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Abstract

It has been argued that the frequency domain accuracy of high model-order estimates obtained
on the basis of closed loop data is largely invariant to whether direct or indirect approaches are
used. The analysis underlying this conclusion has employed variance expressions that are asymp-
totic both in the data length and the model order, and hence are approximations when either of
these are finite. However, recent work has provided variance expressions that are exact for finite
(possibly low) model order, and hence can potentially deliver more accurate quantification of es-
timation accuracy. This paper revisits the study of identification from closed loop data in light of
these new quantifications and establishes that, under certain assumptions of white spectra, there
can be significant differences in the accuracy of frequency response estimates that are dependent
on what type of direct, indirect or joint input-output identification strategy is pursued.

1 Introduction

Over the last several years there has been significant interest in the interplay between system identi-
fication and subsequent control design [2, 3, 5, 13]. In particular, a variety of estimation techniques
adapted to these closed and open loop scenarios have been developed. They can be broadly divided
into ‘direct’, ‘indirect’ and ‘joint input-output’ estimation methods, and of significant relevance to this
paper has been recent work [1, 8, 4, 13] examining the relative accuracy of estimates obtained via the
different approaches.

In particular [1, 4] uses certain approximations derived in [9] for the mean square error in fre-
quency response estimates, and whose accuracy depends on data length and model order being large.
Via these [1, 4] then argues that, in the limit as the model order tends to infinity, direct, indirect and
joint input-output methods offer the same accuracy in the frequency domain. However, in [4] the au-
thors point out that an assumption of large model order ‘apparently diminishes possible differences’.
Furthermore, in [13] it is noted that ‘this asymptotic variance analysis tool is also quite crude’, and
‘for finite model orders, the variance results will likely become different over the several methods’.
Indeed this expected difference is established in [1] for parameter estimates, but not for the associated
frequency response estimates.

This prior work and observations by other authors suggest the need for further study that quantifies
the frequency domain accuracy of direct, indirect and joint input-output estimates that are valid for
finite, and possibly low model order. Such is the purpose of this paper, which addresses the problem
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by using new expressions for the mean square estimation error that have been recently developed
in [10], and whose accuracy is not dependent on the model order being large; they are exact for finite
model order.

As will be seen, these exact expressions can, depending on the estimation conditions, be very
different to those arising from [9] and employed in [1, 8, 4], and this will imply new conclusions on
the relationship between direct, indirect and joint input-output estimation approaches.

For example, under certain assumptions on reference spectrum and control design, we establish
that for finite model order, the variance of the estimated frequency response arising from a direct
method can be very different to that associated with indirect and joint input-output methods.

Furthermore, we establish that, again in the frequency domain and for finite model order, the
variance of these flavours of indirect and joint-input output estimates are none of them equivalent
to one another. An exception to this conclusion is found in the special case of simple proportional
control, where this paper establishes that the variances of direct and some indirect and joint input-
output approaches are equal, provided that the reference input to measurement noise SNR is large.

An overview of the organisation of this paper, is that in the following §2 the assumed closed
loop data collection scenario is detailed, with §3 then describing the direct prediction-error estimation
method studied in this paper together with the key technical result of Theorem 3.1 that allows for
accurate variance error quantification, and is the basis for all subsequent results. The subsequent §4
then contains the main results of the paper, with §4.2.1-§4.2.3 examining the various indirect methods,
and §4.3.1-§4.3.2 studing joint input-output methods. Simulation examples illustrating the results and
conclusions in these sections are provided in §5. A final §6 provides some concluding remarks, with
subsequent appendices containing technical material too lengthy to be contained in the main body of
the paper.

2 Preliminaries

This paper addresses the closed loop control scenario depicted in Figure 1 of

S : yt = G(q)ut + νt, νt = H(q)et (1)

ut = K(q) [rt − yt] (2)

for some underlying true system S characterised by the transfer functions G(q) and H(q) and which
is under the influence of a linear time invariant controller K(q) and an external set point signal {r t}.
Here G(q),H(q) and K(q) are all rational in the backward shift operator q−1 and {et} is a zero-mean
white noise sequence that satisfies E{e2

t } = σ2,E{|et|8} <∞. In this case, the relationship between

rt ut

H(q)
et

+

+
Σ

+
Σ

νt

G(q)K(q)

−

yt

Figure 1: Closed Loop Control Scenario considered in this paper
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the signals in (1), (2) may also be expressed as

yt = T (q)rt + S(q)et (3)

ut = S(q)K(q)rt − S(q)K(q)et (4)

where S(q) and T (q) are the sensitivity and complementary sensitivity functions given (respectively)
as

S(q) =
1

1 +G(q)K(q)
, T (q) =

G(q)K(q)

1 +G(q)K(q)
. (5)

It will be assumed that the reference signal {rt} is a quasi-stationary process with associated spectral
density Φr(ω), in which case provided the poles of S(q)K(q) are in the open unit disk, then other
spectral densities will exist such as

Φu(ω) = |K(ejω)S(ejω)|2Φr(ω) + |KSH|2σ2, Φue(ω) = −SKHσ2. (6)

Of particular interest will be the spectral density Φr
u(ω) of the component of {ut} that derives solely

from {rt}. Via (4) this is given as

Φr
u(ω) = |K(ejω)S(ejω)|2Φr(ω). (7)

However, it will be useful to recognise that via substitution of the expression arising from (4) for
Φue(ω), the component not due to {rt} may be subtracted from the expression for Φu(ω) to yield the
alternate formulation

Φr
u(ω) = Φu(ω) −

|Φue(ω)|2

σ2
.

A prime focus of this paper will be the provision of quantifications that are exact with respect to a
finite model order of interest. For this purpose, it will be necessary to restrict the class of possible
controllers, such that if G(q) and K(q) are of rational form

G(q) =
B(q)

A(q)
, K(q) = K

P (q)

L(q)
(8)

where K ∈ R and A(q), B(q), L(q), P (q) are all polynomials in q−1, then it will be required that the
numerator P (q) is formed as a subset of the open loop poles A(q). That is, for some polynomial Ã(q)
in q−1

Ã(q)P (q) = A(q). (9)

It is worth noting that an important subclass of this set of controllers are those of the pole-cancelling
sort, in which P (q) = A(q), Ã(q) = 1 is chosen.

This, and further specialised requirements that are necessary to impose in the interests of dealing
with finite model order are collected in the following set of standing assumptions.

Standing Assumptions 2.1. The following standing assumptions will be repeatedly imposed:

1. Φr(ω) = µ a constant;

2. The controller K(q) is of the form

K(q) = K
P (q)

L(q)
L(q) =

m∏̀

k=1

(1 − `kq
−1), K ∈ R; (10)

and where P (q) satisfies (9);
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3. The closed loop poles are the zeros of

Ac(z) = Ã(z)L(z) +K B(z);

4. The true noise model H(q) = 1, and the model structure is chosen such that εt(θ◦) = et (ie.
there is no undermodelling) and such that there are no pole-zero cancellations in any of the
limiting transfer functions parameterised by θ◦ (ie. the system state dimension is not overmod-
elled);

5. The underlying true system G(q) is asymptotically stable.

Assumption point 4 is a formal statement that, whatever model structure is used, it is of sufficient
order to encompass whatever underlying true system is relevant, while at the same time not involving
an over-parameterisation beyond the McMillan degree of any dynamics or noise model concerned.

In what follows, the implied necessary model order of input-output dynamics will be explicitly
stated, since it will have a very direct bearing on variance quantifications. However, since the same is
not true for the noise model, then in the interests of conciseness it will simply be assumed from now
on that it is sufficiently flexible that point 4 is satisfied.

3 Direct Identification

This paper addresses the issue of estimating the dynamics G(q) on the basis of observing N observa-
tions of input-output response. For this purpose, the paper considers the use of a model structure

M : yt = G(q, θ)ut +H(q, θ)et =
B(q, θ)

A(q, θ)
ut +

C(q, θ)

D(q, θ)
et (11)

where

A(q, θ) = 1 + a1q
−1 + a2q

−1 + · · · + amaq
−ma , (12)

B(q, θ) = b1q
−1 + b2q

−1 + · · · + bmb
q−mb , (13)

D(q, θ) = 1 + d1q
−1 + d2q

−1 + · · · + dmd
q−md ,

C(q, θ) = 1 + c1q
−1 + c2q

−1 + · · · + cmcq
−mc , (14)

for some integers ma,mb,mc,md and θ ∈ R is a vector parameterising the above polynomials ac-
cording to

θ = [a1, · · · , ama , b1, · · · , bmb
, c1, · · · , cmc , d1, · · · , dmd

]T . (15)

Under a scheme of so-called ‘direct’ identification, one works directly with the signals {yt} and {ut}
so that the dynamics in (11) are estimated by forming θ̂N according to

θ̂N = arg min
θ∈R

VN (θ), VN (θ) ,
1

2N

N∑

t=1

ε2t (θ) (16)

where
εt(θ) = yt − ŷt(θ)
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is the error between the observed yt and the mean square optimal one step ahead prediction of yt,
according to the model (11) given as

ŷt(θ) = H−1(q, θ)G(q, θ)ut +
[
1 −H−1(q, θ)

]
yt.

The accuracy of this estimation strategy can be assessed by noting that, under the assumption that the
true system S given in (1) is contained within the model set M given by (11) for some parameter
value θn

◦ , then with probability one [9, 7]

lim
N→∞

θ̂N = θ◦, εt(θ◦) = et

and furthermore, in the case where the model orders satisfy

m = ma = mb = mc = md

then, as established in [9], under certain assumptions on the use of a regularised estimate, and with
Φν(ω) denoting the power spectral density of {νt}

lim
m→∞

lim
N→∞

Cov

{[
G(ejω, θ̂N )

H(ejω, θ̂N )

]}
= Φν(ω)

[
Φu(ω) Φue(ω)

Φue(ω) σ2

]−1

=
Φν(ω)

σ2Φu(ω) − |Φue(ω)|2

[
σ2 −Φue(ω)

−Φue(ω) Φu(ω)

]
. (17)

Commonly, this result has been employed by assuming that the convergence in (17) has approximately
occurred, in which case

Var{G(ejω, θ̂N )} ≈
m

N

Φν(ω)

Φu(ω) − |Φue(ω)|2/σ2
=
m

N

Φν(ω)

Φr
u(ω)

(18)

is taken as a useful quantification of estimation accuracy.
However, in the interests of improving this accuracy, the recent work [10] has established results

that are exact for finite model orderm. In particular, the following result is central to the developments
of this paper.

Theorem 3.1. Consider the case of estimation using the model structure (11)-(14) using the prediction
error approach (16), (3). Suppose that Φu(ω) has spectral factorisation

Φu(ω) = µ
∣∣F (ejω)

∣∣2

where F (z) and F−1(z) are both monic and analytic outside the unit disk, and suppose that A†(z)
given by

A†(z) = A2(z, θ◦)
H(z, θ◦)

F (z)
(19)

is a polynomial in z−1 of order no greater than ma +mb. In this case, define {ξ1, · · · , ξma+mb
} to be

the zeros of zma+mbA†(z) and {η1, · · · , ηmc+md
} to be the zeros of D(z, θ◦)C(z, θ◦) and use them

to further define the functions

κ(ω) ,

ma+mb∑

k=1

1 − |ξk|
2

|ejω − ξk|2
, κ̃(ω) ,

mc+md∑

k=1

1 − |ηk|
2

|ejω − ηk|2
. (20)
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Then, provided that neither of G(z, θ◦) or H(z, θ◦) contain any pole-zero cancellations, and that
Φue(ω) = 0

lim
N→∞

N Cov

{[
G(ejω, θ̂N )

H(ejω, θ̂N )

]}
=

∣∣H(ejω, θ◦)
∣∣2




σ2

Φu(ω)
κ(ω) 0

0 κ̃(ω)


 . (21)

Furthermore, if the model structure is restricted to be an Output–Error one in which H(q, θn) = 1 is
fixed, then the assumption of Φue(ω) = 0 can be dropped, and

lim
N→∞

N Cov
{
G(ejω, θ̂N )

}
=

σ2

Φu(ω)
κ(ω).

Proof. See [10].

This result suggests the quantification

E
{
|G(ejω , θ̂N ) −G(ejω, θ◦)|

2
}
≈

1

N

Φν(ω)

Φu(ω)

ma+mb∑

k=1

1 − |ξk|
2

|ejω − ξk|2
. (22)

Since it is derived from (21) (which unlike (17) does not depend on a model order m tending to
infinity) then unlike (18), the accuracy of the quantification (22) does not depend on the model order
being large and hence (as will be illustrated here), it is likely to be more informative for realistic finite
and/or low model orders. However, it is also important to emphasise that although the accuracy of
(22) does not depend on high model order, it is still valid for arbitrarily high model order subject to
the restriction of no pole zero cancellations in G(z, θ◦) or H(z, θ◦).

Moreover, by virtue of the frequency dependent term κ(ω), the quantification (22) can be quan-
titatively and qualitatively very different to (18). Therefore, any previous conclusions made on the
basis of (18) may need to be significantly modified in cases where (22) provides a more reliable and
at the same time rather different quantification. In particular, it is appropriate to revisit any debate on
the equivalence (or not) of direct versus indirect versus joint input-output estimates that was made on
the basis of (18).

4 Main Results

As pointed out in [1], provided a model structure (11) is employed such that G(q, θ), H(q, θ) are both
of sufficient order to describe the underlying true system S , then the direct approach coupled with
the prediction error algorithm [7] will provide a consistent estimate. Moreover, as argued in [1, 4],
in this same situation the quantification (18) yields quantification of estimation accuracy, valid in the
asymptotic limit as model order tends to infinity, and which can also be used as a basis for computing
the mean square error of certain indirect and joint input-output estimation methods, principally via a
first order Taylor approximation argument.

In the following sections, this latter issue, and high model order analysis of it presented in [1, 4, 13]
is revisited in an alternative context of finite, and perhaps low model order, and in the light of the new
result of Theorem 3.1.



Frequency Domain Accuracy of Closed Loop Estimates 7

4.1 Direct Identification

The main result for the case of direct estimation as described in §3 can now be presented without
further preliminaries, save to mention that in what follows, a direct estimate formed from the model
structure (11) will be denoted as Gdi(q, θ̂N ).

Theorem 4.1. Suppose that the prediction error estimation method outlined previously is employed
and that the standing assumptions 2.1 are satisfied. Suppose further that the polynomial A(z)Ac(z)
is of order less than or equal to the sum of the numerator and denominator model orders ma +mb.
Then

lim
N→∞

N Var
{
Gdi(e

jω, θ̂N )
}

=
σ2

Φu(ω)
· κdi(ω) (23)

where κdi(ω) is given by (20) with the associated zeros {ξ1, · · · , ξma+mb
} being defined as those of

the polynomial zma+mbA(z)Ac(z).

Proof. See Appendix A.1

This result suggests the following quantification whose accuracy depends on data length N being
large, but which is exact for the indicated finite model order

Var
{
Gdi(e

jω, θ̂N )
}
≈

σ2

NΦu(ω)
κdi(ω). (24)

This expression will be closely examined in the following sections as a means of comparing and con-
trasting the frequency domain accuracy of direct estimates as quantified by (24), and various indirect
and joint input-output methods.

However, before proceeding to this discussion, it is worth noting that a central point underlying
this and subsequent results is that the estimation problem can be decomposed according to various
choices of dynamics and pre-filter. For example, with regard to a pre-filter X(q), the model structure
(11) can be re-written as

yt = Gx(q, θ)xt +H(q, θ)et, Gx(q, θ) , G(q, θ)X−1(q), xt , X(q)ut. (25)

Therefore, one could consider a generalised version of the direct identification scenario in which a
model structure Gx(q, θ) was estimated on the basis of the residual

εt(θ) = H−1(q, θ)[yt −Gx(q, θ)ux(t)]

and then an estimate Gdix(q, θ̂N ) of the dynamics G(q) was obtained as

Gdix(q, θ̂N ) = Gx(q, θ̂N )X(q). (26)

The question then arises as to the accuracy of Gdix(q, θ̂N ) relative to Gdi(q, θ̂N ). The asymptotic in
model order theory leading to (18) suggests that the two ingredients of

Var{Gx(ejω, θ̂N )} ≈
m

N

Φν(ω)

|X(ejω)|2 Φu(ω)
, Var{Gdix(ejω, θ̂N )} = |X(ejω)|2Var{Gx(ejω, θ̂N )}

(27)
can be combined to conclude that

Var{Gdix(ejω, θ̂N )} ≈ Var{Gdi(e
jω, θ̂N )} ≈

m

N

Φν(ω)

Φu(ω)
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and hence suggest that pre-filtering does not affect estimation accuracy. Central to the results of this
paper is that, while this conclusion may be valid in the asymptotic model order case, it is not generally
true for the practically important finite model order case. See also the recent work [14] for a discussion
of this point.

In particular, it is straightforward to establish via the methods of the proof of Theorem 4.2, that
under the same assumptions of the previous Theorem 4.2 pertaining to direct identification, but with
the model orders of Gx(q, θn) increased to accommodate the presence of the X−1(q, θ) component

lim
N→∞

N Var{Gdix(ejω, θ̂N )} =
σ2

Φu(ω)
κdix(ω) (28)

where κdix(ω) is given by (20) with the {ξk} in that expression being the zeros of

zma+mbA(z)Ac(z)XN (z)XD(z), where X(q) =
XN (q)

XD(q)
. (29)

Clearly, comparing (28) with (23) indicates that in the finite model order case, pre-filtering can have
a substantial effect on estimation accuracy, according to what might be chosen for the poles and zeros
of the pre-filter X(q). This, combined with the fact that indirect estimation methods can be viewed as
the introduction of particular pre-filters [1], is central to the results here.

4.2 Indirect Identification

In general, in order that a direct identification approach yields consistent estimates using data collected
in closed loop, it is necessary that the noise model H(q, θ) be of sufficient richness to encompass any
true underlying noise colouring H(q) [1]. This implies that arbitrary pre-filtering, which is equivalent
to an arbitrary fixed noise model, cannot be employed in order to shape any suspected bias distribution.

In reaction to this, a range of so-called ‘indirect’ and ’joint input-output’ identification methods
have been developed in which the key idea is to first identify one or more transfer functions that form
an open-loop model for known signals, and then in a subsequent step infer the required dynamics
model from these initial estimates [1, 8, 4, 13].

The remainder of this paper is devoted to analysing the accuracy of these methods in comparison
with one another, and in comparison to the accuracy of the direct identification method analysed
in Theorem 4.1. We begin with a study of indirect methods, in which the unifying feature is the
consideration of the relationship (3) to suggest the use of the model structure

yt = T (q, θ)rt + SH(q, θ)et. (30)

The rationale for this choice is that since {et} is typically uncorrelated with {rt}, then the estimation
of T (q) on the basis of the observations {yt}, {rt} can be achieved with a fixed noise model/prefilter
while still resulting in a consistent estimate. However, in what follows, it will be assumed that θ̂N is
formed according to (16) with associated prediction error

εt(θ) = SH−1(q, θ) [yt − T (q, θ)rt] . (31)

The estimate T (q, θ̂N ) can then be used to derive an ‘indirect’ estimate G(q, θ̂N ) according to (5) as

G(q, θ̂N ) =
T (q, θ̂N )

K(q)[1 − T (q, θ̂N )]
. (32)
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Therefore, aside from the advantages attendant to being an open loop scenario, the indirect approach
suffers from the need to know the controller K(q).

With these essential features in mind, the various indirect estimation approaches then differ in
their choice of parameterisation for T (q, θ), as will now be made explicit.

4.2.1 Basic Indirect Identification

What will here be called ‘basic’ indirect identification involves the choice of the following obvious
choice of model structure

T (q, θ) =
β0 + β1q

−1 + · · · + βmβ
q−mβ

1 + α1q−1 + · · · + αmαq
−mα

(33)

and SH(q, θ) is parameterised independently of T (q, θ) and in such a manner to encompass the true
underlying S(q)H(q).

It is natural to also question the likely accuracy of G(ejω, θ̂N ) found via (32) in relation to that of
a direct approach, where in that case the accuracy has been quantified by (18). This question has been
addressed in [1] where it is observed that according to the existing quantification (18)

Var{T (ejω, θ̂N )} ≈
m

N

|S(ejω)|2Φν(ω)

Φr(ω)
.

Actually, in the above, m should be the order of T (q, θ̂N ) which, except for the case of proportional
control, will be higher than that of the underlying model G(q, θ̂N ). We will ignore this point for the
sake of the present discussion. In this case, since

dG =
dG

dT
dT =

1

KS2
dT (34)

then the arguments in [1, 4] indicate that the accuracy of G(ejω, θ̂N ) found via this indirect approach
can be quantified as [6]

Var{G(ejω, θ̂N )} ≈
m

N

|S(ejω)|2Φν(ω)

Φr(ω)

1

|K(ejω)S2(ejω)|2
=
m

N

Φν(ω)

Φr
u(ω)

. (35)

Using this method, the work in [1, 4] then concludes that, under an assumption of large (tending to
infinity) model order m, the likely accuracy (as quantified by expressions such as (35)) for various
indirect approaches is identical to that of (18) for a direct approach.

The first main result in the context of indirect identification methods employs Theorem 3.1 to
examine a different by related question of frequency domain accuracy for finite, and possibly small
model order.

Theorem 4.2. Suppose that the Standing Assumptions 2.1 are satisfied. Suppose further that the
polynomialAc(z)Ã(z)L(z) is of order less than or equal to the sum of the numerator and denominator
model orders mα +mβ . Then in the case of the indirect identification procedure (30)- (32)

lim
N→∞

N Var
{
Gid(e

jω, θ̂N )
}

=
σ2

Φu(ω)
· κid(ω) (36)

where κid(ω) is given by (20) with the associated zeros {ξ1, · · · , ξma+mb
} being defined as those of

the polynomial zmα+mβAc(z)Ã(z)L(z).
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Proof. See Appendix A.2.

As per the case of the previous Theorem 4.1, this result suggests a variance quantification whose
accuracy depends only on N being sufficiently large, and in that sense is exact for finite model order:

Var
{
Gid(e

jω, θ̂N )
}
≈

σ2

NΦr
u(ω)

κid(ω). (37)

There are several important conclusions to be drawn from this quantifications and the associated one
(24) pertaining to direct identification.

1. First, and most important, they indicate that from an estimation accuracy point of view, direct
and indirect identification are not equivalent. Both quantifications (37) and (24) depend on the
closed loop poles defined by Ac(z).

However, according to (37) the indirect method estimation error Var{Gid(ejω, θ̂N )} also de-
pends on a subset of the open loop poles defined by Ã(z) and the controller poles defined by
L(z). On the other hand (24) indicates that, modulo effects on Φu(ω), the direct method es-
timation error Var{Gdi(e

jω, θ̂N )} does not depend on these poles, but does depend on all the
open loop poles of the system G(q).

Of course, it is entirely possible for the controller poles defined and open loop system poles to
be very different and hence for the estimation errors to be very different. This will shortly be
demonstrated via simulation example.

However, one situation in which the controller poles and open loop poles are the same is if the
controller (10) is in fact simply a proportional controller K(q) = K for some constant K , and in
this case when µ� σ2 so that Φr

u(ω) ≈ Φu(ω) then Var{Gid(ejω, θ̂N )} ≈ Var{Gdi(e
jω, θ̂N )}.

2. This difference between the variability of finite model order frequency response estimates ob-
tained by direct and indirect methods is consistent with previous work. In particular, this dif-
ference is established in parameter space in [1]. The novel contribution here is to provide a
frequency domain analysis that is also valid for finite model order.

3. In comparing direct and indirect methods by comparing κdi(ω) and κid(ω), note that both these
terms will be of the generic form

κ(ω) = m? +

2m−m?∑

k=1

1 − |ξk|
2

|ejω − ξk|2
(38)

where m is the McMillan degree of the true underlying system, and m? is the number of nu-
merator lags in the model structure that are excess of this degree, while the {ξk} are the zeros
of Ac(z)A(z) or Ac(z)Ã(z)L(z) as appropriate.

For cases of large model order with many lags in the numerator, the constant m? will dominate
(38) and hence κdi(ω) and κid(ω) will be essentially equivalent.

On the other hand, while (38) illustrates that the expressions (37) and (24) both imply (in the
high SNR case where Φu ≈ Φr

u) the asymptotic result

lim
m?→∞

lim
N→∞

N

m?
Var

{
G(ejω, θ̂N )

}
=

σ2

Φu(ω)
(39)



Frequency Domain Accuracy of Closed Loop Estimates 11

it should be clear from the afore-mentioned potential differences between (24) and (37) that
there can be serious pitfalls in concluding the approximate quantification

Var
{
G(ejω, θ̂N )

}
≈
m?

N

σ2

Φu(ω)
(40)

on the basis of the asymptotic result (39).

4. Note that there is a more subtle difference between the accuracy of direct and indirect estimates
in that the quantification (24) shows that the variance of an indirect estimate depends only
on that part of the input spectrum Φr

u(ω) deriving from the external reference {rt}, while the
variance of a direct estimate depends on the total input power Φu(ω) > Φr

u(ω). This has been
previously observed and analysed in [1] using an asymptotic in model order argument. It is
mentioned again here simply to to underline that it is also consistent with the finite model order
analysis pursued in this paper.

4.2.2 Identification via Tailor Made Parameterisation

An alternative to the parameterisation (33) is the so-called ‘tailor made’ one [1] in which, (30) is again
employed, and according to (5), the model structure

T (q, θ) =
K(q)G(q, θ)

1 +K(q)G(q, θ)
, G(q, θ) =

B(q, θ)

A(q, θ)
(41)

is used with A(q, θ) and B(q, θ) being given by (12), (13) and θ containing the parameterisation of
these polynomials, together with the independent parameterisation of the noise model SH(q, θ) in
(30).

The advantage of this parameterisation is that it avoids the ‘inversion’ step (32), and in so doing
guarantees the orders ma, mb for the final estimated G(q, θ̂N ) which, as before, is found by minimi-
sation of the prediction error residual (31).

Theorem 4.3. Suppose that the Standing Assumptions 2.1 are satisfied. Suppose further that the
polynomial Ac(z)A(z) is of order less than or equal to the sum of the numerator and denominator
model orders ma +mb. Then in the case of identification with tailor made parameterisation (30), (41)

lim
N→∞

N Var
{
Gta(e

jω, θ̂N )
}

=
σ2

Φr
u(ω)

· κdi(ω) (42)

where κdi(ω) is that specified in previously in Theorem 4.1 in relation to a direct estimation approach.

Proof. See Appendix A.3.

Comparing (42) with (23) then indicates that, since the function κdi(ω) defined by the zeros of
zma+mbAc(z)A(z) occurs in both expressions, then the only difference between the accuracy of di-
rect estimates, and indirect ones that utilise the tailor made parameterisation (41) is via the difference
between the input spectrum Φu(ω) and the spectrum Φr

u(ω) of that component of the input {ut} that
is derived from {rt}. Since according to (6) and (7) the differences between these spectra become
smaller as the {rt} to {et} SNR increases, this further implies approximately equivalent relative ac-
curacy between direct estimates, and indirect ones achieved by the tailor made parameterisation (41).
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4.2.3 Identification via Dual-Youla Parameterisation

The final indirect estimation method to be considered here is one based on the so-called dual-Youla
parameterisation of all systems stabilised by a given controller. Namely, suppose that the controller
K(q), and a nominal, user chosen system G0(q) which is stabilised by K(q) have co-prime represen-
tation [11] with respect to stable M(q), N(q), X(q), Y (q) as

G0(q) = N(q)M−1(q), K(q) = X(q)Y −1(q). (43)

Then a further system G(q, θ), parameterised by θ ∈ R
n, is also stabilised by K(q) if and only if

there exists a stable and proper R(q, θ) such that [11]

G(q, θ) =
N(q) + Y (q)R(q, θ)

M(q) −X(q)R(q, θ)
. (44)

Substituting this parameterisation into (5) then implies a parameterisation of T (q, θ) in terms of
R(q, θ) according to

T (q, θ) = T 0(q) +M−1(q)X(q)S0(q)R(q, θ) (45)

where T 0(q) and S0(q) arise from (5) with the substitution G(q) = G0(q). Further substitution of
(45) into (30) then leads to

zt = R(q, θ)xt +W (q, θ)et (46)

where
zt , yt − T 0(q)rt, xt = M−1(q)X(q)S0(q)rt, W (q, θ) = SH(q, θ).

Here, if {rt} and {et} are uncorrelated, then so are {xt} and {et} and hence finding an estimate θ̂N

via (16) and the prediction error residual suggested by (46) of

εt(θ) = SH−1(q, θ) [zt −R(q, θ)xt]

is an open loop estimation problem [11, 1, 13]. Furthermore, it is essentially a re-parameterisation
of the indirect estimation model structure (30) in which an estimate Gdy(q, θ̂) may be derived from
R(q, θ̂N ) via (44). An attractive feature of this re-parameterisation is that the estimated Gdy(q, θ̂N ) is
guaranteed to be stabilised by the given controller K(q).

Note further that an alternative and more commonly presented version of this parameterisation is
one in which both sides of (46) are pre-filtered by Y −1(q) [11, 1, 13, 4]. However, this pre-filtering
has no effect on the final variance of the estimate Gdy(q, θ̂N ), and hence this paper will not consider
it further.

In order to examine the accuracy of Gdy(q, θ̂N ), it will be expedient to restrict attention to the
following class of co-prime factorisations

N(q) =
B0(q)

EG(q)
, M(q) =

A0(q)

EG(q)
, X(q) = K

P (q)

EK(q)
, Y (q) =

L(q)

EK(q)
(47)

where in X(q),K ∈ R and all the terms on the right hand side of equals signs in (47) are polynomial
in q−1, EG(q) and EK(q) are user-chosen Schur polynomials, and G0(q) = B0(q)/A0(q), K(q) =
P (q)/L(q). Furthermore, it will be assumed that the model structure R(q, θ) is of the form

R(q, θ) =
λ0 + λ1q

−1 + · · · + λmλ
q−mλ

1 + γ1q−1 + · · · + γmγ q
−mγ

(48)
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and that W (q, θ) is parameterised independently of R(q, θ), and is of sufficient order to encompass
Y −1(q)S(q)H(q). With this in mind, the following theorem provides the main result of this subsec-
tion.

Theorem 4.4. Suppose that the Standing Assumptions 2.1 are satisfied. Suppose further that the
polynomial EG(z)EK(z)P (z)Ac(z)A

0
c(z) is of order less than or equal to the sum of the numerator

and denominator model orders mγ +mλ, where Ac(z) was defined in (27) and

A0
c(z) , A0(z)L(z) +K P (z)B0(z).

Then in the case of indirect identification using the dual-Youla parameterisation (43)-(48)

lim
N→∞

N Var
{
Gdy(e

jω, θ̂N )
}

=
σ2

Φr
u(ω)

κdy(ω)

where κdy(ω) is as defined in (20) with the associated zeros {ξ1, · · · , ξmλ+mγ} being those of

zmγ+mλEG(z)EK(z)A(z)Ac(z)A
0
c(z). (49)

Proof. See Appendix A.4.

As in previous cases, this new result invites comment.

1. Firstly, and most obviously, the associated quantification, exact for finite model order, of

Var
{
Gdy(e

jω, θ̂N )
}
≈

σ2

NΦr
u(ω)

κdy(ω) (50)

and compared to (37), (24) and (55), indicates that in general, the accuracy of estimatesGdy(q, θ̂N )
obtained by the dual Youla method are not equivalent to those obtained by direct, basic indirect,
or co-prime factor methods. This is due to the dependence of (50) on the zeros of the nominal
closed loop denominator A0

c(q) defined in (A.2), and on the zeros of EG(z) and EK(z) used in
the definition of the co-prime factorisations ofG0(z) andK(z). SinceA0

c(q), EG(z) andEK(z)
can be rather arbitrary (modulo the requirement they be Schur), then Var{Gdy(e

jω, θ̂N )} can
also be very different to the variance of other indirect, and also direct system estimates.

Indeed, for µ � σ2 so that Φr
u(ω) ≈ Φu(ω) then comparison with (24) indicates that with the

choices EK(z) = EG(z) = 1 and with {ρk} being the zeros of A0
c(z), and K(q) being a pole

cancelling design with P (q) = KA(q), then

Var
{
Gdy(e

jω, θ̂N )
}
≈ Var

{
Gdi(e

jω, θ̂N )
}

+
σ2

NΦr
u(ω)

mρ∑

k=1

1 − |ρk|
2

|ejω − ρk|2
(51)

and hence, under the conditions of the preceding theorems, it could be expected that regardless
of the choice of G0(q), the accuracy of the dual Youla method will be inferior to that of a direct
method.

2. In the preceding cases, it was illustrated that in the special case of proportional control K(q) =
K q−1, the variance of the basis indirect and co-prime factor methods became equal to that of
the direct method. Such is not the case for the dual-Youla approach. Regardless of the controller
being proportional, there is a further degree of freedom in the dual-Youla approach, namely the
choice of nominal system G0(q), which introduces nominal closed loop poles {ρk} into the
variance quantification (51) and hence precludes Var{Gdy(e

jω, θ̂N )} from ever being equal to
Var{Gdi(e

jω, θ̂N )}, regardless of the choice of controller.
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3. Although, in the interests of most clearly exposing certain principles, the particular co-prime
factorisation (47) was chosen, it is also possible to handle more general cases using the same
method as in the proof of Theorem 4.4, but possibly at the expense of more cumbersome nota-
tion.

4.3 Joint Input-Output Identification

The final closed loop identification strategy to be studied here is the class of so-called ‘joint input-
output’ methods, in which two model structures

yt = T (q, θ)rt + SH(q, θ)et (52)

ut = SK(q, β)rt − SKH(q, β)et (53)

are used. These structures imply the following one-step ahead prediction errors

εyt (θ) = SH−1(q, θ) [yt − T (q, θ)rt]

εut (β) = SKH−1(q, β) [ut − SK(q, β)rt]

which are used to find estimates θ̂N , β̂N according to

[θ̂N , β̂N ] = arg min
θ,β

VN (θ, β), VN (θ, β) ,
1

2N

N∑

t=1

[εyt (θ)]
2 + [εut (β)]2. (54)

Since {rt} is not correlated with {et}, then this implies the equivalent of two open loop estimation
problems, with all the attendant advantages of this scenario as mentioned earlier. The estimate of the
open loop dynamics is then found via this joint input-output method as

Gjio(q, θ̂N , β̂N ) =
T (q, θ̂N )

SK(q, β̂N )
. (55)

Note that an advantage of this method in comparison to the indirect methods just studied is that
knowledge of the controller K(q) is not required. Furthermore, there exists a range of possible joint
input-output methods that depend on the model structures used in (52), (53). In this paper, two are
considered, the ‘basic’ joint input-output method and the ‘co-prime factor’ method.

4.3.1 Basic Joint Input-Output Identification

The so-called ‘basic’ joint input-output approach involves using a model structure for T (q, θ) given
by (33) and for SK(q, β) given by

SK(q, β) =
ρ0 + ρ1q

−1 + · · · + ρmρq
−mρ

1 + δ1q−1 + · · · + δmδ
q−mδ

.

The model structures for the noise models SH(q, θ) and SKH(q, β) are assumed to be independently
parameterised from the dynamics models T (q, θ), SK(q, β), and such that they can completely de-
scribe the true noise models S(q)H(q), S(q)K(q)H(q) without any pole-zero cancellations.

The variance properties of the resulting basic joint input-output estimate Gjio(q, θ̂N , β̂N ) derived
from (55), and under the same conditions considered in the previous sections, are now established via
the following theorem.
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Theorem 4.5. Suppose that the Standing Assumptions 2.1 are satisfied. Suppose further that the
model orders chosen for T (q, θ) satisfies the conditions of Theorem 4.2 so that Ac(z)Ã(z)L(z) is a
polynomial in z−1 of order less than mα + mβ . Finally, suppose that the model orders chosen for
SK(q, β) are such that Ac(z)A(z) is a polynomial in z−1 of order less than mδ + mρ. Then using
the joint input-output identification method, it holds that

lim
N→∞

N Var
{
Gjio(e

jω, θ̂N , β̂N )
}

= |S(ejω)|2 lim
N→∞

N Var
{
Gid(e

jω, θ̂N )
}

+
(

µ

µ+ σ2

)
|T (ejω)|2 lim

N→∞
N Var

{
Gdi(e

jω, θ̂N )
}

+

2σ2

Φr
u(ω)

Re
{
T (ejω)S(ejω)∆(ω)

}
(56)

where ∆(ω) is specified in the following equation (58) and

lim
N→∞

N Var
{
Gdi(e

jω, θ̂N )
}
, lim

N→∞
N Var

{
Gid(e

jω, θ̂N )
}

are given by (36) with mα,mβ the same as here, and (23) with ma = mδ, mb = mρ.

Proof. See Appendix A.5.

As per the previous theorem, this result suggests the following approximate quantification which
is ‘exact’ for finite model order, but is of increasing accuracy with increasing data length N

Cov
{
Gco(e

jω, θ̂N , β̂N )
}

≈ |S(ejω)|2Var
{
Gid(ejω, θ̂N )

}
+

(
µ+ σ2

µ

)
|T (ejω)|2

{
Gdi(e

jω, θ̂N )
}

+
2

N

σ2

Φr
u(ω)

Re
{
T (ejω)S(ejω)∆(ω)

}
. (57)

Some comments about this result are clearly in order.

1. Firstly, the quantification (57) clearly shows that, just as the previous section has established
that the variance Var{Gid(ejω, θ̂N )} for the basic indirect method estimate is not, in general, the
same as the variance Var{Gdi(e

jω, θ̂N )} for a direct methods estimate, the new quantification
(56) shows that the variance Var{Gjio(e

jω, θ̂N , β̂N )} for basic joint input-output methods is
also not, in general, equal to either of these.

In fact, consideration of only the first two terms in (57) illustrates that under the assumptions of
Theorem 4.5, Var{Gco(e

jω, θ̂N , β̂N )} is a pseudo-convex combination of Var{Gid(e
jω, θ̂N )}

and Var{Gdi(e
jω, θ̂N )}, where the epithet ‘pseudo’ is used since S + T = 1 and hence if

µ� σ2 then

|S(ejω)|2 +

(
µ+ σ2

µ

)
|T (ejω)|2 ≈ 1.

Therefore, again ignoring the last ∆(ω) term of (57) shows that while at some frequencies
where |S| ≈ 1 or |T | ≈ 1 then the variance of joint input-output methods estimates might
be approximately the same as either a direct method or basic indirect method estimate, it is
certainly not in general equal to either of them.
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2. Turning now to the last component of (57), the term ∆(ω) needs to be defined. In fact it is given
as

∆(ω) ,
1

2π

∫ π

−π

∆1(λ, ω)∆2(λ, ω) dλ, (58)

where

∆1(λ, ω) =

mα+mβ∑

k=1

Bk(e
jλ)Bk(ejω), ∆2(λ, ω) =

mδ+mρ∑

k=1

Fk(e
jλ)Fk(ejω), (59)

and with {ζk} being the zeros of zmα+mβAc(z)Ã(z)L(z) and {τk} being the zeros of zmδ+mρAc(z)A(z)

Bk(z) ,
z
√

1 − |ζk|2

z − ζk
φk−1(z), φk(z) ,

k∏

`=1

1 − ζ`z

z − ζ`
, φ0(z) , 1

while

Fk(z) ,
z
√

1 − |τk|2

z − τk
ψk−1(z), ψk(z) ,

k∏

`=1

1 − τ`z

z − τ`
, ψ0(z) , 1.

Although this definition of ∆(ω) appears quite complicated, it has a simple geometric interpre-
tation, that is obtained by considering the spaces

Vζ , Span

{
1

∏mα+mβ

k=1 (1 − ζkz−1)
, · · · ,

z−(mα+mβ))
∏mα+mβ

k=1 (1 − ζkz−1)

}
(60)

Vτ , Span

{
1

∏mδ+mρ

k=1 (1 − τkz−1)
, · · · ,

z−(mδ+mρ))
∏mδ+mρ

k=1 (1 − τkz−1)

}
. (61)

With this in mind, define PVζ
: H2 → Vζ as the orthogonal projection of an arbitrary function

f ∈ H2 onto Vζ :

PVζ
f 7→ f̂ ∈ Vζ such that

〈
f̂ − f, g

〉
= 0 ∀g ∈ Vζ ,

and similarly PVτ : H2 → Vτ is the orthogonal projection onto Vτ . Then these projections can
be given an explicit formulation via ∆1(λ, ω) and ∆2(λ, ω) as [10]

[PVζ
f ](ω) =

1

2π

∫ π

−π

f(λ)∆1(λ, ω) dλ, [PVτ f ](ω) =
1

2π

∫ π

−π

f(λ)∆2(λ, ω) dλ.

Therefore, according to (58), ∆(ω) is the best (in the sense of minimal H2 norm of error)
approximation of ∆1(λ, ω) (which, as a function of λ is in Vζ for all ω) in terms of an element
f ∈ Vτ .

With this in mind, an explicit expression for ∆(ω) arises by noting that {Fk} is an orthonormal
basis for Vτ so that

∆(ω) =

mδ+mρ∑

n=1

mα+mβ∑

k=1

〈
Bk(e

jλ),Fn(ejλ)
〉
Bk(ejω)Fn(ejω).
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This representation highlights that ∆(ω) is a rational function that contains poles equal to the
open and closed loop poles, and at the complex conjugate of the open loop poles and the con-
troller poles. Unfortunately since, in general, the inner product term has quite a complicated
(but computable) closed form expression, then a simple formulation of ∆(ω) does not seem
possible. However, since ∆(ω) is the sum of terms that are of indefinite sign, while the first two
terms in (56) involve sums of |Bk(e

jω)|2, |Fk(e
jω)|2 which are all positive, then these first two

terms could be expected to dominate the quantification, and it is the experience of the authors
that this is generally true.

3. Consider the special case of proportional control in whichK(q) = K ∈ R so that Ã(z) = A(z)
and hence, provided that µ� σ2 so Φr

u(ω) ≈ Φr
u(ω) then

Var
{
Gid(e

jω, θ̂N )
}

= Var
{
Gdi(e

jω, θ̂N )
}
≈

σ2

NΦu(ω)
κdi(ω). (62)

In this same situation, the spaces Vζ and Vτ in (60), (61) become the same, so that ∆2(λ, ω) =
∆1(λ, ω) and hence using the reproducing kernel property of ∆1(λ, ω)

∆(ω) = ∆1(ω, ω) =

[
(mβ −mα) +

mα∑

k=1

1 − |ηk|
2

|ejω − ηk|2
+

ma∑

k=1

1 − |ξk|
2

|ejω − ξk|2

]
= κdi(ω). (63)

Consequently, substituting (62) and (63) into (57) indicates that in this special case of propor-
tional control

Var
{
Gco(e

jω, θ̂N , β̂N )
}

= Var
{
Gdi(e

jω, θ̂N )
} [

|S|2 + |T |2 + TS
]

= Var
{
Gdi(e

jω, θ̂N )
}

= Var
{
Gid(e

jω, θ̂N )
}
.

While this last comment establishes that there may be situations, such as that of simple proportional
control, in which direct and indirect methods deliver estimates of the same accuracy, the quantification
(56) establishes that this is by no means the general situation.

4.3.2 Coprime Factor Identification

A generalisation of the basic joint input-output approach is the so-called ‘co-prime factor method’ [12,
11, 13], which starts from the relationships (52), (53) and introduces the filtered signal

xt = X(q) rt, X(q) =
XN (q)

XD(q)
(64)

where XN (q), XD(q) are polynomials in q−1 and which leads to

yt = N(q, θ)xt + SH(q, θ)et (65)

ut = M(q, β)xt − SKH(q, β)et

where
N(q, θ) = T (q, θ)X−1(q), M(q, β) = SK(q, β)X−1(q).

This is nothing more than a re-parameterisation of (52), (53) and suggests the use of the prediction
error residuals

εyt (θ) = SH−1(q, θ)[yt −N(q, θ)xt], εut (β) = SKH−1(q, β)[ut −M(q, β)xt], (66)
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as a method of obtaining estimates θ̂N , β̂N according to (54) which then delivers an estimateGco(q, θ̂N , β̂N )
of the input-output dynamics according to

Gco(q, θ̂N , β̂N ) =
N(q, θ̂N )

M(q, β̂N )
. (67)

The appended subscript co denotes that estimates obtained in this way have often been termed ‘co-
prime factor method’ estimates [11, 1, 13, 4] on account of the fact that it is possible to choose X(q)
such that N(q, θ̂N ), M(q, β̂) are a normalised co-prime pair, in which case Gco(q, θ̂N , β̂N ) is of
minimal order.

In order to study the accuracy ofGco(q, θ̂N , β̂N ), recall the ‘generalised’ direct estimateGdix(q, θ̂N )
defined in (25)-(26), which is a direct estimate using the same prefilter X(q), and whose accuracy is
quantified by (28), (29). Similarly, consider a generalisation of the preceding ‘basic’ indirect identifi-
cation method in which the estimate N(q, θ̂N ) is obtained via the model structure (65) with

N(q, θ) =
β0 + β1q

−1 + · · · + βmβ
q−mβ

1 + α1q−1 + · · · + αmαq
−mα

and the prediction error residual (66) is used to form a ‘generalised’ indirect estimate G idx(q, θ̂N ) of
G(q) according to

Gidx(q, θ̂N ) =
X(q)N(q, θ̂N )

K(q)[1 −X(q)N(q, θ̂N )]
. (68)

Therefore, since

dGidx =
X

K2S
dN

it follows using the arguments in the the proof of Theorem 4.6 that

lim
N→∞

N Var{Gidx(ejω, θ̂N )} =
σ2

Φr
u(ω)

κidx(ω) (69)

where κidx(ω) is defined according to (20) with the {ξk} in that expression being the zeros of

zmα+mβAc(z)Ã(z)L(z)XN (z)XD(z).

The purpose of considering these hypothetical estimates Var{Gdix(q, θ̂N )} and Var{Gidx(q, θ̂N )} to-
gether with their frequency domain variances given by (26), (68) is that they arise naturally in the
quantification of the variance of system estimates formed via the co-prime factor method.

This is established in the following theorem, for which it is also necessary to specify that the
model structure employed for estimation of M(q) is of the form

M(q, β) =
ρ0 + ρ1q

−1 + · · · + ρmρq
−mρ

1 + δ1q−1 + · · · + δmδ
q−mδ

.

With this in mind, the accuracy of the co-prime factor method of indirect identification may be quan-
tified via the following result.

Theorem 4.6. Suppose that the Standing Assumption s2.1 are satisfied. Suppose further that the
model orders chosen for N(q, θ) are such that that XN (z)XD(z)Ac(z)Ã(z)L(z) is a polynomial in
z−1 of order less than mα +mβ . Finally, suppose that the model orders chosen for M(q, β) are such
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that XN (q)XD(z)Ac(z)A(z) is a polynomial in z−1 of order less than mδ + mρ. Then using the
coprime factor identification method (64)-(67)

lim
N→∞

N Var
{
Gco(e

jω, θ̂N , β̂N )
}

= |S(ejω)|2 lim
N→∞

N Var
{
Gidx(e

jω, θ̂N )
}

+
(

µ

µ+ σ2

)
|T (ejω)|2 lim

N→∞
N Var

{
Gdix(ejω, θ̂N )

}
+

2σ2

Φr
u(ω)

Re
{
T (ejω)S(ejω)∆(ω)

}

where the asymptotic in N values of Var{Gdix(ejω, θ̂N ) and Var{Gidx(e
jω, θ̂N ) are given by (28) and

(69) respectively, and ∆(ω) is as defined via (58)-(61) save that the spaces Vτ and Vζ involved in that
definition are both augmented to also include the poles and zeros of X(z).

Proof. See Appendix A.6.

Again, via the suggested quantification

Var
{
Gco(e

jω, θ̂N , β̂N )
}

≈
|S(ejω)|2

N
Var

{
Gidx(ejω, θ̂N )

}
+

(
µ

µ+ σ2

)
|T (ejω)|2

N
Var

{
Gdix(e

jω, θ̂N )
}

+

2σ2

NΦr
u(ω)

Re
{
T (ejω)S(ejω)∆(ω)

}
(70)

this result highlights that there can be appreciable differences in the accuracy of estimates obtained in
closed loop, depending on the estimation strategy employed.

In particular, note that all the terms on the right hand side of the quantification (70) depend on
both the poles and zeros of chosen pre-filter X(q), which (of course) was not a factor in preceding
quantifications for several other estimation methods.

Again, there is a special case worth mentioning of strictly proportional control, in which case (via
an identical argument as used in the previous section), the quantification (70) reduces to

Var
{
Gco(e

jω, θ̂N , β̂N )
}

= Var
{
Gdix(ejω, θ̂N )

}
= Var

{
Gidx(ejω, θ̂N )

}
.

However, again because of their dependence on the poles and zeros ofX(q), these latter two quantities
are not equal to the variances for direct and basic indirect methods.

5 Simulation Examples

In order to emphasise the significance and ramifications of the new variance quantifications developed
in this paper, this penultimate section provides a simulation example to illustrate the preceding results
by considering the system

yt = G(q)ut + et, G(q) =
1.6177q2 − 0.74q

q2 − 1.8q + 0.81

which, according to (2) is under the influence of the pole cancelling controller

K(q) =
q2 − 1.8q + 0.81

q3 − 1.9801q2 + 0.99q
. (71)
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This choice of K(q) implies Ã(z) = 1 according to (9) and delivers

T (q) =
1.618q − 0.74

q2 − 0.3624q + 0.25
, S(q) =

q2 − 1.9801q + 0.99

q2 − 0.3624q + 0.25

and hence provides closed loop poles at η1, η2 = 0.5e±j1.2. While this might seem a relatively benign
situation, note that the controller poles are at `1, `2 = 0.995e±j0.1, which are different to the open
loop plant poles at ξ1, ξ2 = 0.9.

Therefore, according to (37) the estimation error involved with direct identification using a Box–
Jenkins model structure to first estimate T (q) and S(q), should be different to the estimation error
given by (24) for the case of direct identification of G(q) using an output-error structure. Indeed, as
shown in Figure 2, simulation confirms this. In that figure the solid lines are the true variability as
computed via Monte–Carlo simulation over 1000 estimate realisations, each derived from N = 1000
data points with measurement noise variance σ2 = 10 and input Φr(ω) = 1. The solid line Monte–
Carlo variance with the large peak corresponds to the case of indirect identification, while the other
solid line Monte–Carlo variance is for direct identification. Note that these actual mean square errors
agree essentially perfectly with the quantifications (37) and (24) shown (respectively) as dashed and
dash-dot lines; in the latter case, the new quantification (24) cannot be discerned from the sample
variability solid line which exactly matches it and hence obliterates it.

Furthermore, note that as predicted by (37), the location of controller poles near the unit circle has
a detrimental effect on indirect estimation accuracy at frequencies on the unit circle very close to those
poles. In this case, the increased variability is at 0.1 radians/second which is near the plant crossover
frequency, so that there are clear implications from a control design point of view as to whether direct
or indirect estimation is preferred in this scenario.

By way of contrast, the lower (labelled) dash-dot line in Figure 2 is the existing quantification (18)
which clearly provides a less informative quantification than (37), (24) and certainly does not expose
the true accuracy differences between a direct and indirect approach.

To give a sense of the scale of estimation errors being quantified here, the first ten realisations of
the estimate G(ejω, θ̂N ) are shown in Nyquist plot form in Figure 3. Clearly, the errors involved in
this example are non-trivial, and again from a control design point of view, the estimation near the
cross-over frequency is far superior in Figure 3(b) under a direct estimation approach than it is in
Figure 3(a) where indirect estimation is illustrated, and this difference in accuracy is clearly predicted
by the theoretical and empirical results of Figure 2 which have already been discussed.

Turning now to the examination of joint input-output methods, consider the ‘basic’ joint input-
output method described in §4.3.1. Then again employing Monte–Carlo simulation to estimate the true
variability of the ensuing estimate by averaging over 1000 data and subsequent estimate realisations,
the results of this are shown as the solid line in Figure 4. Also shown on that Figure as a dashed
line is the new quantification (56) which, via its very close match to the solid line showing the ‘true’
variability, is illustrated to be an accurate approximation. In order to aid comparison, the previously
shown quantifications (24), (37) for direct and basic indirect method, whose accuracy was established
in the previous Figure 2, are also provided in Figure 4.

A main point to notice is the qualitative and quantitative difference between these direct, and basic
indirect variances when compared to the basic joint input-output method variability shown as the solid
line, which further substantiates the theme of this paper that it is not generically true that all indirect
estimation methods offer equivalent accuracy when compared to direct estimation methods.

In order to illustrate the results obtained here for the co-prime factor method, consider the use of
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the pre-filter

X(q) =
1

q2 − 1.8237q + 0.9801

which is of bandpass type with centre frequency at 0.4 rad/s. In this case, the true frequency response
variability Var{Gco(e

jω, θ̂N , β̂N )}, again as estimated via Monte–Carlo simulation over 1000 data
realisations, is shown as the solid line in Figure 5. Almost exactly matching this is the dashed line
which is the new quantification (70). Note the presence of the peak at 0.4 rad/s introduced, as pre-
dicted, by the associated poles of X(z). Note also, the significant difference (an order of magnitude
at some frequencies) between the accuracy of the co-prime factor approach and that of the direct, and
basic indirect approaches also shown as the indicated dashed and dash-dot lines in Figure 5.

Finally, the dual Youla method is examined by choosing the nominal model G0(q) as

G0(q) =
0.0395q − 0.0099

q2 − 1.8q + 0.81
.

and the co-prime factors of G0(q) and K(q) are taken according to the simple choice of EG(z) =
EK(z) = 1. Using the controller (71) then implies that

A0
c(z) = (1 − ρ1z

−1)(1 − ρ2z
−1), ρ1 = 0.99ej0.2, ρ2 = ρ1 (72)

The open and closed loop poles {ξk} and {ηk} are as discussed previously, and combined with (72)
and (50) lead to a quantification shown as the upper dashed line in Figure 6. Note that it agrees almost
exactly with the solid line which is, as before, the true variability as estimated in Monte–Carlo fashion
over 1000 data realisations.

Also shown in Figure 6 for comparison, are the quantifications (37) and (24) for direct and indirect
methods, which have previously been shown to be essentially exact, and which are clearly different
both quantitatively and qualitatively to the variance obtained via the dual Youla method.

Note that in this final simulation, the variance of {et} has been reduced from the value used in
previous simulations of σ2 = 10, to σ2 = 0.1, and in order to illustrate how the difference between
direct and indirect methods depends upon the size of this variance relative to the variance µ of the
reference {rt}.

In particular, note that the difference between direct and basic indirect methods shown in Fig-
ure 6 is such that when σ2 = 0.1, indirect methods can provide smaller relative variances at some
frequencies, and as shown in Figure 2, this is not the case when σ2 = 10.

This indicates that it is not possible to make any claims about the generic superiority of direct,
versus indirect methods from a point of view that concentrates on accuracy at specific frequencies.
On the other hand, an important issue not mentioned so far is that by virtue of its formulation, the
weighting term κ(ω) defined in (20) has the property that

1

2π

∫ π

−π

κ(ω) dω = m (73)

where m are the number of zeros {ξ1, · · · , ξm} that define κ(ω), and (73) holds regardless of the
location of these zeros.

This implies a ‘waterbed’ effect on frequency domain accuracy. Since the frequency domain
average of κ(ω) (which is a major contributor to the total variance) is equal to a constant determined
by the model orders employed, then any decrease in variance at one frequency, must be offset by an
increase at another frequency. This is clearly illustrated in Figures 2-6, where any relative superiority
of indirect versus direct methods at one frequency, is traded off by relative inferiority (the resonant
peaks) at other frequencies.
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6 Conclusion

This paper has drawn on new quantifications for the variance of system estimates in the frequency
domain that do not depend on an assumption of model order tending to infinity. This has allowed a
study of the relationship between the accuracy of a variety of direct and indirect estimation methods
that applies for the case of finite, and possibly low model order.

A key conclusion to arise from this work is that it is not generally true that there are negligible
differences between the accuracy of the various methods. Furthermore, the accuracy of various indi-
rect methods is not invariant to closed loop configuration, or to user choices such as that of pre-filter
(co-prime factor method) or nominal system (dual Youla method).

In seeking to address these issues in a manner that is exact with respect to the finite model order
chosen, certain assumptions of white set point signal, white measurement noise, and a certain con-
troller structure have been imposed. A useful topic for further study would be to examine how these
constraints might be lifted.
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A Proof of Theorems

A.1 Proof of Theorem 4.1

Proof. Note that according to (4), (8) (9)

Φu(ω) =

∣∣∣∣
A(ejω)

Ac(ejω)

∣∣∣∣
2

[µ+ σ2].

Therefore F (z) = A(z)/Ac(z) and H(z) = 1 substituted into (19) implies an associated A†(z) given
as

A†(z) = A2(z)
Ac(z)

A(z)
= A(z)Ac(z)

which, as required by Theorem 3.1 is a polynomial. Application of that Theorem then completes the
proof.

A.2 Proof of Theorem 4.2

Proof. Since Φr(ω) = µ, it has spectral factor F (z) = 1, and then according to the controller design
assumption (10), the limiting estimate S(q, θn

◦ ) can be expressed as

S(q, θ◦) = S(q) =
A(q)L(q)

P (q)(Ã(q)L(q) +B(q))
=
Ã(q)L(q)

Ac(q)
.

Substituting this into (19) then implies

A†(z) = A2
c(z)

L(z)Ã(z)

Ac(z)
= Ac(z)Ã(z)L(z)

which, as required by Theorem 3.1, is a polynomial. Therefore, according to that theorem

lim
N→∞

N Var
{
T (ejω, θ̂N )

}
= σ2 |S(ejω, θ◦)|

2

µ
κid(ω) (A.1)

where κid(ω) is given via (20) with the {ξk} being the zeros of zmα+mβAc(z)Ã(z)L(z). Application
of (34), (35) then completes the proof.

A.3 Proof of Theorem 4.3

Proof. First note that according to the parameterisation (41)

dT (q, θ)

dθ

∣∣∣∣
θ=θ◦

=

[
K(q)

1 +K(q)G(q, θ◦)
−

K2(q)G(q, θ◦)

(1 +K(q)G(q, θ◦))2

]
dG(q, θ◦)

dθ

= K(q)S2(q)
dG(q, θ◦)

dθ
.

Therefore, from a variance point of view, estimation using the model structure (30), (41) is equiva-
lent [10] to that associated with the model structure

yt = G(q, θ)xt +H(q, θ)et, xt , K(q)S2(q)rt.
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In order to apply Theorem 3.1, and under the assumption of this theorem that H(q) = 1, Ã(q)P (q) =
A(q) it is then necessary to consider

A†(z) =
A2(q)S(q)

K(q)S2(q)
=

A2(q)

K(q)S(q)
=
A2(q)Ac(q)L(q)

Ã(q)L(q)P (q)
= Ac(q)A(q)

which, as required by Theorem 3.1, is a polynomial in q−1. Application of Theorem 3.1 and recog-
nising that

|S(ejω)|2

Φx(ω)
=

1

|S(ejω)K(ejω)|2µ
=

1

Φr
u(ω)

then completes the proof.

A.4 Proof of Theorem 4.4

Proof. First, note that under the assumption of using the controller (10) and of H(q) = 1

xt = F (q)rt, F (q) , K
EG(q)P (q)L(q)

EK(q)A0
c(q)

(A.2)

W (q, θ◦) =
Ã(q)L(q)

Ac(q)
, Ac(q) , Ã(q)L(q) +KB(q)

R(q, θ◦) = Y −1(q)M(q)S(q)[G(q) −G0(q)] =
EK(q)

EG(q)

B(q, θ◦)A
0(q) −A(q, θ◦)B

0(q)

P (q)Ac(q)
.

Therefore, in order to use Theorem 3.1, it is necessary to consider

A†(q) = E2
G(q)P 2(q)A2

c(q)
W (q, θ◦)

F (q)

= E2
G(q)P 2(q)A2

c(q)
Ã(q)L(q)

Ac(q)

A0
c(q)EK(q)

EG(q)P (q)L(q)

= EG(q)EK(q)A(q)Ac(q)A
0
c(q).

As required by Theorem 3.1, this resultant A†(z) is a polynomial in z−1, and by assumption it is of
order less that mγ +mλ. Therefore, Theorem 3.1 may be used to assert that with κdy(ω) defined in
(20) with associated zeros {ξk} being those of (49)

lim
N→∞

N Var
{
R(ejω, θ̂N )

}
= σ2 |W (ejω, θ◦)|

2

Φx(ω)
κdy(ω)

=
σ2

Φr(ω)

∣∣S(ejω)
∣∣2

∣∣∣∣
A0(ejω)EK(ejω)

EG(ejω)P (ejω)S0(ejω)

∣∣∣∣
2

κdy(ω)

Furthermore,

dG(ejω) =
EG(ejω)

EK(ejω)

L(ejω)S0(ejω)

A0(ejω)S2(ejω)
dR(ejω)
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and hence

lim
N→∞

N Var
{
Gdy(e

jω, θ̂N )
}

=
σ2

Φr(ω)

∣∣S(ejω)
∣∣2

∣∣∣∣
A0(ejω)EK(ejω)

EG(ejω)P (ejω)S0(ejω)

∣∣∣∣
2

∣∣∣∣
EG(ejω)L(ejω)S0(ejω)

EK(ejω)A0(ejω)S2(ejω)

∣∣∣∣
2

κdy(ω)

=
σ2

Φr(ω)

∣∣∣∣
1

S(ejω)K(ejω)

∣∣∣∣
2

κdy(ω) =
σ2

Φr
u(ω)

κdy(ω).

A.5 Proof of Theorem 4.5

Proof. Since G = T/SK then

dG =
1

SK
dT −

T

(SK)2
dSK =

1

SK
[dT −GdSK]

and therefore

Var{G(ejω, θ̂N )} =
1

|SK|2

[
Var{T (ejω, θ̂N )} + |G|2Var{SK(ejω, β̂N )}

−2Re
{
G(ejω) Cov

{
SK(ejω, β̂N )T (ejω, θ̂N )

}]}
. (A.3)

However, as already established in (A.1)

lim
N→∞

N Var
{
T (ejω, θ̂N )

}
= σ2 |S(ejω, θ◦)|

2

µ
κid(ω).

where κid(ω) is defined by (20) with the {ξk} being the zeros of zmα+mβAc(z)Ã(z)L(z). Turning
now to the quantification of Var{T (ejω, β̂N )}, note that the assumption of H(q) = 1 implies that the
noise model in (53) is SK and hence the corresponding A†(z) in (19) is

A†(z) = A2
c(z)

A(z)

Ac(z)
= Ac(z)A(z)

which, under the assumption of the theorem is a polynomial of order less than mδ +mρ. Therefore,
Theorem 3.1 can be applied to quantify the variance of the estimate SK(q, β̂N ) as

lim
N→∞

N Var
{
SK(ejω, β̂N )

}
= σ2 |SK(ejω, β◦)|

2

µ
κdi(ω)

where the zeros defining κdi(ω) are those of zmρ+mδAc(z)A(z), and hence are the same as those used
to in the case of direct identification studied earlier. Finally, via Lemma B.1

lim
N→∞

N Cov
{
SK(ejω, β̂N )T (ejω, θ̂N )

}
= −

σ2

µ
K(ejω)|S(ejω)|2∆(ω).
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Substituting these variance expressions into (A.3) then implies that

lim
N→∞

N Var{G(ejω , θ̂N )} =
σ2

µ|SK|2
[
|S|2κid(ω) + |T |2κdi(ω) + 2|S|2Re {GK∆}

]

= |S|2
σ2

Φr
u(ω)

κid(ω) + |T |2
(
µ+ σ2

µ

)
σ2

Φu(ω)
κdi(ω) +

2σ2

Φr
u(ω)

Re
{
TS∆(ω)

}
.

Noting that from Theorem 4.2

lim
N→∞

N Var
{
Gid(e

jω, θ̂N )
}

=
σ2

Φr
u(ω)

κid(ω), lim
N→∞

N Var
{
Gdi(e

jω, θ̂N )
}

=
σ2

Φu(ω)
κdi(ω)

then completes the proof.

A.6 Proof of Theorem 4.6

Proof. Following along the same lines as the proof of Theorem 4.5, since G = NM−1 then

dG =
1

M
dN −

N

M2
dM =

1

M
[dN −GdM ]

and therefore

Var{G(ejω, θ̂N )} =
1

|M |2

[
Var{N(ejω, θ̂N )} + |G|2Var{M(ejω, β̂N )}

−2Re
{
G(ejω) Cov

{
M(ejω, β̂N )N(ejω, θ̂N )

}]}
. (A.4)

Considering first Var{N(ejω, θ̂N )}, note that

N(q, θn
◦ ) =

B(q)XD(q)

Ac(q)XN (q)
, S(q, θn

◦ ) =
Ã(q)L(q)

Ac(q)

and therefore, for the purposes of employing Theorem 3.1, it is necessary to consider

A†(z) = A2
c(z)X

2
N (z)

Ã(z)L(z)

Ac(z)

XD(z)

XN (z)
= Ac(z)Ã(z)L(z)XN (z)XD(z).

Clearly, this is a polynomial, which under the assumptions of the theorem is of order less than mα +
mβ . Hence, according to Theorem 4.1

lim
N→∞

N Var
{
N(ejω, θ̂N )

}
= σ2 |S(ejω, θ◦)|

2

Φx(ω)
κidx(ω). (A.5)

where κidx(ω) is defined by (20) with the {ξk} being the zeros of zmα+mβAc(z)Ã(z)L(z)XN (z)XD(z).
Turning now to the quantification of Var{M(ejω, β̂N )}, note that

M(q, θn
◦ ) =

A(q)XD(q)

Ac(q)XN (q)
, SK(q, θn

◦ ) =
A(q)

Ac(q)



Frequency Domain Accuracy of Closed Loop Estimates 29

and therefore, for the purposes of employing Theorem 3.1, it is necessary to consider

A†(z) = A2
c(z)X

2
N (z)

A(z)

Ac(z)

XD(z)

XN (z)
= Ac(z)A(z)XN (z)XD(z).

Again, this is a polynomial, which under the assumptions on of the theorem is of order less than
mρ +mδ . Hence, according to Theorem 4.1

lim
N→∞

N Var
{
M(ejω, θ̂N )

}
= σ2 |SK(ejω, θ◦)|

2

Φx(ω)
κdix(ω). (A.6)

where κdix(ω) is defined according to (20) with the {ξk} being the zeros of zmρ+mδAc(z)A(z)XN (z)XD(z).
Compared to the proof of Theorem 4.5, the inclusion of the pre-filter X(q) has, relative to the joint
input-output approach, added the poles and zeros of X(q) into the associated polynomials A†(z) that
quantify variance. With this in mind, it is straightforward to see that the proof Lemma B.1 can be
adapted in the same fashion to conclude that

lim
N→∞

N Cov
{
M(ejω, β̂N )N(ejω, θ̂N )

}
= −

σ2

Φx(ω)
K(ejω)|S(ejω)|2∆(ω) (A.7)

where ∆(ω) is again given by (58) but now with ∆1(λ, ω) and ∆2(λ, ω) being (respectively) the repro-
ducing kernels for space spanned by the elements of S−1(z)X(z)dN(z, θ)/dθ and SK−1(z)X(z)dM(z, θ)/dθ
and with respect to the measure µdλ, and it is then straightforward to see that these are the same
spaces Vζ and Vτ considered in (60), (61) for the joint input-output method after they are augmented
to include the poles and zeros of X(z). Substituting (A.7), (A.6) and (A.5) into (A.4) then implies
that

lim
N→∞

N Var{G(ejω , θ̂N )} =
σ2

|M |2Φx(ω)

[
|S|2κidx(ω) + |T |2κdix(ω) + 2|S|2Re {GK∆}

]

= |S|2
σ2

Φr
u(ω)

κidx(ω) + |T |2
(
µ+ σ2

µ

)
σ2

Φu(ω)
κdix(ω) +

2σ2

Φr
u(ω)

Re
{
TS∆(ω)

}
.

Substitution of (28) and (68) into the above then completes the proof.

B Technical Lemma

Lemma B.1. Under the conditions of Theorem 4.5

lim
N→∞

N Cov
{
SK(ejω, β̂N )T (ejω, θ̂N )

}
= −

σ2

µ
K(ejω)|S(ejω)|2 ∆(ω),

where ∆(ω) is defined in (58).

Proof. Via a standard first order Taylor expansion argument [7]

θ̂N − θ◦ ≈ R−1(θ◦)
d

dθ
VN (θ◦, β◦)
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where the accuracy in the above approximation increases with increasing N and

R(θ) , lim
N→∞

1

N

N∑

t=1

E
{
ψt(θ)ψ

T
t (θ)

}
,

d

dθ
VN (θ◦, β◦) = −

1

N

N∑

t=1

ψt(θ◦)et

with

ψt(θ◦) , S−1(q, θ◦)

[
dT (q, θ◦)

dθ
,
dS(q, θ◦)

dθ

] [
rt
et

]
.

Similarly

β̂N − β◦ ≈M−1(β◦)
d

dβ
VN (θ◦, β◦)

where

M(β) , lim
N→∞

1

N

N∑

t=1

E
{
φt(β)φT

t (β)
}
,

d

dβ
VN (β◦, β◦) = −

1

N

N∑

t=1

φt(β◦)et

with

φt(β◦) , −SK−1(q, β◦)

[
dSK(q, β◦)

dβ
,−

dSK(q, β◦)

dβ

] [
rt
et

]
.

Therefore,

N Cov{θ̂N β̂
T
N} ≈ −σ2R−1(θ◦)

1

N

N∑

t=1

E
{
ψt(θ◦)φ

T
t (β◦)

}
M−1(β◦) (B.1)

with increasing accuracy in the approximation as N → ∞. Now, defining

Π(q, θ) , [T (q, θ), S(q, θ)] , Γ(q, β) , [SK(q, β), SK(q, β)]

Z(q, θ◦) ,

[
dT (q, θ◦)

dθ
,
dS(q, θ◦)

dθ

]
, W (q, β◦) ,

[
dSK(q, β◦)

dβ
,−

dSK(q, β◦)

dβ

]

then again using a first order Taylor expansion

Π(ejω, θ̂N )−Π(ejω, θ◦) ≈ ZT (ejω, θ◦)[θ̂N−θ◦], Γ(ejω, β̂N )−Γ(ejω, β◦) ≈W T (ejω, θ◦)[β̂N−β◦].

Therefore, combining with (B.1) implies that

lim
N→∞

N
1

K(ejω)|S(ejω)|2
Cov

{
Γ(ejω, θ̂N )Π(ejω, θ̂N )

}
=

−

[
Z(ejω, θ◦)

S(ejω)

]?

T−1
n

(
ZφζZ

?

|S|2

)
Tn

(
ZφζW

?

|S|2K?

)
T−1

n

(
WφζW

?

|SK|2

)
W (ejω, β◦)

S(ejω)K(ejω)
=

−
1

2π

∫ π

−π

ϕ(λ, ω)γ(ω, λ)µdλ

where

ϕ(λ, ω) =

[
Z(ejω, θ◦)

S(ejω)

]?

T−1
n

(
ZφζZ

?

|S|2

)
Z(ejλ, θ◦)

S(ejλ)

γ(ω, λ) =

[
W (ejλ, β◦)

S(ejλ)K(ejλ)

]?

T−1
n

(
WφζW

?

|SK|2

)
W (ejω, β◦)

S(ejω)K(ejω)
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Now, according to (15), then by construction ϕ(λ, ω) and γ(λ, ω) are diagonal 2 × 2 matrix-valued
functions. Denote the top left elements of them as ∆1(λ, ω) and ∆2(λ, ω). Then, since Φre(ω) = 0

lim
N→∞

N
1

K(ejω)|S(ejω)|2
Cov

{
SK(ejω, β̂N )T (ejω, θ̂N )

}
= −

1

2π

∫ π

−π

∆1(λ, ω)∆2(ω, λ)µdλ

However, using the ideas developed in [10], ∆1(λ, ω) and ∆2(λ, ω) are both reproducing kernels for
the space spanned by the elements of (respectively) of S−1(z)dT (z, θ)/dθ and SK−1(z)dSK(z, θ)/dθ
and with respect to the measure µdλ. Furthermore, these spaces are equal to those of Vζ and Vτ de-
fined in (60), (61) and hence again via the results in [10], the kernels can then be expressed via the
quantities in (59) after division by µ.
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