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Abstract

Deep learning methods have been employed in gravitational-wave astron-
omy to accelerate the construction of surrogate waveforms for the inspiral
of spin-aligned black hole binaries, among other applications. We face the
challenge of modeling the residual error of an artificial neural network that
models the coefficients of the surrogate waveform expansion (especially those
of the phase of the waveform) which we demonstrate has sufficient structure
to be learnable by a second network. Adding this second network, we were
able to reduce the maximum mismatch for waveforms in a validation set by
13.4 times. We also explored several other ideas for improving the accuracy
of the surrogate model, such as the exploitation of similarities between wave-
forms, the augmentation of the training set, the dissection of the input space,
using dedicated networks per output coefficient and output augmentation. In
several cases, small improvements can be observed, but the most significant
improvement still comes from the addition of a second network that models
the residual error. Since the residual error for more general surrogate wave-
form models (when e.g., eccentricity is included) may also have a specific
structure, one can expect our method to be applicable to cases where the
gain in accuracy could lead to significant gains in computational time.

Keywords: Gravitational Waves, Residual errors, Surrogate modeling,

Email addresses: sfragkoul@certh.gr (Styliani-Christina Fragkouli),
paranous@csd.auth.gr (Paraskevi Nousi), passalis@csd.auth.gr (Nikolaos Passalis),
piosif@auth.gr (Panagiotis Iosif), niksterg@auth.gr (Nikolaos Stergioulas),
tefas@csd.auth.gr (Anastasios Tefas)

Preprint submitted to Elsevier August 24, 2023

ar
X

iv
:2

20
3.

08
43

4v
2 

 [
as

tr
o-

ph
.I

M
] 

 2
3 

A
ug

 2
02

3



Deep Learning

1. Introduction

Observations of GW and the global network of detectors. Since the first detec-
tion of gravitational waves (GW) from a system of binary black holes (BBH)
in 2015 [1], GW detections have become more and more frequent, approach-
ing gradually the status of routine observations. From that date onwards,
GW detections have become more and more frequent, approaching gradually
the status of routine observations. The initial observing run (O1) of the two
Advanced LIGO [2] laser interferometers based in Hanford and Livingston,
resulted in 3 GW events. During the second run (O2) the total number of
registered detections increased to 11 (first Gravitational-Wave Transient Cat-
alog, GWTC-1, [3]), with the Advanced Virgo detector [4] joining in towards
the end of that observational period. Virgo’s addition to the twin LIGO
detectors was paramount, as it coincided with the first detection of a binary
neutron star (BNS) coalescence, GW170817 [5], accompanied with extensive
observations in the electromagnetic (EM) spectrum [6, 7]. The first part of
the third observing run (O3a) updated the number of events to 50 (GWTC-2,
[8]), while the latest catalog (GWTC-3, [9]) contains 90 GW events.

Continued improvements in the detectors’ sensitivity [10] are expected to
further increase the number of GW observations. A fourth GW observatory,
KAGRA [11, 12], joined the global network of GW detectors at the end of
the O3 run. KAGRA will participate in the fourth observing run (O4) which
is planned to begin in May 2023, while also improving its sensitivity during
O4. Additional observatories are important so that the sky localization of
GW sources is more accurate and their properties are determined with higher
precision, thus providing crucial information for potential EM follow-up ob-
servations of GW events. To that end, the construction and operation of
a fifth interferometer, LIGO-India [13] will also significantly improve both
the network sensitivity and the sky localization. Furthermore, third genera-
tion ground-based detectors such as the Einstein Telescope [14, 15] and Cos-
mic Explorer [16, 17] are actively being developed and they are anticipated
to vastly improve our knowledge of astrophysical processes in the Universe
[18, 19, 20].

GW modeling. The breakthroughs in GW astronomy briefly described above,
were made possible thanks to collaborative efforts on multiple fronts. The
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rigorous developments in gravitational waveform modeling of a variety of
compact binary coalescences (CBC) was undoubtedly a crucial point. A pre-
requisite to interpret GW signals and unveil the properties of their source
is to solve the two-body problem in General Relativity (GR). To that end,
one needs to solve the Einstein equations and this can be done either via
analytical methods (truncated at some order in a post-Newtonian (PN) ex-
pansion, see e.g. [21]) or via numerical solutions of the full Einstein equations
(with some assumptions and up to a specified tolerance). The analytical ap-
proach is fast, but it is valid only for large separations of the binary and
small (compared to the speed of light) orbital velocities, i.e. it breaks down
after the late inspiral phase. The subsequent merger and ringdown phase
of the coalescence, i.e. the strong field and relativistic velocities regime,
can be captured accurately only with numerical relativity (NR). However,
the computational cost of such NR simulations (typically performed on su-
percomputers) is tremendous, ranging from tens of thousands to millions of
corehours [22, 23, 24, 25, 26].

Efforts to combine the two aforementioned approaches in order to produce
accurate descriptions of the entire coalescence, including the full inspiral,
merger and ringdown, have resulted in different families of waveform models.
The main ones are the effective-one-body (EOB) and the phenomenological
families. The former has two prominent members, the SEOBNR models [27,
28], and the TEOBResum models [29, 30], while the latter comprises of the
IMRPhenom models [31, 32].

The EOB approach [33] generalizes to GR the Newtonian result dictating
that the relative motion of a two-body system is equivalent to the motion of
a particle of mass µ = m1m2/(m1 +m2) (where m1 and m2 are the masses
of the binary components) in the two-body potential V (r) 1. In the EOB
context, the PN inspiral information is resummed and calibrated to NR data
and the merger-ringdown part is obtained from a fit to NR data. The two
EOB subfamilies, SEOBNR and TEOBResum , differ mainly regarding the choices
in the resummation process and in the amount of PN and NR information
employed.

In the phenomenological approach, the binary coalescence is typically
split into 3 regions, where piecewise closed form expressions are used to

1Specifically, the GR two-body problem becomes the problem of describing the evolu-
tion of a test mass orbiting around a deformed Kerr metric.
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represent the waveforms. Breaking up the total frequency region into: (i)
a low frequency inspiral regime, where the waveform can be described by
adding additional terms to a PN expansion, (ii) a high frequency regime,
where the waveform is dominated by a quasi-normal ringdown that can be
described by perturbation theory and (iii) an intermediate regime, which
captures the complex physics of the merger and demands insights from NR,
facilitates the finding of appropriate analytical functions. These expressions
are fitted to NR waveform data for a set of constructed hybrid waveforms
that in essence “glue” together EOB waveforms describing the inspiral and
NR waveforms describing the last orbits, merger and ringdown of the binary.

The latest implementations of the EOB and phenomenological families
of models include effects from the spin-induced precession of the binary or-
bit and contributions from both the dominant and subdominant multipole
moments of the emitted gravitational radiation. The current state-of-the-art
models are SEOBNRv5PHM [28] for the SEOBNR family, IMRPhenomXPHM [32] and
IMRPhenomTPHM [34] for the IMRPhenom family and TEOBResumS-GIOTTO [30]
for the TEOBResum family. Furthermore, tidal effects can be incorporated
[35, 36, 37] in the SEOBNR [38] and IMRPhenom [39] models as appropriate,
while in the TEOBResum family tidal and spin effects are merged together into
a single EOB framework and therefore no extension is needed as in the other
two families.

Progress towards the above cutting-edge waveform models has followed
a course of stepping stones along which extra features (i.e. inclusion of
spins, higher modes, precession) and different optimization and accelera-
tion techniques were implemented gradually. Early efforts in the EOB front
(e.g. [40, 41] resulted in the first versions of the SEOBNR models which
evolved from describing non-spinning binaries to spinning, precessing sys-
tems. [42, 43, 44, 45]. Improved EOB waveform models soon followed
[46, 47, 48, 49, 50] leading up to the 5th and most sophisticated imple-
mentation of SEOBNR models [28, 51, 52, 53]. Similarly, groundwork for the
IMRPhenom family of waveform models [54, 55] developed to include higher
modes [56, 57, 58, 59]. Further improvements in accuracy [60, 61, 62, 63] led
to the latest generation of IMRPhenom models [32, 64] becoming a standard
tool in GW parameter estimation. The TEOBResum family of models followed
a similar course of incremental development [65, 66, 67, 68, 69]. In addi-
tion, the expansion of the above waveform family trees from quasi circular
to eccentric binaries is diligently pursued [70, 71, 72, 73, 74].

On one hand, the inclusion of extra physical characteristics as outlined
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above, allows for more realistic and complex waveforms, which is a prerequi-
site to perform highly accurate parameter estimation of GW sources. Such
state-of-the-art models have played a significant role in the analysis of GW
from: (i) asymmetric mass binaries [75, 76, 77], (ii) systems whose binary
components include one or two neutron stars [78, 79], (iii) GW190521 [80]
the most massive BBH merger detected to date [81, 82] and (iv) independent
re-analysis of the public LIGO-Virgo-KAGRA (LVK) data, e.g. [83].

On the other hand, the increased complexity decreases the waveforms’
computational efficiency (e.g. compared to the simpler PN approximants).
This effect is more pronounced for EOB waveforms, as phenomenological
waveforms are faster by construction. The computational cost of EOBmodels
is burdened by the need to tackle the orbital dynamics through solving a
complex system of ordinary differential equations. A solution to this problem
has been supplied by surrogate modeling2 [88, 89]. By fitting interpolated
decomposed waveform data pieces over the binary parameter space, surrogate
models can significantly accelerate either NR (e.g. [90, 91, 92, 93, 94, 95]) or
EOB waveforms (e.g. [88, 96, 97, 98, 99]), while maintaining high accuracy
within their parameter space of validity.

Motivation and Contribution. In this study, we focus on the SEOBNRv4
model, which has a 3-dimensional parameter space λ; the mass ratio q be-
tween the two BHs and their spins χ1 and χ2, assuming that they are aligned
with the orbital angular momentum. Surrogate models have been shown to
be fast and reliable approximations of waveforms such as SEOBNRv4, within
a specified tolerance error. A surrogate model for this family of waveforms
is presented in [100].

As discussed in [100] there are challenges in modeling GW signals and
there is a need to reduce computational costs to increase the efficiency of
analyzing GW events. While there have been significant advancements in
GW signal modeling, incorporating more complex features increases compu-
tational costs, limiting their use. To overcome this challenge, custom-made
optimizations have been developed [84], but they require expert knowledge
and may not provide general optimizations. Alternatively, data-driven meth-

2Complementary to the surrogate solution, recently, the EOB description of the binary
dynamics has been bolstered with a technique called the post-adiabatic approximation
which promises to speed up the waveform generation to levels computationally competitive
with current phenomenological and surrogate models [84, 85, 86, 87].
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ods such as surrogate modeling can be employed, which provide accurate ap-
proximations of computationally expensive waveform models [88, 101]. Sev-
eral machine learning techniques are available for interpolating or fitting the
projection coefficients of a reduced basis representation of time-domain wave-
forms, and the most appropriate method depends on the required accuracy
and dimensionality. For low-dimensional parameter spaces, interpolation is
a viable option. However, as dimensionality increases, interpolation becomes
challenging due to the substantial number of data points usually required.
ANNs are proposed to estimate these coefficients since this approach allows
for efficient execution on either a CPU or GPU.

In reproducing the results of [100], we noticed that the residual errors
after training the neural networks had structure with respect to the input
parameters and hypothesized that a second neural network could learn to
model these errors. Our contribution can be summarized as follows:

• We design and train a neural network to model the residual errors of
the surrogate model network.

• Drawing inspiration from the physical aspect of the task at hand, we
introduce various tricks to reduce the learning errors.

• We make use of the residual errors of the training of the ANN model
and achieve a maximum mismatch between SEOBNRv4 waveforms and
waveforms generated by our surrogate model that is more than one
order of magnitude smaller compared to the baseline method.

To the best of our knowledge, this is the first work to model the resid-
ual errors of a neural network based gravitational wave surrogate model.
The code for this work is available at https://github.com/sfragkoul/

residual-gw-surrogate-modelling.
The rest of this paper is arranged as follows: in Section 2 related works

are detailed and compared to this work, and in Section 3 surrogate mod-
eling is briefly overviewed, the ground truth used during our experiments
is described and the baseline network is presented. In Section 4 we discuss
the improvements noticed by adding a supplementary residual error learning
network, i.e. a network predicting the errors of the training network. In
Section 5 we summarize different approaches investigated to manipulate the
input and output space of the networks, aiming to obtain a better mismatch.
Section 6 the presentation of how the variants of the ANN surrogate model,
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as described in the previous sections, perform takes place, and in Section 7
we summarize our findings. Finally, in the Appendix we show additional
results for the distribution of the mismatch values for different values of the
greedy tolerance.

2. Related Work

Interest in harnessing machine learning techniques for the analysis of GW
data has been on the rise lately (see [102] for a review). For example, the
interpolation (i.e. the third step described above) can be very costly at
high dimensions, in which case probabilistic methods could be employed, see
e.g. [103]. In [104] the complex waveforms are separated into the real and
imaginary segments and two separate surrogate models are constructed, with
artificial neural networks (ANNs) implemented within a 4-dimensional input
space to fit the coefficients from the reduced basis, omitting the final step of
the empirical interpolation.

In [105], various interpolation methods were investigated, concluding that
machine-learning based methods may perform better as the complexity of the
surrogate modeling problem increases. In another important development,
using genetic programming and symbolic regression techniques, surrogate
models based on numerical simulations (i.e. essentially in an ab-initio ap-
proach) were used to obtain closed-form expressions for the GW emission of
BBH collision, modeling the entire coalescence at once, i.e. without the need
to distinguish between the different regimes of inspiral, merger and ringdown
[106].

In [100] a time-domain surrogate model of the spin-aligned BBH waveform
model SEOBNRv4 [46] was built by utilizing ANNs instead of interpolating
during the last step, and also by dividing the problem to the signal parts of
the phase and amplitude, which resulted in the creation of two corresponding
surrogate models. Furthermore, another recent application of Deep Learning
(DL) was implemented [101], where ANNs were used (specifically autoen-
coders), for the examination of latent structures in the coefficients from the
empirical interpolation.

In [107] the authors present the prospect for predicting gravitational wave-
forms from compact binaries based on automated machine learning (Au-
toML). The study focuses on the analysis of GW emitted when two spinless
black holes collide in an initial quasi-circular orbit. Their findings suggest
that AutoML has the potential to serve as a framework for regression in
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the field of surrogates for gravitational waveforms. Specifically, this research
is conducted in the context of surrogates derived from NR simulations us-
ing the reduced basis and the empirical interpolation. Their results indicate
that AutoML is capable of generating surrogates that closely resemble the
actual NR simulations. In [108], the use of ANNs for surrogate modeling is
investigated and it is shown that they can be used to build computationally
efficient and accurate models for multipolar waveform models of precessing
BBHs. The method is applied on the SEOBNRv4PHM waveform model and the
generated surrogate model is faster than the original model by 2 orders of
magnitude on a CPU. With batched operations and the acceleration of a
GPU, this speedup is further increased.

The main advantage of using an ANN-surrogate model in our study is its
ability to capture complex nonlinear relationships between the input param-
eters and the output waveform signals, which can be challenging to model
using traditional analytic methods. This approach has been shown to be
effective in previous studies for predicting gravitational waveforms [100], and
we evaluated the performance of our proposed ANN-surrogate model against
a baseline model, which was also based on an ANN architecture. We chose
this approach for comparison as it allowed us to assess the effectiveness of
our proposed method in improving the accuracy of the predictions relative
to a baseline.

Unlike the aforementioned works [100, 101], though, in this study we take
into account modeling errors generated by the DL models by learning the
residual errors. Furthermore, we draw inspiration from the physical aspect
of the task at hand as well as the learning objective, and introduce various
tricks to reduce the learning errors. Notably, we make use of the residual
errors of the training of the ANN model in order to achieve significantly
better results.

3. Background

In the following subsections we provide the theoretical background of
surrogate modeling for gravitational waves. Furthermore, we discuss the
specifics of constructing an effective surrogate model for the SEOBNRv4
waveform family, following the steps described in [100].
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3.1. Construction of a surrogate model

We use the notation h(t;λ) = h+(t;λ) − ih×(t;λ) to denote a complex
gravitational wave strain, where h+ and h× are the two independent polariza-
tions [109], t denotes time and the elements of λ are the intrinsic parameters.
In general, for inspiraling black holes in general relativity on non-eccentric
orbits, these parameters are 7-dimensional, consisting of the mass ratio and
two spins with arbitrary orientation. Under restrictions, these parameters
can be simplified to only include the mass ratio and two spins aligned with
the orbital plane. We study this case, based on the SEOBNRv4 model specif-
ically [46].

Surrogate modeling aims to approximate the given signals using a reduced
model, denoted as hs(t;λ), such that the approximation given by the sur-
rogate model, hs(t;λ) accurately reconstructs the actual waveform h(t;λ)
within a preset threshold of error. When considering only the dominant,
quadrupole (l = m = 2) mode [109], the target becomes hs(t;λ) ≈ h2,2(t;λ)
where l,m are the spherical harmonics. In surrogate modeling, the first step is
to prepare a large training set of waveforms, as previously mentioned. Imple-
menting the SEOBNRv4 model [46], whose input space is three-dimensional,
each waveform is parameterized by the mass ratio q ≡ m1/m2 ≥ 1 and the
dimensionless spins χ1, χ2 of the two black holes. Thus, a training set of N
waveforms {hi(t;λi)}Ni=1 is created3, where λi = (q, χ1, χ2)i. The mass ratio
is limited to a predetermined interval, e.g. as 1 ≤ q ≤ 8, inside which the
surrogate model is accurate by design. For the two spins, their values can be
in the range −0.99 ≤ χ1,2 ≤ 0.99.

A reduced basis is built from the training set, using either a greedy al-
gorithm [88] or algebraic approaches, like Singular Value Decomposition
(SVD) [91]. The greedy algorithm is an iterative process, which chooses
n < N waveforms (and, by extension, their corresponding {λj}nj=1 values,
the greedy points), which, after orthonormalization, constitute the reduced
basis {ej}nj=1. Each λi waveform in the training set is then represented as a
linear combination

h(t;λi) ≈
n∑

j=1

cj(λi)ej(t), (1)

within a preset error tolerance, where {cj(λi)}nj=1 = ⟨h(t;λi), ej(t)⟩ are the

3The PyCBC package [110] was used to generate the waveforms, internally calling meth-
ods from LALSuite [111].
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orthogonal projection coefficients. To ensure that our coefficients remain
smooth with respect to the parameters, we adopted measures to mitigate the
impact of noisy data. Specifically, we employed a higher sampling rate and
a larger number of training samples, which enabled us to obtain a smooth
and dense input parameter space. Furthermore, our data are generated by
highly-accurate semi-analytic waveform models, so they do not suffer from
experimental data noise – any numerical data noise is orders of magnitude
smaller than the mismatch we are aiming for. Our approach is in line with
the recommendations put forth by [88].

Next, a new EIM basis Bk(t) is obtained, such that a waveform h(t;λj)
(where λj is one of the greedy points of the ROM basis) can be represented
as the linear combination

h (t;λj) =
n∑

k=1

αk(λj)Bk(t), (2)

where the coefficients αk(λj) coincide with the waveform at particular times,
{Tk}nk=1, the empirical time nodes, i.e. αk(λj) = h (Tk;λj).

For any other waveform h (t;λi) in the training set, the coefficients of
the EIM representation are simply αk(λi) = h (Tk;λi). Since this does not
involve the basis Bk(t), the coefficients are computed much faster (as known
values of the waveform at particular times) than the projection coefficients
in the ROM basis (which require the projection of the whole waveform).

A surrogate model is finally produced, by interpolating over the coefficient
matrix αk(λi) of the training set to find the coefficients α̂k(λ) for an arbitrary
λ, such that

h (t;λ) ≈
m∑
k=1

α̂k(λ)Bk(t). (3)

Depending on the dimensionality of λ, multi-dimensional interpolation is
required, the computational cost of which increases dramatically with in-
creasing number of parameters. This particular part of the process can be
accelerated using neural networks, as shown in [100].

In practice, we used a similar setup as in [100], as our baseline model. In-
stead of working with the strain amplitudes h+ and h×, we use the amplitude
A and phase ϕ of the complex waveform, defined through

h+ (t;λ)− h× (t;λ) = A (t;λ) e−iϕ(t;λ), (4)
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as this results in a more compact EIM basis. The training set comprised N =
2× 105 waveforms, randomly sampled in the 1 ≤ q ≤ 8,−0.99 ≤ χ1,2 ≤ 0.99
parameter space. The waveforms in the training set were accurately aligned
in amplitude and initial phase, the phase was unwrapped and the time series
was truncated to correspond to a common starting time of −20000M , where
we chose a total mass ofM = 60M⊙. This ensured that all waveforms started
with a minimum frequency no larger than 15 Hz. We kept 100M of post-
peak ringdown data. The ROM and EIM bases were constructed using RomPy
[88, 112].

A validation set of 3 × 104 SEOBNRv4 waveforms (not included in the
training set) was used to evaluate the accuracy of the reconstructed wave-
forms.

3.2. Measuring the reconstruction error

For two waveforms with parameters λ1 and λ2, one defines the inner
product [113]

⟨h(·;λ1), h(·;λ2)⟩ = 4ℜ
∫ fmax

fmin

h̃(f ;λ1)h̃
∗(f ;λ2)

Sn(f)
df, (5)

where h̃(f ;λ) is the Fourier transform of h(t;λ), Sn(f) denotes the noise
power spectral density (PSD) of the GW detector4 and the star notation
denotes the complex conjugate. The inner product can be used to normalise
the Fourier transform of a waveform as

ĥ(f ;λ) =
h̃(f ;λ)

⟨h(·;λ), h(·;λ)⟩
, (6)

Then, the overlap between two waveforms is defined as the inner product
between normalised waveforms ĥ(·;λ1), ĥ(·;λ2), maximised over a relative
time (t0) and phase (ϕ0) shift between the two waveforms:

O(ĥ(·;λ1), ĥ(·;λ2)) = max
t0,ϕ0

⟨h(·;λ1), h(·;λ2)⟩, (7)

and, finally the mismatch is given by

M(ĥ(·;λ1), ĥ(·;λ2)) = 1−O(ĥ(·;λ1), ĥ(·;λ2)). (8)

4We used the PSD of the Advanced LIGO design sensitivity [114]. There is a minimal
impact on the calculated mismatch, with respect to the choice of a flat PSD.
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Table 1: Number of coefficients (n) of the reduced EIM bases for the amplitude and phase
for different values of the greedy tolerance. The last three columns show the mismatch
M (maximum, median and 95th percentile values) of the waveforms in the validation set
when reconstructed via Eq. (2).

Greedy n n mismatch M
Tolerance (amplitude) (phase) (max) (median) (95th percentile)

10−6 8 4 8.44× 10−3 5.47× 10−4 1.81× 10−3

10−8 13 4 8.44× 10−3 5.45× 10−4 1.80× 10−3

10−10 18 8 4.95× 10−4 1.30× 10−5 8.22× 10−5

10−12 41 12 2.07× 10−6 7.45× 10−8 2.83× 10−7

10−14 84 32 1.34× 10−8 5.64× 10−10 3.95× 10−9

10−16 93 48 6.60× 10−9 4.59× 10−10 3.02× 10−9

To measure the performance of the surrogate model, the mismatch between
actual waveforms, given by the SEOBNRv4 model, and surrogate predictions
is used.

3.3. Performance of the reduced basis reconstruction and ground truth

Table 1 shows the number of coefficients of the reduced EIM basis for the
amplitude and for the phase for different values of the greedy tolerance. The
last three columns show the maximum, median and 95th percentile mismatch
of the waveforms in the validation set when reconstructed via Eq. (2). An
initial greedy tolerance of 10−6 results in a basis with just 8 coefficients for
the amplitude and 4 coefficients for the phase, with a median mismatch of the
ANN surrogate model of ≃ 5×10−4. Decreasing the greedy tolerance to 10−10

reduces the median mismatch to ≃ 10−5, requiring 18 coefficients for the
amplitude and 8 coefficients for the phase. With even lower greedy tolerances,
one can reach a median mismatch of only ≃ 5 × 10−10 at the expense of a
larger number of coefficients. The results in Table 1 are comparable to the
corresponding results in Table I of [100].

For the case of a greedy tolerance of 10−10, the two-dimensional and three-
dimensional distributions of mismatch values larger than ∼ 8 × 10−5 (95th

percentile) for the waveforms in the training set, when reconstructed using
the EIM reduced basis via Eq. (2), are shown in Fig. 1. The correspond-
ing distributions for the validation set and for various values of the greedy
tolerance are shown in the Appendix. The distributions are different at very
small values of the greedy tolerance, when compared to the distributions for
higher values of the greedy tolerance.

12



Figure 1: Two-dimensional and three-dimensional distribution of mismatch values larger
than ∼ 8×10−5 (95th percentile) for the waveforms in the training set, when reconstructed
using the EIM reduced basis via Eq. (2), with a greedy tolerance of 10−10.

Next, selecting a greedy tolerance of 10−10, the k = 18 coefficients αk(λi) =
h (Tk;λi) for the amplitude and corresponding 8 coefficients for the phase
(for each of the N = 2 × 105 waveforms with parameters λi in the training
set) were used as the ground truth for the baseline ANN surrogate model
discussed in the next subsection. In the remainder of this paper, we will
denote the ground truth EIM coefficients of the N training set waveforms as
yi ≡ {αk(λi)}nk=1.

3.4. ANN surrogate model: the baseline network

To complete the surrogate model, an ANN was trained to interpolate
the coefficients αk(λi) of the training set to find the coefficients α̂k(λ) for
an arbitrary λ. We implemented the idea and baseline ANN model which
followed the architecture from [100] and compared our proposed model with
this baseline. There were 4 hidden layers with 320 neurons in each. The
batch size was 103 and the training lasted for 103 epochs. For the amplitude
network we used the Adam optimizer [115] with a learning rate of 10−3 and
the activation function was ReLU [116]. For the phase network, we used
the Adamax [115] optimizer with a learning rate of 10−2 and the activation
function was softplus [117]. It is worth mentioning that in preliminary exper-
iments various hyperparameters which affect the training process, including
learning rate, optimizer type, batch size and learning rate schedule were
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Table 2: Mean square error (MSE) of the predictions of the ANN surrogate model for the
training set and for the validation set, for the baseline network.

MSE for training set MSE for validation set
(average of 5 runs) (average of 5 runs)

Amplitude 1.79× 10−7 ± 3.52× 10−10 1.84× 10−7 ± 3.29× 10−10

Phase 1.05× 10−8 ± 2.18× 10−10 1.06× 10−8 ± 2.11× 10−10

tested. The best performing set of hyperparameters in terms of MSE on our
validation set were finally chosen for the baseline model. As far as prepro-
cessing is concerned, in both cases log(q) was used as an input instead of q,
which was then scaled using the StandardScaler from Scikit-Learn [118].
At the output, the coefficients were used raw for the amplitude network and
were scaled using Scikit-Learn’s MinMaxScaler for the phase network. All
experiments were conducted on an NVIDIA RTX 2080 Ti GPU.

The ANN prediction of the EIM coefficients of the training set waveforms
will be denoted as ŷi ≡ {α̂k(λi)}nk=1. During training, the standard mean
square error

MSE =
1

N

N∑
i=1

∥ŷi − yi∥22 (9)

was measured and minimized, where the ∥ · ∥2 notation represents the Eu-
clidean norm of a vector. Table 2 displays the MSE (average of 5 runs)
of the predictions of the ANN surrogate model for the training set and the
corresponding predictions for the validation set, for the baseline network.
The MSEs are in the range ∼ 10−8 − 10−7. During our experiments it was
observed that the amplitude required less epochs to converge (about 400)
whereas the phase network always took more (about 800). Throughout our
ablation study, we closely monitored the behavior of both the MSE and the
mean absolute error (MAE). After careful consideration, we determined that
these metrics exhibit similar trends. As a result, we chose to report the MSE
in our experiments, as it is the objective function that we utilized to train
our ANNs.

In Table 3 we display the calculated mismatchM of the predictions of the
baseline network for the validation set (average of 5 runs) in order to outline
how we evaluated the performance of our ANN surrogate model by compar-
ing the mismatch of the generated waveforms with the original waveforms
from the SEOBNRv4 model, which served as our benchmark for accuracy
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Table 3: Mismatch M of the predictions of the baseline network for the validation set
(average of 5 runs). The minimum, maximum, 95th percentile and median mismatch are
shown.

Mismatch M
(average of 5 runs)

Min 2.70× 10−6 ± 3.43× 10−7

Max 7.73× 10−3 ± 5.38× 10−4

95th 2.95× 10−4 ± 6.61× 10−6

Median 8.39× 10−5 ± 1.91× 10−6

assessment. The maximum mismatch is 7.73 × 10−3, the 95th percentile is
2.95× 10−4 and the median mismatch is 8.39× 10−5. These values are only
several times (less than an order of magnitude) larger than the correspond-
ing mismatch values for the ground truth in Table 1, demonstrating that
the ANN surrogate model can predict waveforms for arbitrary λ (within the
training ranges) with good accuracy5.

The two-dimensional and three-dimensional distributions of mismatch
values larger than ∼ 3×10−4 (95th percentile) are shown in Fig. 2. Similarly
to the ground-truth distributions of Fig. 1, large mismatches are seen primar-
ily for high spin values and at the corners and edges of the two-dimensional
distributions.

3.4.1. Baseline model architecture exploration

Another direction that was explored was that of the architecture of the
baseline model. Two types of experiments were tried out, one of shallower
models and one of deeper. Both the number of hidden layers and nodes per
hidden layer were part of this experimentation. Specifically, for the shallow
networks three scenarios were put to test, the input and output layers were
kept the same but the hidden layers were altered to a) a single layer with 160
nodes, b) 2 layers with 320 nodes each, c) 4 layers with 160 nodes and for the
deeper architecture version hidden layers were altered to a) 4 layers with 640
nodes and b) 8 layers with 320 nodes each. The final mismatches for these
experiments are presented in Table 4 and their corresponding violin plots
are shown in Figure 5. We choose violin plots with a logarithmic scale to
visually compare the methods, as the errors are very small and cover several

5The accuracy of the SEOBNRv4 model itself is between 10−2 and 10−4.
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Figure 2: Two-dimensional and three-dimensional distribution of mismatch values larger
than ∼ 3× 10−4 (95th percentile) of the predictions of the baseline network for the wave-
forms in the validation set.

Figure 3: Dependence of the residual error for three selected EIM coefficients for the
amplitude on the input parameters λ = {χ1, χ2, q} (the dependence on q is shown using
a colormap). The example in the middle panel shows a strong dependence on the mass
ratio q, whereas the example on the right shows a large residual error at the largest value
of χ1.

orders of magnitude. All of the evaluated architectures achieve more or less
the same results, with one exception: the shallow network with one layer of
160 neurons performs significantly worse.

16



Figure 4: Dependence of the residual error for two selected EIM coefficients for the phase
on the input parameters λ = {χ1, χ2, q} (the dependence on q is shown using a colormap).
Some clustering of the errors as a function of the mass ratio can be seen.

Table 4: Mismatch M of the predictions of the different architectures of the baseline
network for the validation set (average of 5 runs). The maximum, 95th percentile and
median mismatch are shown.

Mismatch M (average of 5 runs)
Max 95th percentile Median

baseline 7.73× 10−3 ± 5.38× 10−4 2.95× 10−4 ± 6.61× 10−6 8.39× 10−5 ± 1.91× 10−6

1x160 2.00× 10−1 ± 7.59× 10−3 2.65× 10−2 ± 9.54× 10−4 4.77× 10−3 ± 1.68× 10−4

2x320 8.84× 10−3 ± 1.31× 10−3 3.07× 10−4 ± 3.85× 10−5 7.43× 10−5 ± 6.88× 10−6

4x160 4.57× 10−3 ± 7.11× 10−4 8.51× 10−4 ± 4.75× 10−4 2.65× 10−4 ± 1.47× 10−4

4x640 8.44× 10−3 ± 2.94× 10−3 3.07× 10−4 ± 2.07× 10−5 8.67× 10−5 ± 2.39× 10−6

8x320 8.39× 10−3 ± 1.59× 10−3 2.89× 10−4 ± 1.71× 10−5 7.69× 10−5 ± 2.64× 10−6

4. Improvement through Residual Errors Network

Having established the baseline ANN surrogate model in Sec. 3.4, we
proceeded in implementing and evaluating three different pathways for im-
proving the mismatch. First, by using a residual error modeling approach,
second, using auxiliary tasks to avoid overfitting, and finally by constructing
a feature space that can be better exploited by DL models. The implemented
pipeline is outlined in Figure 6. Both models take as input the parameters
λ. The baseline models are trained first, to predict amplitude and phase
coefficients. Then, the residual errors are computed as shown in Eq. (10)
and the residual model is trained to predict these. The final predictions are
the sum of the outputs of the two models.

The first improvement (which also turned out to be the most significant)
was obtained by adding a second network (after the training) which can
make predictions for the errors of the first network. We remind that for the
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Figure 5: Violin plots comparing the mismatches (for the validation set) between the
various baseline network architectures. The middle horizontal line marks the median and
the extent of the lines show the minimum and maximum values. In each panel, the envelope
is proportional to the density of points. Above the plots the first number corresponds to
the number of hidden layers while the second is the number of nodes in each hidden layer.

baseline model, the first network had three-dimensional input {λi}Ni=1 and
produced predictions ŷ(λ) (for an arbitrary λ) with 18 dimensions for the
amplitude and 8 for the phase network. For all {λi}Ni=1 in the training set,
one can obtain the corresponding predictions {ŷ(λi)}Ni=1 and calculate the
residual

ei ≡ y(λi)− ŷ(λi), (10)

where, as already defined, y is the ground truth. Note that the input λ
undergoes various transformations before being fed to the network, including
logarithmic transform of q, and min-max normalization. The second network
was designed to have the same input and architecture as the first network,
but this time it was trained on the residuals ei (which were first scaled
using “MinMaxScaler” from scikit-learn [118]) to make predictions for
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Figure 6: A block diagram of the implemented models.

the residual ê(λ) at an arbitrary λ. For this second network the MSE was
defined as

MSE =
1

N

N∑
i=1

∥êi − ei∥22. (11)

Adding the prediction ê for the residual to the prediction ŷ of the first
network, one obtains an improved prediction

ỹ ≡ ŷ + ê. (12)

It is worth noting that the residual errors ei for the EIM coefficients of the
N waveforms in the training set are not always distributed randomly, but can
show a certain structure. Fig. 3 displays the dependence of the residual error
for three selected EIM coefficients for the amplitude on the input parameters
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Table 5: Mean square error (MSE) of the predictions of the ANN surrogate model for
the amplitude and phase of the validation set, using the baseline network (middle column)
and when a second network that models the residual error is added (right column). In the
second case, the MSE of the phase is reduced by a factor of ∼ 5.

MSE for baseline network MSE with residual network
(average of 5 runs) (average of 5 runs)

amplitude 1.84× 10−7 ± 1.90× 10−10 1.80× 10−7 ± 2.74× 10−10

phase 1.08× 10−8 ± 2.11× 10−10 1.93× 10−9 ± 1.58× 10−12

Table 6: Mismatch M of the predictions of the baseline network (middle column) and
when a second network that models the residual error is added (right column), for the
validation set (average of 5 runs). The minimum, maximum, 95th percentile and median
mismatches are shown.

Mismatch M Mismatch M
(average of 5 runs) (average of 5 runs)
baseline network with residual network

Min 2.70× 10−6 ± 3.43× 10−7 1.78× 10−7 ± 2.34× 10−8

Max 7.73× 10−3 ± 5.38× 10−4 5.75× 10−4 ± 1.14× 10−5

95th 2.95× 10−4 ± 6.61× 10−6 1.33× 10−4 ± 1.01× 10−7

Median 8.39× 10−5 ± 1.91× 10−6 4.33× 10−5 ± 2.73× 10−8

λ = {χ1, χ2, q} (the dependence on q is shown using a colormap). The
example in the middle panel shows a strong dependence on the mass ratio q,
whereas the example on the right shows a large residual error at the largest
value of χ1. The distribution of the residual errors for other coefficients in
the EIM expansion is quite similar to one of these characteristic cases. Fig.
4 shows the corresponding dependence of the residual error for two selected
EIM coefficients for the phase. Some clustering of the errors as a function
of the mass ratio can be seen, which is a strong indication that a second
network can learn the residual error.

Table 5 displays the mean square error (MSE) of the predictions of the
ANN surrogate model for the amplitude and phase of the validation set,
using the baseline network (middle column) and when a second network that
models the residual error is added (right column). For the amplitude there
is only minimal improvement, but for the phase, the addition of the second
network that models the residual error reduces the MSE of the predictions
for the validation set by a considerable factor of ∼ 5.
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Figure 7: Violin plots comparing the mismatches (for the validation set) between the
baseline network and the case when a second network that models the residual error is
added. The middle horizontal line marks the median and the extent of the lines show the
minimum and maximum values. In each panel, the envelope is proportional to the density
of points. A significant reduction of the mismatch is achieved when the network for the
residual error is added.

In Table 6, we display the mismatch M of the predictions of the base-
line network (middle column) and when a second network that models the
residual error is added (right column), for the validation set (average of 5
runs). In the second case, the minimum error is reduced by a factor of ∼ 15,
the maximum error by a factor of ∼ 13, and the 95th percentile and median
by a factor of ∼ 2. Fig. 7 compares the mismatches (for the validation
set) between the baseline network and the case when a second network that
models the residual error is added, as a violin plot. The middle horizontal
line marks the median and the extent of the lines show the minimum and
maximum values. In each panel, the envelope is proportional to the density
of points.

The significant improvements in the mismatch shown in Table 6 and Fig.
7 demonstrate that adding a second network that learns the residual errors
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is indeed beneficial to the construction of surrogate models for gravitational
waves from BBH inspiral. There is good reason to hope that this strategy
will also prove to be beneficial for other types of GW template banks, such
as binary neutron star inspiral waveforms.

4.1. Effect of residual network on different baseline architecture models

The idea of residual errors network was also tried during the experiments
which concerned the architecture of the baseline model. In all cases the archi-
tecture of the residual errors network was not altered and kept with 4 hidden
layers with 320 nodes in each one of them. The final mismatches for these
experiments with the addition of the residual errors network are presented
in Table 7 and their corresponding violin plots are shown in Figure 8. As
shown the best choice for baseline model is that of 4 hidden layers with 320
nodes in each of them, followed by a residual errors network with the same
architecture.

Table 7: Mismatch M of the predictions of the different architectures of the baseline
network for the validation set (average of 5 runs) with the effect of the residual errors
network. The maximum, 95th percentile and median mismatch are shown.

Mismatch M (average of 5 runs)
Max 95th percentile Median

baseline 5.75× 10−4 ± 1.14× 10−5 1.33× 10−4 ± 1.01× 10−7 4.33× 10−5 ± 2.73× 10−8

1x160 6.65× 10−4 ± 4.72× 10−5 1.38× 10−4 ± 1.71× 10−6 4.46× 10−5 ± 4.48× 10−7

2x320 5.88× 10−4 ± 1.94× 10−5 1.33× 10−4 ± 3.25× 10−7 4.35× 10−5 ± 1.51× 10−7

4x160 5.96× 10−4 ± 2.07× 10−5 1.79× 10−4 ± 9.21× 10−5 7.05× 10−5 ± 5.39× 10−5

4x640 6.12× 10−4 ± 2.85× 10−5 1.34× 10−4 ± 27.87× 10−7 4.37× 10−5 ± 1.81× 10−7

8x320 5.80× 10−4 ± 3.27× 10−5 1.33× 10−4 ± 2.82× 10−7 4.33× 10−5 ± 1.07× 10−7

4.2. Time measurements

In this section we measure the time required to generate 1000 coefficients
in a single forward pass, for the baseline model (tb) and the entire system
including the residual network (tr). The results are shown in Table 8, where
all measurements were made 200 times and the mean is reported. The mea-
surements are made for the amplitude networks, and similar times should
be observed for the phase ones. The CPU used is an Intel(R) Core(TM) i7-
9700K CPU @ 3.60GHz, and the GPU used is a NVIDIA RTX 2080 Ti GPU.
The number of threads used is 8. The fastest network by far is the shallowest
(one hidden layer of 160 neurons), whereas the slowest is the widest (4 hid-
den layers of 640 neurons), followed by the deepest (8 hidden layers of 320
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Table 8: Time measurements for various baseline architectures before and after the ad-
dition of the residual network. Measurements are made in deployment mode, i.e., no
gradients are computed, for a batch size of 1000.

device model tb (ms) tr (ms)

CPU 4× 320 1.66 3.75
2× 320 0.78 3.88
4× 160 0.62 3.66
1× 160 0.24 2.04
8× 320 3.44 6.40
4× 640 6.59 7.70

GPU 4× 320 0.27 0.54
2× 320 0.17 0.45
4× 160 0.23 0.50
1× 160 0.11 0.37
8× 320 0.44 0.69
4× 640 0.61 0.72

neurons). The residual network always has the same architecture of 4 hidden
layers with 320 neurons each, for fair comparison between experiments. Note
that, even though the fastest network remains the fastest after the addition of
the residual network, the difference in run times between each model and the
baseline 4× 320 decreases. Finally note that optimizations, like torchscript6

or explicitly threaded network calls, might further decrease the overhead of
the residual network.

Based on its performance and time, before and after the addition of the
residual network, we choose the 4× 320 baseline network to further explore
our proposed input and output manipulations, described in the following
sections.

5. Exploration of Feature Space and Output Manipulation

5.1. Feature Space Manipulation

While working with the baseline network, we aimed for manipulations
of the input space of the networks that would lead to a better mismatch.

6https://pytorch.org/docs/stable/jit.html
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Figure 8: Violin plots comparing the mismatches (for the validation set) between the
various baseline network architectures with the effect of the residual errors network. The
middle horizontal line marks the median and the extent of the lines show the minimum
and maximum values. In each panel, the envelope is proportional to the density of points.
Above the plots the first number corresponds to the number of hidden layers while the
second is the number of nodes in each hidden layer.

In some cases the input feature space dimension was increased and in some
others the total size of the training dataset was increased by inserting an
altered branch of samples.

a. Exploitation of similarities between waveforms. One such idea was
to enlarge the input parameter space to four-dimensional, by adding a new
parameter that describes physical relations between different waveforms. At
1.5 post-Newtonian (PN) order the time evolution of the frequency f = Ω/π
(where Ω is the orbital frequency) of the quadrupolar part of the waveform
is described by [113, 119]:

df

dt
=

96

5
π8/3Mc + c5/3f 11/3

[
1−

(
743

336
+

11µ

4M

)
x+ (4π − β)x3/2 +O(x2)

]
,

(13)
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where M = m1+m2 is the total mass of the binary system, µ = m1m2/M is
the reduced mass, Mc = µ3/5M2/5 is the chirp mass and x = (πMf)2/3. At
this order, the effect of the two spins χ1, χ2 on the waveform, enters through
a single parameter β, which is essentially a mass-ratio-weighted sum of the
two spins:

β ≡
(
113

12
+

25

4q

)
q2

(1 + q)2
χ1 +

(
113

12
+

25q

4

)
1

(1 + q)2
χ2. (14)

Two different waveforms, characterized by different λ = {q, χ1, χ2} values
can thus have the same β value, leading to identical waveforms at 1.5PN
order (and rather similar waveforms, overall). So, the idea was to insert this
new parameter, which has physical meaning, in order to help the network
learn the interpolation coefficients.

b. Augmentation of the training set. Next, we tried to improve the
problem of the presence of the worst mismatches at boundary values of the
mass ratio and spins. As a remedy for the large mismatch when q = 1
was approached, we first tried to augment the dataset with additional input
samples 1/q, χ2, χ1. corresponding the same coefficients with q, χ1, χ2, which,
however, did not yield significant improvement. Next, we tried log(q) and
− log(q) in place of 1/q, which gave better results.

c. Dissection of the input space. Another tactic that was followed was
that of dissecting the input feature space into a number of K groups and
evaluating the performance of the networks in each group. To that end,
the input was divided to K = 2 groups according to the value of the mass
ratio q and two separate networks were trained for both cases of amplitude
and phase, each followed by its corresponding residual errors network. The
hope was that the individual networks would produce smaller mismatches,
by focusing on a smaller range of q, specifically q ∈ [1, 4.2] for the first group
and q ∈ [3.8, 8] for the second group. Note that the q ranges have a small
overlap.

5.2. Output Manipulation

a. Dedicated network per output coefficient. In an effort to achieve smaller
mismatches by manipulating the output, we used a dedicated training net-
work for each coefficient. For the baseline case examined in this work, we

25



Table 9: Mean square error (MSE) of the predictions of different variants of the ANN
surrogate model for the amplitude of the validation set, without (middle column) and with
the addition of a network that models the residual error (right column). The smallest
mismatch is shown in boldface. See the main text for the explanation of the different
variants.

MSE (average of 5 runs) MSE (average of 5 runs)
without residual network with residual network

baseline 1.84× 10−7 ± 1.90× 10−10 1.80× 10−7 ± 2.74× 10−10

β parameter 1.82× 10−7 ± 2.44× 10−10 1.78× 10−7 ± 3.84× 10−10

-log(q) 1.77× 10−7 ± 4.02× 10−10 1.77× 10−7 ± 3.17× 10−10

K-networks 1.86× 10−7 ± 1.25× 10−10 1.74× 10−7 ± 8.03× 10−11

Net per coef 1.75× 10−7 ± 2.26× 10−10 1.75× 10−7 ± 2.38× 10−10

f(1− y) output 1.90× 10−7 ± 1.79× 10−10 1.82× 10−7 ± 5.47× 10−10

therefore used 18 networks for the amplitude and 8 networks for the phase.
When the residuals were also modeled, an equal number of dedicated net-
works (one per residual) was also added.

b. Output augmentation. Finally, another idea to push the network to
learn the desired output, was to insert a new branch with a function f(y).
For that reason, the quantity (1 − y) was added as an extra output for the
training network. The final prediction ŷ was obtained by combining the
predictions for y and (1− y).

In all of the above cases, we also experimented with adding a network
(or dedicated networks) for modeling the residual error. The results of our
experiments are presented in the following Section.

6. Performance of different variants of the ANN surrogate model

Table 9 shows the MSE of the predictions of the different variants of the
ANN surrogate model discussed in Sec. 5 for the amplitude of the validation
set. Without a residual network, the variants with the β parameter, the 1/q
and − log(q) input augmentations and the individual networks per coefficient
show a slight improvement in the mismatch. The variants with the dissection
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Table 10: As in Table 9, but for the phase.

MSE (average of 5 runs) MSE (average of 5 runs)
without residual network with residual network

baseline 1.08× 10−8 ± 2.11× 10−10 1.93× 10−9 ± 1.58× 10−12

β parameter 9.97× 10−9 ± 8.59× 10−11 1.94× 10−9 ± 1.50× 10−12

− log(q) 1.04× 10−8 ± 1.09× 10−10 2.35× 10−9 ± 5.89× 10−11

K-networks 4.47× 10−9 ± 2.37× 10−10 2.94× 10−9 ± 8.51× 10−11

Net per coef 1.58× 10−8 ± 4.73× 10−10 1.96× 10−9 ± 1.72× 10−11

f(1− y) output 1.37× 10−8 ± 3.40× 10−10 1.92× 10−9 ± 1.22× 10−12

Table 11: Mismatch M of the predictions of different variants of the ANN surrogate
model (average of 5 runs). For each variant, the maximum, 95th percentile and median
mismatches are shown, with the addition of a network that models the residual errors as
well as without it. The smallest mismatch is shown in boldface.

Residual Mismatch M (average of 5 runs)
network Max 95th percentile Median

baseline No 7.73× 10−3 ± 5.38× 10−4 2.95× 10−4 ± 6.61× 10−6 8.39× 10−5 ± 1.91× 10−6

Yes 5.75× 10−4 ± 1.14× 10−5 1.33× 10−4 ± 1.01× 10−7 4.33× 10−5 ± 2.73× 10−8

β parameter No 6.25× 10−3 ± 5.17× 10−4 2.68× 10−4 ± 6.72× 10−6 7.80× 10−5 ± 1.26× 10−6

Yes 5.65× 10−3 ± 8.76× 10−6 1.32× 10−4 ± 2.91× 10−7 4.33× 10−5 ± 7.02× 10−8

− log(q) No 5.57× 10−3 ± 3.28× 10−4 2.41× 10−4 ± 2.45× 10−6 7.10× 10−5 ± 3.00× 10−6

Yes 5.62× 10−4 ± 6.17× 10−5 1.42× 10−4 ± 3.24× 10−6 4.58× 10−5 ± 4.40× 10−7

K-nets No 2.12× 10−3 ± 1.24× 10−4 1.67× 10−4 ± 2.18× 10−6 5.25× 10−5 ± 8.34× 10−7

Yes 1.12× 10−3 ± 1.15× 10−4 1.49× 10−4 ± 6.37× 10−7 4.68× 10−5 ± 3.37× 10−7

Net per coef No 5.50× 10−2 ± 2.33× 10−2 1.43× 10−3 ± 4.63× 10−4 1.89× 10−4 ± 2.55× 10−5

Yes 7.32× 10−4 ± 1.60× 10−4 1.38× 10−4 ± 5.43× 10−6 4.43× 10−5 ± 6.83× 10−7

1− y No 6.67× 10−3 ± 1.16× 10−3 2.95× 10−4 ± 7.45× 10−6 8.51× 10−5 ± 1.66× 10−6

Yes 5.80× 10−4 ± 1.37× 10−5 1.32× 10−4 ± 1.55× 10−7 4.33× 10−5 ± 5.40× 10−8

into K = 2 networks and the output augmentation show a slight worsening,
instead. Adding a network that models the residual error slightly improves or
does not affect the MSE, except for the case of the 1/q input augmentation,
where the MSE becomes slightly worse. Out of all variants shown in Table 9,
the dissection into K = 2 networks with residual error modeling shows the
smallest MSE, which is ∼ 5% (∼ 3%) smaller than the MSE of the baseline
network without (with) residual modeling. It is important to note that our
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method is compatible and thus can be used on top of any ANN architecture.
Moreover, our experimental study has demonstrated notable enhancements
when compared to the baseline model proposed by [100] which served as the
starting point of our experimentation.

Table 10 shows the corresponding MSE for the phase. Without a residual
network, the variants with the q input, the β parameter, the − log(q) input
augmentation and the dissection into K = 2 networks show improvements
between ∼ 4% and ∼ 60%, whereas the remaining variants show a worsening
of the MSE. When a network that models the residual error is added, the
MSE is reduced significantly for all variants. The highest reduction, by a
factor of ∼ 7, can be observed for the output augmentation. This is the best
case out of all variants shown in Table 10, with the baseline network with
added residual error modeling coming a close second.

In Table 11 we show the mismatch M of the predictions of the different
variants of the ANN surrogate model discussed in Sec. 5 (the average of 5
runs is shown). For each variant, the maximum, 95th percentile and median
mismatches are shown, both with and without the addition of a network
that models the residual errors. The corresponding violin plots are shown in
Fig. 9 (except for the case of q input). For each variant (shown in different
colors) the left (right) panel displays the case without (with) a network for
the residual error. The middle horizontal line marks the median and the
extent of the lines show the minimum and maximum values. The envelope
is proportional to the density of points.

From the mismatch results displayed in Table 11 and in Fig. 9, it is ev-
ident that the most significant improvements to the ANN surrogate model
come from the inclusion of the network that models the residual error. Both
the minimum and maximum error are reduced by more than an order of
magnitude, compared to the baseline network without residual error model-
ing. Specifically, the maximum error is reduced by a factor of ∼ 17 for the
variant with q input and residual error modeling, compared to the baseline
network. The minimum error is reduced by a factor of ∼ 15 for the base-
line with residual error modeling and by a similar factor for the dedicated
networks per coefficient, compared to the baseline network without residual
error modeling. The 95th percentile mismatch is reduced by a factor of ∼ 2
with respect to the baseline network without residual error modeling. The
smallest 95th percentile mismatches were achieved in the cases of the β pa-
rameter and of the output augmentation, with the baseline model and the
variant with q input coming close second (all cases with residual error mod-
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Figure 9: Violin plots comparing the mismatches for different variants of the ANN surro-
gate model without (left panel for each variant) and with the addition of a network that
models the residual error (right panel for each variant).The middle horizontal line marks
the median and the extent of the lines show the minimum and maximum values. In each
panel, the envelope is proportional to the density of points. A significant reduction of the
mismatch is achieved in several variants. See text for details.
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eling added). The best performance of the median mismatch was observed
for the baseline network with residual error modeling and for the variants
with q input and output augmentation (also with residual error modeling).
Compared to the baseline network without residual error modeling, these
variants had a median error reduced by a factor of ∼ 2.

7. Discussion & Conclusions

Deep learning methods have been employed in gravitational-wave astron-
omy to accelerate the construction of surrogate waveforms for the inspiral of
spin-aligned black hole binaries, among other applications. As we demon-
strated here, the residual error of an ANN that models the coefficients of the
surrogate waveform expansion has sufficient structure to be learnable by a
second network. This is especially true for the residual error of the surrogate
model coefficients for the phase of the waveform. We added a second ANN
(of the same architecture as the main network) and showed that the maxi-
mum mismatch for waveforms in a validation set was reduced by more than
an order of magnitude.

Furthermore, we explored several other ideas for improving the accuracy
of the surrogate model, such as the exploitation of similarities between wave-
forms, the augmentation of the training set, the dissection of the input space,
using dedicated networks per output coefficient and output augmentation. In
several cases, small improvements were observed, but the most significant im-
provement still came from the addition of a second network that models the
residual error. Since the residual error for more general surrogate waveform
models (when e.g. eccentricity of tidal effects are included) may also have a
specific structure, one can expect our method to be applicable in such more
general cases. The gain in accuracy may then lead to significant gains in
computational time. We plan to investigate such cases in the future.

Specifically, in a series of extensive experiments, we showed that the pro-
posed bag-of-tricks methods can improve the maximum mismatched between
real and reconstructed waveforms by 1.2-1.4 times, using the −log(q) or β
parameter method, and up to 3.6 times, using the K-nets method, compared
to the mismatch achieved by using the baseline model at zero additional com-
putational overhead during deployment. Furthermore, the proposed residual
error modeling method can achieve up to 13.4 times improved mismatch
at about two times the computational overhead compared to the baseline
method. This result is especially noteworthy when taking into consideration
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the fact that using networks with larger capacity as the baseline coefficient
predictors only increases the computational cost without providing propor-
tionate - or any - improvement in terms of mismatch. This means that in
order to reach mismatch values of over an order of magnitude lower than the
baseline network, regardless of its capacity, a second model that learns the
first’s residual errors is essential.

While our results demonstrate the effectiveness of the proposed method
in accurately predicting waveforms, we also acknowledge certain limitations
that could be addressed in future research. Specifically, our study required
a substantial amount of training data and the number of parameters was
relatively low-dimensional compared to the 7-dimensional space of the general
case of merging black holes. To further enhance the proposed approach, we
recommend future studies to explore residual error networks and utilize the
proposed ‘bag-of-tricks’ method to improve network performance in cases
where dense training sets are not available.

One can also hope to perhaps model the residual errors even further,
e.g. by adding a third network to model the “residual of the residual”,
if a clustering persists at the next level. This suggestion is in line with
residual connection based architectures [120], where each such connection
can be viewed as residual error learning from its input to its desired output,
i.e., the error of the previous neural structure.
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9. Appendix

The different panels in Fig. 10 display the two-dimensional distributions
of mismatch values larger than the 95th percentile (for different values of the
greedy tolerance) for the waveforms in the validation set, when reconstructed
using the EIM reduced basis via Eq. (2). The distributions are different at
very small values of the greedy tolerance, when compared to the distributions
for higher values of the greedy tolerance.

(a) tolerance 10−06 (b) tolerance 10−10

(c) tolerance 10−14 (d) tolerance 10−16

Figure 10: Two-dimensional and three-dimensional distribution of mismatch values larger
than ∼ 8 × 10−5 (95th percentile) for the waveforms in the validartion set, when recon-
structed using the EIM reduced basis via Eq. (2). The different panels correspond to
different values of the greedy tolerance.
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L. Haegel, R. Jaume, Phenomenological time domain model for domi-
nant quadrupole gravitational wave signal of coalescing binary black
holes, Phys. Rev. D 103 (12) (2021) 124060. arXiv:2004.08302,
doi:10.1103/PhysRevD.103.124060.
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