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Abstract

This paper discusses the stabilizability, weak stabilizability, exact observability and robust

quadratic stabilizability of linear stochastic control systems. By means of the spectrum tech-

nique of the generalized Lyapunov operator, a necessary and sufficient condition is given for

stabilizability and weak stabilizability of stochastic systems, respectively. Some new concepts

called unremovable spectrums, strong solutions, and weakly feedback stabilizing solutions are

introduced. An unremovable spectrum theorem is given, which generalizes the corresponding

theorem of deterministic systems to stochastic systems. A stochastic Popov-Belevith-Hautus

(PBH) criterion for exact observability is obtained. For applications, we give a comparison

theorem for generalized algebraic Riccati equations (GAREs), and two results on Lyapunov-

type equations are obtained, which improve the previous works. Finally, we also discuss robust

quadratic stabilization of uncertain stochastic systems, and a necessary and sufficient condition

is given for quadratic stabilization via a linear matrix inequality (LMI).
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spectrum
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1 Introduction

Stabilizability and observability is essential and important concepts in modern control theory,

especially, in system analysis and synthesis. Stochastic stabilizability (in mean square sense)

plays a crucial role and is an essential assumption in many problems, such as infinite horizon

stochastic optimal control problem (J. L. Willems & J. C. Willems, 1976; Ichikawa, 1979; Ait

Rami & Zhou, 2000), robust and stochastic H∞ problems (Ugrinovskii, 1998; Hinrichsen &

Pritchard, 1998), filtering problems (Bensoussan, 1992, and the reference therein), control and

stabilization problems for jump system ( Ghaoui & Ait Rami, 1998, Gao et al., 2001 and the

references therein). In this paper, we mainly study the stabilizability and exact observability of

the following linear stochastic controlled system










dx(t) = (Ax(t) +Bu(t)) dt+ (Cx+Du) dw(t), x(0) = x0 ∈ Rn,

y = Qx,
(1)

where A,B,C,D,Q ∈ Rn×n×Rn×m×Rn×n×Rn×m×Rl×n are real constant matrices; w(·) is

a standard Wiener process with w(0) = 0 defined on the filtered probability space (Ω,F ,P;Ft)

with Ft = σ{w(s), 0 ≤ s ≤ t}. Without loss of generality, we assume w(·) is one-dimensional for

simplicity.

On the stabilizability of system (1) (For short, we also call (A,B;C,D) stabilizable in the

context), some results were obtained, for example, Zhang (2000) proved that (A,B;C,D) is

stabilizable if and only if (iff) the following GARE

PA+A′P + C ′PC + I − (PB + C ′PD)(I +D′PD)−1(B′P +D′PC) = 0 (2)

has a positive definite solution P > 0. By means of linear matrix inequalities (LMIs) and

Lyapunov-type inequalities, Ait Rami and Zhou (2000) gave some other necessary and sufficient

conditions. In addition, J. L. Willems and J. C. Willems (1976) also presented many criteria to

test the stabilizability for some special stochastic systems with arbitrary noise intensities.

Exact observability was first introduced by Zhang (1998) by means of finite-dimensional in-

variance subspace, and then by Liu (1999) from the physical viewpoint, i.e., the zero output

must correspond to zero state, which is the generalized version of complete observability of de-

terministic linear system theory, and has many applications in studying GAREs, and stochastic

stability; see Zhang (1998) and Liu (1999).

In this present paper, we try to give a spectral or eigenvalue descriptions for the stabilizability

and exact observability of stochastic system (1). In order to illustrate our goal, let us recall some
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results with deterministic controlled system










ẋ = Ax+Bu, x(t0) = x0,

y(t) = Qx(t).
(3)

It is well known that for complete controllability, complete observability, stabilizability and

detectability of system (3), we have the following criteria:

1) (A,B) is completely controllable iff there does not exist a nonzero vector ξ and λ ∈ C

satisfying

ξ′A = λξ′, ξ′B = 0. (4)

2) (A,B) is stabilizable iff there does not exist a nonzero vector ξ, Re(λ) ≥ 0 satisfying (4).

3) (Q,A) is completely observable iff there does not exist a nonzero vector ξ and λ ∈ C

satisfying

Aξ = λξ, Qξ = 0. (5)

4) (Q,A) is detectable iff there does not exist a nonzero vector ξ, Re(λ) ≥ 0 satisfying (5).

The above criteria for complete controllability(stabilizability, complete observability, de-

tectability, resp.) are the so-called Popov-Belevith-Hautus (PBH) Criteria, and the λ satisfying

(4) can be called an unremovable spectrum of system (3); see Proposition 1 of this paper. So

PBH criterion tells us that system (3) is stabilizable iff its all unremovable spectra belong to left

hand side complex plane. PBH criterion is important in the pole assignment of linear systems.

In this paper, we try to develop an analogous theory in stochastic systems. By defining

the closed-loop operator LK , the necessary and sufficient conditions for stabilizability and weak

stabilizability of system (1) are presented via the spectrum of operator LK . The proposed

spectrum-based technique makes it possible to generalize some concepts of deterministic systems

to stochastic case. For instance, we can define weak stabilizability of stochastic systems, strong

solution of GARE, etc.. We obtain a stochastic unremovable spectrum theorem, however, PBH

criterion is only a necessary but not a sufficient condition for the stochastic stabilizability. It

is very interesting that PBH criterion still holds for exact observability. Moreover, we find that

even if system (1) is exactly-terminal controllable (Peng 1994), the spectrum of system (1) cannot

be assigned arbitrarily. All these reveal the essential differences between the deterministic and

stochastic systems.

As our theoretical applications, some results on GAREs and Lyapunov-type equations are

improved. This paper also discusses the quadratic stabilization of stochastic uncertain systems,

for which, a necessary and sufficient condition is given.
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This paper is organized as follows: In section 2, we discuss the relation between stabilizability

and spectrum. Some definitions are introduced, then necessary and sufficient theorems are

obtained for the stabilizability and unremovable spectrum. The stochastic PBH Criteria are also

presented for some special systems. In section 3, a stochastic PBH criterion is obtained for exact

observability, by duality, we also define stochastic detectability, various implication relations

with complete observability, exact observability, detectability and stochastic detectability have

been clarified. In section 4, we deal with the weak stabilizability of stochastic systems, and a

necessary and sufficient theorem is given in form of spectrum, and some sufficient conditions are

given for the weak stabilizability in LMIs and Lyapunov-type inequalities. In section 5, some

theoretical applications to GAREs and Lyapunov-type equations are developed. Section 6 gives

a necessary and sufficient condition for quadratic stabilization of stochastic uncertain systems.

Section 7 concludes this paper with some comments.

2 Stabilizability and spectrum of stochastic systems

For convenience, we adopt the following notations:

Sn: the set of all n× n symmetric matrices, its entries may be complex numbers;

A′ ( Ker(A)): the transpose ( kernel space) of the matrix A;

A ≥ 0(A > 0): A is a positive semidefinite (positive definite) symmetric matrix;

I: identity matrix;

σ(L): spectral set of the operator or matrix L;

C−(C−,0): the open left (closed left ) hand side complex plane.

In this section, we mainly study the stabilizability and spectral properties of stochastic

system (1). Firstly, we give the following definitions:

Definition 1. Stochastic system (1) is called stabilizable (in the mean square sense), if there

exists a feedback control u(t) = Kx(t), such that for any x0 ∈ Rn, the closed-loop system

dx(t) = (A+BK)x(t) dt+ (C +DK)x(t) dw(t), x(0) = x0 (6)

is asymptotically mean square stable, i.e., limt→∞E[x(t)x′(t)] = 0, where K ∈ Rm×n is a

constant matrix.

Below, we define the spectrum of the closed-loop system (6).

Definition 2. For any given feedback gain matrix K, let LK be a linear operator from Sn
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to Sn defined as follows:

LK : X ∈ Sn 7−→ (A+BK)X +X(A+BK)′ + (C +DK)X(C +DK)′.

The spectrum of LK is the set defined by σ(LK) = {λ ∈ C : LK(X) = λX,X ∈ Sn,X 6= 0},

which is also called the spectrum of system (6).

Now, we give the first theorem for stabilizability of system (1).

Theorem 1. System (1) is stabilizable iff there exists a K ∈ Rm×n, such that the spectrum

of (6) belongs to C−.

Proof. By definition, we only need to prove there exists a K ∈ Rm×n, such that (6) is

asymptotically mean square stable. Let X(t) = E[x(t)x′(t)], where x(t) is the trajectory of (6),

then by Ito’s formula,











Ẋ(t) = (A+BK)X(t) +X(A+BK)′ + (C +DK)X(C +DK)′ = LK(X(t)),

X(0) = X0 = x0x
′
0.

(7)

Since X(t) ∈ Sn, (7) is a symmetric matrix-valued equation including n(n + 1)/2 different

variables. If we write X = (Exixj)n×n = (Xij)n×n, and define a map L̃ from Sn to R
n(n+1)

2 as

follows:

X̃ = L̃(X) = (X11,X12, · · · ,X1n,X22,X23, · · · ,X2n, · · · ,Xn−1,n−1,Xn−1,n,Xnn)
′,

then there exists a unique matrix2 L(K) ∈ R
n(n+1)

2
×

n(n+1)
2 , such that equation (7 ) is equivalent

to

˙̃X = L(K)X̃, X̃(0) = X̃0. (8)

Obviously,

lim
t→∞

Ex(t)x′(t) = 0 ⇐⇒ lim
t→∞

X̃(t) = 0 ⇐⇒ σ(L(K)) ⊂ C−. (9)

By Definition 2, it is not difficult to prove σ(L(K)) = σ(LK). Hence, from the above, the proof

of Theorem 1 is completed.

Below, we say L(K) is a matrix induced by LK .

Remark 1. It is easily seen that the following operator

L∗
K : X ∈ Sn 7−→ X(A +BK) + (A+BK)′X + (C +DK)′X(C +DK)

2In order to give the exact expression of L(0), we developed a new technique called H-representation technique

in 2012; see W. Zhang and B. S. Chen, H-representation and applications to generalized Lyapunov equations and

linear stochastic systems, IEEE Trans. Automatic Control, 57(12): pp. 3009-3022, 2012.
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is the adjoint operator of LK with the inner product < X,Y >= trace(X∗Y ) for any X,Y ∈ Sn.

So system (1) is stabilizable iff there exists an K ∈ Rm×n, such that σ(L∗
K) ⊂ C−. As we limit

the coefficient matrices to be real, so σ(L∗
K) = σ(LK). If we denote the induced matrix of the

operator L∗
K by L∗(K), then from the proof of Theorem 1, we have

σ(L∗
K) = σ(LK) = σ(L(K)) = σ(L∗(K)),

where any one of them can characterize the stabilizability of system (1).

To illustrate the meaning of the above notations, we give an example as follows:

Example 1: In system (6), take K = I,

A =







−3 1/2

−1 −1






, B =







1 0

0 1






, C =







2 0

0 0






, D =







2 0

0 0






.

It is easily tested that (7) becomes







Ẋ11 Ẋ12

Ẋ12 Ẋ22






=







X12 −X11 +
1
2X22

−X11 +
1
2X22 −2X12 +X22






,

which is equivalent to

˙̃X =













Ẋ11

Ẋ12

Ẋ22













= L(K)X̃ =













0 1 0

−1 0 1
2

0 −2 1

























X11

X12

X22













.

So

L(K) =













0 1 0

−1 0 1
2

0 −2 1













.

Since LK=I(X) = λX, X ∈ Sn, is equivalent to













0 1 0

−1 0 1
2

0 −2 1

























X11

X12

X22













= λ













X11

X12

X22













,

σ(LK=I) = σ(L(K = I)). From L∗
K=I(X) = λX, we have













0 −2 0

1
2 0 −1

0 1 1

























X11

X12

X22













= λ













X11

X12

X22













.
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Via a simple computation, we have σ(K∗
K=I) = σ(L∗(K = I)) = σ(LK=I) = σ(L(K = I)) =

{λ1, λ2, λ3}, where

L∗(K = I) =













0 −2 0

1
2 0 −1

0 1 1













,

and λi are the roots of the following characteristic polynomial of L∗(K = I) or L(K = I), which

is f(λ) = λ3 − λ2 + 2λ− 1.

Definition 3. We say that λ is an unremovable spectrum of system (1) with state feedback

u = Kx, if there exists 0 6= X ∈ Sn, such that for any K ∈ Rm×n,

X(A +BK) + (A+BK)′X + (C +DK)′X(C +DK) = λX (10)

holds.

Below, we give a theorem with respect to the unremovable spectrum.

Theorem 2 3. λ is an unremovable spectrum of system (1) iff there exists 0 6= X ∈ Sn,

such that the following three equalities

XA+A′X + C ′XC = λX, XB + C ′XD = 0, D′XD = 0 (11)

hold.

Proof. Note that (10) can be written as

XA+A′X + C ′XC + (XB + C ′XD)K +K ′(XB + C ′XD)′ +K ′D′XDK = λX, (12)

so if (11) holds, then (10) automatically holds, and the sufficiency is proved.

To prove the necessity of Theorem 2, we first take K = 0 in (10), then

XA+A′X +C ′XC = λX

holds. Again, from (12), it follows that

(XB + C ′XD)K +K ′(XB + C ′XD)′ +K ′D′XDK = 0. (13)

Let XB + C ′XD = F,D′XD = G, then (13) becomes

FK +K ′F ′ = −K ′GK. (14)

3This theorem was first pointed out as a conjecture in “ W. Zhang, Study on algebraic Riccati equation arising

from infinite horizon stochastic LQ optimal control, Ph.D Thesis, Hangzhou: Zhejiang University, 1998.”
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Since the left hand side of (14) is linear with K, we must have G = 0. In fact, due to the

linearity of K ′GK,

(K +K)′G(K +K) = 4K ′GK = K ′GK +K ′GK = 2K ′GK.

So K ′GK = 0 because of the arbitrarity of K, which is necessary that G = 0, i.e., D′XD = 0.

To prove F = 0 or XB + C ′XD = 0, we note that (14) becomes K ′F ′ = −FK. Denote

F = (fij)n×m, and take

K = Kij = (kls)m×n =











1, if l = i, s = j,

0, otherwise.

From K ′F ′ = −FK, one knows f1i = f2i = · · · = fni = 0. Set i = 1, 2, · · · , n, then fij = 0 for

i = 1, 2, · · · , n, j = 1, 2, · · · ,m, that is F = 0. The proof of Theorem 2 is completed.

Remark 2. Commonly, we call λ an unremovable spectrum of (3) with state feedback

u = Kx, if for any feedback gain K, λ ∈ σ(A + BK). We should point out that, when

C = 0,D = 0, Definition 3 coincides with the conventional one of system (3) illustrated by the

following Proposition, which may be new even in linear system theory.

Proposition 1. For C = 0,D = 0, the following conditions are equivalent:

1) There exists 0 6= X ∈ Sn satisfying (11).

2) There exists a nonzero complex vector ξ satisfying (4).

3) For any K ∈ Rm×n, λ ∈ σ(A+BK).

Proof. 1)⇔ 2). If 1) holds, then there exists 0 6= X ∈ Sn satisfying

XA+A′X = λX, XB = 0,

which is equivalent to

XA+A′X = λX, XBB′ = 0. (15)

(15) can be written as

(I ⊗A′ +A′ ⊗ I) ~X = λ ~X, (I ⊗BB′) ~X = 0, (16)

where ~X denotes the vector formed by stacking the rows of X into one long vector, i.e.,

~X = [X11,X12, · · · ,X1n,X21,X22, · · · ,X2n, · · · ,Xn1,Xn2, · · · ,Xnn]
′,

F ⊗G denotes the Kronecker product of two matrices F and G. Applying the above two facts,

one can immediately shows 1)⇒ 2).
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Fact 1 (Ortega, 1987). If ξ1, ξ2, · · · , ξp are linearly independent eigenvectors of A′, then the

Kronecker product

ξi ⊗ ξj , i, j = 1, 2, · · · , p

are linearly independent eigenvectors of (I ⊗A′ +A′ ⊗ I).

Fact 2 (Ortega, 1987). If e1, e2, · · · , en are the coordinate vectors of Rn, ζ1, ζ2, · · · , ζq are

linearly independent eigenvectors of BB′ corresponding to zero eigenvalue , then the Kronecker

product of ei and ζj

ei ⊗ ζj, i = 1, 2, · · · , n, j = 1, · · · , q

are linearly independent eigenvectors of I ⊗BB′ corresponding to zero eigenvalue.

2)⇒ 1) is simple, we only need to take X = ξξ′. So 1)⇔ 2).

2)⇔ 3). From 2), it is easy to show for any K, λ ∈ σ(A′ +K ′B′) = σ(A+BK), so 2)⇒ 3).

3)⇒ 2). If Re(λ) ≥ 0, and λ ∈ σ(A+BK) with any K, but 2) does not hold, then by PBH

criterion , (A,B) is stabilizable. So there exists K1 such that σ(A+BK1) ⊂ C−, accordingly, it

is impossible that λ ∈ σ(A+BK) with Re(λ) ≥ 0. If Re(λ) < 0, then µ = −λ ∈ σ(−A−BK)

with Re(µ) > 0. By the same discussion, we can still show that 3) implies 2). Therefore, 2)⇔

3). Proposition 1 is proved.

By Theorem 2 and Proposition 1, deterministic PBH criterion can be stated in another form

as follows:

Corollary 1. When C = 0,D = 0 in (1), (A,B) is stabilizable iff all the unremovable

spectra of system (3) belong to C−, that is, there does not exist a nonzero X ∈ Sn, Re(λ) ≥ 0,

satisfying

XA+A′X = λX, XB = 0. (17)

From Corollary 1, it is natural to conjecture that system (1) is stabilizable iff its all unremov-

able spectra in C−, or there does not exist 0 6= X ∈ Sn, Re(λ) ≥ 0 satisfying (11). Unfortunately,

the following example shows that this conjecture is not true, so PBH criterion cannot be gener-

alized to the stabilizability of stochastic systems, which reveals the essential difference between

deterministic and stochastic systems with control entering into diffusion term.

Example 2. Consider a one-dimensional case of system (1). Take D 6= 0, then there does

not exist X 6= 0, Re(λ) ≥ 0, satisfying (11). But from Theorem 1, system (1) is stabilizable iff

B2 + 2BCD − 2AD2 > 0. Obviously, B2 + 2BCD − 2AD2 > 0 is not equivalent to D 6= 0.

But can we be sure that stochastic PBH criterion holds with D = 0? The answer is still no;

see the following example:

9



Example 3. In system (1), take D = 0,

A =







0 1

0 −1






, B =







0

1






, C =







1 −1

0 0






,

Q =







1 0

0 1






, R =







1 0

0 1






.

One can test that for any X ∈ S2, the following equation

XA+A′X +C ′XC = λX, XB = 0, Re(λ) ≥ 0

does not have nonzero solution X, but (A,B;C, 0) is not stabilizable. Because by Zhang (2000),

(A,B;C, 0) is stabilizable iff GARE

PA+A′P + C ′PC − PBR−1B′P +Q = 0 (18)

has a positive definite solution P , but for our given data, the solutions of GARE (18) is

P1 =







−1 0

0 0






, P2 =







−1 0

0 −2






.

When does the PBH criterion hold for stochastic stabilizability? For the special case, we obtain

the following theorem.

Theorem 3 (Stochastic PBH criterion). For D = 0, if there exists a matrix C1, such

that for any X ∈ S2, C
′XC = XC1+C ′

1X, then system (1) is stabilizable iff its all unremovable

spectra belong to C−, i.e., there does not exist nonzero X ∈ Sn, such that

XA+A′X + C ′XC = λX,XB = 0.Re(λ) ≥ 0. (19)

Proof. By Theorem 1 and Remark 1, system (1) is stabilizable iff there exists an K ∈ Rm×n,

σ(L∗
K) ⊂ C−. Note that for X ∈ Sn,

L∗
K(X) = X(A+BK) + (A+BK)′X + C ′XC

= X(A+ C1 +BK) + (A+BK + C1X)′X.

We know that system (1) is stabilizable iff the following deterministic linear system

ż = (A+C1)z +Bu

10



is stabilizable, which, from Corollary 1, is equivalent to that there does not exist nonzero X

satisfying

X(A+ C1) + (A+ C1)
′X = XA+A′X + C ′XC = λX, XB = 0.

Theorem 3 is proved.

Another problem is on the spectral placement. It is well known that in deterministic systems,

a necessary and sufficient condition for complete controllability of (A,B) is that the spectrum

of (3) can be arbitrarily assigned ( De Carlo 1989). But for stochastic systems, it is hard to

relate controllability with spectrum in many existing definitions of stochastic controllability; see

Peng (1994), Bashirov and Kerimov (1997), Mahmudov (2001). To illustrate the complexity,

consider system (1) with ungiven initial state, on which the exactly-terminal controllability was

introduced by Peng (1994) as follows:

Definition 4. System (1) is called exactly terminal-controllable, if for any ξ ∈ L2(Ω,F ,P;FT ),

there exists at least one admissible control u(t) ∈ L2(Ω,F ,P;Ft), and initial state x0 ∈ Rn,

such that the corresponding trajectory satisfies x(T ) = ξ, where L2(Ω,F ,P;FT ) denotes all

Ft-adapted, measurable and square integrable processes.

The following example shows that even if system (1) is exactly-terminal controllable, its

spectrum cannot be assigned arbitrarily.

Example 4. We still consider one-dimensional case. Assume (1) is exactly-terminal con-

trollable, then D 6= 0 (Peng, 1994). By a simple computation, for any K,

σ(L∗
K) = λ = D2K2 + 2(CD +B)K + 2A+C2 ≥ 2A−

(CD +B)2

D2
.

So the spectrum cannot take arbitrary value in R.

We note that (7) can also be written as

~̇X = [(A+BK)⊗ I + I ⊗ (A+BK) + (C +DK)⊗ (C +DK)] ~X := L0(K) ~X. (20)

Since limt→∞E[x(t)x′(t)] = 0 ⇔ limt→∞
~X = 0, (A,B;C,D) is stabilizable iff there exists a

K, such that σ(L0(K)) ⊂ C−. Kleinman (1969) further asserted that L0(K) will have several

repeated eigenvalues, this assertion is not true; see Zhang (1998). While each of L0(K) and L(K)

describes the stabilizability of system (1), it is natural to ask how relation with the spectrum

between L0(K) and L(K)? In general, we have the following result.

Proposition 2.

1) If λ ∈ σ(L(K)), then λ ∈ σ(L0(K));

11



2) If λ ∈ σ(L0(K)), but λ does not belong to σ(L(K)), then there exists X ∈ Cn×n, such

that L0(K) ~X = λ ~X , X = −X ′.

Proof. If we Define linear operator L0
K as follows:

L0
K : X ∈ Cn×n 7−→ (A+BK)X +X(A+BK)′ + (C +DK)X(C +DK)′

then it is easily seen σ(L0(K)) = σ(L0
K). If λ ∈ σ(L(K)), then there exists X ∈ Sn, such that

LK(X) = λX, therefore, L0
K(X) = λX, i.e, λ ∈ σ(L0(K)).

As to prove 2), we note that if λ ∈ σ(L0(K)), then there exists X ∈ Cn×n satisfying L0
K(X) =

λX. By symmetry, there also has L0
K(X ′) = λX ′. If X 6= −X ′, then from

L0
K(X +X ′) = L0

K(X) + L0
K(X ′) = λX + λX ′ = λ(X +X ′),

(X +X ′) 6= 0 ∈ Sn is an eigenvector with respect to the eigenvalue λ. Therefore, λ ∈ σ(L(K)),

which results in a contradiction, and, accordingly, X = −X ′.

Theorem 1 or Proposition 1 has theoretical value in studying the spectral allocation and the

solutions of GARE. Obviously, from the practical point of view, both of them are not convenient

for testing the stabilizability of (A,B;C,D). Ait Rami and Zhou (2000) presented an efficient

method expressed by an LMI.

3 The spectral characterization for stochastic observability and

detectability

In this section, we apply the spectral technique to study the observability and detectability of

system (1). We first give a spectral criterion for exact observability of stochastic systems, and

then by duality, we define stochastic detecterbility. All these concepts play critical roles in many

fields, and some applicable examples can be found in section 5 of this paper.

Definition 5: Consider the following stochastic system with measurement equation:











dx(t) = (Ax(t) +Bu(t)) dt+ (Cx+Du) dw(t), x(0) = x0 ∈ Rn,

y(t) = Qx(t).
(21)

We call x0 ∈ Rn an unobservable state, if let u(t) ≡ 0, then, for any T > 0, the output response

with respect to x0, is always equal to zero, i.e.,

y(t) ≡ 0, a.s., t ∈ [0, T ].

12



Definition 6: System (21) is called exactly observable, if there is no unobservable initial

state (except zero initial state).

Remark 3. Definition 6 can also be equivalently expressed as follows: We call system

(21) exactly observable, if for arbitrary x0 ∈ Rn, x0 6= 0, there exists a t > 0 such that

y(t) = Qx(t) 6= 0, where x(t) is the solution to stochastic differential equation (SDE)

dx = Axdt+ Cxdw, x(0) = x0 ∈ Rn. (22)

For simplicity, when system (21) is exactly observable, we also call [A,C|Q] exactly observ-

able.

Theorem 4. [A,C|Q] is exactly observable iff there does not exist nonzero X ∈ Sn, such

that

XA′ +AX + CXC ′ = λX, QX = 0, λ ∈ C. (23)

Proof. Let X(t) = E[x(t)x′(t)], Y (t) = E[y(t)y′(t)], where x(t) is the solution of (22). As

in the previous discussion, X(t) satisfies

Ẋ(t) = AX +XA′ + CXC ′ := LA,C(X(t)), X(0) = x0x
′
0. (24)

By Remark 3, we know that [A,C|Q] is exactly observable iff for arbitrary X0 = x0x
′
0 6= 0, there

exists a t > 0 such that

Y (t) = Ey(t)y′(t) = QX(t)Q′ 6= 0. (25)

From the proof of Theorem 3, (24) is equivalent to

˙̃X = L(A,C)X̃, (26)

where L(A,C) is the induced matrix by operator LA,C . Secondly, due to X(t) ≥ 0 for all t ≥ 0,

(25) is equivalent to

Y1 = QX(t) 6= 0, (27)

which is equivalent to

~Y1 = ~L(Q)X̃ 6= 0. (28)

~L(Q) is one n2 × n(n+1)
2 -order matrix, which is uniquely determined by Q. So (21) is exactly

observable iff the deterministic system










˙̃X = L(A,C)X̃,

~Y1 = ~L(Q)X̃
(29)

13



is completely observable. By PBH criterion for observability, (29) is completely observable iff

there does not exist 0 6= ξ ∈ C
n(n+1)

2 , such that

L(A,C)ξ = λξ, ~L(Q)ξ = 0, λ ∈ C.

By our definition with L(A,C), ~L(Q), which is equivalent to that there does not exist 0 6= X ∈ Sn

satisfying (23), the proof of Theorem 4 is completed.

We give the following example to illustrate the notion of ~L.

Example 5. In (27), taking

Y1 =







y111 y112

y121 y122






, Q =







3 2

5 7






, X =







x11 x12

x12 x22






.

From Y1 = QX, we have


































y111 = 3x11 + 2x12,

y112 = 3x12 + 2x22,

y121 = 5x11 + 7x12,

y122 = 5x12 + 7x22.

(30)

(30) can be written in the matrix form as

~Y1 =



















3 2 0

0 3 2

5 7 0

0 5 7



















X̃ := ~L(Q)X̃.

So

~L(Q) =



















3 2 0

0 3 2

5 7 0

0 5 7



















.

Remark 4. Liu (1999) proved a dual principle, which asserted that [A,C|Q] is exactly observ-

able iff the following system is exactly controllable.

−dx = (A′x+ C ′z +Q′u) dt− zdw.

Corollary 2. If there does not exists nonzero X ∈ Sn satisfying

XA′ +AX = λX, QX = 0, λ ∈ C, (31)

14



then for any real matrix C of suitable dimension,

XA′ +AX + CXC ′ = λX, QX = 0, λ ∈ C (32)

does not have nonzero solution X ∈ Sn.

Proof. By the same discussion as in Theorem 4, we can prove that (Q,A) is completely

observable iff there does not exist nonzero X ∈ Sn satisfying (31). Secondly, from Liu (1999),

we know that [A,C|Q] is exactly observable iff Rank(P0) = n, where

P0 = [Q′, A′Q′, C ′Q′, A′C ′Q′, C ′A′Q′, (A′)2Q′, (C ′)2Q′, · · ·]′.

Obviously, Rank(Q′, A′Q′, (A′)2Q′, · · · , (A′)n−1Q′)′ ≤ Rank(P0), so if (Q,A) is completely ob-

servable, then so does [A,C|Q]. Applying Theorem 4, Corollary 2 is immediately derived.

The following proposition may be useful in some cases, it is a generalized version of Lemma

4.1 of Wonham (1968).

Proposition 3. Let

Q′Q+D′D = F ′F (33)

and G1, G2 are any real matrices of suitable dimension. If [A,C|Q] is exactly observable, then

so does [A+G1D,C +G2D|F ].

Proof. If [A + G1D,C + G2D|F ] is not exactly observable, then there exists 0 6= X ∈ Sn,

such that

X(A+G1D)′ + (A+G1D)X + (C +G2D)X(C +G2D)′ = λX, FX = 0, λ ∈ C.

From FX = 0 and (33), we have QX = 0,DX = 0, together with the above equations, one has

XA′ +AX + CXC ′ = λX, QX = 0, λ ∈ C.

By Theorem 4, [A,C|Q] is not exactly observable, which contradicts the given conditions.

Based on stabilizability, we can define stochastic detectability via duality.

Definition 7. We say that [A,C|Q] is stochastic detectable, if (A′, Q′;C ′, 0) is stabilizable.

From Theorem 3, we have

Corollary 3. If [A,C|Q] is stochastic detectable, then there does not exist nonzero X ∈ Sn,

such that

XA′ +AX + CXC ′ = λX,QX = 0, Re(λ) ≥ 0. (34)
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If there exists C1 such that for any X ∈ Sn, CXC ′ = XC ′
1 +C1X, then (34) is also a necessary

condition for stochastic detectability.

There does not have any implication between exact observability and stochastic detectability;

see the following examples:

Example 6. Take

A =







0 0

1 −1






, Q =

[

0 1

]

, C =







1 0

−1 0






.

One can easily test that (23) does not have nonzero solution X ∈ S2, so [A,C|Q] is exactly ob-

servable. However, [A,C|Q] is not stochastic detectable, because (A′, Q′, C ′, 0) is not stabilizable

as shown in Example 3.

Example 7. Take Q = 0,

A =







−1 0

0 −1






, C =







−1 0

0 −1






,

then it is easily tested that [A,C|Q] is stochastic detectable, but it is not exactly observable.

Proposition 4. If [A,C|Q] is stochastic detectable, then (Q,A) is detectable.

Proof. By Definition 7, if [A,C|Q] is exactly detectable, then there exists a constant matrix

H ′, such that

dx = (A′ +Q′H ′)x dt+ C ′x dw (35)

is asymptotically mean square stable, which implies (Has’minskii, 1980) that

dx = (A′ +Q′H ′)x dt (36)

is asymptotically stable, so (Q,A) is detectable.

4 On weak stabilizability of stochastic systems

In this section, we study the weak stabilizability of system (1), which describes a class of weak

stability, and has close relationship with strong solutions of GAREs.

Definition 8. We say system (1) is weakly stabilizable, if there exists a matrix K ∈ Rm×n,

via the state feedback u(t) = Kx(t), the closed-loop system (6) is two-stable (Has’minskii, 1980),

i.e., for each ε > 0, there exist an δ > 0, such that

E|x(t, x0)|
2 < ε
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whenever t ≥ 0 and |x0| < δ.

Our result is given as follows:

Proposition 5. System (1) is weakly stabilizable iff one of the following conditions holds:

1) There exists K ∈ Rm×n, such that σ(L(K)) = {λi, i = 1, 2, · · · , n(n + 1)/2} ⊂ C−,0, and

whenever Reλi = 0, all associated Jordan blocks of λi = 0 are 1× 1;

2) There exists P > 0, such that

PL(K) + L′(K)P ≤ 0. (37)

Proof. By Definition 8, system (1) is weakly stabilizable iff there exists K with that system (6)

is weakly stable. As done in Theorem 1, noting that for each ε > 0, there exists a δ > 0, such

that

E|x(t, x0)|
2 < ε

whenever t ≥ 0 and |x0| < δ , which is equivalent to that for each ε > 0, there exists a δ > 0,

such that

||X̃(t, x0)|| < ε

whenever t ≥ 0 and ||X̃0|| < δ. From (8) and Theorem 5.2.3 of Ortega (1987), the latter is

equivalent to that L(K) is weakly negative stable, which completes the proof of 1).

2) is a simple corollary of Theorem 5.4.3 of Ortega (1987).

The following theorem is a sufficient condition for weak stabilizability expressed by LMIs

and Lyapunov-type inequalities, which will be used later. Analogous results for stabilizability

can be found in Ait Rami and Zhou (2000).

Theorem 5. System (1) is weakly stabilizable if one of the following conditions holds.

1) There exist K ∈ Rm×n and P > 0, such that

P (A+BK) + (A+BK)′P + (C +DK)′P (C +DK) ≤ 0. (38)

2) There exist K ∈ Rm×n and P > 0, such that

(A+BK)P + P (A+BK)′ + (C +DK)P (C +DK)′ ≤ 0. (39)

3) There exist matrices P and Y , such that the following LMI holds.







AP + PA′ +BY + Y ′B′ CP +DY

PC ′ + Y ′D′ −P






≤ 0. (40)
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Proof. If 1) holds, then by Dynkin’s formula (Oksendal,1998), we have

Ex′(t)Px(t) = x′0Px0 + E

∫ t

0
A(x′(s)Px(s)) ds = x′0Px0

+ E

∫ t

0
(< (A+BK)x,

∂(x′PX)

∂x
> +

1

2
< (C +DK)x,

∂2(x′PX)

∂x2
(C +DK)x >) ds

= x′0Px0 + E

∫ t

0
x′(P (A+BK) + (A+BK)′P + (C +DK)′P (C +DK))x ds

≤ x′0Px0, (41)

where A is the infinitesimal generator of x(t), i.e., the trajectory of stochastic system (6). From

(41), for each ε > 0,

E|x(t)|2 ≤ max(1, λmax(P ))E|x(t)|2

≤ max(1, λmax(P ))
λmax(P )

λmin(P )
|x0|

2

= max(
λmax(P )

λmin(P )
,
λ2
max(P )

λmin(P )
)|x0|

2 := C0|x0|
2 < ε (42)

whenever |x0| < δ := ε1/2

C0
1/2 . So system (1) is weakly stabilizable.

If 2) holds, by the same discussion as in 1), we can prove that the dual system of (6)

dx(t) = (A+BK)′x(t) dt+ (C +DK)′x(t) dw(t), x(0) = x0 (43)

is weakly stable. From Theorem 1 and Remark 1, this is equivalent to the weak stabilizability

of (6).

As to that 3) implies (1) stabilizable, this is due to the equivalence of 2) and 3). Set

Y = KP,P > 0, then (39) can be written as

AP +BY + PA′ + Y ′B′ + (CP +DY )P−1(CP +DY )′ ≤ 0. (44)

Applying Schur’s lemma, (44) is equivalent to (40), which ends our proof.

Remark 5. From Proposition 5, we have every reason to conjecture that Theorem 5 should

be not only a sufficient, but also a necessary condition for weak stabilizability, but how do we

prove its true?

Remark 6. Taking P = I in (41), apparently, (A,B;C,D) being weak stabilizable implies

that (A,B) is weakly stabilizable.

The following Proposition will be used in Section 5.

Proposition 6. For any real matrix K ∈ Rm×n, if σ(L∗
K) ⊂ C−,0, then σ(A+BK) ⊂ C−,0.
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Proof. Since σ(L∗
K) ⊂ C−,0, so for any ε > 0, σ(L∗,ε

K ) ⊂ C−, where L∗,ε
K (·) is defined by

L∗,ε
K : X ∈ Sn 7−→ X(A− εI +BK) + (A− εI +BK)′X + (C +DK)X(C +DK)′.

By Theorem 1 and Remark 1, the stochastic system

dx(t) = (A− εI +BK)x dt+ (C +DK)x dw(t), x(0) = x0 ∈ Rn

is stable in mean square sense, which implies (Has’minskii, 1980) σ(A − εI + BK) ⊂ C−. Let

ε → 0, by the continuity of spectrum ( Sontag,1990), we have σ(A+BK) ⊂ C−,0.

We should point out that the inverse of Proposition 6 does not hold even if σ(A+BK) ⊂ C−;

see the following example.

Example 8. Take A = −I, C =







3 0

0 4






,K = 0, B andD are arbitrary, then σ(A+BK) =

σ(A) = {−1,−1}, but one can compute σ(L∗
K=0) = {7, 10, 14}.

5 Some applications

5.1 Applications to GAREs

In this section we apply spectrum technique to study GARE











PA+A′P + C ′PC +Q− (PB + C ′PD)(R+D′PD)−1(B′P +D′PC) = 0,

R+D′PD > 0.
(45)

This equation has many applications in infinite horizon linear quadratic optimal control, stochas-

tic stability, filtering, etc., see Bensoussan (1982,1992), Liu (1999), Gao and Ahmed (1987),

Wonham (1968), Zhang (1998), and the references therein. Equation (45) is a generalized ver-

sion of deterministic algebraic Riccati equation (DARE)

PA+A′P +Q− PBR−1B′P = 0. (46)

It is well known that if P ∈ Sn is a solution of (46), and σ(A−BR−1B′P ) ⊂ C−, then P is called

a feedback stabilizing solution; If σ(A − BR−1B′P ) ⊂ C−,0, then P is called a strong solution

(Park and Kailath 1997). In other words, the classification of solutions of algebraic Riccati

equations is according to the stability of the closed-loop system (taking u = −R−1B′Px)

ẋ = (A−BR−1B′P )x.
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But how do we make a classification for the solutions of GARE (45)? Especially, how do we

define its strong solution? We note that some authors ( De Souza and Fragoso, 1990) took P as

a strong solution of GARE (45), if the spectral set of the following deterministic system

ẋ = (A−B(R+D′PD)−1(B′P +D′PC))x (47)

satisfying σ(A−B(R+D′PD)−1(B′P +D′PC)) ⊂ C−,0. However, this definition about strong

solution of GARE (45) is unreasonable, since from σ(A−B(R+D′PD)−1(B′P+D′PC)) ⊂ C−,0,

we do not know anything about the stability of the closed-loop system (set the feedback gain

K = −(R+D′PD)−1(B′P +D′PC))

dx = (A+BK)x dt+ (C +DK)x dw. (48)

Now we give a more reasonable definition based on spectrum as follows:

Definition 9. A solution P ∈ Sn of GARE (45) is called a feedback stabilizing solution, if

σ(L∗
K) ⊂ C− ; P is called a strong solution, if σ(L∗

K) ⊂ C−,0 , where

K = −(R+D′PD)−1(B′P +D′PC).

The following theorem is a comparison theorem for GARE (45), which improves the corre-

sponding results of De Souza and Fragoso (1990), Ait Rami and Zhou (2000). Firstly, we give

a lemma to be used later.

Lemma 1 (Ichikawa (1979); Prato and Zabczyk (1992). The following Ito-type

differential equation

dx = Fx+Gxdw, x(0) = x0 (49)

is asymptotically mean square stable, iff for any Q > 0, the Lyapunov-type equation

PF + F ′P +G′PG = −Q

has a positive solution P > 0.

When (49) is asymptotically mean square stable, we also call (F,G) stable for short.

Theorem 6. Suppose (A,B;C,D) is stabilizable with the weighting real matrices (Q,R) ∈

Sn × Sm. Let P̂ be any real symmtric solution of the GARE











PA+A′P + C ′PC + Q̂− (PB + C ′PD)(R̂+D′PD)−1(B′P +D′PC) = 0,

R̂+D′PD > 0.
(50)
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If R ≥ R̂,Q ≥ Q̂, then GARE (45) has a maximal solution P̄ , P̄ ≥ P̂ ; Moreover, P̄ is a strong

solution.

Proof. Define an operator R as follows:

R(P,M,N, ε)

= PA+A′P + C ′PC +M + εI − (PB +C ′PD)(N +D′PD)−1(B′P +D′PC).

From the given conditions, we know that R(P̂ , Q̂, R̂, 0) = 0,R(P̂ ,Q,R, ε) > 0, R +D′P̂D > 0,

then by Theorem 10 and Theorem 12 of Ait Rami and Zhou (2000), there exist maximal solutions

P̂max, P̂
0
max, P̂

ε
max, respectively, to GARE (50), (45) and GARE











PA+A′P +C ′PC +Q+ εI − (PB + C ′PD)(R +D′PD)−1(B′P +D′PC) = 0,

R+D′PD > 0.
(51)

Moreover, under the constraint of (1), we have

V ∗(R̂, Q̂) = inf
u∈U∞

ad

{E

∫

∞

0
(x′Q̂x+ u′R̂u) dt, lim

t→∞
Ex(t)x′(t) = 0} = x′0P̂maxx0, (52)

V ∗(R,Q) = inf
u∈U∞

ad

{E

∫

∞

0
(x′Qx+ u′Ru) dt, lim

t→∞
Ex(t)x′(t) = 0} = x′0P̂

0
maxx0, (53)

V ∗(R,Q+ εI) = inf
u∈U∞

ad

{E

∫

∞

0
(x′(Q+ εI)x+ u′Ru) dt, lim

t→∞
Ex(t)x′(t) = 0} = x′0P̂

ε
maxx0, (54)

where U∞
ad denotes all Ft-adapted, measurable processes u(·) : [0,∞) × Ω 7−→ Rm , satisfying

E

∫

∞

0
|u(t)| dt < ∞.

From (52), (53), (54), one has

P̂ ε
max ≥ P̄ := P̂ 0

max ≥ P̂max ≥ P̂ . (55)

The first part of Theorem 6 is proved.

In what follows, we prove that P̄ is a strong solution. From (54), P̂ ε
max is monotonic and

bounded from below with respect to ε, it is easily derived

lim
ε→0

P̂ ε
max = P̄ . (56)

Now we prove that P̂ ε
max is a feedback stabilizing solution of GARE (51). Denote Aε = A +

BKε, Cε = C +DKε, Â = A+BK̂, Ĉ = C +DK̂, where

Kε = −(R+D′P̂ ε
maxD)−1(B′P̂ ε

max +D′P̂ ε
maxC),
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K̂ = (R+D′P̂D)−1(B′P̂ +D′P̂C).

Note that (50) and (51) can be respectively written as











P̂ ε
maxAε +A′

εP̂
ε
max + C ′

εP̂
ε
maxCε +K ′

εRKε +Q+ εI = 0,

R+D′P̂ ε
maxD > 0,

(57)

and










P̂ Â+ Â′P̂ + Ĉ ′P̂ Ĉ + K̂ ′R̂K̂ + Q̂ = 0,

R+D′P̂D > 0.
(58)

Subtracting (58) from (62), by a series of computations, we have

(P̂ ε
max − P̂ )Aε + A′

ε(P̂
ε
max − P̂ ) + C ′

ε(P̂
ε
max − P̂ )Cε + εI

+ (P̂B + C ′P̂D)Kε + (P̂B + C ′P̂D)(R̂+D′P̂D)−1(B′P̂ +D′P̂C)

+ K ′
ε(B

′P̂ +D′P̂C) +K ′
ε(R +D′P̂D)Kε = 0 (59)

From (59), especially noting the last term of the right hand side of the above equation with the

given condition R ≥ R̂, we derive

(P̂ ε
max − P̂ )Aε + A′

ε(P̂
ε
max − P̂ ) + C ′

ε(P̂
ε
max − P̂ )Cε

≤ −εI − (P̂B + C ′P̂D)Kε − (P̂B + C ′P̂D)(R̂+D′P̂D)−1(B′P̂ +D′P̂C)

− K ′
ε(B

′P̂ +D′P̂C)−K ′
ε(R̂+D′P̂D)Kε

= −εI − [(P̂B + C ′P̂D) +K ′
ε(R̂+D′P̂D)](R̂ +D′P̂D)−1

× [(P̂B + C ′P̂D) +K ′
ε(R̂+D′P̂D)]′ < 0. (60)

We first assert that for any ε > 0, P̂ ε
max > P̂ . Otherwise, by (55),P̂ ε

max−P̂ ≥ 0, Ker(P̂ ε
max−P̂ ) 6=

φ. Let 0 6= ξ ∈ Ker(P̂ ε
max − P̂ ), premultiplying by ξ′ and postmultiplying by ξ in (60), then

0 ≤ ξ′C ′
ε(P̂

ε
max − P̂ )Cεξ ≤ −εξ′ξ < 0,

which is a contradiction, so P̂ ε
max > P̂ . Together with (60), P̂ ε

max − P̂ is a positive solution to

the Lyapunov-type inequality

PAε +A′
εP + C ′

εPCε < 0.

So by Lemma 1, we have (Aε, Cε) is stable, i.e., P̂ ε
max is a feedback stabilizing solution. So

σ(L∗(Kε)) = σ(L∗
Kε

) ⊂ C−, while from (56), it follows that

lim
ε→0

Kε = K̄ := −(R+D′P̄D)−1(B′P̄ +D′P̄C).
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According to the continuity of spectrum (Lemma A.4.1 of Sontag, 1990), we have σ(L∗(K̄)) =

σ(L∗

K̄
) ⊂ C−,0. The proof of Theorem 6 is completed.

Corollary 4. If Q ≥ 0, R > 0, system (1) is stabilizable, then GARE (45) has a maximal

solution, which is also a strong solution.

Proof. Take Q̂ = 0, R̂ = R in (50), then (50) also has a solution P̂ = 0. Corollary 4 is

immediately deduced from Theorem 6.

Remark 7. Under the same condition of Corollary 4, Ait Rami and Zhou (2000) proved

that GARE (45) has a maximal solution. Here, we further assert that it is also a strong solution.

Remark 8. Taking D = 0, under the stabilizable condition of (A,B), and

infK‖

∫

∞

0
exp(t(A+BK)′)(C ′C) exp(t(A+BK)) dt‖ < 1, (61)

De Souza and Fragoso (1990) proved an analogous comparison theorem to Theorem 5, which

asserted that (45) has a solution P ≥ P̂ with σ(A + BK) ⊂ C−,0, where K = −R−1B′P̄ .

Theorem 6 improves their result because our given condition is weaker (see Zhang (1998)), but

the consequence is stronger than that of De Souza and Fragoso (1990) from Proposition 6.

Corollary 5. For Q ≥ 0, R ≥ 0, if GARE (45) has a solution P > 0, then P is a weakly

feedback stabilizing solution.

Proof. Note that GARE (45) can be written as











P (A+BK) + (A+BK)′P + (C +DK)′P (C +DK) = −Q−K ′RK,

R+D′PD > 0,K = −(R+D′PD)−1(B′P +D′PC).
(62)

By applying 1) of Theorem 5, this corollary is immediately derived.

When does GARE (45) have a feedback stabilizing solution? This problem was discussed in

detail in Zhang (1998).

Example 9. Assume all the given data are scalar in (45) with a, b, c, d, q and r substituting

for A,B,C,D,Q and R, respectively. Taking q = 0, r = 1, d 6= 0, (a, b; c, d) is stabilizable, then

GARE (45) has two solutions p1 = 0, p2 = 2a+c2

b2+2bcd−2ad2 . p2 exists due to the following fact:

Since (a, b; c, d) is stabilizable, d 6= 0, so b2 + 2bcd − 2ad2 > 0 from Theorem 1. For p1 = 0,

the feedback gain K1 = 0, and L∗
K1

= 2a + c2. By Remark 1, p1 = 0 is a feedback stabilizing

solution, if










b2 + 2bcd − 2ad2 > 0,

2a+ c2 < 0.
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By Proposition 5 or direct computation, p1 = 0 is a weakly feedback stabilizing solution, if










b2 + 2bcd − 2ad2 > 0,

2a+ c2 = 0,

and p1 = 0 is a asymptotically feedback stabilizing solution (i.e., the closed-loop system is

asymptotically stable in probability; see Has’miskii,1980), if










b2 + 2bcd − 2ad2 > 0,

2a− c2 < 0.

Analogously, for p2, the corresponding feedback gain K2 = − 2a+c2

b2+2bcd−2ad2
. p2 is a feedback

stabilizing solution, if










b2 + 2bcd− 2ad2 > 0,

2(a+ bK2) + (c+ dK2)
2 < 0,

and p2 is a feedback weakly stabilizing solution, if










b2 + 2bcd− 2ad2 > 0,

2(a+ bK2) + (c+ dK2)
2 = 0.

Finally, p2 is a feedback asymptotically stabilizing solution, if










b2 + 2bcd− 2ad2 > 0,

2(a+ bK2)− (c+ dK2)
2 < 0.

Remark 9. From the above example, we can see even if L∗
Ki

> 0, the closed-loop system can

still achieve some stochastic stability, which reals the complexity about the study of solutions

of GARE (45).

5.2 Applications to the Lyapunov-type equations

In this section, we study Lyapunov-type equation

PA+A′P +
n
∑

i=1

C ′
iPCi = −Q. (63)

It is well known that a matrix A is Hurwitz or deterministic system

ẋ = Ax, x(0) = x0

is asymptotically stable iff the following Lyapunov equation

PA+A′P = −Q, Q > 0
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has a positive definite solution P > 0. More generally, if Q ≥ 0, (Q1/2, A) is completely

observable, then the above assertion still holds; see Jacobson, Martin, Pachter & Geveci, (1980).

In the same way, (63) has a close relation with the stability of the following system

dx = Axdt+
n
∑

i=1

C ′
ix dwi, x(0) = x0 ∈ Rn, (64)

where Ci, i = 1, 2, · · · , n, are n × n real matrices, wi, i = 1, 2, · · · , n, are independent standard

Wiener processes. In order to discuss (63), Definitions 6 and 7 should be modified as follows:

Definition 10. We call [A,C1, C2, · · · , Cn|Q] exactly observable, if for any nonzero x0, there

exists t > 0 such that y(t) = Qx(t) 6= 0, where x(t) is the solution of (64).

Definition 11. We call [A,C1, C2, · · · , Cn|Q] stochastic detectable, if there exists a real

matrix H, such that

dx = (A+HQ)x dt+
n
∑

i=1

C ′
ix dwi

is asymptotically mean square stable.

When (64) is asymptotically mean square stable, we also call (A,C1, C2, · · · , Cn) stable. In

the following context, we will generalize Lemma 1 to Q ≥ 0 by means of exact observability and

stochastic detectability.

Theorem 7. Assume Q ≥ 0, then we have

1) If [A,C1, C2, · · · , Cn|Q
1/2] is stochastic detectable, and Lyapunov-type equation (63) has

a solution P ≥ 0, then (A,C1, C2, · · · , Cn) is stable.

2) If [A,C1, C2, · · · , Cn|Q
1/2] is exactly observable, then (A,C1, C2, · · · , Cn) is stable iff

Lyapunov-type equation (63) has a positive solution P > 0.

The proof of 1). Consider stochastic system (64), by Dynkin’s formula, we have

0 ≤ Ex′(t)Px(t) = x′0Px0 + E

∫ t

0
x′(s)(PA+A′P +

n
∑

i=1

C ′
iPCi)x(s) ds

= x′0Px0 − E

∫ t

0
x′(s)Qx(s) ds, (65)

so

E

∫

∞

0
x′Qxds < ∞.

In addition, since [A,C|Q1/2] is stochastically detectable, there exists H ∈ Rn×n such that

dx = (A+HQ1/2)x(t)dt+ Cx(t) dw (66)
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is asymptotically mean square stable, which is also mean square exponentially stable because

of time-invariance (Has’minskii, 1980). Let xH be fundamental matrix solution associated with

(66), then there exist α, β > 0, such that

E|xH(t, s)|2 ≤ βexp(−α(t− s), t ≥ s.

The solution of (64) can be written as

x(t) = xH(t, 0) −

∫ t

0
xH(t, s)HQ1/2x(s) ds. (67)

By a simple discussion, (67) results in E
∫

∞

0 |x(t)|2 dt < ∞, which derives limt→∞E[x(t)x′(t)] =

0 from Has’minskii (1980), 1) is proved.

The proof of 2): If (A,C1, C2, · · · , Cn) is stable, then (63) has a solution P ≥ 0; see El

Ghaoui and Ait Rami (1996). Now we show P > 0, otherwise, there exists x0 6= 0, such that

Px0 = 0. From (65), for any T > 0, we have

0 ≤ E

∫ T

0
x′(s)Qx(s) ds = −E[x′(T )Px(T )] ≤ 0,

which follows y(t) = Qx(t) ≡ 0,∀t ∈ [0, T ], but this is impossible because of exact observability,

so P > 0.

If (63) has a positive solution P > 0, from (65), we know that V (x(t)) := E[x′(t)Px(t)] is

monotonically decreasing and bounded from below with respect to t, so limt→∞ V (x(t)) exists.

If we let tn = nT , then

V (x(tn+1)) ≤ V (x(t)) ≤ V (x(tn)), tn ≤ t ≤ tn+1. (68)

Again, by (65),

V (x(tn+1))− V (x(tn)) = −E

∫ t(n+1)

tn
x′(t)Qx(t) dt = −E[x′(tn)Hx(tn)], (69)

where H is some positive matrix (Zhang (1998)). Taking limit in the above, we have

lim
n→∞

V (x(tn)) = lim
n→∞

E|x(tn)|
2 = 0.

By (68), limn→∞E[x(t)x′(t)] = limn→∞ V (x(t)) = 0, so (A,C1, C2, · · · , Cn) is stable.

6 Robust stabilization of stochastic systems

In this section, we study the robust quadratic stabilization of the following system

dx = ((A+∆A)x+Bu)dt+ (Cx+Du)dw, x(0) = x0, (70)

26



where ∆A is an uncertain real matrix satisfying the “matching condition”

∆A = EFG,F ∈ F = {F : F ′F ≤ I, F ∈ Rk×j}.

The analogous problems for deterministic systems were discussed by Khargonekar, Petersen

and Zhou (1990), Petersen (1988), et al. Such problems have significant sense, since even for

stochastic models, the coefficient matrices is not necessary to be obtained exactly. We first give

the following definition, which is a generalized version of Definition 2.2 (Khargonekar, Petersen

and Zhou (1990).

Definition 12. System (70) (with u = 0) is said to be quadratically stable, if there exists

a positive definite matrix P > 0 and a constant α > 0, such that the differential generator of

Lyapunov function V (x) = x′Px satisfies

L[V (x)] = x′(PA+A′P + P∆A+ (∆A)′P + C ′PC)x ≤ −α||x||2

for all x ∈ Rn. (70) is called quadratically stabilizable, if there exists a state feedback u(t) =

Kx(t), such that the closed-loop system is quadratically stable.

The following theorem is a necessary and sufficient condition for quadratic stabilizability,

and its proof needs two well known results as follows:

Lemma 2 (Xie, 1996). For any real matrices Y,H and E of suitable dimensions, Y ∈ Sn,

then for all F with F ′F ≤ I, we have

Y +HFE + E′F ′H ′ < 0

iff for some ε > 0,

Y + εHH ′ + ε−1E′E < 0.

Lemma 3 (Schur’s lemma). For real matrices N , M = M ′, R = R′ > 0, the following

two conditions are equivalent:

1) M −NR−1N ′ > 0 ,

2)







M N

N ′ R






> 0.

Theorem 8. System (70) is quadratically stabilizable iff there exist real matrices Y and

X > 0, such that












AX +XA′ +BY + Y ′B′ + CXC ′ + CY ′D′ +DY C ′ DY XG′

Y ′D′ −X 0

GX 0 −I













< 0, (71)
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especially, u(t) = Kx(t) = Y X−1x(t) is a quadratically stabilizing control law.

Proof. By Definition 8, (70) is quadratically stabilizable iff there exist matrices K and

P > 0, such that

P (A+∆A+BK) + (A+∆A+BK)′P + (C +DK)′P (C +DK) < 0. (72)

From Remark 1, (A+∆A+BK,C +DK) is stable ⇔ ((A+∆A+BK)′, (C +DK)′) is stable,

so by Lemma 1, (72) is equivalent to

P (A+∆A+BK)′ + (A+∆A+BK)P + (C +DK)P (C +DK)′ < 0.

Setting Y1 = KP , by Lemma 2, the above is equivalent to






P (A+∆A)′ + (A+∆A)P +BY1 + Y ′
1B

′ + CPC ′ + CY ′
1D

′ +DY1C
′ DY1

Y ′
1D

′ −P






< 0. (73)

Take

Z =







PA′ +AP +BY1 + Y ′
1B

′ + CPC ′ +CY ′
1D

′ +DY1C
′ DY1

Y ′
1D

′ −P






< 0,

then (73) can be written as

Z +







∆AP + P (∆A)′ 0

0 0






= Z +







EFGP + PG′F ′E′ 0

0 0







= Z +







E

0






F

[

GP 0

]

+







PG′

0






F ′

[

E′ 0

]

< 0. (74)

By Lemma 2, (74) is equivalent to that for some ε > 0,

Z + ε







E

0







[

E′ 0

]

+ ε−1







PG′

0







[

GP 0

]

=













PA′ +AP +BY1 + Y ′
1B

′ + CPC ′ + CY ′
1D

′ +DY1C
′

+εEE′ + ε−1PG′GP DY1

Y ′
1D

′ −P













< 0.

The above divided by ε with X = ε−1P, Y = ε−1Y1, results in













XA′ +AX +BY + Y ′B′ + CXC ′ + CY ′D′ +DY C ′

+EE′ +XG′GX DY

Y ′D′ −X













< 0.
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Again, by Lemma 3, the above is equivalent to












AX +XA′ +BY + Y ′B′ + CXC ′ + CY ′D′ +DY C ′ DY XG′

Y ′D′ −X 0

GX 0 −I













< 0.

From our proof, u(t) = Kx(t) = Y X−1x(t) is a quadratically stabilizing contror law, the proof

of Theorem 8 is completed.

Since (71) is an LMI, by some existing tools (Boyd, etal, 1994), one can easily test whether

it is empty or not, so Theorem 8 has practical value.

Remark 10. By the same discussion as in Theorem 8, it is not difficult to deal with the

quadratic stabilizability of

dx = ((A+∆A)x+ (B +∆B)u)dt+ ((C +∆C)x+Du)dw, x(0) = x0

where uncertain matrices ∆A,∆B and ∆C satisfy

[∆A,∆B,∆C] = EF [G1, G2, G3].

Moreover, an analogous theorem to Theorem 8 can be obtained.

7 Conclusion

This paper studies the stabilizability (in mean square sense), weak stabilizability, exact observ-

ability of stochastic linear controlled systems by the aid of spectrum technique.

Firstly, some new concepts are introduced such as unremovable spectrums, strong solutions

of GAREs, etc.. Based on the spectrum technique, we have obtained necessary and sufficient

conditions for both stabilizability and weak stabilizability of stochastic systems, and have found

some new phenomena different from deterministic systems. An important problem is that under

what conditions with A,B,C and D, there always exists a feedback gain matrix K, such that

for any given λ1, λ2, · · · , λn(n+1)/2 ∈ C, σ(L∗
K) = {λ1, λ2, · · · , λn(n+1)/2}?

Secondly, we should point out that Theorem 7 will have important applications in the studies

of GAREs, filtering, stochastic stability. further discussion will be included in our forthcoming

paper.

Finally, there are many topics in robust quadratic stabilization of stochastic systems needed

to be studied, including time-varying (the simplest case is F = F (t)) and nonlinear cases. All

the above problems are not only interesting but also important.
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