A PREPRINT

Average Time (hrs)
No. Agents BP-Free CANTS BP CANTS ANTS

5 0.14 7.75 7.70
10 0.53 14.24 13.29
15 0.43 19.94 19.21
25 0.95 23.57 26.58
35 1.91 26.08 27.13
50 1.43 33.08 35.82

Table 2: Average Time Consumed

domain. We compared our procedure to a state-of-the-art meta-heuristic optimization approach, ANTS (a discrete
space ant colony NAS algorithm) as well as the powerful memetic/backprop-centric algorithm CANTS (BP-CANTS).
Our results demonstrate that BP-Free CANTS improves over ANTS and BP-CANTS while running substantially and
significantly faster.

This study presents important steps in generalizing ant colony optimization algorithms to complex, continuous search
spaces, specifically for unbounded graph optimization problems (with NAS as the key target application), opening up a
number of promising avenues for future work. In particular, for BP-Free CANTS, while the search space is continuous
in each two-dimensional plane (or time step) of our temporal stack, there is still the (maximum) number of discrete
levels that a user must specify. Therefore, a promising extension of our algorithm would be to make the search space
continuous across all three dimensions, removing this parameter entirely, allowing pheromone placements to guide the
depth of the recurrent connections. This could have implications for discrete-event, continuous-time RNN models [30],
which attempt to tackle a broader, more complex set of sequence modeling problems. Additionally, BP-Free CANTS
can provide a well performing solution to the design and training of networks which have activation functions or
other components for which derivatives cannot be calculated (which preclude them from utilizing backpropagation),
such as models with sampled activities (e.g., Bernoulli distribution) or even discrete ones such as spiking neural
networks. A potential disadvantage of BP-Free CANTS is that if enough computational resources are available to
offer BP-based NAS methods a significant number of training epochs (without worry about cost or emissions), the
accuracy of the resulting models will be higher than of BP-Free Cants. Nevertheless, the computational cost of BP
is always a burden in NAS methods, and a good reason to seek faster alternatives” [29, 42, 32, 44]. Finally, and
potentially the most interesting, ACO algorithms including the one designed in this work, generally focus on utilizing
only one single colony. According to myrmecologists5, it would prove fruitful to view and design synthetic ant
colonies as living organisms themselves, with ants as their living “cells” [17], potentially offering a flexible, scalable
simulation framework for modeling how ant agents might achieve more complex tasks related to overall survival (i.e.,
a colony of ant colonies). Expanding this algorithm to other domains, such as the automated design of convolutional
neural networks (for computer vision) or to other types of recurrent temporal networks, such as those used for natural
language processing, would further demonstrate the broad applicability of this nature-inspired approach.

5 Acknowledgements

The experiments carried out in this work were facilitated by the computational resources and support of:

– The NSF Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS - formally
XSEDE)6.

– The Research Computing at the Rochester Institute of Technology7.

References

[1] BACANIN, N., BEZDAN, T., TUBA, E., STRUMBERGER, I., AND TUBA, M. Optimizing convolutional neural
network hyperparameters by enhanced swarm intelligence metaheuristics. Algorithms 13, 3 (2020).

5Myrmecology: The branch of entomology focusing on the scientific study of ants.
6Grant number: CIS220035
7Rochester Institute of Technology. https://doi.org/10.34788/0S3G-QD15

13



BP-free CANTS A PREPRINT

[2] BARNA, G., AND KASKI, K. Choosing optimal network structure. Springer Netherlands, Dordrecht, 1990,
pp. 890–893.

[3] BIANCHI, L., GAMBARDELLA, L. M., AND DORIGO, M. An ant colony optimization approach to the prob-
abilistic traveling salesman problem. In International Conference on Parallel Problem Solving from Nature
(2002), Springer, pp. 883–892.

[4] BILCHEV, G., AND PARMEE, I. C. The ant colony metaphor for searching continuous design spaces. In AISB
workshop on evolutionary computing (1995), Springer, pp. 25–39.

[5] DARWISH, A., HASSANIEN, A. E., AND DAS, S. A survey of swarm and evolutionary computing approaches
for deep learning. Artificial Intelligence Review 53, 3 (2020), 1767–1812.

[6] DESELL, T., CLACHAR, S., HIGGINS, J., AND WILD, B. Evolving deep recurrent neural networks using ant
colony optimization. In Evolutionary Computation in Combinatorial Optimization (Cham, 2015), G. Ochoa and
F. Chicano, Eds., Springer International Publishing, pp. 86–98.

[7] DORIGO, M. Optimization, learning and natural algorithms. PhD Thesis, Politecnico di Milano (1992).
[8] DORIGO, M., BIRATTARI, M., AND STUTZLE, T. Ant colony optimization. IEEE computational intelligence

magazine 1, 4 (2006), 28–39.
[9] DORIGO, M., AND GAMBARDELLA, L. M. Ant colony system: a cooperative learning approach to the traveling

salesman problem. IEEE Transactions on evolutionary computation 1, 1 (1997), 53–66.
[10] DORIGO, M., MANIEZZO, V., AND COLORNI, A. Ant system: optimization by a colony of cooperating agents.

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 26, 1 (1996), 29–41.
[11] ELSAID, A., EL JAMIY, F., HIGGINS, J., WILD, B., AND DESELL, T. Optimizing long short-term mem-

ory recurrent neural networks using ant colony optimization to predict turbine engine vibration. Applied Soft
Computing 73 (2018), 969–991.

[12] ELSAID, A., KARNS, J., LYU, Z., ORORBIA, A. G., AND DESELL, T. Continuous ant-based neural topology
search. In International Conference on the Applications of Evolutionary Computation (Part of EvoStar) (2021),
Springer, pp. 291–306.

[13] ELSAID, A., ORORBIA, A. G., AND DESELL, T. J. Ant-based neural topology search (ants) for optimiz-
ing recurrent networks. In International Conference on the Applications of Evolutionary Computation (Part of
EvoStar) (2020), Springer, pp. 626–641.

[14] ELSKEN, T., METZEN, J. H., AND HUTTER, F. Neural architecture search: A survey. arXiv preprint
arXiv:1808.05377 (2018).

[15] ERKAYMAZ, O., ÖZER, M., AND YUMUŞAK, N. Impact of small-world topology on the performance of a
feed-forward artificial neural network based on 2 different real-life problems. Turkish Journal of Electrical
Engineering & Computer Sciences 22, 3 (2014), 708–718.

[16] ESTER, M., KRIEGEL, H.-P., SANDER, J., XU, X., ET AL. A density-based algorithm for discovering clusters
in large spatial databases with noise. In Kdd (1996), vol. 96, pp. 226–231.

[17] GORDON, D. M. Ant encounters: interaction networks and colony behavior, vol. 1. Princeton University Press,
2010.

[18] GUPTA, H., AND GHOSH, B. Transistor size optimization in digital circuits using ant colony optimization for
continuous domain. International Journal of Circuit Theory and Applications 42, 6 (2014), 642–658.

[19] HORNG, M.-H. Fine-tuning parameters of deep belief networks using artificial bee colony algorithm. DEStech
Transactions on Computer Science and Engineering (2017).

[20] KUHN, L. D. Ant colony optimization for continuous spaces. Computer Science and Computer Engineering
Undergraduate Honors Theses (35) (2002).

[21] LEKE, C., NDJIONGUE, A. R., TWALA, B., AND MARWALA, T. A deep learning-cuckoo search method for
missing data estimation in high-dimensional datasets. In International Conference on Swarm Intelligence (2017),
Springer, pp. 561–572.

[22] LIU, H., SIMONYAN, K., AND YANG, Y. Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055 (2018).

[23] LIU, Y., SUN, Y., XUE, B., ZHANG, M., YEN, G. G., AND TAN, K. C. A survey on evolutionary neural
architecture search. IEEE transactions on neural networks and learning systems (2021).

[24] LUO, R., TIAN, F., QIN, T., CHEN, E., AND LIU, T.-Y. Neural architecture optimization. In Advances in
neural information processing systems (2018), pp. 7816–7827.

14



BP-free CANTS A PREPRINT

[25] M. DORIGO AND L. M. GAMBARDELLA. Ant colonies for the travelling sales man problem. BioSystems,
43(2):73–81 (1997).

[26] MANFRIN, M., BIRATTARI, M., STÜTZLE, T., AND DORIGO, M. Parallel ant colony optimization for the
traveling salesman problem. In International Workshop on Ant Colony Optimization and Swarm Intelligence
(2006), Springer, pp. 224–234.

[27] MAVROVOUNIOTIS, M., AND YANG, S. Evolving neural networks using ant colony optimization with
pheromone trail limits. In Computational Intelligence (UKCI), 2013 13th UK Workshop on (2013), IEEE, pp. 16–
23.

[28] MIIKKULAINEN, R., LIANG, J., MEYERSON, E., RAWAL, A., FINK, D., FRANCON, O., RAJU, B.,
SHAHRZAD, H., NAVRUZYAN, A., DUFFY, N., ET AL. Evolving deep neural networks. In Artificial Intel-
ligence in the Age of Neural Networks and Brain Computing. Elsevier, 2019, pp. 293–312.

[29] MILLER, W. T., GLANZ, F. H., AND KRAFT, L. G. Cmac: An associative neural network alternative to
backpropagation. Proceedings of the IEEE 78, 10 (1990), 1561–1567.

[30] MOZER, M. C., KAZAKOV, D., AND LINDSEY, R. V. Discrete event, continuous time rnns. arXiv preprint
arXiv:1710.04110 (2017).

[31] ORORBIA, A., ELSAID, A., AND DESELL, T. Investigating recurrent neural network memory structures using
neuro-evolution. In Proceedings of the Genetic and Evolutionary Computation Conference (New York, NY,
USA, 2019), GECCO ’19, ACM, pp. 446–455.

[32] PAOLA, J., AND SCHOWENGERDT, R. A detailed comparison of backpropagation neural network and
maximum-likelihood classifiers for urban land use classification. IEEE Transactions on Geoscience and Re-
mote Sensing 33, 4 (1995), 981–996.

[33] PEAKE, J., AMOS, M., YIAPANIS, P., AND LLOYD, H. Scaling techniques for parallel ant colony optimization
on large problem instances. In Proceedings of the Genetic and Evolutionary Computation Conference (2019),
pp. 47–54.

[34] PHAM, H., GUAN, M. Y., ZOPH, B., LE, Q. V., AND DEAN, J. Efficient neural architecture search via
parameter sharing. arXiv preprint arXiv:1802.03268 (2018).

[35] SOCHA, K., AND DORIGO, M. Ant colony optimization for continuous domains. European journal of opera-
tional research 185, 3 (2008), 1155–1173.

[36] STANLEY, K. O., CLUNE, J., LEHMAN, J., AND MIIKKULAINEN, R. Designing neural networks through
neuroevolution. Nature Machine Intelligence 1, 1 (2019), 24–35.

[37] STANLEY, K. O., AND MIIKKULAINEN, R. Evolving neural networks through augmenting topologies. Evolu-
tionary computation 10, 2 (2002), 99–127.

[38] XIAO, J., AND LI, L. A hybrid ant colony optimization for continuous domains. Expert Systems with Applica-
tions 38, 9 (2011), 11072–11077.

[39] XIE, S., ZHENG, H., LIU, C., AND LIN, L. Snas: stochastic neural architecture search. arXiv preprint
arXiv:1812.09926 (2018).

[40] YANG, X.-S. Nature-inspired metaheuristic algorithms. Luniver press, 2010.
[41] YANG, X.-S. A new metaheuristic bat-inspired algorithm. In Nature inspired cooperative strategies for opti-

mization (NICSO 2010). Springer, 2010, pp. 65–74.
[42] YU, C.-C., AND LIU, B.-D. A backpropagation algorithm with adaptive learning rate and momentum co-

efficient. In Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN’02 (Cat.
No.02CH37290) (2002), vol. 2, pp. 1218–1223 vol.2.

[43] ZOPH, B., AND LE, Q. V. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578 (2016).

[44] ÖRKCÜ, H. H., AND BAL, H. Comparing performances of backpropagation and genetic algorithms in the data
classification. Expert Systems with Applications 38, 4 (2011), 3703–3709.

15


	Introduction
	Methodology
	Results
	On the Number of Cant Agents
	Algorithm Benchmark Comparisons
	Performance Benchmarking
	Time Benchmarking


	Discussion and Future Work
	Acknowledgements

