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Abstract

A two-stage method for the identification of physical system parameters from experimental data is presented. The first stagecompressesthe
data as an empirical model which encapsulates the data content at frequencies of interest. The second stage then uses data extracted from
the empirical model of the first stage within a non-linear estimation scheme toestimate the unknown physical parameters. Furthermore,
the paper proposes use of exponential data weighting in the identification ofpartially unknown, unstable systems so that they can be
treated in the same framework as stable systems. Experimental data are used to demonstrate the efficacy of the proposed approach.
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1 Introduction

Many engineering systems of interest to the control en-
gineer arepartially known in the sense that the sys-
tem structure, together with some system parameters are
known, but some system parameters are unknown. This
gives rise to a problem ofparameter estimationwhen
values for the unknown parameters are to be determined
from experimental data comprising measurements of sys-
tem inputs and outputs. There is a considerable liter-
ature in the area (An, Atkeson, and Hollerbach, 1988;
Canudas de Wit, 1988; Dasgupta, Anderson, and Kaye,
1986; Gawthrop, Jones, and MacKenzie, 1992; Gawthrop,
2000a,b; Nagy and Ljung, 1991). Although, in special
cases, such identification may belinear-in-the param-
eters (An et al., 1988) orpolynomial-in-the parameters
(Gawthrop et al., 1992), in general the problem isnonlinear-
in-the parameters. This means that, in general, the resultant
optimisation problem is not quadratic or polynomial, and
may even be non-convex. In such cases, the optimisation task
is eased by knowing (rather than deducing numerically) the
derivative of the error function with respect to the unknown
system parameters. The generation of such sensitivity in-
formation is aided by the symbolic methods for nonlinear
systems modelling, analysis and optimisation which are
currently strong research areas (Munro, 1999) driven by the
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ready availability of symbolic computational tools. In partic-
ular, the bond graph approach (Gawthrop and Smith, 1996;
Karnopp, Margolis, and Rosenberg, 1990; Ljung and Glad,
1994) has been used to generate models both applicable
to control design (Gawthrop, 1995; Gawthrop and Ronco,
2000) and partially-known system identification (Gawthrop,
2000a, 2003; Nagy and Ljung, 1991). Bond graph mod-
els are used in all the examples of this paper, but are not
discussed further here.

Data acquisition systems typically yield large amounts
of discrete-time data. On the other hand, the aforemen-
tioned partially known systems are usually best expressed
in continuous-time differential equation form and, even
with these sensitivity function enhancements, use of the
raw data may lead to unacceptable computational times.
Thus, although it is, in principle, possible to use algorithms
for partially-known system identification directly on the
raw data, it is not practically useful. In addition, the raw
data may contain complex system disturbance information
which may require a sophisticated optimisation algorithm
to achieve desirable results.

In this paper, the authors propose a two-stage identification
procedure to extract physical parameters from discrete-time
data pertaining to partially known systems. The first stage
(which we call data compression) analyses the raw data to
obtain a parameter vectorθ describing an empirical model
obtained from the data. The second stage uses this empiri-
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cal model (parameterised byθ) to generate continuous-time
data suitable for identifying physical parameters. Because
the first stage is essentially a linear-in the parameter problem,
not only can large amounts of data be processed rapidly, but
also established system identification tools can be used to ob-
tain data-quality models (Ljung, 1999). Because the second
stage uses a relatively short length of relatively noise free
data, the iteration time and convergence properties are much
improved compared to using the raw data directly. The con-
tinuous time step response is used as the empirical model as
it has a transparent representation in terms of gain, time delay
and time constant and thus it is widely accepted by engineers
and practitioners. Other forms of empirical model are also
possible within this context. The basic idea of a two-stage
method is not new, see for example, Ljung (1999, Section
10.4) and Wang, Gawthrop, Chessari, Podsiadly, and Giles
(2004); our method is new insofar as it uses the FSF ap-
proach for the first stage and a physical model-based ap-
proach for the second.

In order for the same framework to be applicable to un-
stable systems, this paper proposes the use of exponential
data weighting in the data compression procedure. This ex-
ponential weighting converts an unstable system into a sta-
ble system with the same unknown parameters to which the
two-stage approach is applicable.

The motivation for this work is to generate models suit-
able for model-based predictive control (Mayne et al, 2000;
Rawlings, 2000), in particular models suitable for contin-
uous time methods, such as those of Wang (2001) and
Gawthrop and Ronco (2000, 2002).

The outline of the paper is as follows. Section 2 considers
the frequency sampling filter approach to data compression
and extends the procedure to cope with unstable systems.
Section 3 considers physical parameter estimation and sec-
tion 4 considers frequency-domain approaches. Section 5
gives illustrative experimental results using data obtained
from both electrical and electro-mechanical systems. Sec-
tion 6 concludes the paper.

2 Data compression

The first stage of the two-stage process is data compression:
encapsulating the important features of the measured data
into a few parameters within an empirical system model.
There are many possible empirical models available in-
cluding ARX (Ljung, 1999) and general basis-function ap-
proaches (Ninness and Gustafsson, 1997; Wahlberg, 1991;
Wang and Cluett, 2000). In a fast-sampling environment, it
is known that discrete-time ARX models encounter numeri-
cal ill-conditioning (Åström, Hagander, and Sternby, 1980)
as the sampling rate increases; and the problem is worse for
unstable systems. On the contrary, the frequency-sampling
filter (FSF) approach of Bitmead and Anderson (1981);
Wang and Cluett (1997, 2000), lies between the continuous
and discrete-time domains and the coefficients converge to

sampling-rate independent values. This latter approach is
discussed in Section 2.1 and extended to unstable systems
in Section 2.2.

2.1 Stable systems
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Fig. 1. Frequency-sampling filters

The book by Wang and Cluett (2000) gives a comprehen-
sive discussion of the frequency-sampled filter approach (in-
cluding its relation to the discrete Fourier transform); this
section provides a brief discussion of the material required
for this paper. We consider linear time-invariant continuous-
time systems with outputy(t) and inputu(t) uniformly sam-
pled with time interval∆ to give input and output sequences
yi = y(i∆) andui = u(i∆). In the time-domain, the input and
output sequences are related byyi = gi ∗ui wheregi is the
discrete-time system impulse response and∗ is the convolu-
tion operator. In thez-transform domain,̄Y(z) = Ḡ(z)Ū(z)
whereȲ andŪ are thez-transforms ofyi andui respectively
andḠ the corresponding transfer function. In this section, it
is assumed that the system isstableand can be associated
with a settling timeT = N∆; the time after which the system
impulse response is sufficiently small:|gi | < ε ∀i > N.

The frequency-sampling filter FSF approach approximates
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the transfer functionḠ(z) as:

Ḡf s f(z) =

n−1
2

∑
k=− n−1

2

θkH̄k(z) (1)

H̄k(z) =
1
N

1−z−N

1−ejΩkz−1 (2)

wheren is odd and thefrequency sample intervalΩ = 2π
T

H̄k(z) is thekth frequency sampling filter(FSF) andθk the
corresponding (complex) parameter. The name arises be-
cause thekth FSF has a frequency response with a peak
at ω = kΩ. Figure 1(a) shows the superimposed frequency
responses ofH̄k(z) for 0 ≤ k ≤ 4 when T = 5 implying
Ω = 1.26 for a frequency range 0≤ ω ≤ 10. The symbol
“x” marks the frequency samples which coincide with the
peaks of the FSFs. Thekth filter of (2) has the discrete-time
impulse responsēhk(i)

h̄k(i) =
1
N

ejΩki i < N (3)

As discussed by Wang and Cluett (1997, 2000), choosing
n= N gives an exact match̄Gf s f(z) = Ḡ(z). Choosingn< N
gives an approximate match̄Gf s f(z)≈ Ḡ(z) for a frequency
range 0≤ ω ≤ NΩ. This situation is summarised in Figure
1(b) which showsN = 50 potential FSF poles (marked by
“+”) equispaced around the unit circle and then = 9 actual
FSF poles clustered aroundz = 1 on the unit circle. Par-
ticularly in the context of fast (with respect to system time
constants) sampling, a good approximation can be obtained
with n << N. The significance of this approximation lies
in the fact that the neglected process frequency parameters
correspond to higher frequency region of the system, which
in many applications have severe noise corruption.

The FSF equation (1) can be rewritten in vector form as:

Ḡf s f(z) = θT F̄(z) (4)

where
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In time-domain terms:

yi = θT fi ∗ui (6)

where fi is the (discrete-time) impulse response correspond-
ing to F̄(z). The convolution is, in practice performed by the

usual time-domain filtering operation. Equation (4) is in the
conventional linear-least squares form and so the parameter
estimateθ̂ may be chosen to minimise a performance index
of the form

J(M, θ̂) =
M

∑
i=0

|ei |
2 (7)

whereei = yi − ŷi and ŷi is given by (6) withθ replaced by

θ̂. DefiningYM =
(

y0 y1 . . . yM

)T
, φi = fi ∗ui and ΦM =

(

φ0 φ1 . . . φM

)T
then the Least Squares estimate is

θ̂ = (Φ∗
MΦM)−1Φ∗

MYM (8)

Although the FSF approach is cast in the discrete-time do-
main and the correspondingz-transform domain, the resul-
tant model can be used to obtain continuous-time step and
frequency responses as follows(Wang and Cluett, 2000). Us-
ing z= ejω∆, (1) and (2) can be rewritten in frequency do-
main form as

G( jω) ≈ Gf s f( jω) =

n−1
2

∑
k=− n−1

2

θkHk( jω) (9)

Hk( jω) = H̄k(e
jω∆) for ω < NΩ (10)

Similarly, the system impulse responseg(t) can be approx-
imately computed using the continuous-time equivalent of
(3)

g(t) ≈ gf s f(t) =

n−1
2

∑
k=− n−1

2

θkhk(t) (11)

hk(t) =
1
T

ejkΩt for t < N∆ (12)

And the step responseys(t) from:

ys(t) =
Z t

0
g(τ)dτ (13)

2.2 Unstable systems

There are two problems associated with applying the results
of Section 2.1 to unstable systems:

(1) the data itself may be theoretically unbounded or, in
practice, reach unmodelled physical limits

(2) the FSF approach assumes that the system is asymp-
totically stable, and thus has a step response which is
asymptotically constant.

In this paper, it is assumed that the first problem is solved
by closed-loopidentification using a stabilising controller
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Fig. 2. Unstable systems

C(s) as in Figure 2(a). As discussed, for example, by Ljung
(1999), identification in closed-loop gives rise to estimation
bias. Estimation of a noise model in the context of FSF
is discussed in (Wang, Gawthrop, and Young, 2005) but the
theoretical results for FSF in closed loop are not as yet
available. However, our experimental results (Section 5) are
encouraging in this respect. The purpose of this section is
to solve the second problem. The main tool used for this
purpose is the following Lemma.

Lemma 1 If

ya(t) = e−aty(t) (14)

ua(t) = e−atu(t) (15)

ga(t) = e−atg(t) (16)
y(t) = g(t)?u(t) (17)

where? is the convolution operator and the Laplace trans-
forms of y(t),u(t), ga(t) ya(t),ua(t) and ga(t) are Y(s), U(s),
G(s), Ya(s), Ua(s) and Ga(s) respectively, then:

Y(s) = G(s)U(s) (18)
Ya(s) = Ga(s)Ua(s) (19)
Ga(s) = G(s+a) (20)

PROOF. See any Engineering Mathematics text, for exam-
ple, Kreyszig (1993); in particular, (20) follows from the
so-calleds-shiftingtheorem. 2

This idea has been used before in the context of optimal
control by Anderson and Moore (1971), but here it is applied
to the identification problem. It follows directly from Lemma
1 that if the (possibly unstable) systemG(s) (relatingu(t)
to y(t)) has all polespi such thatRe(pi) < a, the system
G(s+ a) is stableand relates theexponentially windowed
signals (relatingua(t) andya(t)). Figure 2 (a) shows the basic
scheme for generating the exponentially windowed data. The
identification procedure of Section 2.1 can then be used for
unstable systems (whereRe(pi) < a) but whereyi = ya(i∆),
ui = ua(i∆), and the system identified is stable. However,
the exponential window effectively discards data for large
values of t. To overcome this, the standard technique of
exponentially weightedleast squares (Ljung, 1999) may be
used; (7) is replaced by:

Jb(M, θ̂) =
M

∑
i=0

|ebi∆ei |
2 (21)

Usingb= acounteracts the effect of the exponential window
e−at and thus all of the data is used. The modified approach
for unstable systems is summarised in Figure 2(b).

The use of exponential weighting is prone to numerical prob-
lems; numerical rounding can cause small numbers to be
treated as zero. For example, it is better to usee(b−a)t rather
than ebte−at in calculations even though they theoretically
have the same value. Hence this method should be used with
caution and the minimum appropriate value ofa should be
used.

3 Physical Parameter Estimation

Having compressed the data as in Section 2.1, the impulse
response ˆg(t) of the empirical system can be obtained from
the estimated parametersθ̂ using (12) and then integrated
to give the step responseys(t) (13). The estimation problem
is to estimate the unknownphysicalparametersΘ from the
estimated step responseys(t). One possible approach has
been considered previously by one of the authors Gawthrop
(2000a,b); details necessary for this paper are briefly dis-
cussed in Section 3.1 in the context of stable systems and the
modifications necessary for unstable systems are considered
in Section 3.2.

3.1 Stable systems

It is assumed that a mathematical model of physical system
is available parameterised by thephysicalparameter vec-
tor Θ (which may include initial conditions). Given an esti-
mateΘ̂ of Θ, the model can be simulated with a unit step
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input to give an estimated step response ˆys(t,Θ̂). As dis-
cussed by Gawthrop (2000a,b), the model is conveniently
represented as a Bond Graph (Gawthrop and Smith, 1996;
Karnopp, Margolis, and Rosenberg, 2000); however this is
not an essential part of the process.

Within this context, the usual least-squares estimation prob-
lem is posed; that is to minimise the cost functionJ with
respect to the vector of unknownphysical parametersΘ
where:

J(Θ̂) =
1
2

Z T

0
e2(t)dt (22)

where the output errore is defined as

e(t) = ŷs(t,Θ̂)−ys(t,Θ) (23)

Because (23) is not, in general, linear in the parameter esti-
mateΘ̂, this nonlinear least-squares problem does not admit
an explicit solution in general; instead, numerical techniques
must be used. Each iteration of such an algorithm requires
evaluation of the functionJ for the current estimatêΘ and
thus a simulation of the system for that value ofΘ̂. Thus each
iteration is computationally expensive and therefore an effi-
cient algorithm is desirable. For this reason, the simulation
is used to generate not only the estimated output ˆy but also
the derivatives ofJΘ(Θ̂) with respect toΘ. There are many
optimisation algorithms available; the Levenberg-Marquardt
algorithm (Fletcher, 1987) is used here. This class of algo-
rithms are known to be robust and, as they make use of the
sensitivity functions, are more efficient that methods which
do not.

3.2 Unstable systems

In the case of unstable systems, the estimated system step
response corresponds to the stable systemG(s+a). Hence,
for the purposes of identification, the physical model must
be modified in the same way. Because it is a physical system,
this can be looked at from various perspectives:

Analogue computers replace all integrators1
s by first-

order lags 1
s+a;

Mechanical systems add an appropriate damping element
to each mass and spring component;

Electrical systems add an appropriate resistive element to
each inductive and capacitive component;

The method of Section 3.1 is then applied using the step
response of the stable systemG(s+a) in conjunction with
the stable modified physical system.

4 Frequency domain data

Both stages of the estimation procedure described in Sec-
tions 2 and 3 use time-domain data. However, as indicated
in Figure 3, either of these two stages can usefrequency-
domain data instead. Ultimately this is a question of taste

FSFs

Time
domain

Freq.
domain

Time
domain

Freq.
domain

ModelSystem

Data compression
Stage 1

Physical parameter estimation
Stage 2

Fig. 3. Estimation data flows

or convenience; thus, for example, the raw data may have
been collected using a spectrum analyser. This section dis-
cusses briefly the frequency-domain equivalents of the time-
domain algorithms reported in Sections 2 and 3. Assume that
M output and input frequency-domain data pointsY( jωi)
and U( jωi) and have been collected at uniformly-spaced
frequenciesωi = i∆ω, 0≤ i ≤ M. It is convenient to extend
this to a double-sided spectrum−M ≤ i ≤ M by noting that
Y(− jωi) = Y?( jωi) andU(− jωi) = U?( jωi) where? de-
notes the complex conjugate. The frequency-domain equiv-
alent of (6) is:

Y( jωi) = θTF( jωi)U( jωi) (24)

where the convolution of (6) has been replaced by multipli-
cation. Redefining:

YM =
(

Y(− jωM) Y(− jωM−1) . . . Y( jωM)
)T

(25)

φi = F( jωi)U( jωi) (26)

ΦM =
(

φ−M φ−M+1 . . . φM

)T
(27)

the least squares estimate ofθ is given by (8).

The method for handling unstable systems given in Section
2.2 and Figure 2 can also be converted to the frequency
domain. The basic idea is that time domain multiplication
maps into frequency domain convolution. Using the notation
of Lemma 1 and noting that the Laplace transform ofe−at

is 1
s+a the frequency domain equivalent of (14) and (15) is:

Ya( jω) =
1

jω+a
∗Y( jω) (28)

Ua( jω) =
1

jω+a
∗U( jω) (29)

From the implementation point of view, however, it is
quicker to computey(t) from Y( jω) using the inverse FFT,
perform the multiplication (14) and computeYa( jω) from
the FFT. Section 3 uses the estimated time-domain response
generated from the FSF parameter vectorθ and using a
quadratic cost based on the error defined in (23). In a sim-
ilar fashion, the estimatedfrequency-domain response can
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be generated from the FSF parameter vectorθ. In a similar
fashion to (23), a frequency-domain errorE( jω) is defined
as

E( jω) = Ĝ( jω,Θ̂)−G( jω,Θ) (30)

By making the corresponding modifications to the equations
of Section 3, the physical parameterΘ can be estimated in
the frequency domain.

5 Experimental Results

The algorithm has been tested on two experimental sys-
tems: one electronic (Sections 5.1 and 5.2) and one electro-
mechanical (Section 5.3). The first is an unstable system and
the second has two poles ats= 0. The first stage of the algo-
rithm was encoded in the Matlab-like language GNU-Octave
(www.octave.org) (Eaton, 2002); the second part was imple-
mented as part of the bond-graph toolbox MTT (mtt.sf.net)
as described elsewhere (Gawthrop, 2000a).

5.1 Electronic Unstable system: time-domain

An unstable electronic circuit was built using the LM124
quad operational amplifier, resistors and capacitors to create
a system with voltage to voltage transfer function:

G(s) =
k1

s2−k2
(31)

wherek1 = k2 = 1. A proportional + derivative (PD) con-
troller of the form:

u = k

(

w−y−
Tds

1+Tf s
y

)

(32)

was implemented using the real-time software developed
by Christini and Culianu (2003) for scientific experimenta-
tion using hard real-time control. RTLab runs with the real-
time Linux kernel RTAI and the analogue/digital interface
Comedi (2002). It was implemented on a Dell Latitude C400
laptop computer using a National Instruments DAQCard-
1200 PCMCIA card for A/D and D/A conversion. The PD
controller sample interval was∆ = 0.01sec, and the parame-
ters were varied throughout the run; the values do not matter
as only the input and output data is of interest.

This is an unstable system and so exponential weighting
(a = 2) is used. Because non-zerob is not yet implemented
for the frequency domain approachb = 0 in this and the
following section to allow comparison between the time and
frequency domain approaches. As the signal-to-noise ratiois
high, this is not a problem in this example. Figures 4(a) and
4(b) show the experimental data and Figures 4(c) and 4(d)
show the time and frequency responses generated from the
FSF based estimation with parameters shown in Figure 4.
The physical system model was modified (Section 3) to shift
the poles froms to s+a. The estimated physical parameter
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Fig. 4. Experimental Data: Unstable system

Θ̂ =
(

k̂1 k̂2

)T
of (31) converges from a starting value of

Θ̂ =
(

2.0 0.0
)T

to Θ̂ ≈
(

1 1
)T

in about 4 steps.

5.2 Electronic Unstable system: frequency-domain

To illustrate the frequency-domain approach of Section 4,
the data of Section 5.1 (Figure 4(a)) was Fourier transformed
to give the dataY( jω) and U( jω) shown in Figure 5(a).
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Fig. 5. Experimental Data: Unstable system

Although not the case here, such data would typically be
obtained from a commercial spectrum analyser. The FSF
parameters were identified from this frequency-domain data
using the approach of Section 4 using the same identifica-
tion parameters as those of Section 5.1; in particulara = 2
was used to give a stable G(s+a). As discussed in the pre-
vious section,b = 0. Unsurprisingly, the step, impulse and
frequency responses (Figures 5(b) and 5(c)) are similar to
those identified in Section 5.1. The second stage (see Fig-
ure 3) was accomplished in the time domain to give results
similar to those of Section 5.1.

5.3 Ball and Beam

The experimental system was a Quanser Consulting ball
and beam experiment (Apkarian, 1995, section 2.2) (with a
modified connecting cable and patched inner-loop analogue
controller described elsewhere (Gawthrop, 2004)). The ex-
periment can be modelled in detail (Gawthrop, 2004), but
for the purposes of this experiment dynamics of the inner
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Fig. 6. Experimental Data: Ball-beam system

loop are ignored and thus the system is modelled as:

G(s) =
K
s2 (33)

where y is the voltage corresponding to the ball position
andu the voltage setpoint to the inner-loop controller. This
system displays common characteristics of practical mecha-
tronic systems:

7



• noisy measurement,
• non-linear stiction on the input and
• neglected high-frequency dynamics.

Figures 6(a) and 6(b) show the ball and beam system under
PID control (parameters appear in the Figure caption. Note
that the control signal is limited by−1.5≤ u≤ 1.5. This is
an unstable system and so exponential weighting (a = 1.0)
is used. Because the data is noisy a non-zerob = 0.9 is
used here. Figure 6 has the same layout as Figure 4. Figure
6(c)&(d) show the estimated step and frequency responses
corresponding to

G(s+a) =
K

(s+a)2 =
K

(s+1)2 (34)

The physical system model was modified (Section 3) to shift
the poles froms to s+a. The estimated physical parameter
Θ̂ = K̂ of (33) converges from a starting value ofΘ̂ = 1 to
Θ̂ ≈ 2.5 in exactly one step; this reflects the fact that the
system islinear in the parameterK.

6 Conclusions

This paper presents a two-step approach for the estimation of
the physical parameters of both stable and unstable systems.
The central idea is firstly to compress discrete, fast sampled
experimental data to a continuous time step response, and
secondly to estimate physical parameters within a partially
known continuous time transfer function model based on
the estimated step response data. An exponential weighting
approach is proposed which converts the problem of esti-
mating the physical parameters of an unstable system to an
equivalent problem involving a stable system with the same
unknown parameters.

The advantages of the proposed approach include improved
numerical efficiency and robustness than the more traditional
approaches and clear physical insight at each stage. The
authors believe that this approach is particularly appropriate
when modelling systems for the purposes of continuous-time
model-based predictive control; future work will investigate
this aspect further.

The approach has been verified using experimental data from
an electrical system and an electro-mechanical system.
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