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Abstract

It has been recently established that, when estimating parametric models on the basis of closed
loop data, the frequency domain variability of direct and various indirect methods may signifi-
cantly differ from one another. This paper continues this work by analysing the performance of
certain common joint input-output estimation methods.

1 Introduction and Preliminary Results

This paper examines the frequency domain variability of estimates obtained from closed loop data. It
is a continuation of work begun in [7] and contains results that could not be presented there due to
space restrictions. Both papers are in recognition of the fact that, over the last decade, there has been
significant interest in the development and analysis of estimation methods tailored to closed loop data
settings, with [1, 3, 2, 10] representing some of the more recent contributions.

In particular, the recent work [2] has provided a survey of techniques. This highlights that they
may be divided into classes of ‘direct’, ‘indirect’ and ‘joint input-output’ methods. Furthermore, it
has been argued in [3] that, asymptotically in both data length and model order, all these methods
provide (essentially) the same estimate variability.

The contribution of the companion work [7] has been to employ new results from [5] to quantify
the variability of various direct and indirect estimation schemes in a manner that is exact for finite
model order. Contrary to the asymptotic in model order conclusion made in [3], this has established
important variability differences, and in a manner that exposes what features of the estimation problem
contribute to estimation inaccuracies.

The purpose of this paper is to complete this study by considering the class of joint input-output
methods. Necessarily, the division of work across this paper and [7] results in the need to cross-
reference some results and expressions. We recommend that the papers be read together for maximum
clarity. Nevertheless, in order to provide a self contained exposition, this paper reviews and very
briefly represents certain key notations, assumptions and results from [7] that are essential to the work
here.
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To begin this overview, it is assumed here that available data is collected under a closed loop
scenario of

S : yt = G(q)ut + et, (1)

ut = K(q) [rt − yt] (2)

for some underlying true system S , and where the data is used to find an estimate of the transfer
function G(q).

According to (1) and (2), the systemG(q) is under the influence of a linear time invariant controller
K(q) and an external set point signal {rt}. Here G(q) = B(q)/A(q) and K(q) = kP (q)/L(q) are all
rational in the backward shift operator q−1 and {et} is a zero-mean white noise sequence that satisfies
E{e2t } = σ2,E{|et|8} <∞.

For the purposes of estimating G(q), this paper employs a model G(q, θ) parametrized by a vector
θ ∈ R

n, and then studies the noise induced frequency domain error G(ejω, θ̂N ) −G(ejω), where θ̂N

is a prediction-error based estimate of the true parameters θ◦ found on the basis of N samples of data.
To facilitate this study of variance error, the following assumptions were imposed in [7], and will

also be taken to hold in this paper.

Standing Assumptions 1.1.

1. The reference {rt} is quasi-stationary with power spectral density Φr(ω) = µ a constant.
According to (2), this implies that the power spectral density Φr

u(ω) of the component of {ut}
that derives solely from {rt} is given as (S(q) is defined below in (11))

Φr
u(ω) = µ|K(ejω)S(ejω)|2. (3)

2. The controller K(q) is of the form

K(q) = k
P (q)

L(q)
, L(q) =

m∏̀

k=1

(1 − `kq
−1), k ∈ R (4)

and where P (q) is formed as a subset of the open loop poles of A(q) (a pole cancelling design).
That is for some polynomial Ã(q) in q−1

Ã(q)P (q) = A(q), Ac(q) = Ã(q)L(q) + k B(q) (5)

with Ac(q) being a polynomial whose zeros are the closed loop poles of (1),(2).

3. The model structure is chosen such that the prediction error εt(θ) associated with a model
parametrized by θ satisfies εt(θ◦) = et (ie. there is no undermodelling) and such that there are
no pole-zero cancellations in any of the limiting transfer functions parametrized by θ◦ (ie. the
system state dimension is not overmodelled);

4. The underlying true system G(q) is asymptotically stable;

5. Given a set {ξ1, · · · , ξm} of points strictly within the open unit disk {z ∈ C : |z| < 1}, the
function κ(ω) : [−π, π] → R is defined as

κ(ω) ,

m∑

k=1

1 − |ξk|
2

|ejω − ξk|2
. (6)
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Under these assumptions, the previous work [7] has established that the variability of a direct estimate
Gdi(e

jω, θ̂N ), which simply uses input {ut} and output {yt} for estimation [7, 3] satisfies

lim
N→∞

N Var
{
Gdi(e

jω, θ̂N )
}

=
σ2

Φu(ω)
κdi(ω) (7)

where κdi(ω) is given by (6) with the associated zeros {ξ1, · · · , ξma+mb
} being defined as those of the

polynomial zma+mbA(z)Ac(z) (mb and ma are respectively the numerator and denominator orders
of Gdi(q, θ)).

Furthermore, when employing an indirect method in which the closed loop transfer function T =
GK/(1 + GK) is first estimated, and then G is subsequently estimated as Gid = T/K(1 − T ), the
previous work [7] has established that

lim
N→∞

N Var
{
Gid(e

jω, θ̂N )
}

=
σ2

Φr
u(ω)

κid(ω) (8)

where κid(ω) is given by (6) with the associated zeros {ξ1, · · · , ξmα+mβ
} being defined as those of

the polynomial zmα+mβAc(z)Ã(z)L(z) (mβ andmα are respectively the numerator and denominator
orders of the closed loop transfer function T (q) defined below).

Finally, an elementary principle, which is important for this paper, is that the relationship between
the signals in (1),(2) may also be expressed as

yt = T (q)rt + S(q)et (9)

ut = S(q)K(q)rt − S(q)K(q)et (10)

where S(q) and T (q) are the sensitivity and complementary sensitivity functions given (respectively)
as

S(q) =
1

1 +G(q)K(q)
, T (q) =

G(q)K(q)

1 +G(q)K(q)
. (11)

2 Main Results

As already mentioned, this paper completes a study begun in [7], by considering so-called‘joint
input-output’ system identification methods. These are techniques in which two model structures
parametrized separately by vectors θ and β are used as follows (here, and in what follows, notation
such as SK(q, β) will denote an appropriate order parametrization of compound transfer functions,
whose elements have been defined previously):

yt = T (q, θ)rt + S(q, θ)et (12)

ut = SK(q, β)rt − SK(q, β)et. (13)

These structures imply the following one-step ahead prediction errors

εyt (θ) = S−1(q, θ) [yt − T (q, θ)rt]

εut (β) = SK−1(q, β) [ut − SK(q, β)rt]
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which are used to find estimates θ̂N , β̂N according to

[θ̂N , β̂N ] = arg min
θ,β

VN (θ, β), VN (θ, β) ,
1

2N

N∑

t=1

[εyt (θ)]
2 + [εut (β)]2. (14)

Since {rt} is not correlated with {et}, then this implies the equivalent of two open loop estimation
problems, with all the attendant advantages of this scenario [2, 7]. The estimate of the open loop
dynamics is then found via this joint input-output method as

Gjio(q, θ̂N , β̂N ) =
T (q, θ̂N )

SK(q, β̂N )
. (15)

Note that an advantage of this method in comparison to indirect methods [2, 7] is that knowledge of
the controller K(q) is not required. Furthermore, there exists a range of possible joint input-output
methods that depend on the model structures used in (12), (13). In this paper, two are considered, the
‘basic’ joint input-output method and the ‘co-prime factor’ method.

2.1 Basic Joint Input-Output Identification

The so-called ‘basic’ joint input-output approach involves using a model structure for T (q, θ) given
by

T (q, θ) =
β0 + β1q

−1 + · · · + βmβ
q−mβ

1 + α1q−1 + · · · + αmαq
−mα

(16)

and for SK(q, β) given by

SK(q, β) =
ρ0 + ρ1q

−1 + · · · + ρmρq
−mρ

1 + δ1q−1 + · · · + δmδ
q−mδ

.

The model structures for the noise models S(q, θ) and SK(q, β) are assumed to be independently
parametrized from the dynamics models T (q, θ), SK(q, β), and such that they can completely de-
scribe the true noise models S(q), S(q)K(q) without any pole-zero cancellations.

The variance properties of the resulting basic joint input-output estimate Gjio(q, θ̂N , β̂N ) derived
from (15), and under the same conditions considered in the previous sections, are now established via
the following theorem.

Theorem 2.1. Suppose that the Standing Assumptions 1.1 are satisfied. Suppose further that the
model orders chosen for T (q, θ) satisfy the conditions of [7, Theorem 3.1] so that Ac(z)Ã(z)L(z) is
a polynomial in z−1 of order less than mα +mβ . Finally, suppose that the model orders chosen for
SK(q, β) are such that Ac(z)A(z) is a polynomial in z−1 of order less than mδ + mρ. Then using
the joint input-output identification method, it holds that

lim
N→∞

N Var
{
Gjio(e

jω, θ̂N , β̂N )
}

= |S(ejω)|2 lim
N→∞

N Var
{
Gid(e

jω, θ̂N )
}

+
(

µ

µ+ σ2

)
|T (ejω)|2 lim

N→∞
N Var

{
Gdi(e

jω, θ̂N )
}

+

2σ2

Φr
u(ω)

Re
{
T (ejω)S(ejω)∆(ω)

}
(17)
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where ∆(ω) is specified in the following equation (19) and

lim
N→∞

N Var
{
Gid(e

jω, θ̂N )
}
, lim

N→∞
N Var

{
Gdi(e

jω, θ̂N )
}

are given respectively by (8) with mα,mβ the same as here, and (7) with ma = mδ , mb = mρ.

Proof. See Appendix A.1.

This result suggests the following approximate quantification which is ‘exact’ for finite model
order, but is of increasing accuracy with increasing data length N

Cov
{
Gjio(e

jω, θ̂N , β̂N )
}

≈ |S(ejω)|2Var
{
Gid(ejω, θ̂N )

}
+

(
µ+ σ2

µ

)
|T (ejω)|2

{
Gdi(e

jω, θ̂N )
}

+
2

N

σ2

Φr
u(ω)

Re
{
T (ejω)S(ejω)∆(ω)

}
. (18)

Some comments about this result are clearly in order.

1. Firstly, the quantification (18) clearly shows that, in comparison with (7), (8) the variance
Var{Gjio(e

jω, θ̂N , β̂N )} for basic joint input-output methods is not, in general, equal to that
associated with alternative direct and indirect estimation techniques.

In fact, consideration of only the first two terms in (18) illustrates that under the assumptions of
Theorem 2.1, Var{Gco(e

jω, θ̂N , β̂N )} is a pseudo-convex combination of Var{Gid(e
jω, θ̂N )}

and Var{Gdi(e
jω, θ̂N )}, where the epithet ‘pseudo’ is used since S + T = 1 and hence if

µ� σ2 then

|S(ejω)|2 +

(
µ+ σ2

µ

)
|T (ejω)|2 ≈ 1.

Therefore (again ignoring the last ∆(ω) term) the expression (18) shows that while at some
frequencies where |S| ≈ 1 or |T | ≈ 1 the variance of joint input-output methods estimates
might be approximately the same as either a direct method or basic indirect method estimate, it
is certainly not in general equal to either of them.

2. Turning now to the last component of (18), the term ∆(ω) needs to be defined. In fact it is given
as

∆(ω) ,
1

2π

∫ π

−π

∆1(λ, ω)∆2(λ, ω) dλ, (19)

where

∆1(λ, ω) =

mα+mβ∑

k=1

Bk(e
jλ)Bk(ejω), ∆2(λ, ω) =

mδ+mρ∑

k=1

Fk(e
jλ)Fk(ejω), (20)

and with {ζk} being the zeros of zmα+mβAc(z)Ã(z)L(z) and {τk} being the zeros of zmδ+mρAc(z)A(z)

Bk(z) ,
z
√

1 − |ζk|2

z − ζk
φk−1(z), φk(z) ,

k∏

`=1

1 − ζ`z

z − ζ`
, φ0(z) , 1

while

Fk(z) ,
z
√

1 − |τk|2

z − τk
ψk−1(z), ψk(z) ,

k∏

`=1

1 − τ`z

z − τ`
, ψ0(z) , 1.
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Although this definition of ∆(ω) appears quite complicated, it has a simple geometric interpre-
tation, that is obtained by considering the function spaces

Vζ , Span

{
1

∏mα+mβ

k=1 (1 − ζkz−1)
, · · · ,

z−(mα+mβ))
∏mα+mβ

k=1 (1 − ζkz−1)

}
(21)

Vτ , Span

{
1

∏mδ+mρ

k=1 (1 − τkz−1)
, · · · ,

z−(mδ+mρ))
∏mδ+mρ

k=1 (1 − τkz−1)

}
. (22)

With this in mind, define PVζ
: H2 → Vζ as the orthogonal projection of an arbitrary function

f ∈ H2 onto Vζ :

PVζ
f 7→ f̂ ∈ Vζ such that

〈
f̂ − f, g

〉
= 0 ∀g ∈ Vζ .

Similarly PVτ : H2 → Vτ is the orthogonal projection onto Vτ . Then projections can be given
an explicit formulation via ∆1(λ, ω) and ∆2(λ, ω) as [6]

[PVζ
f ](ω) =

1

2π

∫ π

−π

f(λ)∆1(λ, ω) dλ, [PVτ f ](ω) =
1

2π

∫ π

−π

f(λ)∆2(λ, ω) dλ.

Therefore, according to (19), ∆(ω) is the best (in the sense of minimal H2 norm of error)
approximation of ∆1(λ, ω) (which, as a function of λ is in Vζ for all ω) in terms of an element
f ∈ Vτ .

As such, an explicit expression for ∆(ω) arises by noting that {Fk} is an orthonormal basis for
Vτ so that

∆(ω) =

mδ+mρ∑

n=1

mα+mβ∑

k=1

〈
Bk(e

jλ),Fn(ejλ)
〉
Bk(ejω)Fn(ejω).

This representation highlights that ∆(ω) is a rational function that contains poles equal to the
open and closed loop poles, and at the complex conjugate of the open loop poles and the con-
troller poles. Unfortunately since, in general, the inner product term has quite a complicated
(but computable) closed form expression, then a simple formulation of ∆(ω) does not seem
possible. However, since ∆(ω) is the sum of terms that are of indefinite sign, while the first two
terms in (17) involve sums of |Bk(e

jω)|2, |Fk(e
jω)|2 which are all positive, then these first two

terms could be expected to dominate the quantification. It is the experience of the authors that
this is generally true.

3. Consider the special case of proportional control in which K(q) = k ∈ R so that Ã(z) = A(z)
and hence, provided that µ� σ2 so Φr

u(ω) ≈ Φu(ω) then

Var
{
Gid(e

jω, θ̂N )
}

= Var
{
Gdi(e

jω, θ̂N )
}
≈

σ2

NΦu(ω)
κdi(ω). (23)

In this same situation, the spaces Vζ and Vτ in (21), (22) become the same, so that ∆2(λ, ω) =
∆1(λ, ω) and hence using the reproducing kernel property of ∆1(λ, ω)

∆(ω) = ∆1(ω, ω) =

[
(mβ −mα) +

mα∑

k=1

1 − |ηk|
2

|ejω − ηk|2
+

ma∑

k=1

1 − |ξk|
2

|ejω − ξk|2

]
= κdi(ω). (24)
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Consequently, substituting (23) and (24) into (18) indicates that in this special case of propor-
tional control

Var
{
Gjio(e

jω, θ̂N , β̂N )
}

= Var
{
Gdi(e

jω, θ̂N )
} [

|S|2 + |T |2 + TS
]

= Var
{
Gdi(e

jω, θ̂N )
}

= Var
{
Gid(e

jω, θ̂N )
}
.

While this last comment establishes that there may be situations, such as that of simple proportional
control, in which direct and indirect methods deliver estimates of the same accuracy, the quantification
(17) establishes that this is by no means the general situation.

2.2 Coprime Factor Identification

A generalisation of the basic joint input-output approach is the so-called ‘co-prime factor method’ [9,
8, 10], which starts from the relationships (12), (13) and introduces the filtered signal

xt = X(q) rt, X(q) =
XN (q)

XD(q)
(25)

where XN (q), XD(q) are polynomials in q−1 and which leads to

yt = N(q, θ)xt + S(q, θ)et (26)

ut = M(q, β)xt − SK(q, β)et

where
N(q, θ) = T (q, θ)X−1(q), M(q, β) = SK(q, β)X−1(q).

This is nothing more than a re-parametrization of (12), (13) and suggests the use of the prediction
error residuals

εyt (θ) = S(q, θ)[yt −N(q, θ)xt], εut (β) = SK−1(q, β)[ut −M(q, β)xt], (27)

as a method of obtaining estimates θ̂N , β̂N according to (14) which then delivers an estimateGco(q, θ̂N , β̂N )
of the input-output dynamics according to

Gco(q, θ̂N , β̂N ) =
N(q, θ̂N )

M(q, β̂N )
. (28)

The appended subscript ‘co’ denotes that estimates obtained in this way have often been termed ‘co-
prime factor method’ estimates [8, 2, 10, 3] on account of the fact that it is possible to choose X(q)
such that N(q, θ̂N ), M(q, β̂) are a normalised co-prime pair, in which case Gco(q, θ̂N , β̂N ) is of
minimal order.

In order to study the accuracy of Gco(q, θ̂N , β̂N ), it is necessary to also consider a ‘generalised’
direct estimate Gdix(q, θ̂N ) which also depends on the use of a pre-filter X(q) of the rational form
specified in (25). This estimate has originally been detailed in [7] as being given by

Gdix(q, θ̂N ) = Gx(q, θ̂N )X(q) (29)

where Gx(q, θ̂N ) is estimated on the basis of the residual

εt(θ) = H−1(q, θ)[yt −Gx(q, θ)xt], xt = X(q)ut.
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In what follows shortly, this paper will employ the result established in [7]

lim
N→∞

N Var{Gdix(ejω, θ̂N )} =
σ2

Φu(ω)
κdix(ω) (30)

where κdix(ω) is given by (6) with the {ξk} in that expression being the zeros of

zma+mbA(z)Ac(z)XN (z)XD(z). (31)

Similarly, consider a generalisation of the preceding ‘basic’ indirect identification method (detailed
earlier in this paper, and also in [7]) in which the estimate N(q, θ̂N ) is obtained via the model structure
(26),(27) with

N(q, θ) =
β0 + β1q

−1 + · · · + βmβ
q−mβ

1 + α1q−1 + · · · + αmαq
−mα

which is then used to form a ‘generalised’ indirect estimate Gidx(q, θ̂N ) of G(q) according to

Gidx(q, θ̂N ) =
X(q)N(q, θ̂N )

K(q)[1 −X(q)N(q, θ̂N )]
. (32)

Therefore, since

dGidx =
X

K2S
dN

it follows using the arguments in the proof of the following Theorem 2.2 that

lim
N→∞

N Var{Gidx(ejω, θ̂N )} =
σ2

Φr
u(ω)

κidx(ω) (33)

where κidx(ω) is defined according to (6) with the {ξk} in that expression being the zeros of

zmα+mβAc(z)Ã(z)L(z)XN (z)XD(z).

The purpose of considering these hypothetical estimates Var{Gdix(q, θ̂N )} and Var{Gidx(q, θ̂N )} to-
gether with their frequency domain variances given by (29), (32) is that they arise naturally in the
quantification of the variance of system estimates formed via the co-prime factor method.

This is established in the following theorem, for which it is also necessary to specify that the
model structure employed for estimation of M(q) is of the form

M(q, β) =
ρ0 + ρ1q

−1 + · · · + ρmρq
−mρ

1 + δ1q−1 + · · · + δmδ
q−mδ

.

With this in mind, the accuracy of the co-prime factor method of indirect identification may be quan-
tified via the following result.

Theorem 2.2. Suppose that the Standing Assumption 1.1 are satisfied. Suppose further that the model
orders chosen for N(q, θ) are such that XN (z)XD(z)Ac(z)Ã(z)L(z) is a polynomial in z−1 of or-
der less than mα + mβ . Finally, suppose that the model orders chosen for M(q, β) are such that
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XN (q)XD(z)Ac(z)A(z) is a polynomial in z−1 of order less than mδ +mρ. Then using the co-prime
factor identification method (25)-(28)

lim
N→∞

N Var
{
Gco(e

jω, θ̂N , β̂N )
}

= |S(ejω)|2 lim
N→∞

N Var
{
Gidx(e

jω, θ̂N )
}

+
(

µ

µ+ σ2

)
|T (ejω)|2 lim

N→∞
N Var

{
Gdix(ejω, θ̂N )

}
+

2σ2

Φr
u(ω)

Re
{
T (ejω)S(ejω)∆(ω)

}

where the asymptotic in N values of Var{Gdix(ejω, θ̂N ) and Var{Gidx(e
jω, θ̂N ) are given by (30) and

(33) respectively, and ∆(ω) is as defined via (19)-(22) save that the spaces Vτ and Vζ involved in that
definition are both augmented to also include the poles and zeros of X(z).

Proof. See Appendix A.2.

Again, via the associated approximation suggested by this result of

Var
{
Gco(e

jω, θ̂N , β̂N )
}

≈
|S(ejω)|2

N
Var

{
Gidx(ejω, θ̂N )

}
+

(
µ

µ+ σ2

)
|T (ejω)|2

N
Var

{
Gdix(e

jω, θ̂N )
}

+

2σ2

NΦr
u(ω)

Re
{
T (ejω)S(ejω)∆(ω)

}
(34)

this Theorem highlights that there can be appreciable differences in the accuracy of estimates obtained
in closed loop, depending on the estimation strategy employed.

In particular, note that all the terms on the right hand side of the quantification (34) depend on
both the poles and zeros of the chosen pre-filter X(q), which (of course) was not a factor in direct and
indirect estimation methods addressed via (7), (8) and studied in [7].

Again, there is a special case worth mentioning of strictly proportional control, in which case (via
an identical argument as used in the previous section), the quantification (34) reduces to

Var
{
Gco(e

jω, θ̂N , β̂N )
}

= Var
{
Gdix(ejω, θ̂N )

}
= Var

{
Gidx(ejω, θ̂N )

}
.

However, again because of their dependence on the poles and zeros ofX(q), these latter two quantities
are not equal to the variances for direct and basic indirect methods.

3 Simulation Examples

In order to emphasise possible ramifications of the new variance quantifications developed in this
paper, this penultimate section provides an illustrative simulation example. For this purpose the fol-
lowing system (introduced in[7]) is considered

yt = G(q)ut + et, G(q) =
1.6177q2 − 0.74q

q2 − 1.8q + 0.81
(35)

where, according to (2), it is under the influence of the pole cancelling controller

K(q) =
q2 − 1.8q + 0.81

q3 − 1.9801q2 + 0.99q
. (36)
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This choice of K(q) implies Ã(z) = 1 according to (5) and delivers

T (q) =
1.618q − 0.74

q2 − 0.3624q + 0.25
, S(q) =

q2 − 1.9801q + 0.99

q2 − 0.3624q + 0.25

which implies closed loop poles at η1, η2 = 0.5e±j1.2.
Therefore, according to (7), (8), (18) and the discussion following Theorem 2.1, the estimation

error involved with the joint input-output method (15) should be different from that involved with
direct or basic indirect methods as studied in [7].

Indeed, as shown in Figure 1, simulation confirms this. In that figure the solid line is the ‘true’
variability as computed via Monte–Carlo simulation over 1000 estimate realisations, each derived
from N = 10000 data points with measurement noise variance σ2 = 10 and input Φr(ω) = 1.
This is seen to be in very close agreement with the smooth dashed line which is the approximate
quantification (18) derived in this paper.

Also shown in Figure 1 as a dash-dot and a (peaked) dashed line are, respectively, the quantifi-
cations (7), (8) pertaining to direct and basic indirect methods, whose accuracy was established in
Figure 2 of [7].

In relation to this, note the qualitative and quantitative difference between these direct, and basic
indirect variances when compared to the basic joint input-output method variability. This illustrates
a main theme of this paper and [7]. The choice of closed loop identification method can have a
significant impact on estimation accuracy in the frequency domain.

Finally, in order to illustrate the results obtained here for the co-prime factor method, consider the
use of the pre-filter

X(q) =
1

q2 − 1.8237q + 0.9801

which is of bandpass type with centre frequency at 0.4 rad/s. In this case, the true frequency response
variability Var{Gco(e

jω, θ̂N , β̂N )}, again as estimated via Monte–Carlo simulation over 1000 data
realisations, is shown as the solid line in Figure 2. Almost exactly matching this is the dashed line
which is the new quantification (34). Note the presence of the peak at 0.4 rad/s introduced, as pre-
dicted, by the associated poles of X(q). Note also, the significant difference (an order of magnitude
at some frequencies) between the accuracy of the co-prime factor approach and that of the direct, and
basic indirect approaches also shown as the indicated dashed and dash-dot lines in Figure 2.

4 Conclusion

By the examination of joint input-output estimation techniques, this paper has completed a study
begun in [7] of the frequency domain accuracy of various approaches to estimtion on the basis of
closed loop data. The key feature discriminating this joint work from previous contributions has
been to derive variance quantifications that are exact for finite model order. This has necessitated
the imposition of certain assumptions that preclude the most general closed loop scenario, but with
the dividends of exposing new principles affecting estimation accuracy, and in fact of establishing by
theoretical argument that differencies in frequency domain accuracy may actually exist.
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Figure 1: Variability of joint input-output method compared with direct and indirect approaches under
the same experimental conditions.
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Figure 2: Variability of co-prime factor method estimate compared with direct and indirect approaches
under the same experimental conditions.
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A Proof of Theorems

A.1 Proof of Theorem 2.1

Proof. Since G = T/SK then

dG =
1

SK
dT −

T

(SK)2
dSK =

1

SK
[dT −GdSK]

and therefore

Var{G(ejω, θ̂N )} =
1

|SK|2

[
Var{T (ejω, θ̂N )} + |G|2Var{SK(ejω, β̂N )}

−2Re
{
G(ejω) Cov

{
SK(ejω, β̂N )T (ejω, θ̂N )

}]}
. (A.1)

However, as already established in equation (A.1) of [7]

lim
N→∞

N Var
{
T (ejω, θ̂N )

}
= σ2 |S(ejω, θ◦)|

2

µ
κid(ω).

where κid(ω) is defined by (6) with the {ξk} being the zeros of zmα+mβAc(z)Ã(z)L(z). Turning
now to the quantification of Var{T (ejω, β̂N )}, note that the assumption of H(q) = 1 implies that the
noise model in (13) is SK and hence the corresponding A†(z) in equation (22) of [7] is

A†(z) = A2
c(z)

A(z)

Ac(z)
= Ac(z)A(z)

which, under the assumption of the theorem is a polynomial of order less than mδ +mρ. Therefore,
Theorem 3.1 of [7] can be applied to quantify the variance of the estimate SK(q, β̂N ) as

lim
N→∞

N Var
{
SK(ejω, β̂N )

}
= σ2 |SK(ejω, β◦)|

2

µ
κdi(ω)

where the zeros defining κdi(ω) are those of zmρ+mδAc(z)A(z), and hence are the same as those used
to in the case of direct identification studied earlier. Finally, via Lemma B.1

lim
N→∞

N Cov
{
SK(ejω, β̂N )T (ejω, θ̂N )

}
= −

σ2

µ
K(ejω)|S(ejω)|2∆(ω).

Substituting these variance expressions into (A.1) then implies that

lim
N→∞

N Var{G(ejω , θ̂N )} =
σ2

µ|SK|2
[
|S|2κid(ω) + |T |2κdi(ω) + 2|S|2Re {GK∆}

]

= |S|2
σ2

Φr
u(ω)

κid(ω) + |T |2
(
µ+ σ2

µ

)
σ2

Φu(ω)
κdi(ω) +

2σ2

Φr
u(ω)

Re
{
TS∆(ω)

}
.

Noting that from Theorems 4.1 and 4.2 of [7]

lim
N→∞

N Var
{
Gid(e

jω, θ̂N )
}

=
σ2

Φr
u(ω)

κid(ω), lim
N→∞

N Var
{
Gdi(e

jω, θ̂N )
}

=
σ2

Φu(ω)
κdi(ω)

then completes the proof.
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A.2 Proof of Theorem 2.2

Proof. Following along the same lines as the proof of Theorem 2.1, since G = NM−1 then

dG =
1

M
dN −

N

M2
dM =

1

M
[dN −GdM ]

and therefore

Var{G(ejω, θ̂N )} =
1

|M |2

[
Var{N(ejω, θ̂N )} + |G|2Var{M(ejω, β̂N )}

−2Re
{
G(ejω) Cov

{
M(ejω, β̂N )N(ejω, θ̂N )

}]}
. (A.2)

Considering first Var{N(ejω, θ̂N )}, note that

N(q, θ◦) =
B(q)XD(q)

Ac(q)XN (q)
, S(q, θ◦) =

Ã(q)L(q)

Ac(q)

and therefore, for the purposes of employing Theorem 3.1 of [7], it is necessary to consider

A†(z) = A2
c(z)X

2
N (z)

Ã(z)L(z)

Ac(z)

XD(z)

XN (z)
= Ac(z)Ã(z)L(z)XN (z)XD(z).

Clearly, this is a polynomial, which under the assumptions of the theorem is of order less than mα +
mβ . Hence, according to Theorem 3.1 of [7]

lim
N→∞

N Var
{
N(ejω, θ̂N )

}
= σ2 |S(ejω, θ◦)|

2

Φx(ω)
κidx(ω). (A.3)

where κidx(ω) is defined by (6) with the {ξk} being the zeros of zmα+mβAc(z)Ã(z)L(z)XN (z)XD(z).
Turning now to the quantification of Var{M(ejω, β̂N )}, note that

M(q, θ◦) =
A(q)XD(q)

Ac(q)XN (q)
, SK(q, θ◦) =

A(q)

Ac(q)

and therefore, for the purposes of employing Theorem 3.1 of [7], it is necessary to consider

A†(z) = A2
c(z)X

2
N (z)

A(z)

Ac(z)

XD(z)

XN (z)
= Ac(z)A(z)XN (z)XD(z).

Again, this is a polynomial, which under the assumptions on of the theorem is of order less than
mρ +mδ . Hence, according to Theorem 3.1 of [7]

lim
N→∞

N Var
{
M(ejω, θ̂N )

}
= σ2 |SK(ejω, θ◦)|

2

Φx(ω)
κdix(ω). (A.4)

where κdix(ω) is defined according to (6) with the {ξk} being the zeros of zmρ+mδAc(z)A(z)XN (z)XD(z).
Compared to the proof of Theorem 2.1, the inclusion of the pre-filter X(q) has, relative to the joint
input-output approach, added the poles and zeros of X(q) into the associated polynomials A†(z) that
quantify variance. With this in mind, it is straightforward to see that the proof Lemma B.1 can be
adapted in the same fashion to conclude that

lim
N→∞

N Cov
{
M(ejω, β̂N )N(ejω, θ̂N )

}
= −

σ2

Φx(ω)
K(ejω)|S(ejω)|2∆(ω) (A.5)
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where ∆(ω) is again given by (19) but now with ∆1(λ, ω) and ∆2(λ, ω) being (respectively) the repro-
ducing kernels for space spanned by the elements of S−1(z)X(z)dN(z, θ)/dθ and SK−1(z)X(z)dM(z, θ)/dθ
and with respect to the measure µdλ, and it is then straightforward to see that these are the same
spaces Vζ and Vτ considered in (21), (22) for the joint input-output method after they are augmented
to include the poles and zeros of X(z). Substituting (A.5), (A.4) and (A.3) into (A.2) then implies
that

lim
N→∞

N Var{G(ejω , θ̂N )} =
σ2

|M |2Φx(ω)

[
|S|2κidx(ω) + |T |2κdix(ω) + 2|S|2Re {GK∆}

]

= |S|2
σ2

Φr
u(ω)

κidx(ω) + |T |2
(
µ+ σ2

µ

)
σ2

Φu(ω)
κdix(ω) +

2σ2

Φr
u(ω)

Re
{
TS∆(ω)

}
.

Substitution of (30) and (32) into the above then completes the proof.

B Technical Lemma

Lemma B.1. Under the conditions of Theorem 2.1

lim
N→∞

N Cov
{
SK(ejω, β̂N )T (ejω, θ̂N )

}
= −

σ2

µ
K(ejω)|S(ejω)|2 ∆(ω),

where ∆(ω) is defined in (19).

Proof. Via a standard first order Taylor expansion argument [4]

θ̂N − θ◦ ≈ R−1(θ◦)
d

dθ
VN (θ◦, β◦)

where the accuracy in the above approximation increases with increasing N and

R(θ) , lim
N→∞

1

N

N∑

t=1

E
{
ψt(θ)ψ

T
t (θ)

}
,

d

dθ
VN (θ◦, β◦) = −

1

N

N∑

t=1

ψt(θ◦)et

with

ψt(θ◦) , S−1(q, θ◦)

[
dT (q, θ◦)

dθ
,
dS(q, θ◦)

dθ

] [
rt
et

]
.

Similarly

β̂N − β◦ ≈M−1(β◦)
d

dβ
VN (θ◦, β◦)

where

M(β) , lim
N→∞

1

N

N∑

t=1

E
{
φt(β)φT

t (β)
}
,

d

dβ
VN (β◦, β◦) = −

1

N

N∑

t=1

φt(β◦)et

with

φt(β◦) , −SK−1(q, β◦)

[
dSK(q, β◦)

dβ
,−

dSK(q, β◦)

dβ

] [
rt
et

]
.



Frequency Domain Accuracy of Closed Loop Estimates:II 15

Therefore,

N Cov{θ̂N β̂
T
N} ≈ −σ2R−1(θ◦)

1

N

N∑

t=1

E
{
ψt(θ◦)φ

T
t (β◦)

}
M−1(β◦) (B.1)

with increasing accuracy in the approximation as N → ∞. Now, defining

Π(q, θ) , [T (q, θ), S(q, θ)] , Γ(q, β) , [SK(q, β), SK(q, β)]

Z(q, θ◦) ,

[
dT (q, θ◦)

dθ
,
dS(q, θ◦)

dθ

]
, S(q, β◦) ,

[
dSK(q, β◦)

dβ
,−

dSK(q, β◦)

dβ

]

then again using a first order Taylor expansion

Π(ejω, θ̂N )−Π(ejω, θ◦) ≈ ZT (ejω, θ◦)[θ̂N−θ◦], Γ(ejω, β̂N )−Γ(ejω, β◦) ≈ ST (ejω, θ◦)[β̂N−β◦].

Therefore, combining with (B.1) implies that

lim
N→∞

N
1

K(ejω)|S(ejω)|2
Cov

{
Γ(ejω, θ̂N )Π(ejω, θ̂N )

}
=

−

[
Z(ejω, θ◦)

S(ejω)

]?

T−1
n

(
ZφζZ

?

|S|2

)
Tn

(
ZφζS

?

|S|2K?

)
T−1

n

(
SφζS

?

|SK|2

)
S(ejω, β◦)

S(ejω)K(ejω)
=

−
1

2π

∫ π

−π

ϕ(λ, ω)γ(ω, λ)µdλ

where

ϕ(λ, ω) =

[
Z(ejω, θ◦)

S(ejω)

]?

T−1
n

(
ZφζZ

?

|S|2

)
Z(ejλ, θ◦)

S(ejλ)

γ(ω, λ) =

[
S(ejλ, β◦)

S(ejλ)K(ejλ)

]?

T−1
n

(
SφζS

?

|SK|2

)
S(ejω, β◦)

S(ejω)K(ejω)

Now, according to (16) of [7], then by construction ϕ(λ, ω) and γ(λ, ω) are diagonal 2 × 2 matrix-
valued functions. Denote the top left elements of them as ∆1(λ, ω) and ∆2(λ, ω). Then, since
Φre(ω) = 0

lim
N→∞

N
1

K(ejω)|S(ejω)|2
Cov

{
SK(ejω, β̂N )T (ejω, θ̂N )

}
= −

1

2π

∫ π

−π

∆1(λ, ω)∆2(ω, λ)µdλ

However, using the ideas developed in [6], ∆1(λ, ω) and ∆2(λ, ω) are both reproducing kernels for the
space spanned by the elements of (respectively) of S−1(z)dT (z, θ)/dθ and SK−1(z)dSK(z, θ)/dθ
and with respect to the measure µdλ. Furthermore, these spaces are equal to those of Vζ and Vτ

defined in (21), (22) and hence again via the results in [6], the kernels can then be expressed via the
quantities in (20) after division by µ.
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