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Regularization aspects in continuous-time model identification

Saïd Moussaoui∗, David Brie, Alain Richard
Université Henri Poincaré, Nancy 1, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039 CNRS-UHP-INPL, B.P. 239,

F-54506 Vandœuvre-lès-Nancy Cedex, France

This paper presents an analysis of some regularization aspects in continuous-time model identification. The study particulary focuses on 
linear filter methods and shows that filtering the data before estimating their derivatives corresponds to a regularized signal derivative 
estimation by minimizing a comp ound criterion whose exp ression is given exp licitly. A new structure based on a null p hase filter 
corresponding to a true regularization filter is proposed and allows to discuss the filter phase effects on parameter estimation by comparing 
its performances with those of the Poisson filter-based methods. Based on this analysis, a formulation of continuous-time model 
identification as a joint system inp ut–outp ut signal and model p arameter estimation is suggested. In this framework, two linear filter 
methods are interp reted and a compound criterion is proposed in which the regularization is ensured by a model fitting measure, resulting in 
a new regularization filter structure for signal estimation.

Keywords:System identification; Continuous-time model; Derivative estimation; Regularization

1. Introduction

System identification and, in particular, direct approaches
for identifying a system represented by continuous-time
models has been the subject of many works—see for exam-
ple the surveys ofYoung (1981),Unbehauen and Rao (1990),
Unbehauen and Rao (1998),Nielson, Madson, and Young
(2000),Young, Pedregal, and Tych (1999)and the references
therein. Several methods were developed, allowing to reach
a good level of performances and even better than an indirect
approach (Rao & Garnier, 2002; Ljung, 2003). Most of the
available algorithms are gathered into the Matlab toolboxes

∗ Corresponding author.
E-mail address:said.moussaoui@cran.uhp-nancy.fr(S. Moussaoui).
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CAPTAIN1 (Young, 2002) and CONTSID2 (Garnier,
Gilson, & Huselstein, 2003a). A comparative performance
evaluation of seventeen different continuous-time iden-
tification methods and their numerical implementation
issues has been performed inMensler (1999),Garnier,
Mensler, and Richard (2003b)from which it turns out that
the linear filter methods present good estimation perfor-
mances. This motivates the focus of this paper on these
methods.

The main difficulty in continuous-time model identifica-
tion, is the need to estimate, from the measured data the non-
measurable time derivatives of the system input and output
signals before evaluating the model parameters by a para-
metric estimation method. A naïve approximation of these
time derivatives by usual numerical differentiation methods
causes a noise amplification, that will affect model param-
eter estimation. To handle this problem, a first possible ap-
proach, including linear filter methods, consists in applying
a linear transformation to the input and output signals in or-
der to avoid an explicit calculation of the measured signal

1 seehttp://www.es.lancs.ac.uk/cres/captain/.
2 seehttp://www.cran.uhp-nancy.fr/contsid/.
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derivatives. The model parameters are then estimated us-
ing the time derivatives calculated from these transformed
signals. Another approach consists in developing methods
that directly give estimates of the time derivatives. In par-
ticular, Söderström, Carlsson, and Bigi (1997)presented an
analysis of the effect of the derivative approximation by
standard finite difference methods on the bias and variance
of the parameter estimators and, to reduce them, proposed
some particular numerical differentiators. The theoretical
formulation of time-derivative estimation as an ill-posed in-
verse problem has been addressed in many papers (Cullum,
1971; Tikhonov & Arsenin, 1977; Surova, 1979; Jakeman
& Young, 1984) andYoung and Foster (1993)applied the
fixed interval smoothing approach (FIS)—which is equiv-
alent to using explicitly a regularization technique (Young
& Pedregal, 1999)—to continuous-time model identifica-
tion. This work aims at linking these apparently distinct
classes of methods by interpreting the linear filter transfor-
mation as a regularization filter for derivative estimation.

This paper is organized as follows: Section 2 recalls the
concepts of ill-posed inverse problem, regularization and ad-
dresses the formulation of derivative estimation as an ill-
posed inverse problem and gives its Tikhonov regularized es-
timate. In Section 3 the principle of continuous-time model
identification by linear filter methods is presented. Then,
Section 4 provides a link between this method and regular-
ization techniques by formalizing the regularization proper-
ties of the linear filters. From this interpretation, Section 5
proposes a new structure of filter that allows to give some
insights into the filter phase effect on model parameter esti-
mation. Finally, Section 6 addresses the problem of the opti-
mal filter design by formulating the continuous-time model
identification problem as a joint system input–output signal
and model parameter estimation.

2. Inverse problem and regularization

To illustrate these concepts, let us consider a dynamic
system with an input signalxo(t), output signaly(t) and
some disturbances modelled by an additive noisev(t). The
direct problem consists in defining the model that expresses
the relation between these signals

y(t)= H[xo](t)+ v(t), (1)

whereH is an operator representing the transformation in-
duced by the system to the input signalxo(t). In the case of
linear time-invariant system of impulse responseh(t) (case
considered in this study),H is a convolution operator, i.e.
H[xo](t)=[xo	h](t). Two inverse problems are associated
to this formulation (Fig.1). The first is the determination of
H from xo(t) andy(t) (identification) and the second is the
estimation ofxo(t) from H andy(t) (deconvolution). This
section only considers the problem of deconvolution. An in-
verse problem is said to be ill-posed, if the solution does
not exist, or is not unique or if a small disturbance on data

xo(t) y(t)

v(t)

Forward problem

Inverse problem

Identification

Deconvolution

H +

Fig. 1. Direct and inverse problems.

induces a large variation of the solution (Hadamard, 1923).
The regularization aims at solving an ill-posed problem by
searching a solution meaningful and stable with respect to
data variations.

Earlier works on the explicit use of regularization tech-
niques in system identification can be found inSjöberg,
McKelvey, and Ljung (1993),Young and Foster (1993)and
more recentlyJohansen (1996),Johansen (1997),Ninness
and Henriksen (2003). A tutorial on inverse problems in
control has been presented in the 15th IFAC world congress
(Goodwin, 2002).

2.1. Tikhonov regularization

A particular method of regularization consists in mini-
mizing a compound criterion. Instead of minimizing only a
data fitting measure, a new term is added in order to make
the solution faithful to some a priori knowledge or to some
specified constraints. Tikhonov regularization (Tikhonov &
Arsenin, 1977) is one of the methods suggested from this
point of view. This technique tends to minimize a compound
criterion given by

J (x, y)= ‖y − H[x]‖2 +
p∑
d=0

�d‖Dd [x]‖2, (2)

where{�d}pd=0 are constant regularization parameters,Dd
thedth time-derivative operator and‖ · ‖ theL2 norm. The
Tikhonov stabilizers of orderp used in the second part of
criterion (2) imposes to the solution to be the smoothest
in the class ofp times derivable functions. The resulting
regularized solution is given by

x̂reg(t)= arg min
x
J (x, y) (3)

and leads to

x̂reg(t)= H∗

H∗H +∑p
d=0�dD

∗
dDd

[y](t), (4)

whereH∗ andD∗
d are the adjoint operators ofH andDd ,

respectively.
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Xreg (�)

Inverse filter Regularization filter

Fig. 2. Inverse filtering and regularization.

2.2. Frequency-domain interpretation

By applying the Fourier transform to (4), the regularized
solution expressed in the frequency domain is obtained

X̂reg(�)= H ∗(�)
H ∗(�)H(�)+∑p

d=0�d�
2d

Y(�). (5)

This solution corresponds to applying a regularization fil-
ter to the naïve solution obtained by inverse filtering (Fig.
2) or equivalently filtering the output signal before inverse
filtering. Therefore, the regularization filter is expressed by

F(�)= H ∗(�)H(�)
H ∗(�)H(�)+∑p

d=0�d�
2d
. (6)

As introduced, a particular example of ill-posed inverse
problem is thenth derivative estimation where the corre-
sponding operatorH is annth order integrator. In this case,
according to (6) the expression of the Tikhonov regulariza-
tion filter is

F(�)= (1/�)2n

(1/�)2n +∑p
k=0�d�

2d

= 1

1 +∑p+n
d=n�d−n�2d

. (7)

This is a low-pass filter which attenuates the high-frequency
part where the noise amplification problem appears. Note
that both its shape and bandwidth depend on the regulariza-
tion parameters{�d}pd=0.

2.3. Bayesian formulation

In this section, a Bayesian interpretation of Tikhonov reg-
ularization criterion is given. A more general discussion
about the synthesis of regularization criteria can be found
in Jakeman and Young (1984),Demoment (1989),Young
et al. (1999), andIdier (2001). Note that the probabilistic
formulation imposes to consider discrete-time data, how-
ever the interpretation still remains valid for the continuous-
time case. The model defined in (1) is considered and the
noise signal sequence{v(tk)}Nk=1 is assumed independent and
identically distributed (i.i.d.), zero mean and Gaussian with
variance�2

v, i.e.v(tk) ∼ N(0,�2
v). The likelihood function

associated to the problem of estimating the signalx(tk) is
then expressed as

p(y = {y(tk)}Nk=1 | x = {x(tk)}Nk=1,�
2
v)

=
N∏
k=1

(
1

2��2
v

)1/2

exp

[
−[y(tk)− H[x](tk)]2

2�2
v

]
. (8)

The dth time derivative of the input signalxo is assumed
i.i.d. zero mean and Gaussian with variance�2

d , defines the
prior probability density function (pdf) ofx as

p(x |�2
d)=

N∏
k=1

(
1

2��2
d

)1/2

exp

[
−[Dd [x](tk)]2

2�2
d

]
. (9)

Using Bayes’ theorem

p(x | y,�2
v,�

2
d)=

p(y | x,�2
v)p(x |�2

d)

p(y)
, (10)

wherep(x | y,�2
v,�

2
d) is the posterior pdf ofx andp(y) is

a normalization constant. Using the proportionality symbol
∝, to omit all the constants, one can write

p(x | y,�2
v,�

2
d)

∝ p(y | x,�2
v)p(x |�2

d),

∝
N∏
k=1

exp

[
−[y(tk)− H[x](tk)]2

2�2
v

− [Dd [x](tk)]2
2�2
d

]
,

∝ exp

[
−
N∑
k=1

(
[y(tk)−H[x](tk)]2

2�2
v

+[Dd [x](tk)]2
2�2
d

)]
.

The maximum a posteriori (MAP) estimate of the input sig-
nal corresponds to the value ofx that maximizes this pos-
terior pdfp(x | y,�2

v,�
2
d) or equivalently, minimizes the re-

sulting criterionJ (x, y) obtained from its inverse logarithm

J (x, y)= − logp(x | y,�2
v,�

2
d)

= 1

2�2
v

‖y − H[x]‖2 + 1

2�2
d

‖Dd [x]‖2, (11)

where the�2 norm notation is used. The criterion can be
rearranged in the form

J (x, y)= ‖y − H[x]‖2 + �d‖Dd [x]‖2, (12)

where�d = (�2
v/�

2
d) which corresponds to the optimal of

the regularization parameter, as mentioned byJakeman and
Young (1984). A more general form of this criterion takes
into account all the derivatives of the input signal up to a
maximal orderp, resulting in criterion (2).

2.4. Implementation issues

To optimize criterion (2), several techniques are pos-
sible. Direct batch implementation, after discretization of
the problem (Phillips, 1962; Twomey, 1963), yields an ex-
plicit solution but requires the inversion of a matrix of size
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equivalent to the data length, so this method is not used for
large data sets. To avoid this direct large matrix inversion,
iterative optimization by a gradient, or Newton-based algo-
rithms may be used as well as a frequency-domain imple-
mentation proposed byHunt (1973), for the case of peri-
odic signals. Another alternative for the inversion consists
in a recursive implementation using Kalman filtering tech-
niques (Mendel, 1983). Because these methods are causal,
a time lag is introduced on the solution. By adding a back-
ward smoothing, the fixed interval smoothing (FIS) method
(Jakeman & Young, 1984) is an en-bloc approach which
produces a zero-lag solution. All these optimization proce-
dures will produce almost the same regularized estimates
but practical considerations, such as computational burden
and real-time implementation, will play an important role in
the final selection of a particular method.

The methods described above require the knowledge of
the regularization hyperparameters, which are concatenated
in a vector� = [�2

v, {�2
d}pd=0]T. The maximum likelihood

estimator may be applied to assess the hyper-parameters
from estimates during a recursive/iterative optimization
method (Young et al., 1999). They can also be estimated
in a Bayesian framework by a joint maximization of the
posterior p(x, � | y) with respect tox and � by assign-
ing appropriate prior distributions to the hyperparameters
(Mohammad-Djafari, 1996).

3. Continuous-time model identification

3.1. Problem statement

Let us now consider a system represented by a continuous-
time, time-invariant model, linear, stable and causal whose
input–output relationship is given by

na∑
i=0

aiy
(i)
o (t)=

nb∑
i=0

biu
(i)
o (t), (13)

where

• uo(t) and yo(t) are, respectively, the noise-free input
and output signals;

• x(i)(t) is theith time derivative ofx(t). The initial con-
ditions are supposed to be null;

• {ai}nai=0 and{bj }nbj=0 are the model parameters, (na�nb
andana = 1).

The input and output signals are sampled at a constant fre-
quencyfs =T −1

s . The available data used for the identifica-
tion are noted{u(tk), y(tk)}N−1

k=0 , with tk = kT s , and repre-
sent the samples of the measured system of input and out-
put signals. The output error model is considered which as-
sumes that only the measured output signal is prone to dis-
turbances, modeled by an additive noisev(t), independent
of the input signaluo(t), that isy(tk)= yo(tk)+ v(tk) while

Fig. 3. Continuous-time model identification problem.

the input signal is noise-free, that isu(tk)=uo(tk). The case
of error-in-variables model, where both input and output sig-
nals are prone to disturbances, will be discussed in Section
6. The problem of continuous-time model identification may
be stated as follows: knowing the ordersna, nb and hav-
ing the samples{u(tk), y(tk)}N−1

k=0 ,determine the coefficients
{ai}na−1

i=0 and{bj }nbj=0 of the differential equation (13).
To estimate the model parameters, the differential equa-

tion should be evaluated at each time{tk}N−1
k=0 and written as

a linear regression model (Fig.3) in order to apply a paramet-
ric estimation method. This operation requires an estimation
of both input and output signal time derivatives. This is the
main difficulty because of the noise amplification problem.

3.2. Linear filter methods

One of the solutions used to circumvent time-derivative
estimation difficulty consists in applying a linear transfor-
mation to Eq. (13). This transformation corresponds to fil-
tering by a linear filter of impulse responsef (t)

na∑
i=0

aiT[y(i)o (t)] =
nb∑
j=0

bjT[u(j)o (t)] + T[v(t)], (14)

where

T[x(i)(t)] =
[
f 	

dix

dt i

]
(t). (15)

The evaluation ofx(i)f (tk) = T[x(i)(tk)] is achieved by an
adequate discretization technique (Garnier et al., 2003b) and
the resulting linear regressor model resolution is carried out
by a parametric estimation method (Fig.4).

Many linear filtering methods were developed, only dif-
fering on the form of the filter. Within the framework of
this paper, we will focus mainly a particular form ofstate
variable filter (SVF) method which uses a cascade of iden-
tical first-order filters. This method originates in the works
of Young (1964, 1965)and was introduced under the name
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Fig. 4. Continuous-time model identification by linear filter methods.

of MMF for method of multiple filters. It is based on the use
of a filter in the form of

Fl(s)=
(

�
s + �

)l+1

, (16)

wheres is the Laplace variable,� and� are design param-
eters of this filter. Its impulse response being

fl(t)= �(l+1) t
l

l! exp(−�t) (17)

which corresponds to the generalized Poisson pulse func-
tion, the method is also termed as GPMF forgeneralized
Poisson moment functionalsmethod (Saha & Rao, 1983).
The choice of the SVF system representation is an exact
system representation that allows to achieve a linear in-the-
parameters formulation. Often the parameter� is set equal
to � to get a unitary filter, but the main difficulty with this
type of filter still remains the determination of the optimal
value of the parameter�.

To overcome that problem and to improve the statisti-
cal efficiency of parameter estimation,Jakeman and Young
(1980)proposed to use a filter of the form

F(s)= 1

A(s)
, (18)

whereA(s) is the denominator of the transfer function to
identify. This filter structure is attractive, because when as-
sociated with an instrumental variable parameter estimation
method, it yields a (quasi-) maximum likelihood optimality
property in the case of additive white measurement noise
(Young, 2002). In practice, the actual value ofA(s) is un-
known and has to be replaced by an estimateÂ(s), resulting
in an iterative method referred to as SRIVC forsimplified
refined instrumental variable for continuous-time model.

3.3. Linear filter frequency response analysis

The analysis of the frequency response of the filters
used to estimate the Poisson moments of the successive

Poisson Filter

Derivative Filter

Frequency (rad/s)

G
ai

n

0
0

1

2

2

3

4

4

5

6 108

Fig. 5. First derivative Poisson moment functional filter,� = � = 5 rad/s
and l = 2.

derivatives, shows that they behave as derivators in the
low-frequency part but attenuate the high-frequency band
(Fig. 5). Thus, they have a regularizing effect which is
studied in the next section.

4. Regularization aspects

This section first aims at formalizing the regularization
aspects of the Poisson filter. Then the result is generalized
to the SRIVC filter.

4.1. First-order approximation of the Poisson filter

Consider the form of the Poisson filter

Fl(�)=
(

�/�
1 + (1/�)j�

)l+1

. (19)

By setting� = 1/� and� = �, the expression of the filter
becomes

Fl(�)=
(

1

1 + �2�2

)(l+1)/2

exp[−j(l + 1)arctan(��)].

A first-order approximation of the filter phase around�= 0
(low-frequencies) gives

arctan(��)= �� + O((��)3) (20)

and a series expansion of the filter gain yields

(1 + �2�2)(l+1)/2 = 1 +
M∑
m=1

Sml+1�
2m�2m, (21)
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where

M =
{
l+1
2 if (l + 1) is even,

∞ if (l + 1) is odd,

and Sml+1 = ∏m−1
�=0 (

(l+1)/2−�
m! ). Consequently, by noting

	m(�)= Sml+1�
2m, the expression of the filter becomes

Fl(�) ≈ 1

1 +∑M
m=1	m(�)�

2m
exp[−j(l + 1)��]. (22)

4.2. Link with a regularization filter

By comparing (22) to the Tikhonov regularization filter
(7), we conclude that the Poisson filter module exactly cor-
responds to a first derivative regularization filter, which min-
imizes the criterion

J�(x, y)= ‖y − H[x]‖2 +
M−1∑
d=0

�d(�)‖Dd [x]‖2, (23)

where

H[x](t)=
∫ t

0
x(
)d
,

�d(�)= 	d+1(�), for d = 0, . . . ,M − 1.

The smoothness constraint imposes that the required solution
should be infinitely derivable (in the case where(l + 1) is
even, the constraint is that the solution is(M − 1) time
derivable). The regularization parameters depend explicitly
on � and the filter orderl. The choice of this constraint
is important because it ensures that choosingl�na, the
estimation of the needed high order derivatives of the signals,
using this regularized first derivative, will not yield a noise
amplification.

Eq. (22) shows that the Poisson filter has approximately
a linear phase in the low frequencies. This linear phase can
be interpreted using the following theorem.

Theorem 1. Consider the regularization filter whose fre-
quency response is expressed by

F(�, t0)= |H(�)|2
|H(�)|2 +∑p

d=0�d�
2d

exp[−j�t0]. (24)

This filter corresponds to the minimization of a criterion

J (x, y, t0)= ‖y − H[x̃]‖2 +
p∑
d=0

�d‖Dd [x̃]‖2, (25)

whereH is a convolution operator,̃x(t)= x(t + t0) and t0
is the time delay introduced in the solution.

Proof 1. The application of the Fourier transform to
Eq. (25) yields

J (X, Y, t0)= ‖Y (�)−H(�)X(�) exp[j�t0]‖2

+
p∑
d=0

�d‖(j�)dX(�) exp[j�t0]‖2,

=
∫ {

|Y (�)|2 −H(�)X(�)Y ∗(�) exp[j�t0]
−H ∗(�)X∗(�)Y (�) exp[−j�t0]

+|H(�)X(�)|2 +
N∑
d=0

�d�2d |X(�)|2
}

d�.

The minimization ofJ (X, Y, t0) with respect toX(�) leads
to

∀�,
d

dX
J(X, Y, t0)

∣∣∣∣
X(�)=X̂reg(�)

= 0,

⇒ X̂reg(�)= H ∗(�)Y (�)
|H(�)|2 +∑p

d=0�d�
2d

exp[−j�t0].

Recalling thatX̂reg(�)= F(�, t0)Y (�)/H(�), we obtain

F(�, t0)= |H(�)|2
|H(�)|2 +∑p

d=0�d�
2k

exp[−j�t0], (26)

which corresponds to the regularization filter (24).�

From that result, it appears that applying a regularization
filter with a linear phase corresponds to estimating a delayed
solution. In the case of the Poisson filters, as shown in Fig.
6, this delay increases as the filter order increases or as the
filter cut-off frequency decreases (t0 = (l + 1)/�).

0

0

0.5

−0.5

1

−1
2 4 6 8 10

Time (s)

Fig. 6. Comparison of the exact derivative (full) and the filtered derivative
by GPMF filter, l = 2 (dashed),l = 5 (dotted) with� = � = 5 rad/s.
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4.3. Generalization

At the beginning of this section, we concentrated on the
Poisson filter. The same analysis can be carried out for all
linear filters of the following form

F(�)= 1

A(�)
, (27)

whereA(�) is polynomial of orderna. This filter may be
written as

F(�)= 1

1 +∑∞
m=1	m�2m

exp[−j�A(�)], (28)

where the parameters	m, and the phase�A(�) depend on
A(�) polynomial coefficients. Structure (28) corresponds to
the minimization of the criterion given by

JA(x, y)= ‖y − H[x̃]‖2 +
∞∑
d=0

�d‖Dd [x̃]‖2, (29)

where

x̃(t)= [x 	F−1{exp[j�A(�)]}](t),
�d = 	d+1, for d = 0, . . . ,∞.
andF−1 stands for the inverse Fourier transform operator.

5. Phase effect analysis

5.1. Phase analysis

From the previous section, it appears that linear filters only
differ from true Tikhonov regularization filters by the phase
term. Thus, the effect of the filter phase on continuous-time
model identification needs to be discussed. In the framework
of linear systems, if a linear phase filter is used, a time de-
lay will be introduced on the filtered output signal. Conse-
quently, to achieve parameter estimation correctly the same
delay has to be introduced on the input signal. This explains
the need of applying the same filter to both input and out-
put signals even if the input signal is noise free. However,
there is no objection to use instead a null phase filter and
this has already been done for continuous-time model iden-
tification inYoung and Foster (1993)where the derivatives
are estimated using the fixed interval smoothing approach.
Note that the use of such a filter is necessary in the case of
nonlinear systems since the commutation operation is not
possible (Young, 1993, Young, 1998).

We were not able to address the phase effect on parameter
estimation using analytical developments. So, to get some
insights into this phase effect, we perform some numerical
simulations. In that respect, we propose to compare the per-
formances of two filters having the same module and differ-
ing only by their phases: the first has a null phase while the
second a non-linear phase. In the case of the SRIVC method,

the implementation of the strictly equivalent null phase reg-
ularization filter is not possible, because of the infinite sum-
mation appearing in its module. However, the synthesis of
the null phase filter having the same module as the Poisson
filter is possible by taking

F #
l (�)= Fl(j�)Fl(−j�), (30)

=
(

�2

�2 + �2

)l+1

. (31)

Note that the module of this filter is polynomial on� and
of order 2(l + 1), therefore the Poisson filter that has the
same module is of order(2l + 1). Let us note� = 1/�, and
consider� = �. By expanding (31), we get

F #
l (�)=

1

1 +∑l+1
m=1	m(�)�

2m
, (32)

where	m(�) = Cml+1�
2m. This form corresponds exactly to

the Tikhonov regularization filter minimizing the criterion

J�(x, y)= ‖y − H[x]‖2 +
l∑
d=0

�d(�)‖Dd [x]‖2, (33)

where the regularization parameters

�d(�)= 	d+1(�), for d = 0, . . . , l,

depend on� and on the filter order. The smoothness con-
straint imposes a non-delayed (seeFig. 7) andl times deriv-
able solutions.

5.2. Simulation example

A simulation example is used to assess the effect of
the filter phase on continuous-time model identification.

0

0

0.5

−0.5

1

−1
2 4 6 8 10

Time (s)

Fig. 7. Exact derivative (full) and regularized derivative (dashed) with
l = 2 and filtered derivative by Poisson filter (dotted) withl = 5, for
� = � = 5 rad/s.
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The example concerns the identification of the following
continuous-time transfer function (Wang & Gawthrop, 2001)

G(s)= −2s + 1

s3 + 1.6s2 + 1.6s+ 1
. (34)

The input signal is a pseudo-random binary sequence of
maximum length, chosen to excite the system over all its
dynamic range. The sampling period is taken equal to 0.02 s
and the number of samples is fixed toN=1260. The results
are obtained for a Monte Carlo simulation ofS=1000 trials,
with a signal-to-noise ratio (SNR) equal to 5 dB. The SNR
is defined by

SNR (dB)= 10 log

(
Pyo

�2
v

)
, (35)

wherePyo represents the power of the noise free output
signal yo(t) and �2

v is the variance of the additive noise.
In order to have the same simulation conditions, the fil-
ters (Poisson and null phase filter) are applied to both input
and output signals. The null phase filter is implemented us-
ing a forward–backward filtering and due to the initial/final
conditions, the first and last samples corresponding to the
setting time of the filter are removed. The parameters are
estimated using the instrumental variable method with an
auxiliary model (Young, 1970; Söderström & Stoica, 1989;
Johansson, 1993) obtained after an initial estimation by least
squares technique. Empirical mean(m̂�̂j

), standard devia-

tion (�̂�̂j
)and mean square error (̂MSE�̂j

) evaluated for each

parameter, are used to discuss the statistical performances
of parameter estimation. The normalized mean square error
(NMSE) is used to assess the global identification perfor-
mances using the two filters. The NMSE is defined by

NMSE (dB)= 10 log

(
�2




�2
y

)
, (36)

where�
 represents the standard deviation of the output error
(
(t) = y(t) − ŷo(t)), and�2

y is the variance of the noisy
output signal.

5.3. Discussion

Fig. 8 shows the evolution of the NMSE versus the filter
bandwidth and the estimation results for the optimal value of
�, for both filters, are summarized inTable 1. The use of the
null phase filter gives a slightly smaller mean square error
than the Poisson filter, but the statistical performances of the
two methods are very similar and both methods give asymp-
totically unbiased estimates. It is clear that no general rule
may be inferred from that particular example, but this has
been also verified on other simulation examples (Moussaoui,
2002). This point would need to be comforted by a theoret-
ical analysis of the filter phase effect on parameter estima-
tion. These methods have also been compared to the SRIVC
method which provides the best results, confirming the very

N
M

S
E

 (
dB

)

λ (rad/s)
1 3 4 5

−6.3

−6.25

−6.2

−6.15

2

Fig. 8. NMSE versus filter bandwidth, null phase filter (circles) and
Poisson filter (dots).

good behavior of this method as mentioned byYoung (2002).
These results are not reported here because only the phase
effect is under investigation and the null phase filter, strictly
equivalent to the SRIVC, has not been implemented.

As a conclusion, this experiment validates our interpreta-
tion of the Poisson filter as a delayed derivative estimation
since the two filters yields nearly the same results. So, the
main interest of the proposed approach is to give an explicit
formulation of the filter design in terms of derivative esti-
mation by minimizing a compound criterion that takes into
account some prior information. Such a formulation may
serve as a starting point to the design of new methods aiming
at better accounting available knowledge coming from the
characteristics of either the signals to restore or the system
to identify.

6. Towards a joint signal and model parameter
estimation

In the previous sections, an interpretation of regularization
properties of the linear filters for signal derivative estimation
has been given. However, the ultimate goal of continuous-
time identification is to determine the model parameters.
Based upon this interpretation, this problem may be stated
as a joint signal and model parameter estimation from which
the optimal regularization filter design for parameter estima-
tion can be addressed. Linear filter methods (Poisson Filter
and SRIVC) are discussed in this framework and a new for-
mulation is proposed.

6.1. Input and output signal denoising

First of all, it should be noted that the derivative estima-
tion using regularization filter corresponds to the denoising
of the signal before applying the derivative operator. The
denoised signal notedyo is the solution that minimizes a

8



Table 1
Monte Carlo simulations results

Poisson filter Regularization filter

�opt (rad/s) 2.75 2.5

Parameters m̂�̂j
�̂�̂j

M̂SE�̂j
m̂�̂j

�̂�̂j
M̂SE�̂j

b̂0(1) 1.0010 0.0602 0.0036 0.9980 0.0644 0.0042
b̂1(−2) −2.0058 0.1161 0.0135 −2.0018 0.1105 0.0122
â0(1) 1.0016 0.0713 0.0051 1.0019 0.0656 0.0043
â1(1.6) 1.6011 0.0448 0.0020 1.6006 0.0463 0.0021
â2(1.6) 1.6015 0.0941 0.0089 1.5990 0.0866 0.0075

particular form of criterion (2), whereH is the identity op-
erator. In particular, the first derivative regularization filter
(32) interpreted as a denoising filter corresponds to the min-
imization of the following cost function:

J (y, yo)= ‖y − yo‖2 +
l+1∑
d=1

�d(�)‖Dd [yo]‖2. (37)

Note that the case of Poisson filter and SRIVC just corre-
sponds to the search of a “delayed” denoised solution (see
Sections 4.2 and 4.3). As mentioned in Section 5.1 the same
filter is applied to the input and output data, which corre-
sponds to the joint minimization of

C(uo, yo)= J (u, uo)+ J (y, yo), (38)

where the same criterionJ , defined by (37), is used for
both input and output signal estimation. The need of a noise
free-input signal filtering (“denoising”) can be questioned
when a null phase filter is used but it is properly stated by
considering the problem of error-in-variables model identi-
fication (Söderström, Soverini, & Mahata, 2002) for which
errors affect both input and output data. In this framework,
the question that naturally arises is: should we use the same
null phase filter to the input and output data? We will come
back to that point at the end of the section, but before, let us
try to formalize what is an optimal continuous-time model
identification by Poisson filter (including the proposed null
phase filter) and the SRIVC methods.

6.2. Joint signal and parameter estimation via Poisson filter

The whole identification procedure, including the deter-
mination of the optimal value of�, corresponds to the fol-
lowing criterion minimization

G(A,B, uo, yo)= C(uo, yo)+Q(uo, yo,A,B)

+ R(A,B), (39)

where

(Â, B̂, ûo, ŷo)= arg min
A,B,uo,yo

G(A,B, uo, yo), (40)

andA, B are operators representing the numerator and the
denominator of the model, respectively. For the Poisson filter
and the null phase filter

• C(uo, yo) is given by (38), with a criterionJ =J� given
by (25) for the Poisson filter and by (33) for the regu-
larization filter. Note that the criterionC also depends
on the design parameter�;

• Q(uo, yo,A,B) = ‖A[yo] − B[uo]‖2 is the�2-norm
of the equation error, minimized to estimate the model
parameters from the filtered data;

• R(A,B) = ‖y − B
A [uo]‖2 is the�2-norm of the out-

put error, minimized to estimate the optimal value
of �.

Criterion (40) optimization is achieved in three steps:

1. (û(�)o , ŷ
(�)
o )=arg minuo,yo C(uo, yo) obtained by filtering

the data with the corresponding filter structure for a fixed
�;

2. (Â
(�)
, B̂
(�)
) = arg minA,BQ(A,B, û

(�)
o , ŷ

(�)
o ) ob-

tained by a parametric estimation algorithm;

3. repeat the two previews steps to minimizeR(Â
(�)
, B̂
(�)
)

with respect to� by an exhaustive search in a fixed range
[�min, �max].

This optimization procedure separates the signal extraction
problem (step 1) from that of model parameter estimation
(step 2) by considering them as independent. However, it
is clear that these two problems are strongly coupled. We
believe that this decoupling scheme is the main shortcoming
of such an approach.

6.3. Joint signal and parameter estimation via the SRIVC
method

The criterion to minimize can be expressed as

G(A,B, uo, yo)= C(uo, yo,A)+Q(uo, yo,A,B), (41)

9



where

• C(uo, yo,A) is expressed as in Eq. (38) with a criterion
J =JA expressed by (29) and regularization parameters
that depend on the model parameters, as given in Section
4.3. Note that the dependence of the criterionC with
respect toA has been made explicit.

• Q(uo, yo,A,B) = ‖A[yo] − B[uo]‖2 is the�2-norm
of the equation error, minimized to estimate the model
parameters from the filtered data.

The criterion is optimized with an iterative procedure. At
each iterationr

1. (û(r+1)
o , ŷ

(r+1)
o ) = arg minuo,yo C(uo, yo, Â

(r)) obtained
by filtering the data with the corresponding filter ob-
tained from the previous iteration;

2. (Â
(r+1)

, B̂
(r+1)

)=arg minA,BQ(A,B, û
(r+1)
o , ŷ

(r+1)
o )

obtained by an instrumental variable estimation
algorithm;

3. Repeat steps 1 and 2 until convergence.

The algorithm is initialized using any other estimation
method, for example the Poisson filter-based method with a
not necessary optimal value of�. The criterion minimization
procedure corresponds to a relaxation method which may
preclude the global minimum to be reached. But the particu-
lar choice of a regularization filter, depending on the model
parameters, ensures a coupling between signal estimation
and model identification. In addition, it makes the mini-
mization of the second part of criterion (41) equivalent to
the minimization of the output mean square error, expressed
by the third part of criterion (39), and results in an optimal
parameter estimation in the maximum likelihood sense.

6.4. Joint signal and parameter estimation via
regularization

Considering the more general case of error-in-variables
model, the joint estimation of input–output signals and
model parameters, can be formulated as finding the values
of (A,B, uo, yo) that minimize the following compound
criterion:

G(A,B, uo, yo)= 1

�2
1

‖u− uo‖2 + 1

�2
2

‖y − yo‖2

+ 1

�2
3

‖A[yo] − B[uo]‖2. (42)

The first part of the criterion is a data fitting measure, while
the second part is a model fitting measure that regularize the
solutionsuo(t) andyo(t). {�k}3

k=1 are regularization param-
eters that can be interpreted in a Bayesian framework as the
standard deviation of the input noise, output noises and the
model error, that are assumed Gaussian, respectively. This
optimization problem may be solved for example by a joint

optimization approach

û(r+1)
o = arg min

uo
G(Â

(r)
, B̂
(r)
, uo, ŷ

(r)
o ), (43)

ŷ(r+1)
o = arg min

yo
G(Â

(r)
, B̂
(r)
, û(r+1)

o , yo), (44)

(Â
(r+1)

, B̂
(r+1)

)= arg min
A,B

G(A,B, û(r+1)
o , ŷ(r+1)

o ), (45)

where indexr denotes the estimation obtained in the iteration
r. Concerning problems (43) and (44),A andB being fixed

toÂ
(r)

andB̂
(r)

, the explicit form of the solution is obtained
as

û(r+1)
o (t)= 1

1 + �1B̂
∗(r)

B̂
(r)

[u](t)

+ �1
B̂

∗(r)
Â
(r)

1 + �1B̂
∗(r)

B̂
(r)

[ŷ(r)o ](t), (46)

ŷ(r+1)
o (t)= 1

1 + �2Â
∗(r)

Â
(r)

[y](t)

− �2
Â

∗(r)
B̂
(r)

1 + �2Â
∗(r)

Â
(r)

[û(r+1)
o ](t), (47)

where�1=(�1/�3)
2, �2=(�2/�3)

2. Â
∗(r)

andB̂
∗(r)

corre-

spond to the adjoint operators ofÂ
(r)

andB̂
(r)

, respectively.
The signalsuo andyo being fixed toû(r+1)

o and ŷ(r+1)
o ,the

optimisation problem (45) can be solved by a least-squares
method in the ARX model case or an instrumental variable
approach. Concerning the hyperparameters{�j }2

j=1, because
of the noise ambiguity, the problem will be significantly
simplified if the noise variances or their ratios are known
(Söderström et al., 2002). When the noise variances are not
known exactly, a statistical approach reported inKavetski,
Franks, and Kuczera (2002), consists in addressing the prob-
lem in a Bayesian framework by assigning an informative
prior to either the input or output noise variance.

To conclude this section we note that, similarly to the
SRIVC approach, such a joint signal and parameter esti-
mation approach yields filters depending explicitly on the
model parameters. The input and output signals are esti-
mated using different filters and these estimations depend
not only on the measured signals, but also on the signals and
model parameters estimated at the previous iteration. Note
that when�1 = 0, which corresponds to the output error
model, no filtering needs to be applied to the input signal.
Future works will be directed at implementing and investi-
gating more deeply this approach.

7. Conclusion

Time-derivative estimation is an ill-posed inverse prob-
lem which is encountered in continuous-time model identi-
fication. This paper has shown that applying a linear trans-
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formation to the data corresponds to a regularization of this
problem to reduce the sensitivity of the estimated time-
derivatives to measurement errors. The minimized criterion
is expressed explicitly and corresponds to an estimation of
delayed signal time-derivatives, justifying the need of filter-
ing the input signal even if it is noise-free. From this inter-
pretation, a null phase filter regularization filters is proposed
and applied to continuous-time linear systems identification.
This allows to discuss the filter phase effects on parameter
estimation. As a result, it is confirmed that regularization fil-
ters can be applied to the identification of continuous-time
models. But unlike the case of nonlinear systems, the zero
phase propriety of the filters is not necessary for the identi-
fication, if the same filter is applied to both input and output
signals. The main advantage of the synthesis of filters using
the regularization point of view is the ability to incorporate
additional a priori knowledge on the signals and/or the sys-
tem. Particularly, the non-stationarity of the signals to re-
store can be handled by local regularization techniques and
the Bayesian formulation associated to stochastic optimiza-
tion algorithms such as Markov chain Monte Carlo meth-
ods (Fitzgerald, 2001; Ninness & Henriksen, 2003) give an
attractive framework to address the problem of jointly esti-
mating signals, model parameters and hyperparameters. We
also believe that such techniques might be helpful in solving
the more difficult error-in-variables model cases.
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