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Abstract

Nonlinear systems can be approximated by linear time-invariant (LTI) models
in many ways. Here, LTI models that are optimal approximations in the mean-
square error sense are analyzed. A necessary and sufficient condition on the
input signal for the optimal LTT approximation of an arbitrary nonlinear finite
impulse response (NFIR) system to be a linear finite impulse response (FIR)
model is presented. This condition says that the input should be separable of
a certain order, i.e., that certain conditional expectations should be linear. For
the special case of Gaussian input signals, this condition is closely related to a
generalized version of Bussgang’s classic theorem about static nonlinearities. It
is shown that this generalized theorem can be used for structure identification
and for identification of generalized Wiener-Hammerstein systems.

Keywords: System identification, Mean-square error, Nonlinear systems,
Linearization
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Abstract

Nonlinear systems can be approximated by linear time-invariant (LTT)
models in many ways. Here, LTI models that are optimal approximations
in the mean-square error sense are analyzed. A necessary and sufficient
condition on the input signal for the optimal LTI approximation of an
arbitrary nonlinear finite impulse response (NFIR) system to be a linear
finite impulse response (FIR) model is presented. This condition says
that the input should be separable of a certain order, i.e., that certain
conditional expectations should be linear. For the special case of Gaussian
input signals, this condition is closely related to a generalized version of
Bussgang’s classic theorem about static nonlinearities. It is shown that
this generalized theorem can be used for structure identification and for
identification of generalized Wiener-Hammerstein systems.

1 Introduction

Nonlinear systems are often approximated using linear models. For example,
local approximations around a set point can normally be obtained by differ-
entiating a mathematical description of a nonlinear system. Typically, such
approximations are only useful in an operating region around the set point and
they can be hard to obtain if the nonlinearity is unknown. An alternative can
be to derive a linear approximation that models the behavior of the nonlinear
system for a particular input signal. This is the type of approximation that is
studied in this paper.

More specifically, we consider single input single output (SISO) nonlin-
ear systems with inputs u(t) and outputs y(¢) that are stationary stochastic
processes. For a such a system, the linear time-invariant (LTI) model that
minimizes the mean-square error E((y(t) — G(q)u(t))?) with respect to all sta-
ble and causal models G(q) is analyzed. Here, ¢ denotes the shift operator,
qu(t) = u(t + 1), and E(z) denotes the expected value of the random variable
z. The mean-square error optimal model is here called the output error linear
time-invariant second order equivalent (OE-LTI-SOE).

Since an OE-LTI-SOE of a nonlinear system is derived for a particular pair of
input and output processes, the OE-LTT-SOE will usually be input dependent.
Furthermore, in general a nonlinear finite impulse response (NFIR) system will
not have a finite impulse response (FIR) OE-LTI-SOE. However, if a certain
type of input signals is used, the OE-LTI-SOE will be an FIR model.



The main result of this paper is a necessary and sufficient condition on
the input signal for the OE-LTI-SOEs of all NFIR systems in a wide class of
systems to be FIR models. This result, which is presented in Theorem 3.1, is an
extension to NFIR systems of a similar result for static nonlinearities (Nuttall,
1958). More specifically, Nuttall (1958) presents a useful condition on the input
for the property

Ryu(r) = boRu(7) (1)

to hold for an arbitrary static nonlinearity. Here, Ry, (7) = E(y(t)u(t—7)) is the
cross-covariance function between output and input and R, (7) = E(u(t)u(t—7))
is the covariance function of the input. It turns out that (1) holds for any
static nonlinearity in a wide class of functions if and only if the input signal is
separable. Separability of a process in Nuttall’s sense means that the conditional
expectation E(u(t — o)|u(t)) satisfy

E(u(t - o) u(t)) = e(o)u(t),

where ¢(0) = Ry(0)/Ry(0). In Nuttall (1958), a number of signals that have
this property are listed, e.g. Gaussian processes, sine wave processes and phase
modulated processes. In addition, McGraw and Wagner (1968) have shown that
signals with elliptically symmetric distributions are separable and they have also
characterized these signals further.

The notion of separable processes is related to Bussgang’s classic theorem
about Gaussian signals (see Bussgang (1952) or, for example, Papoulis (1984)).

Theorem 1.1 (Bussgang)
Let y(t) be the stationary oulput from a static nonlinearity f with a station-
ary Gaussian input u(t), ie., y(t) = f(u(t)). Assume that the expectations
E(y(t)) = E(u(t)) = 0. Then

Ry (1) = boRy(7), VT E€LZ,
where Ry, (1) = E(y(t)u(t — 7)), Ry (1) = E(u(t)u(t — 7)) and by = E(f'(u(t))).

Besides Nuttall (1958), Bussgang’s theorem has been extended to other
classes of signals than Gaussian by Barrett and Lampard (1955) and Brown
(1957). It has also been extended to NFIR systems (see, for example, Scarano
et al., 1993).

In this paper, we restate the extended version of Bussgang’s theorem for
NFIR systems with Gaussian inputs. Furthermore, we show some new results
about how this theorem can be used for structure identification of NFIR systems
or for identification of generalized Wiener-Hammerstein systems. Such systems
consist of three subsystems, first an LTI system followed by an NFIR system and
after that another LTT system. Similar results have previously been presented
for Wiener-Hammerstein systems where the nonlinear block is static (Billings
and Fakhouri, 1982; Korenberg, 1985; Bendat, 1998).

The main purpose of this paper is to analyze some asymptotic properties of
linear model estimates obtained by system identification using input and output
data from nonlinear systems. The system identification method that is studied
here is the prediction-error method (Ljung, 1999), and we will only investigate
its asymptotic behavior when the number of measurements tends to infinity.



A general, parameterized LTI model can be written

y(t) = G(q,0)ult) + H(g, O)e(t), (2)

where G(q,0) describes how the input signal u(t) affects the system output
y(t) and H(q,#) describes the influence of the white noise e(t) and where 6
is a parameter vector. The parameters can, for example, be the coefficients
of the numerator and denominator polynomials of G(g,6) and H(g, 6) if these
functions are rational. The main idea in prediction-error methods is to compare
the measured true system output with output predictions based on (2) using,
for example, a quadratic criterion. By minimizing this criterion with respect to
0, parameter estimates are found.

It can be shown (Ljung, 1978) that the prediction-error parameter estimate
under rather general conditions will converge to the parameters that minimize
a mean-square error criterion E((H1(q,0)(y(t) — G(q,0)u(t)))?). With this
result in mind, it is obvious that the results in this paper explains asymptotic
properties about the prediction-error parameter estimate in the special case
when H(q,0) = 1.

However, the existence of a mean-square error optimal LTI approximation
does not imply that the parameters in a parameterized model will always con-
verge to values that correspond to the optimal model. Of course, this can only
happen if the chosen model structure contains the OE-LTI-SOE. If a parame-
terized model of lower order than the OE-LTI-SOE is used, the parameters will
converge to values that give an as good approximation of the optimal model as
possible for the particular input signal that has been used. Such approximations
of the OE-LTI-SOE are discussed in Section 2.

LTT approximations of nonlinear systems are discussed also by Pintelon and
Schoukens (2001). They use the term related linear system for the mean-square
error optimal LTI approximation and view the part of the output signal that
this model cannot explain as a nonlinear distortion. Relevant material can
be found also in Pintelon et al. (2001), Pintelon and Schoukens (2002) and
Schoukens et al. (2003). Schoukens et al. (2004) have also discussed benefits
and drawbacks of different input signals for LTI approximations.

The idea of deriving an LTI approximation by differentiation of a nonlinear
system is used, for example, by Makila and Partington (2003). They study
LTT approximations of nonlinear systems for [°°-signals and use the notion of
Fréchet derivatives to derive some of the approximations. Related material can
be found in Partington and Mékila (2002), Mékila (2003a), Makila (2003b) and
in Makila and Partington (2004). LTI approximations for deterministic signals
are also discussed in Sastry (1999) and in Horowitz (1993).

2  Output Error LTI-SOEs

In this paper, we will only consider nonlinear systems with input and output
signals that have certain properties. These signal assumptions are listed here.

Assumption Al. Assume that

(i) The input u(t) is a real-valued stationary stochastic process with

E(u(t)) = 0.
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Figure 1: The output error model.

(ii) There exist K > 0 and «, 0 < o < 1 such that the second order moment
Ry(7) = E(u(t)u(t — 7)), satisfies

|R.(7)| < Ko™, vr ez

(iii) The z-spectrum ®,(z) (i.e., the z-transform of R,(7)) has a canonical
spectral factorization

®,(2) = L(z)ruL(z71), (3)

where L(z) and 1/L(z) are causal transfer functions that are analytic in
{z€C:|z| > 1}, L(+00) =1 and r, is a positive constant.

Assumption A2. Assume that

(i) The output y(t) is a real-valued stationary stochastic process with
E(y(t)) = 0.

(ii) There exist K > 0 and «, 0 < o < 1 such that the second order moments
Ry,.(7) = E(y(t)u(t — 7)) and Ry(7) = E(y(t)y(t — 7)) satisty

|Ryu(T)] < Kol vrez,
IR, (7)] < Kal™l, vr ez

In Assumptions Al(i) and A2(i) it is required that both the input and the
output signal have zero mean. In practice, this assumption does not exclude
systems with input and output signals that vary around a nonzero set point from
being analyzed using the results in this paper. For such a system, it is always
possible to define new input and output signals that describe the deviations
from the set point by subtracting the corresponding means of the two signals.
By their construction, these new signals will have zero mean and they will hence
satisfy the zero mean assumption in this paper.

As mentioned above, we will consider here only models where the noise
description H is fixed to 1, i.e., output error models (Ljung, 1999). The structure
of an output error model is shown in Figure 1.

Besides the restriction to output error models, some assumptions concerning
the two basic system properties causality and stability will also be used in this
paper. For the sake of completeness, the definitions used in these assumptions
are included here. First, the notion of a causal or anticausal sequence will be
defined.

Definition 2.1. A sequence (m(k))g>_ ., is causal if m(k) = 0 for all & < 0
and strictly causal if m(k) = 0 for all & < 0. The sequence is anticausal if
m(k) = 0 for all k> 0 and strictly anticausal if m(k) = 0 for all k > 0.



The notion of causality can be used also for LTT systems or models:

Definition 2.2. An LTI system or model is (strictly) causal if its impulse
response is (strictly) causal. Similarly, an LTI system or model is (strictly)
anticausal if its impulse response is (strictly) anticausal.

In some cases, we will need to extract the causal part of a noncausal system.
This will be done using the following notation.

oo

[G(2)]cansal = [ > g(k)Z"“]

k=—o0

= Zg(k)z_k.
k=0

Causality of an LTI system implies that the system output only depends on
past and present values of the input signal. Since all real-life systems are causal
and we want LTI models that resemble the corresponding systems as much as
possible, we will thus only consider causal models here. Note that all results in
this paper can be reformulated, with obvious changes, for strictly causal models
if such are desired.

Another important property of LTI systems is stability. In this paper, we
will only use the type of stability called bounded input bounded output stability,
which is defined as follows.

causal

Definition 2.3. An LTI system or model with impulse response g(k) is stable
Y Jg(k)] < +oo.

Here, we will only study stable and causal output error models. Hence, the
mean-square error optimal LTI approximation of a certain nonlinear system is
simply the stable and causal LTI model Gy, or that minimizes

E((y(t) — G(a)u(t))*)-

This model is often called the Wiener filter for prediction of y(t) from (u(t —
k)N, (Wiener, 1949). However, we will instead call Gy or the Output Error
LTI Second Order Equivalent (OE-LTI-SOE) of the nonlinear system.

There are two main reasons for the change of name from the commonly used
Wiener filter to OE-LTI-SOE. First, we want to avoid any ambiguities. Many
different Wiener filters can be constructed for a given pair of input and output
signals. Here, however, we are only interested in the Wiener filter that predicts
y(t) from (u(t — k).

The second reason for the change of name is that we want to emphasize that
the OE-LTI-SOE is an equivalent to the nonlinear system in the sense that it
can explain the causal part of the cross-covariance function Ry, (7) between the
input and output of the system. This observation, which is rather obvious for
OE-LTI-SOEs (see Corollary 2.2), becomes more interesting if LTT models that
contain a general error description, i.e., models with H # 1, are studied. LTI-
SOEs can be defined also in this case. It turns out that these LTI equivalents can
explain both the covariance function R,(7) and the cross-covariance function
R, (7). Hence, such models are equivalents to the nonlinear system when it
comes to second order properties.

It should be noted that we are not only interested in the filtering and predic-
tion capabilities of the OE-LTI-SOE, but also in the model itself. For example,



we are not only interested in how good an estimate of y(¢) the model can pro-
duce, but also in issues like how the model order and model coefficients depend
on the nonlinear system and on the input signal. The notion of an OE-LTI-SOE
of a nonlinear system is summarized in the following definition.

Definition 2.4. Consider a nonlinear system with input «(¢) and output y(t)
such that Assumptions Al and A2 are fulfilled. The Output Error LTI Second
Order Equivalent (OE-LTI-SOE) of this system is the stable and causal LTI
model Gy or(g) that minimizes the mean-square error E((y(t) — G(q)u(t)?),
ie.,
Go.on(q) = argmin E((y(t) — Glo)u(t))"),
€

where G denotes the set of all stable and causal LTI models.

The concept of LTI-SOEs has been discussed, for example, in Ljung (2001)
and Enqvist (2003). Some of the material of this paper is based on Enqvist and
Ljung (2003). Some intriguing examples of OE-LTI-SOEs based on the theory
presented here are given in Enqvist and Ljung (2004). It should immediately
be pointed out that the OE-LTI-SOE of a nonlinear system depends on which
input signal that is used. Hence, we can only talk about the OE-LTI-SOE of
a nonlinear system with respect to a particular input signal. The following
theorem is a direct consequence of classic Wiener filter theory.

Theorem 2.1
Consider a nonlinear system with input u(t) and output y(t) such that Assump-
tions A1 and A2 are fulfilled. Then the OE-LTI-SOE Gy, or of this system is

1 D, (2)
G = |2 4
o) = ey 7o) W
where [.. .Jcausal denotes taking the causal part and where L(z) is the canonical

spectral factor of ®,(z) from (3).

Proof: See, for example, Ljung (1999, p. 276) or Kailath et al. (2000, pp. 231-
233). O

In general, the OE-LTI-SOE has to be calculated as in (4), which means that
the canonical spectral factor L(z) of the input z-spectrum has to be obtained.
However, in some cases this is not necessary and the OE-LTI-SOE can be cal-
culated using a simplified expression. This is shown in the following corollary.

Corollary 2.1

Consider a nonlinear system with input w(t) and output y(t) such that Assump-
tions A1 and A2 are fulfilled, and assume that the ratio ®,,(2)/®,(z) defines a
stable and causal LTI model. Then

_ (I)yu(z)

.05 =3,
Proof: Assume that B,.(2)
_ PyulZ
C(z) = B(2)



is a stable and causal transfer function. Then
D, (2) =C(2)0y(2) = O(Z)L(Z)TuL(Zil)
and (4) gives

1 C(2)L(2)ry L(z71)

Go,0(2) = roL(2) L(z0)

=C(2),

causal

since C(z)L(2)r, is a stable and causal transfer function. O

The following corollary shows that the OE-LTI-SOE can explain the causal
part of ®,,(z).

Corollary 2.2
Consider a nonlinear system with input u(t) and output y(t) such that Assump-
tions A1 and A2 are fulfilled. Let the residuals be defined by

no(t) = y(t) — Go,or(q)u(t). (5)

Then
Ppou(z) = Pyu(z) — Go,08(2)Pu(?) (6)

is strictly anticausal.

Proof: The requirement that Go og should minimize E((y(t) — G(q)u(t))?) is
equivalent to the Wiener-Hopf condition

Ryu(m) =Y goon(k)Ru(r —k) =0, 7>0. (7)
k=0
The result follows directly from (7). O

For most systems, the order of the OE-LTI-SOE is unknown. In practice,
this implies that several output error models have to be estimated and that a
validation procedure has to be used in order to find the best model. Naturally,
there is no guarantee that the correct order of the OE-LTI-SOE will be found.
As a matter of fact, the OE-LTI-SOE can sometimes be an infinite order model.
Hence, it is interesting to characterize in what sense an output error model with
lower order than the OE-LTI-SOE approximates the OE-LTI-SOE.

This is a relevant question also when the true system is an LTI system. In
that case, it can be shown that a low order model will approximate the true
system mainly for frequencies where @, (e?) is large (Ljung, 1999, p. 266). As
a matter of fact, this result holds also when the true system is nonlinear. In
this case, a low order output error model will approximate the OE-LTI-SOE
instead of the true system. This approximation will be as good as possible for
frequencies where @, (e™) is large according to the following theorem. This
theorem is basically a special case of Theorem 4.1 in Ljung (2001) and the proof
is very similar to the outlined proof in Problem 8G.5 in Ljung (1999).

Theorem 2.2
Consider a nonlinear system with input u(t) and output y(t) such that Assump-
tions A1 and A2 are fulfilled. Let Go,or be the corresponding OE-LTI-SOE



according to Theorem 2.1. Suppose that a parameterized stable and causal out-
put error model G(q,0) is fitted to the signals u and y according to

0= arg min E(r(t, 0)%), (8)
where
n(t,0) = y(t) — G(g, O)u(?). (9)
Then it follows that
0= argmin [ [Go.op(e") — G, 0 (¢) do (10)
Proof: See Appendix A. O

Theorem 2.2 shows that a low order output error model approximation of
an OE-LTI-SOE results in the same kind of approximation as a low order ap-
proximation of an LTI system. More specifically, (10) shows that if ®,(e™) is
large in a certain frequency region, the parameter vector 6 will be chosen such
that

Go.05(e*) — G(e,0)|

is small in that frequency region.

However, it is important to remember that there is a major difference be-
tween the linear and the nonlinear cases. If the true system is an LTT system,
it is always desirable to approximate it as well as possible, at least for some
frequencies. On the other hand, if the system is nonlinear, there is no guarantee
that the OE-LTI-SOE is a good model of the system for any other input signals
than the one it was defined for. Actually, it might be a bad model also for this
signal. For example, if a second order output error model is estimated and the
input power is focused in a certain frequency region, the model will in general
approximate a different OE-LTI-SOE than if, for example, a white input signal
had been used.

These observations make it much harder to design the input such that it is
suitable for low order LTI approximations when the system is nonlinear. Some
examples of input signals that might be suitable for this purpose will be given
later in this paper.

So far, we have made no explicit assumptions about the structure of the
nonlinear system. Although structural assumptions are not necessary for the
existence of the OE-LTI-SOE, it is hard to draw any conclusions about the
properties and usefulness of these second order equivalents without any further
information about the nonlinear system.

One important structural property of a system is how the noise enters. For
the results in this paper, we will need the following assumption that says that
the noise is additive and uncorrelated with the input and the noise-free output.

Assumption A3. Assume that the output y(¢) can be written
y(t) = yng (t) + w(?), (11)

where y,s is the noise-free response of the nonlinear system and not depen-
dent on other external signals than u, and where w is a noise term which is
uncorrelated with v and y,; and which has zero mean.



In addition to the assumption of additive noise, we will here assume that
the system is a nonlinear finite impulse response (NFIR) system, i.e., a system
that can be written

y(t) = f((ult = k)ilo) +w(t) (12)

for some M € N. Here, the compact notation

F((ult = k))iLo)

simply means f(u(t),u(t — 1),...,u(t — M)). Intuitively, the natural LTI ap-
proximation of an NFIR system is an FIR model. However, the mean-square
error optimal LTI approximation, i.e., the OE-LTI-SOE, of such a system will
in general be an LTT system with an infinite impulse response.

This might not be a problem if the impulse response length M of the NFIR
system is known, since it is always possible to estimate an FIR model with the
same impulse response length in that case. Although this model might not be
the optimal LTI model, it will at least have a structure that probably can be
viewed as reasonable compared to the structure of the nonlinear system.

However, in the more realistic case that M is unknown, the structure of the
OE-LTI-SOE becomes important. If an NFIR system with impulse response
length M has an OE-LTI-SOE which is an FIR model with impulse response
length M it will be rather easy to find an appropriate linear FIR model of this
system. When the number of measurements tends to infinity, the parameters of
a chosen FIR model will converge to the parameter values given by Theorem 2.2.
The problem of finding the impulse response length M of the NFIR system can
thus be solved by estimating linear FIR models with different impulse response
lengths. If too large an impulse response length is chosen in the model, the
parameters that correspond to the extra terms in the impulse response will
simply approach zero asymptotically, just as if the NFIR system would have
been a linear FIR system. Hence, it is possible to estimate M without more
effort than if the true system would have been linear.

On the other hand, if an NFIR system with impulse response length M has
an OE-LTI-SOE with an infinite impulse response length, it will be impossible
to estimate M using only linear approximations. In this case, an increase of
the impulse response length in an estimated FIR model will reduce the variance
of the model residuals and make the model a better approximation of the OE-
LTI-SOE according to Theorem 2.2. However, since the OE-LTI-SOE has an
infinite impulse response, no information about M can be derived from the FIR
approximations of it.

With the previous discussion in mind, it seems that it often should be de-
sirable to preserve the finite impulse response property when an NFIR system
is approximated by its OE-LTI-SOE. In the next section, we will present a nec-
essary and sufficient condition on the input signal for the OE-LTI-SOE of an
arbitrary NFIR system to be an FIR model. It will be shown that this condi-
tion is that the input process should be separable of a certain order (in Nuttall’s
sense (Nuttall, 1958)).



3 OE-LTI-SOEs of NFIR Systems with Separa-
ble Input Processes

We will here consider NFIR systems (12) with input signals u(¢) that fulfill
the conditions in Assumption Al, i.e., real-valued inputs with zero mean, an
exponentially bounded covariance function and a z-spectrum with a canonical
spectral factorization. For each choice of such a stochastic process u, let D,, be
a class of Lebesgue integrable functions such that

Dy ={f:RM*' =R : E(f((u(t - k)ilo)) =0,
E(f((u(t = k)ilo)?) < oo
Ry (o) = E(f((u(t — )M u(t — o)) exist Yo € Z}.
Note that the conditions in the definition of the class of functions D,, are weaker

than the related conditions on the output signal in Assumption A2. Here, we
will use the following notation:

RUO)  Ru() .. Ru(M)
Ru(l)  Ru(0) ... Ru(M-1)

Ry=| : (13)
Ro(M) Ru(M—1) ...  Ru(0)

Ry = (Ryu(0) Ryu(1) .. Ryu(M))"

We will in this section discuss under which conditions the OE-LTI-SOE of
an NFIR system will be an FIR model. In this discussion, we will need the
notion of the mean-square error optimal FIR model of a system. The following
lemma is a classic result (see, for example, Kailath et al., 2000, Theorems 3.2.1
and 3.2.2) and holds for each fixed choice of u.

Lemma 3.1 (FIR approximation)

Consider an input signal u that fulfills the conditions in Assumption A1 and for
which Ry > 0. Then for each NFIR system f in the corresponding class D,
there exists a unique linear FIR model of length M

M

Gorir(z) = by(k)z""

k=0

that is an optimal FIR(M) approzimation in the mean-square error sense. This
FIR model has parameters

= = = = T _
By = (bs(0) by(1) by(M))" =Ry 'Ryy (14)
and satisfies
M —
Ryu(0) = be(k)Ru(c — k), o=0,1,..., M. (15)
k=0
Proof: See, for example, Kailath et al. (2000). O

10



From (15) we see that Go prr can explain the cross-covariance function
Ry, (o) for ¢ = 0,1,..., M. However, sometimes it can actually explain the
complete cross-covariance function, i.e.,

Ryu( be —k), VoelZ (16)
k=0

or, equivalently,
D, (2) = Go,rir(2)Dyu(2).

In this case, we know from Corollary 2.1 that Gy, prr is not only the mean-square
error optimal FIR(M) approximation of the system, but also the OE-LTI-SOE
of the system. It turns out that this will always be true if the input process is
separable of order M +1. Separability of a process means that certain conditional
expectations are linear. This is stated more clearly in the following definition.

Definition 3.1 (Separability of order M + 1). Consider an integer M > 0
and a stationary stochastic process u with zero mean. This process is separable
of order M + 1 if

E(u(t = o)|u(t),u(t = 1) ..., u(t = M))

M
Zamut—z Yo € Z, (17)
=0

i.e., the conditional expectation is linear in w.

In Nuttall (1958), the notion of separability of order one is discussed in detail
and it is also mentioned briefly (on p. 76) that this notion might be extended
to separability of higher orders by considering integrals like

oo
/ Itp(xt, Tt—7yy It—m) dxy.

— 00

However, no further conclusions are drawn in Nuttall (1958) and to the authors’
knowledge, no such extension has been made elsewhere.

Since (17) is a well-known property of Gaussian signals (see, for example,
Brockwell and Davis, 1987, p. 64), it immediately follows that such signals are
separable of order M + 1 for any M € N. Furthermore, it is easy to see that
white, possibly non-Gaussian, signals fulfill (17) too. A nontrivial example of a
separable process is described in the following example.

—— Example 3.1

Consider a process u defined as
u(t) =e(t)+e(t—1),

where e is a white process with exponential distribution over the interval [—
+00) such that E(e(t)) = 0 and E(e(t)?) = 1. These properties follow if each
random variable e(t) has the probability density function p(z) = e~(*+1) for
x> —1.

11



Since the process e is white, u(t + 7) and u(¢) are independent if |7]| > 1.
Hence, E(u(t 4+ 7)|u(t)) = 0 for |7| > 1. Furthermore, we have that

E(u(t + 1)|u(t)) = E(e(t + 1)|e(t) + e(t — 1))
=0
E(e(t)le(t) +e(t — 1))
= E( (t)e(t) +e(t — 1)),
E(u(t — 1lu(t)) = E(e(t — 1)|e(t) + e(t — 1))
+ E(e(t — 2)|e(t) +e(t — 1))
=0
=E(e(t —1)|e(t) + e(t — 1)).

From these expressions we see that u is separable of order one if e is such that

E(e(t)]e(t) +e(t —1) =c)
=E(e(t—De(t) +elt—1)=c)=b-c (18)

for some constant b that does not depend on ¢. We will now show that these
equalities hold.
Let X and Y be two independent random variables with probability density

functions
(2) = e” @) if g > 1,
PXII =19 0 ifr < —1

and (1)
eV ify > —1,
Py (y) = { 0 ify < —1,
and let W = X + Y. Then the joint probability density function for X and W
is
px,w(l‘, w) = px (z)py (w — x)
_{ e (Wt jf _ 1<z <w+l1,
10

otherwise.

For w > —2, it follows that

w41
pw (w) = / pxw (@, w)de
—1

w—+1
= / e~ dp = (w4 2)e (w2

-1
such that

pw (w)

(w2 if > -2,
10 if w< —2.

This gives

px.wi(z,e) 1 e
Px|w=c(z) = pw(a — oz I —lsa<etl,
’ 0 otherwise,

12



and )
c+ T

E(X|W:c):[1 c+2dx:§. (19)

Replacing W with e(t) + e(t — 1) and X with either e(t) or e(t — 1) in (19)
shows that (18) holds with b = 1/2. Hence,

E(u(t + 1)|u(t) = ¢) = E(u(t — D)|u(t) =¢) = =

and u is thus separable of order one.

Besides the results about mean-square error optimal stable and causal LTI
predictors, which here have been used to define OE-LTI-SOEs, classic Wiener
filtering theory also contains results about mean-square error optimal stable
noncausal LTI predictors, usually known as Wiener smoothers (see, for example,
Kailath et al., 2000, Theorem 7.3.1). For a nonlinear system with input u and
output y that satisfy Assumptions A1l and A2, these results show that the best,
in mean-square error sense, stable but possibly noncausal LTI approximation of
this system is given by the ratio

(20)

A simple example of a causal nonlinear system with an input such that (20)
becomes noncausal can be found in Forssell and Ljung (2000). However, for a
separable input, this cannot happen since the following result holds.

Theorem 3.1

Consider a fized M > 0 and a certain input signal u that fulfills the conditions
in Assumption A1, and for which Ry > 0 and E(|u(t)]) < co. Consider NFIR
systems

Y(t) = yur () +w(t) = F((ult — k)ilo) +w(t),
where the noise w(t) is such that Assumption A3 (see (11)) is fulfilled for all

f. Then the OE-LTI-SOFE of such a system will be well-defined and equal to a
linear FIR model

M
GO,OE(Z) = (I;)Uu((zz)) = Z Bf(k)z_kv (21)
“ k=0

where By = RalRYU for all f € D,, if and only if u is separable of order
M+1.

Proof: See Appendix B. O

Theorem 3.1 shows that separability of order M + 1 is a necessary and
sufficient condition for the OE-LTI-SOE to be equal to an FIR model of length
M for all NFIR systems defined by functions in D,,. Furthermore, this theorem
shows that even if we consider noncausal LTI models, a separable input will give
an optimal model that is a causal FIR model.

In many cases, it is possible to shed some light on a theoretical result by
interpreting it in a geometrical framework. This can as a matter of fact be done

13



also in our case. For a fixed ¢, we can view the output y(¢) and the components of
the input signal u(7), 7 € Z as vectors in an infinite dimensional inner-product
space with the inner product < u,v >= E(uv) (see Brockwell and Davis, 1987).

The output from the OE-LTI-SOE of the NFIR system will in this framework
be the orthogonal projection of y(t) into the linear subspace that is spanned by
u(t), u(t —1), ..., u(t — 00). From (21) we can draw the conclusion that this
projection actually lies in the finite dimensional linear subspace that is spanned
by w(t),u(t —1),...,u(t — M) if u is separable.

As mentioned above, the set of all Gaussian signals is a subset of the set
of separable signals. Hence, for an NFIR system with a Gaussian input, the
cross-covariance function between y and w can always be written as in (16).
This result is a kind of generalization of Bussgang’s theorem (Theorem 1.1) to
NFIR systems. The reason why (16) is not a proper generalization of Bussgang’s
theorem is that it is not obvious that the coefficients b (k) can be calculated
as expectations of derivatives of f in the same way as by = E(f’'(u(t))) in
Theorem 1.1. However, using a direct proof based on the properties of Gaussian
probability density functions, this property of the coefficients can also be shown.

4 OE-LTI-SOEs of NFIR Systems with Gaussian
Input Processes

The generalization of Bussgang’s theorem to NFIR systems can be found in, for
example, Scarano et al. (1993) and has also previously been used in the research
area of stochastic mechanical vibrations (see, for example, Lutes and Sarkani,
1997, Chap. 9). We will however restate the result here under the following
technical assumptions.

Assumption A4: Assume that the real-valued functions f(x) and p(Z), where
z € RY and # = (27, zn41)" € RVFL are such that f-p, f, -p and
f-@i-p,i=1,...,(N+1) all belong to L}(RN*1) and that f(x)p(z) — 0
when || — +o0. (Here, f, is the partial derivative of f with respect to

Assumption A5: Consider two stationary stochastic processes v and y such
that y(t) = f((u(t — k))M,). Assume that u is a Gaussian process with
zero mean and that E(y(¢t)) = 0. Form random vectors

we = (u(t),u(t —1),...,u(t — M),u(t — o))" (22)

with ¢ <0 or ¢ > M. Let P, and p, denote the covariance matrices and
joint probability density functions of these vectors, respectively. Assume
that det P, # 0 and that f and p, satisfy Assumption A4 for all o < 0 or
o> M.

Assumptions A4 and A5 assure that the input is Gaussian and that the
function f(x) does not grow too fast. Assumption A4 holds if, for example,
f is a polynomial and p is a Gaussian probability density function. These
assumptions are used in the following theorem.

14



Theorem 4.1

Let y(t) = f((u(t — k))M,) be an NFIR system with a stationary Gaussian
process u as input. Assume that u and y satisfy Assumption A5. Then it follows
that

M
Ryu(7) =Y b(k)Ru(T — k), V7€, (23)
k=0

where

b(k) = E(f1ie— (ult = §))70))-
Proof: See Appendix C. Scarano et al. (1993) give a proof of this result under
different technical assumptions. O

As mentioned above, the previous theorem can be viewed as a generalization
of Bussgang’s theorem to NFIR systems. Using z-transforms, the result (23) can
also be written as

Pyu(2) = B(2)®Pu(2), (24)
where B(z) = 22/[:0 b(k)z~*. This relation can be used to characterize the
OE-LTI-SOE of an NFIR system with a Gaussian input. As has been previ-
ously mentioned, the OE-LTI-SOE is in general obtained by the Wiener filter
construction in (4). However, from (24) we see that the ratio ®,,(z)/®.(2) is
stable and causal if the nonlinear system is an NFIR system with a Gaussian
input. Hence, with Corollary 2.1 in mind we can state the following theorem.

Theorem 4.2
Consider an NFIR system

y(t) = f(ult = k)ilo) +w(t)

with a Gaussian input u(t) such that Assumptions A1, A2, A3 and A5 are
satisfied. Then the OE-LTI-SOE of this system is the linear FIR model

M

Go.or(2) = q;)y“((;; = b(k)z7", (25)
“w k=0
where
b(k) = E(f i) ((ult = 5))}L0))- (26)

The fact that expression (26) holds for a Gaussian input but not for a general
separable input might seem like a minor difference. However, it will be shown in
the next section that (26) can be rather useful if the purpose of estimating a lin-
ear model is to obtain information about the structure of the nonlinear system.
In this case, a Gaussian process is a more suitable choice of input signal than
a general separable process. Furthermore, Gaussianity of a process is preserved
under linear filtering while separability in general is not. An application where
this fact is crucial will also be described in the next section.

5 Applications

As mentioned above, the characterization (25) of the OE-LTI-SOE of an NFIR
system with a Gaussian input is not only theoretically interesting, but can also
be useful in some applications of system identification. We will here briefly
discuss two such applied identification problems.
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5.1 Structure Identification of NFIR Systems

The most obvious application of the result (25) is perhaps to use it for guidance
when an NFIR system is going to be identified. However, linear models are not
useful for all types of NFIR systems. Any NFIR system can be written as a sum
of an even and an odd function. Since all Gaussian probability density functions
with zero mean are even functions, the OE-LTI-SOE of an NFIR system is only
influenced by the odd part of the system.

Hence, we will here only consider odd NFIR systems, i.e., NFIR systems

y(t) = f((u(t — i — j))}L,) where

F(=ult = ny, = ));Z0) = —F((ut = = §))550).

When such an odd NFIR system is going to be identified, it is in general not
obvious how the time delay nj, and order M should be estimated in an efficient
way. However, if the input is Gaussian and sufficiently many measurements
can be collected, ny and M can both be obtained from an impulse response
estimate. Such an estimate can be computed very efficiently by means of the
least squares method.

Furthermore, if only a few of the input terms u(t — ng), u(t — ng — 1),...,
u(t — ny — M) enter the system in a nonlinear way, it might be interesting to
know which these terms are. If a nonlinear model of the system is desired, this
knowledge can be used to reduce the complexity of the proposed model. A coef-
ficient b(j) in (25) will be invariant of the input properties if the corresponding
input term w(t — j) only affects the system linearly, while an input term that
affects the system in a nonlinear way will have an input dependent b-coefficient
in (25).

This fact makes it possible to extract information about which nonlinear
terms are present in the system simply by looking at the differences between
FIR models that have been estimated with different Gaussian input signals.
The coefficients that correspond to an input term that enters the system in a
nonlinear way will be different in these estimates, provided that the covariance
functions of the inputs are different. This idea is used in the following example.

—— Example 5.1

Consider the nonlinear system y(t) = u(t) +u(t — 1) and assume that the input
to this system is Gaussian and such that the conditions in Theorem 4.2 are
fulfilled. Then the OE-LTI-SOE of this system will be

Go,0e(q) = b(0) +b(1)g ",

where b(0) = 1 and b(1) = 3R, (0). If the variance of the input is changed, b(1)
will change too, while b(0) will remain equal to one. Hence, it is easy to see
which input signal component affects y(¢) in a nonlinear way.

5.2 Identification of Generalized Wiener-Hammerstein
Systems

In the introduction, we mentioned that Bussgang’s theorem has been used
to show important results concerning the identification of Hammerstein and
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— LTI NFIR LTT [——

Figure 2: A generalized Wiener-Hammerstein system.

Wiener systems (see, for example, Billings and Fakhouri, 1982). In principle,
these results state that an estimated LTI model will converge to a scaled version
of the linear part of a Hammerstein or Wiener system when the number of mea-
surements tends to infinity, provided that the input is Gaussian. These results
simplify the identification of Wiener and Hammerstein systems significantly.

Hence, it is interesting to investigate if the result (25) about the OE-LTI-
SOEs of NFIR systems can be used to prove similar results for extended classes
of systems. In this section, we will study a type of systems that we will call
generalized Wiener-Hammerstein systems.

More specifically, we will call a nonlinear system a generalized Wiener-
Hammerstein system if it consists of an LTI system n(t) = Gi(q)u(t) fol-
lowed by an NFIR system v(t) = f((n(t — k))},) followed by an LTT system
y(t) = G2(q)v(t) as is shown in Figure 2. The following corollary to Theorem 4.2
shows that the OE-LTI-SOE of such a system has a certain structure.

Corollary 5.1

Consider a generalized Wiener-Hammerstein system y(t) = Ga(q)v(t) +
where v(t) = f((n(t—k))M,) and n(t) = G1(q)u(t) and where G1(q) and G2
are stable and causal LTT systems. Assume that u(t) is Gaussian and that u
and y(t) fulfill Assumptions A1, A2 and A3. Assume also that n(t) and v
fulfill Assumptions A1, A2 and A5. Then the OE-LTI-SOFE of this system is

GO,OE(Z) = GQ(Z)B(Z)Gl(Z), (27)

where B(z) = ZQ/[:O b(k)z=* and

w(t

/\/\

)
q)
t)
t)

—_——

Proof: We have

By (2) = Ppu(2)G1(271), (28b)
B, (2) = G1(2)Pu(2)G1(z7 ). (28c¢)

In addition, Theorem 4.2 gives that
Dy (2) = B(2)Pn(2)- (29)
Inserting (28b) and (28c) in (29) gives
Dyu(2) = B(2)G1(2)Pu(2), (30)
and inserting (28a) in (30) gives
D, (2) = G2(2)B(2)G1(2) @y (2).
Hence, (27) follows from Corollary 2.1. O
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Corollary 5.1 shows that the OE-LTI-SOE of a generalized Wiener-Hammer-
stein system with a Gaussian input will be G3(2)B(2)G1(z), and hence an esti-
mated output error model will approach this model when the number of mea-
surements tends to infinity. In particular, as B(z) is an FIR model, this shows
that the denominator of the estimated model will approach the product of the
denominators of G; and G if the degree of the model denominator polynomial
is correct.

We will thus get consistent estimates of the poles of G; and G5 despite the
presence of the NFIR system. This is particularly useful if either G; or Go
is equal to one, i.e., if we have either a generalized Hammerstein or a gener-
alized Wiener system. The consistency of the pole estimates for a generalized
Hammerstein system is verified numerically in Example 5.2.

—— Example 5.2

Consider a generalized Hammerstein system

y(t) = G(a) f(u(t), u(t — 1)) + w(t),
where

1
T 1+06gL+0.1¢g2
fu(t),u(t — 1)) = arctan(u(t)) - u(t — 1)?

G(q)

and where w(t) is white Gaussian noise with E(w(t)) = 0 and E(w(t)?) = 1.
Let the input u(t) be generated by linear filtering of a white Gaussian process
e(t) with E(e(t)) = 0 and E(e(t)?) = 1 such that

~1-08¢'40.1¢72
N 1—-0.2¢71

u(t) e(t),
and assume that e(t) and w(s) are independent for all ¢, s € Z.

This input signal has been used in an identification experiment where a data
set consisting of 100 000 measurements of u(t) and y(t) was collected. The large
number of measurements has been chosen since the convergence towards the OE-
LTI-SOE might be slow. A linear output error model GOE with ny, =ny = 2
and ng = 0 has been estimated from this data set and the result was

Cosla) = 0.762 — 0.682¢"
OF\) = 13706131 + 0.102¢-2"

(31)

As can easily be seen from (31), the denominator of Gog(q) is indeed close
to the denominator of G(g). This is exactly what one would expect as the
previous theoretical discussion give that the OE-LTI-SOE of the generalized
Hammerstein system is the product between G(g) and an FIR model B(q).

The following example verifies Corollary 5.1 also for a particular generalized
Wiener system.
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—— Example 5.3 .

Consider a generalized Wiener system consisting of the same linear and nonlin-
ear blocks as the generalized Hammerstein system in Example 5.2 but with the
linear block before the nonlinear, i.e.,

y(t) = f(n(t), n(t — 1)) + w(t),
n(t) = G(qu(t),
where
1
Gl = T 06T 10102
f(n(t),n(t — 1)) = arctan(n(t)) - n(t — 1),

and where w(t) is white Gaussian noise with E(w(t)) = 0 and E(w(t)?) = 1.
Let the input u(t) be generated in the same way as in Example 5.2, i.e.,

1—-0.8¢71+0.1g72
u(t) = 1 _ 0.2q_1 e(t)7

where e(t) is a white Gaussian process with E(e(t)) = 0 and E(e(¢)?) = 1 such
that e(t) and w(s) are independent for all ¢, s € Z.

An identification experiment has been performed on this generalized Wiener
system with a realization of this w(t) as input and 100000 measurements of
u(t) and y(t) have been collected. A linear output error model Gog(q) with
ny = ny = 2 and n; = 0 has been estimated from the measurements and the
result was

Conle) = 0.929 — 2.053¢~
OF\M) = 0596 + 0.0971q— 2"
From (32) we can see that the denominator of Gog(q) is close to the denomi-

nator of G(q) also when the data has been generated by a generalized Wiener
system.

(32)

6 Conclusions

In this paper, we have shown that a necessary and sufficient criterion on the
input signal for the OE-LTI-SOE of an arbitrary NFIR system to be an FIR
model is that the input is separable of a certain order. We have also noted
that the set of Gaussian processes is a subset of the set of separable processes.
For Gaussian inputs, the fact that the OE-LTI-SOE of an NFIR system is an
FIR model follows from a generalized version of Bussgang’s theorem. Here, we
have presented some applications of this result for structure identification and
identification of generalized Wiener-Hammerstein systems.
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A Proof of Theorem 2.2

Proof: The z-spectrum of 7(¢,0) is

D,(2) DPuy(z) -G(z74,0)
1) <(I’yu(z) (2 ) ( 1 )
() - Gwm J(2) = Gz, 0)Dy(2) + Gz, 0)0,(2)G(=1, 0

= (-G
O, (
(

Let

D, (eiv)

—T

Parseval’s relation gives

B(007) = 5= [ @u(e,0) o

(I)yu(eiw)

o Do) G(e™,0)] @u(e™)dw + Ag
= % i Go,or(e™) + w —G(e™,0) 2 @, (") dw + Ag
_ % : |Go.o5 (%) — G(e™,0)|” Bu(e™) dw
+ % ' pule)(G.08(e7) ~ Gle ) d
+;_iéwﬁiwmmmw%—cw%me+%+Bm

where we have used (6) in the third equality. Since ®,,,,(z) by Corollary 2.2 is
strictly anticausal and since Go og(%) and G(z,6) both are causal, a term-by-
term integration shows that

1 i . . .

o D,0.(e")(Go,0r(e™™) — G(e™™,0)) dw =0,
1 i . . .

o Q,0u(e”)(Go,0r(e"”) — G(e",0)) dw = 0.

Thus

1 & . ) )
EG(t,0)) = 5- / (Go.08(¢%) — (e, 8)|> B(e) dw + Ay + B

and (10) follows as Ag and By are independent of 6. O
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B Proof of Theorem 3.1

First, we will here consider noise-free NFIR systems, i.e., nonlinear systems with
impulse response lengths M > 0 that can be written as

y(t) = f((ult = k))ilo)-
We will use the following notation

Ry, = (Ru(0) Ru(o—1) ... Ru(o—M))",

and we will assume that Ry (see (13)) is a positive definite matrix (Ry > 0)
such that the vector

Co=(Con Con - comt) =Ry'Rug (33)

is well-defined.
We will now show that the definition of separability implies that a,; = cs,;-
For £k =0,1,..., M, Definition 3.1 gives
Ry(0 — k) = E(u(t — k)u(t — 0))

E(E(u(t — k)u(t — o)lu(t),u(t —1)...,u(t — M)))
E(u(t — k)E(u(t — o)|u(t),u(t — 1) ..., u(t — M)))

M M
Z ao E(u(t — k)u(t —i)) = Z a5 Ry (k — 7).
i=0

i=0
Here, we have used the facts that

E(Y)=E(EY|X)), (34a)
E(g(X)Y|X) = g(X)E(Y]X) (34b)

(see, for example, Gut, 1995, Chap. 2). If A, is defined as
A, = (ag,o g1 - aU)M)T,
the previous expression can also be written as
RyAs, =Ry
This shows that A, = R,}lRUﬁ = C,. Hence, separability of order M + 1
means that the property

M
E(u(t —o)|u(t),u(t—1)...,ut — M)) = Z Coiu(t—1i), VoeZ  (35)
i=0

holds.
In the next lemma, we will show that separability of u is a necessary and
sufficient condition for the equality (16) to hold for all ¢ € Z and for all f € D,,.
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Lemma B.1 (Separability of order M + 1)

Consider a fited M > 0 and a certain choice of input signal u that fulfills the
conditions in Assumption A1, and for which Ry > 0 and E(|u(t)|) < oco. Let By
denote the parameters of the mean-square error optimal FIR(M) approzimation
of each f € D,, i.e., Bf = RalRYU according to Lemma 3.1. Then

M
Ryu(0) =Y bs(k)Ru(c — k), Vo €Z andVf € D, (36)
k=0

if and only if u is separable of order M + 1.
Proof: Using (33) and (14), it follows that

M M
> bp(k)Ru(o — k) = BfRyo = R{;Co = Y coiRyuli). (37)
k=0 =0

IF: Assume that u is separable of order M + 1, i.e., that (35) holds. By the
construction of By, the equality (36) already holds for o = 0,1,..., M for all
f € D, (cf. (14)). Take an arbitrary f € D, and let y(t) = f((u(t — k))M,).
Furthermore, take an arbitrary ¢ > M or o < 0. Then it follows that

Ryu(0) = E(y(t)u(t — o)) = E(E(y()u(t — o)lu(t),u(t = 1),...,u(t — M)))
= E(y(t)E(u(t — o)u(t),u(t — 1),...,u(t — M)))

—~

M M M B
=Y coiB(ythult — i) = > coiRyu(i) =Y _bs(k)Ru(o — k),

=0 =0 k=0

where we have used (34a) in the second equality. The third equality follows
from (34b) and the fact that y(¢) depends only on w(t),u(t —1),...,u(t — M)
while the fourth equality follows from (35) and the last from (37). Since both
f and o were arbitrary, (36) holds for all ¢ € Z and for all f € D,,.

ONLY IF: Assume that (36) holds for a particular w. Take an arbitrary o > M
or o < 0. Using (37), (36) gives the equality

oo
/ f(l”t, cee 7xt7M) (/ xtfapa(xh s Tt—M, xtfo) dri—g
RM+1 — 0
M (38)
- Zcmﬂ?t—ip(ft’ e axt—M)>d$t coodrypy =0, Vf €D,
i=0

where p and p, are the joint probability density functions of (u(t),u(t —1),...,
u(t — M) and (u(t),u(t —1),...,u(t — M),u(t — 0))T, respectively. Let

o
Urr(xta v 7xt—M) = / It—ﬂpa'(zta vy Tt—M, It—a’) dxt—a'

—00
M

- § Ca,ixtfip(xtv s 71'th)
=0

and define a function

folae, ..oy xe—pr) = sign(vy (Te, .- ., Te—pr)) — po,
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where
po = E(sign(vy ((u(t — k))1Lo)))-
Since
E(fo((u(t — k))iLy)) =0
E(fo((u(t = k)iLe)?) < oo

and

E(fo((u(t — k)xZo)u(t — 7))
= [E(sign(ve ((u(t — k))ilo))u(t — 7)) = po B(u(t — 7)) |
—_——

=0
= |E(sign (v ((u(t — k))ilo))u(t — 7))

< E([sign(ve ((u(t — k))xZo))u(t — 7))

<E(u(t —7)|) < o0, VTELZ,

it follows that fy € D,. Hence, (38) holds for f = fy and this implies that
/ |vo (e, .oy Te—pg)| e . .. dxe—pp
RM+1

— po E(u(t — o)) Jr,uOZc(” u(t—14)) =0
\W_/

=0
= |vo (e, Te—pr)| day ... dxg_pr =0
RM+1
= Uy (Tt,...,2—p) =0 almost everywhere.

The conditional probability density function of u(t—o) given u(t) = x4, u(t—1) =
Tp1y. . u(t — M) =ax4_pr is

pa(xta v 7xt7Maxt70)

T_ =
Poc(@i-0) P(Te, .., Te—pr)

if p(a¢, ..., 2:—p) > 0. Hence, the fact that

Vo (Tt ooy Tp—ps) =0
implies that
o]
/ Ti— Upa c(xt o’ dxt o ZCU iLt—q
—o0

or, equivalently, that (35) holds for the chosen o. Since o was arbitrary, (35)
follows and w is thus separable of order M + 1. O

Lemma B.1 is an extension of the corresponding theorem about separability

of order one in Nuttall (1958). Lemma B.1 together with Corollary 2.1 give the
result in Theorem 3.1.
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Proof of Theorem 3.1: Assumption A3 gives ®,,(z) = @, ..(z). Hence, the
OE-LTI-SOE is not influenced by the noise term w(¢). Since the input satisfies
the conditions in Lemma B.1, we have that

Oy, (2 §:w )z 7F P, (2), (39)

where Bf = Rl}lRYU for all f € D,, if and only if u is separable of order
M +1. If (39) holds for all f € D,, the NFIR systems that correspond to these
functions have outputs that satisfy Assumption A2. Hence, the OE-LTI-SOEs
of these NFIR systems are well-defined and Corollary 2.1 can be applied to show
that

Go,08(z) = W“ XFf

for all f € D,,. The theorem has thus been shown. O

C Proof of Theorem 4.1

First, we will prove the following lemma.

Lemma C.1
Let

:i:(:ET,acN+1)T:(xl,xg,...,xN,:cNH)T (40)

be a jointly Gaussian distributed random vector with zero mean and covariance
matriz C with det C # 0. Let f : RN — R be a differentiable function of x with
E(f(z)) = 0 and let p denote the probability density function of &. Furthermore,
assume that f and p satisfy Assumption A4. Then

E(f(z)Z) = Cw, (41)

where

B(f], (2))
0

Proof: Factorize C as C = QQ7 and define a new stochastic vector z as z =
Q~'Z. Then z is jointly normally distributed with zero mean and a covariance
matrix that is equal to the identity matrix. Let () denote the matrix that is
obtained from @ by removing the last row. Then z = Qz and we get

E(f(2)7) = QE(f(2)Q~'7) = QE(f(Q2)2)
E(24(Q2) E(fz,(x))

) ( fan ) - E( a,rg ()
—q —0or| | =cuw
4 E( ;N (1’))
(e 0
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The third equality follows from the fact that E(h(z)z;) = E(h’,(2)) when z has
an N(0,7) distribution. This equality holds since

/ g(r)re_rz/er = [—g(r)e_rz/zro +/ g/(r)e_rz/2 dr.

—00 r=—00 — 0o

Furthermore, the fourth equality in the derivation above follows from the chain
rule, which can be written here as

0f(Qz) _ 9f(Qz) 0f(Qz) 0f(Qz)

Qi + 91 Qai + ... + Orn Qni-

3zi 81‘1
O
Lemma C.1 is used in the following proof.
Proof of Theorem 4.1: Choose an arbitrary ¢ < 0 or ¢ > M and let
= (u(t),u(t—1),...,ult — M))T
and zy11 = u(t — o) in Lemma C.1. Then Equation (41) gives
u(t) R (0) Ru(1) .. Ru(M) Ru(o)
u(t—1) Ry (1) Ru(0) ... Ru(M-1) Ry(oc—1)
E(y(t) : )= : : : w,
u(t — M) Ro(M) Ru(M-1) ... R (0) Ry(oc—M)
u(t—o) Ru(0) Ru(c—1) ... Ryu(o—M) R (0)
(42)

where wir1 = E(f,,,_, ((u(t — k)AL,)) for i =0,..., M and wp42 = 0. Equa-
tion (42) can be written more compactly as

M
Ry, (1) = Zb(k)Ru(T —-k), 7=0,1,...,M,0,
k=0

where b(k) = wiy1 = E(f} ;) ((u(t = j))j‘io)) As o was chosen arbitrarily,
this relation holds for all 7 € Z. O
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