
Onthe computation of invariant sets for constrained

nonlinear systems:An IntervalArithmeticApproach ?

J.M. Bravo a, D. Limon b, T. Alamo b, E.F. Camacho b

aDepartamento de Ingenieŕıa Electrónica, Sistemas Informáticos y Automática. Universidad de Huelva.
Carretera Huelva - La Rábida. Palos de la Frontera, 21071 Huelva. Spain.

bDepartamento de Ingenieŕıa de Sistemas y Automática. Universidad de Sevilla.
Avda Camino de los Descubrimientos s/n. 41092 Sevilla. Spain.

Abstract

This paper deals with the computation of control invariant sets for constrained nonlinear systems. The proposed approach is
based on the computation of an inner approximation of the one step set, that is, the set of states that can be steered to a given
target set by an admissible control action. Based on this procedure, control invariant sets can be computed by recursion.

We present a method for the computation of the one-step set using interval arithmetic. The proposed specialized branch
and bound algorithm provides an inner approximation with a given bound of the error; this makes it possible to achieve a
trade off between accuracy of the computed set and computational burden. Furthermore an algorithm to approximate the one
step set by an inner bounded polyhedron is also presented; this allows us to relax the complexity of the obtained set, and to
make easier the recursion and storage of the sets.

Key words: Nonlinear systems, Invariance, Constraints, Intervals.

1 Introduction

Set invariance theory is very important for the analy-
sis of constrained autonomous systems and for the de-
sign of stabilizing controllers of constrained systems.
The underlying theory of this problem is well estab-
lished, and a large number of results have been presented
since the seminal paper (Bertsekas & Rhodes 1971). In
(Blanchini 1999), the most relevant results on this topic
are summarized. The most general way of computing an
invariant set is based on calculation of the so-called one
step set. This is the set of the states that can be steered
to a given target set by an admissible control action. Us-
ing this set in a recursive way, control invariant sets can
be computed (Bertsekas & Rhodes 1971). The computa-
tion of the one step set can be considered as a geometric

? This paper was not presented at any IFAC meeting. Cor-
responding author: J.M Bravo. Tel. +034-959017367.
The authors would like to acknowledge MCYT-Spain (con-
tracts DPI2002-04375-c03-01 and DPI2000-0666-c02-02) for
funding this work and also to thank the anonymous review-
ers for their helpful comments.

Email addresses: caro@uhu.es (J.M. Bravo),
limon@cartuja.us.es (D. Limon), alamo@cartuja.us.es
(T. Alamo), eduardo@cartuja.us.es (E.F. Camacho).

problem; however, there is no general method to com-
pute it. Algorithms exist for several kind of systems as
for example, for linear systems (Gilbert & Tan 1991),
for polytopic systems (Blanchini 1994) or for piece-wise
affine systems (Kerrigan 2000). However, the computa-
tion of invariant sets for general nonlinear systems sub-
ject to constraints is an open field.

Invariance set theory has become a relevant topic in the
MPC paradigm. As it is well known, one of the key ingre-
dients for the stabilizing design of the MPC is an invari-
ant terminal set (either positively or control invariant
set) (Chen & Allgöwer 1998, Mayne 2001). The enlarge-
ment of this set provides a larger domain of attraction
of the controller, which has motivated recent results on
invariant sets. In (Chen, Ballance & O’Reilly 2001) the
terminal set is enlarged by using a locally linear differen-
tial inclusion (LDI) representation for the nonlinear sys-
tem and solving off-line an LMI optimization problem.
In (Cannon, Deshmukh & Kouvaritakis 2003), a locally
LDI representation is also used, and a polytopic terminal
set and an associated terminal cost is computed. This
result has been improved in (Cannon, Kouvaritakis &
Deshmukh 2003). In (Limon, Alamo & Camacho 2004)
the enlargement is achieved by replacing the invariant

Preprint submitted to Automatica 26 September 2004

terminal set by a contractive sequence of sets. The com-
putation of invariant sets can be also used for the de-
sign of time-optimal control laws (Mayne & Schröeder
1997) or used as stabilizing constraint (Bemporad 1998,
Limon, Alamo & Camacho 2003). In (Johansen 2004) an
approximate explicit description of the MPC controller
for constrained nonlinear systems is presented and the
domain of attraction is also obtained.

In this paper, a new algorithm to compute an inner ap-
proximation to the one-step set for constrained nonlin-
ear systems is presented. This is a specialized branch
and bound algorithm based on interval arithmetic. This
algorithm provides an inner approximation with a given
error bound. This bound allows us to achieve a trade-
off between accuracy and computational burden. To re-
duce the complexity of the obtained region, a second al-
gorithm is proposed to compute an inner polytopic ap-
proximation of the obtained region. It is worth remark-
ing that the proposed algorithm can be easily adapted
to the structure of the system as well as extended to the
robust case.

2 Definitions and problem statement

Consider a system described by a nonlinear discrete
model:

xk+1 = f(xk, uk) (1)

where xk ∈ IRn is the system state and uk ∈ IRm is
the control signal at sample time k. The system can be
subject to control and state constraints:

xk ∈ X, uk ∈ U (2)

where X and U are compact sets, both of them contain-
ing the origin. The model function f(·, ·) is assumed to
be continuous in X × U .

A set Ω ⊂ IRn is a control invariant set for system (1)
subject to constraint u ∈ U , if for all x ∈ Ω, there
exists an admissible input u ∈ U such that f(x, u) ∈
Ω. To check or compute a control invariance set, the
one-step set operator can be used (Bertsekas & Rhodes
1971). The one-step set of a given target set Ω, Q(Ω),
for system (1) subject to u ∈ U , is the set of states
which can be steered in one step to the target set Ω by
an admissible control action, i.e. Q(Ω) = {x ∈ IRn :
∃u ∈ U such thatf(x, u) ∈ Ω}. Thus, the set Ω is a
control invariant set if and only if Ω ⊆ Q(Ω). Given an
admissible invariant set Ω (which can be obtained, for
instance, from the linearized system at the origin), the
i-step stabilizable set can be obtained by the recursion
Xi = Q(Xi−1) ∩ X, where X0 = Ω. Note that every set
Xi is a control invariant set and Xi is contained in the
maximal stabilizable set X∞.

Procedures to compute the one-step set have been
presented for linear systems subject to polytopic con-
straints (Blanchini 1999, Kerrigan 2000, Mayne 2001),
for systems described by linear differential inclu-
sions (Blanchini 1994) or for piece-wise affine systems
(Kerrigan 2000). However, there is no general procedure
to compute it for constrained nonlinear systems.

In order to relax the complexity of the computation, the
one-step set Q(Ω) can be replaced by an inner approx-
imation Qap(Ω) such that Qap(Ω) ⊆ Q(Ω). This relax-
ation makes sense for the sake of tractability of the pro-
cedure used to compute it. Thus, the sets obtained by
the recursion Φi = Qap(Φi−1) ∩ X with Φ0 = Ω can
be considered as an estimation of the i-step stabilizable
set since Φi ⊆ Xi; however Φi may not be a control in-

variant set. Note that the set Ωi =
⋃i

j=0
Φj is a control

invariant set and Φi ⊆ Ωi ⊆ Xi.

These results show the relevance of designing algorithms
computationally less demanding for the computation of
an inner approximation of the one-step set, which is the
objective of this paper. In the following sections it is
shown how interval arithmetic can be used for this aim.

3 Interval arithmetic

An interval number X = [a, b] is the set { x : a ≤
x ≤ b }. Interval arithmetic is an arithmetic defined
on sets of intervals, rather than sets of real numbers.
The interval arithmetic is based on operations applied
to sets of intervals. Let II be the set of real compact
intervals [a, b] with a, b ∈ IR. Operations in II satisfy the
expression:

A op B = { a op b : a ∈ A, b ∈ B } for A,B ∈ II (3)

In this way, basic interval operations (Moore 1966) are
calculated by simple floating point operations on their
extremes, as for instance:

[a, b] + [c, d] = [a + c, b + d] (4)

The interval extension of standard functions { sin,
cos, tan, arctan, exp, ln, abs, sqr, sqrt } is pos-
sible too (Moore 1966). There are several interval
software libraries that implement these operations
(Knueppel 1994), as for instance the INTLAB interval
toolbox (Rump 1999), which has been used in the ex-
ample of this work. Note that the interval operations
are implemented by a set of floating point operations
over the extremes of the intervals.

In what follows, some basic definitions and well-known
results on interval arithmetic are given. A box is an in-
terval vector (vector whose components are intervals). A
unitary box, denoted Bm, is a box that consists of m uni-
tary intervals [-1,1]. An interval hull of a set X ⊆ IRn,

2

denoted by 2X, is a box that satisfies X ⊆ 2X. Given
a box H = ([a1, b1], . . . , [an, bn])>, mid(H) denotes its
center and diam(H) = (b1 − a1, . . . , bn − an)>. The
range of a continuous function f : IRn −→ IRs over a
set X ⊂ IRn is defined as f(X) = {f(x) : x ∈ X}.

Definition 1 (Natural interval extension) (Kearfott
1996) If f : IRn → IR is a function computable as an
expression, algorithm or computer program involving the
four elementary arithmetic operations interspersed with
evaluations of standard functions then, a natural inter-
val extension of f , denoted 2f , is obtained replacing
each occurrence of each variable by the corresponding
interval variable, by executing all operations according
to interval operators and by computing ranges of the
standard functions.

Theorem 2 (Moore 1966) A natural interval extension
2f of a continuous function f : IRn → IR over a box
X ⊆ IRn satisfies that f(X) ⊆ 2f(X).

Theorem 3 (Kearfott 1996) A natural interval exten-
sion 2f of a continuous function f : IRn → IR over
two boxes X,Y ⊆ IRn such that X ⊆ Y satisfies that
2f(X) ⊆ 2f(Y).

4 One-step set approximation algorithm

Interval algorithms have been used successfully in the
resolution of several kind of problems. These algorithms
are basically branch and bound algorithms where the
ranges of functions are bounded by interval arithmetic
(Hansen 1992). For instance, given two sets A and B
defined by finite sets of inequalities, interval branch and
bounds algorithms can prove set inclusion A ⊂ B and
solve the set inversion problem A = f−1(B) for a given
continuous function (Jaulin, Kieffer, Didrit & Walter
2001).

In this paper, and assuming that sets X and U are boxes
(or lists of boxes), an interval branch and bound algo-
rithm to compute an inner approximation to the one-
step set is presented. The input parameters of the pro-
posed algorithm (Algorithm 1) are the nonlinear system
(1), the sets of admissible states X and inputs U , the
target set Ω and a tolerance ε, that bounds the error of
the approximation. The algorithm returns the one-step
set approximation B(Ω).

The algorithm initializes a list L with the box 1 Z =
X × U ⊆ IRn+m and while the list is not empty, the
algorithm processes boxes that obtains from L. At the
iteration i, the algorithm extracts the greatest box from

1 If the problem is not constrained in the states or in the
inputs, then an artificial sufficiently large box can be con-
sidered as constraint.

L, denoted Zi = (Xi , Ui), and computes a control ac-
tion ui = select(Zi). The operator select() is a design
knob of the algorithm; it can be chosen for instance
as select(Zi) = mid(Ui) or computing the ’best’ con-
trol input ui such that Xi is driven to set Ω; for ex-
ample, if the system is affine in uk, that is f(xk, uk) =
g(xk) + h(xk)uk, g(xk) and h(xk) can be approximated
by LDIs and Ω is represented by a set of linear con-
strains, then it is possible to formulate a linear pro-
gram to obtain a feasible ui such that f(Xi, ui) ⊆ Ω
(Boyd, Ghaoui, Feron & Balakrishnan 1994, Cannon,
Deshmukh & Kouvaritakis 2003).

Once the control action ui is obtained, three actions
are possible on Zi = (Xi , Ui). If the interval evalua-
tion of 2f(Xi , Ui) fulfills the condition 2f(Xi , Ui) ∩
Ω = ∅ then the box is rejected. If the interval exten-
sion 2f(Xi , ui) belongs to Ω then the box Xi is inserted
in B(Ω) and all boxes Zj = (Xj , Uj) ⊆ L such that
Xj = Xi are erased from the list. In other case, the
width of Zi is checked and if its width is smaller than ε
then the box is discarded. If its width is bigger than ε
then the box is split into two new boxes Z1, Z2 such that
Zi = Z1∪Z2. Taking into account the size of Xi and Ui,
the algorithm decides which component of Zi = (Xi , Ui)
must be split. If the component Xi is bisected then it
is necessary to bisect all boxes Zj = (Xj , Uj) ⊆ L such
that Xj = Xi. This allows us to erase non necessary
boxes of L when a box is inserted in B(Ω).

Algorithm 1

B(Ω)=OneStepSetApproximation(Ω, f,X,U, ε)
Alg

L = (X,U)
while L 6= ∅

Zi=greatest box in L;
XF = 2f(Xi, Ui);
XS = 2f(Xi, select(Zi))
δXi

= ||diam(Xi)||∞, δUi
= ||diam(Ui)||∞

δ = max{δXi
, δUi

}
if (XF ∩ Ω 6= ∅) action = BISECT endif
if (XF ∩ Ω = ∅) or (δ < ε)

action = DISCARD endif
if (XS ⊆ Ω) action = INSERT endif

if (action==DISCARD) erase Zi from L endif
if (action==INSERT)

insert Xi in B(Ω)
Erase from L all boxes Zj = (Xj , Uj) such

that Xj = Xi

endif
if (action==BISECT)

if δXi
> δUi

forall Zj ∈ L such that Xj = Xi

(Xj1 , Xj2) = bisect(Xj)
insert the boxes
(Xj1 , Uj),(Xj2 , Uj) in L

endfor

3

else (Ui1 , Ui2) = bisect(Ui) and
insert the boxes (Xi, Ui1),(Xi, Ui2) in L

endif
endif

endwhile
return B(Ω)

End

Remark 1 For a given candidate box, the proposed algo-
rithm can classify it into one of the following three cases:
if the algorithm determines that it is contained in Q(Ω),
then it is inserted in B(Ω); if the algorithm concludes
that it is contained in X \Q(Ω) or its size is smaller than
the tolerance ε, then it is rejected. In any other case, the
box is split. Therefore, the size of all the boxes of B(Ω) is
greater than or equal to ε and all the discarded boxes are
such that either they are not contained in Q(Ω) or they
are smaller than ε.

In the following theorem the correctness and conver-
gence of Algorithm 1 is proved.

Theorem 4 Let Ω, X, U be compact sets, let Ω̆ be the
interior of Ω and consider a system (1) where f(·, ·) is
continuous in Ω × U . Consider B(Ω) obtained by the
proposed algorithm.

(1) For all x ∈ B(Ω) there exists a control action u ∈ U
such that f(x, u) ∈ Ω. That is, B(Ω) ⊆ Q(Ω).

(2) For all x that can be steered to Ω̆ in an admissible
way, there is a real positive number ε > 0 such that
x ∈ B(Ω).

Proof :
Suppose that x ∈ B(Ω), then there is a box Xi ⊆ B(Ω)
and ui ∈ U such that x ∈ Xi and 2f(Xi, ui) ⊆ Ω. From
Theorem 2 it is then inferred that f(x, ui) ∈ f(Xi, ui) ⊆
2f(Xi, ui) ⊆ Ω. Thus B(Ω) ⊆ Q(Ω).

To prove the second part is considered that z denotes the
vector (x, u) and Ball(z, r) = {ω ∈ IRn+m : ‖ω−z‖∞ ≤
r} denotes the ball of radius r and center z. Consider any

x ∈ X such that there is a u ∈ U satisfying f(x, u) ∈ Ω̆,

i.e. x ∈ Q(Ω̆)∩X, then by continuity of f(·, ·) there exists

a Ball(z, r) with z = (x, u), such that f(Ball(z, r)) ⊆ Ω̆.
By interval monotonic inclusion (Theorem 3), there ex-
its a box Z with z = mid(Z) and contained in Ball(z, r)

such that 2f(Z) ⊆ f(Ball(z, r)) ⊆ Ω̆. Denote ε =

0.5·‖diam(Z)‖∞. It is clear that any box Ẑ containing

z and of size ‖diam(Ẑ)‖∞ ≤ ε is contained in Z. There-

fore, by theorem 3, 2f(Ẑ) ⊆ 2f(Z) ⊆ Ω̆. Then, any box

Ẑ fulfills 2f(Ẑ) ⊆ Ω̆, and hence Ẑ ⊆ Q(Ω).

Therefore, if Algorithm 1 is executed with an error
bound ε, then any box Ẑ of size smaller or equal to ε
containing (x, u) is not discarded. Consequently, this
box is inserted in B(Ω) by Algorithm 1.

A first consequence of Theorem 4 is that if ε → 0 then
B(Ω) → Q(Ω), so B(Ω) is a reliable approximation of
the exact set Q(Ω). This provides an approximation with
a given bound of the error, which allows us to choose a
trade off between accuracy of the computed set and com-
putational burden. Because X,U are the search space of
Algorithm 1, state and control constraints are fulfilled.
Finally, notice that the proposed algorithm can be easily
extended to the robust case.

Remark 2 In general, the cost of the computation of the
one-step set for constrained nonlinear systems increases
exponentially with the order of the system. A measure of
the complexity of the algorithm is the worst case number
of generated boxes from the initial box. If ε is the tolerance
of the algorithm and n is the dimension of state vector,
then the maximum number of generated boxes is propor-
tional to

(

1

ε

)n
. The proposed algorithm reduces dramati-

cally this worst case estimation of number of boxes, as it
is shown in the example.

The interval algorithm proposed in this paper allows one
to adapt the algorithm to the considered system by means
of the operator select(·); a good choice of this operator
would provide a reduction on the computational burden.
Finally notice that the computation of the one-step set is
executed off-line, and therefore the computational cost is
not a critical issue.

Remark 3 The proposed algorithm requires a discrete-
time model of the system; if the model is obtained from
a continuous time model using some integration method
(such as a Runge-Kutta, for instance), then integration
errors may appear. The proposed algorithm is reliable, in
the sense that all the boxes of B(Ω) are contained in Q(Ω),
assuming that the discrete-time model is exact. If the
integration method is badly tuned, the integration error
might be significant and the reliability of the obtained
approximation of the one-step set might be reduced. This
problem can be overcome using integration methods with
guaranteed estimation (Moore 1966), which consider the
integration error in the computation of the evolution of
the state at the next sample time.

5 One-step set polytopic approximation

The approximate one-step set obtained from Algorithm
1 is represented by a list of boxes. In order to obtain
a simpler representation, polytopes are proposed. Poly-
topes provide reliable approximations of convex regions
and require less memory resources than lists of boxes.
The possible non-convex nature of the obtained one-step
set B(Ω) leads to an increased conservativeness when an
inner polytope approach is adopted. However, its sim-
ple and compact representation makes it suitable for
the synthesis of controllers, as for instance those based
on stabilizing constraints (Limon et al. 2004, Limon
et al. 2003).

4

In this section we present Algorithm 2 that approximates
the list of boxes B(Ω) by an inner polytope. First, a
preliminary definition is given.

Definition 1 (α-Support Hyperplane) Given a pos-
itive constant α ∈ IR, a box Hi and a list of boxes B(Ω),
an α-support hyperplane is an hyperplane ctx = 1 such
that:

• ctx > 1 for every x ∈ Hi.
• α ctx ≤ 1 for every x ∈ B(Ω).

A box Hi can be written as Hi = {x ∈ IRn : ∃b ∈
Bnsuch that x = pHi

+ MHi
b}, where pHi

∈ IRn and
MHi

∈ IRnxn is a diagonal matrix. Thus, any box Gj of
the list B(Ω) =

⋃m

j=1
Gj can be represented by pGj

∈

IRn and the diagonal matrix MGj
∈ IRn×n. To maxi-

mize the value of α of the α-support hyperplanes, the
optimization problem Π(B(Ω), Hi) can be posed:

min
γ,c

γ

s.t. ctpHi
− ||ctMHi

||1 > 1

ctpGj
+ ||ctMGj

||1 ≤ γ j = 1, ...,m

γ > 0

where γ = α−1. This optimization problem is based in
the fact that ct(p + Mb) < 1 for all b ∈ Bn if and only if
ctp + ‖ctM‖1 < 1. The proposed optimization problem
can be recast as a linear one and it can be solved with
specialized algorithms.

Now, Algorithm 2 is presented. Given a target set Ω and
set B(Ω) obtained by Algorithm 1, Algorithm 2 returns
a polytope denoted P (Ω) such that P (Ω) ⊆ B(Ω) ⊆
Q(Ω). Hence P (Ω) can also be used as an approximation
to the one-step set.

Suppose that Bc(Ω) = X \ B(Ω) is a list of boxes such

that Bc(Ω) =
⋃l

i=1
Hi. Set Bc(Ω) can be computed us-

ing Algorithm 1 with a minor modification 2 or by a sim-
ple division algorithm similar to this. The division algo-
rithm provides boxes Hi ⊆ X and checks if those boxes
do not belong to the obtained set B(Ω).

Considering as input parameters B(Ω) and the comple-
mentary set Bc(Ω), Algorithm 2 returns an inner poly-
tope P (Ω).

Algorithm 2

P (Ω) = InsidePolytope(Ω)

2 Algorithm 1 can be easily modified to compute both B(Ω)
and Bc(Ω): when action is equal to DISCARD, if the erased
box is Zi = (Xi, Ui), then Xi would be included in Bc(Ω) if
Xi ∩ Xj = ∅ for all Zj = (Xj , Uj) ∈ L.

Alg
Compute B(Ω) and Bc(Ω)
P (Ω) = 2B(Ω)
for all Hi ∈ Bc(Ω)

if Hi ∩ P (Ω) 6= ∅
Si = {x ∈ IRn : ct

ix ≤ 1} where (ci, γ i)
are obtained from problem Π(B(Ω), Hi)

P (Ω) = P (Ω) ∩ Si

P (Ω)=Delete redundant constraints to P (Ω)
endif

endfor
return P (Ω)

End

Theorem 5 Let B(Ω) be a set represented by a list of
boxes, and P (Ω) a polytope calculated by Algorithm 2 then
P (Ω) ⊆ B(Ω).

Proof : Algorithm 2 returns a polytope P (Ω) =
⋂p

i=1
Si

where Si = {x : ct
ix ≤ 1}. If x ∈ P (Ω) then ct

ix ≤ 1, i =
1, . . . , p. For every Hi ∈ Bc(Ω) there is an i ∈ [1, · · · , p]
such that ct

ix > 1 ∀x ∈ Hi. So, x ∈ Bc(Ω) implies
that x /∈ P (Ω). This means that P (Ω) ∩ Bc(Ω) = ∅ and
therefore P (Ω) ⊆ B(Ω).

6 Example

As illustrative example, the technique is applied to a
system used in [5] and described by the following ODEs:

ẋ1 = x2 + u(µ + (1 − µ)x1)

ẋ2 = x1 + u(µ + 4(1 − µ)x2)

where the parameter µ is equal to 0.5 and the input
constraint is |u| ≤ 2 and the states are constrained to
‖x‖∞ ≤ 1. The system is discretized with a sampling
time of 0.1 time-units using a fourth order Runge-Kutta
method. A linear locally stabilizing state feedback gain
K = [2.118 2.118] is used to derive the initial control
invariant set Ω = {x ∈ IR2 : 16.5926x2

1+23.1854x1x2+
16.5926x2

2 ≤ 0.7} (Chen & Allgöwer 1998).

Figure 1 shows the one step approximation B(Ω) com-
puted using Algorithm 1 for two cases: with ε = 0.03 and
ε = 0.01, which provides a better approximation to the
one step set. In the case of ε = 0.01, B(Ω) and Bc(Ω) are
compounded by 315 and 2117 boxes respectively. The
smaller box has a diameter of 0.0078. To obtain a sim-
ilar result with a grid method 65536 points are needed.
So, 2694% more evaluations of the discrete-time system
to obtain the same result are required.

Figure 2 shows a sequence Φi with i = 1, . . . , 10 where
Φi = B(Φi−1), Φ0 = Ω and using Algorithm 1 with
ε = 0.01. A sequence Pi with i = 0, . . . , 9, Pi = P (Pi−1)
and P0 = P (Ω) is obtained by applying Algorithm 2.
This sequence can be seen in Figure 3.

5

Fig. 1. The set B(Ω) for ε = 0.03 and ε = 0.01

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x 2 Ω

Φ
1

Φ
2

Φ
3

Φ
4

Φ
5

Φ
6

Φ
7

Φ
8

Φ
9

Φ
10

Fig. 2. Φi with i = 1..10 where Φi = B(Φi−1) and Φ0 = Ω

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x
1

x 2

P
0

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

Fig. 3. Pi with i = 0..9, Pi = P (Pi−1) and P0 = P (Ω)

7 Conclusion

An algorithm to compute an inner approximation to the
so-called one-step set for general constrained nonlinear
systems is presented. The proposed algorithm is based on
the interval arithmetic and provides a reliable inner ap-
proximation to the one-step set with a desired accuracy;
this can be adapted to the system to be considered and
it can be easily extended to the robust case. A second al-
gorithm to obtain inner polytopes to the one-step set is
presented. This representation provides simpler regions
at expense of conservativeness of the approximation.

References

Bemporad, A. (1998), ‘A predictive controller with artificial
lyapunov function for linear systems with input/state

constraints’, Automatica 34, 1255–1260.

Bertsekas, D. & Rhodes, I. (1971), ‘On the minmax reachability
of target set and target tubes’, Automatica 7, 233–247.

Blanchini, F. (1994), ‘Ultimate boundedness control for discrete-
time uncertain systems via set-induced Lyapunov functions’,
IEEE Transactions on Automatic Control 39, 428–433.

Blanchini, F. (1999), ‘Set invariance in control’, Automatica

35, 1747–1767.

Boyd, S., Ghaoui, L. E., Feron, E. & Balakrishnan, V. (1994),
Linear Matrix Inequalities in systems and control theory,
SIAM.

Cannon, M., Deshmukh, V. & Kouvaritakis, B. (2003), ‘Nonlinear
model predictive control with polytopic invariant sets’,
Automatica 39, 1487–1494.

Cannon, M., Kouvaritakis, B. & Deshmukh, V. (2003),
Enlargement of polytopic terminal region in NMPC by
interpolation and partial invariance, in ‘Proceedings of the
ACC’.

Chen, H. & Allgöwer, F. (1998), ‘A quasi-infinite horizon
nonlinear model predictive control scheme with guaranteed
stability’, Automatica 34(10), 1205–1218.

Chen, W., Ballance, D. & O’Reilly, J. (2001), Optimisation of
attraction domains of nonlinear MPC via LMI methods, in

‘Proceedings of the ACC’.

Gilbert, E. G. & Tan, K. (1991), ‘Linear systems with state and
control constraints: The theory and application of maximal
output admissible sets’, IEEE Transactions on Automatic

Control 36, 1008–1020.

Hansen, E. (1992), Global optimization using interval analysis,
Marcel Dekker, Inc.

Jaulin, L., Kieffer, M., Didrit, O. & Walter, E. (2001), Applied

Interval Analysis with Examples in Parameter and State

Estimation, Robust Control and Robotics, Springer-Verlag.

Johansen, T. (2004), ‘Approximate explicit receding horizon
control of constrained nonlinear systems’, Automatica

40, 293–300.

Kearfott, R. (1996), Rigorous Global Search: Continous Problems,
Kluwer, Dordrecht, Netherlands.

Kerrigan, E. (2000), Robust Constraint Satisfaction: Invariant
Sets and Predictive Control, PhD thesis, University of
Cambridge.

Knueppel, O. (1994), ‘Profil/bias - a fast interval library’,
COMPUTING 53(3-4), 277–387.

Limon, D., Alamo, T. & Camacho, E. F. (2003), Robust MPC
based on a contractive sequence of sets, in ‘Proceedings of
the CDC’.

Limon, D., Alamo, T. & Camacho, E. F. (2004), ‘Enlarging the
domain of attraction of MPC controller using invariant sets’,
Automatica . Accepted for publication.

Mayne, D. (2001), ‘Control of constrained dynamic systems’,
European Journal of Control (7), 87–99.

Mayne, D. Q. & Schröeder, W. R. (1997), ‘Robust time-
optimal control of constrained linear systems’, Automatica

33(12), 2103–2118.

Moore, R. (1966), Interval Analysis, Prentice-Hall, Englewood
Cliffs, NJ.

Rump, S. (1999), Developments in Reliable Computing,
Kluwer Academic Publishers, chapter INTLAB - INTerval
LABoratory, pp. 77–104.

6

