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Abstract: Consistency relations are often used to design residual generators based on non-
linear process models. A main difficulty is that they generally include time differentiated
versions of known signals which are difficult to estimate in anoisy environment. The main
results of this paper show how to lower, or if possible avoid,the need to estimate derivatives
of known signals in order to compute a residual. This is achieved by rewriting the problem
into an integrability problem using state-space realization theory. An attractive feature of
the approach is that general differential algebraic systemdescriptions can be handled in the
same way as for example ordinary differential equations andalso that stability of the residual
generator is always guaranteed.Copyrightc©2005 IFAC.
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1. INTRODUCTION

The objective of fault diagnosis is to detect and isolate
any faults acting on a process. In many methods, e.g.
structured residuals(Gertler, 1991), the concept of
residuals plays a central role. A residual is a signal
that ideally is zero when there is no fault acting on
the process and that deviates from zero when a fault
occurs. Commonly, a set of residuals is used, where
different residuals are sensitive to different subsets
of faults and in this way isolation between faults is
possible. Residual generation for fault diagnosis based
on non-linear dynamical models has in the control
community mainly been performed in two ways, ei-
ther via non-linear state observation or via non-linear
consistency relations. Both approaches have their own
set of advantages and disadvantages and a notable con-
tribution using observers is (Persis and Isidori, 2001).
If non-linear consistency relations are used for design-
ing residual generators to fit in a structured residuals
framework, the decoupling problem is transformed
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into an elimination problem. For a general descrip-
tion of a method to derive consistency relations, see
(Staroswiecki and Comtet-Varga, 2001).

An attractive property of such approaches is for ex-
ample that the systems considered need not to be on
e.g. control-affine form but can also include algebraic
constraints. Consistency relations have proven benefi-
cial in the linear case as a basis for residual genera-
tors, but when generalizing to the non-linear problem
some additional difficulties arise. A main difficulty is
that the consistency relation generally include time
differentiated versions of known signals and these are
not normally known. For linear systems, this prob-
lem is easily circumvented. Adding residual generator
dynamics of high enough order and finding a state-
space realization using linear realization theory makes
it possible to compute a residual without the need to
approximate any derivatives (Frisk and Nyberg, 2001).
The aim of this work is to generalize this procedure
also for non-linear systems by transforming the prob-
lem into an integrability problem. This work is a first
step toward a general solution and lowers the order of
derivatives of as many variables as possible one step.



A related problem has been studied in detail in
(Delaleau and Respondek, 1995) where the orders of
derivatives in generalized state-space descriptions are
lowered.

2. PROBLEM FORMULATION

An important concept when designing residual gener-
ators isconsistency relationswhich can be defined as:

Definition 1.(Consistency Relation). Letu(t) be a
vector of all known signals. The scalar expressionc(u)
is aconsistency relationif for all u consistent with the
fault free model it holds that

c(u, u̇, ü, . . . ) = 0 (1)

The order of a consistency relation is defined as the
highest order of a derivative of a known signal in the
relation. Note thatu includes both measurements and
known control signals. Therefore, testing ifc equal0
is a test on consistency between measured data and the
equations/assumptions used when derivingc. A fault
is detectable in (1) if the relation does not hold in case
the fault occurs.
Example 1.An example of how a consistency relation
can be obtained is illustrated in this example. Consider
the following model from (Persis and Isidori, 2001)

ẋ1(t) = x2(t)

ẋ2(t) = x1(t)x
2
4(t) − θ1

1

x2
1(t)

+ θ2u1(t) + d(t)

ẋ3(t) = x4(t)

ẋ4(t) = −2
x2(t)x4(t)

x1(t)
+ θ2

u2(t)

x1(t)
+ θ2

f(t)

x1(t)

y1(t) = x1(t), y2(t) = x3(t), y3(t) = x4(t)

whereyi are known measurements,ui known inputs,
θi known constants,d unknown disturbance, andf the
fault we want to detect.

A relation, not sensitive to the disturbanced, can be
derived by direct substitution ofyi and x2 into the
fourth equation

y1ẏ3 + 2ẏ1y3 − θ2u2 = θ2f

Thus, the left hand sidec = y1ẏ3 + 2ẏ1y3 − θ2u2 is a
consistency relation sincec = 0 in the fault-free case,
i.e. whenf = 0. The right hand sides = θ2f is the
fault sensitivity. �

The most straightforward way to generate a residual
using a consistency relation would be

r = c(u, u̇, . . . ) (2)

To compute a residual according to (2) it would be
necessary to estimate the time derivatives which may
be difficult, especially for higher order derivatives, in
a noisy environment. The main topic of this paper is to
describe ways to lower the order of derivatives needed
to be estimated.

If c(u, u̇, . . . ) was linear we could add any stable lin-
ear residual generator dynamics of order high enough,
at least as large as the highest input derivative:

r(n) + anr(n−1) + · · · + a1r = c(u, u̇, . . . ).

For example, ifu+u̇+ü = 0 is a consistency relation,
adding second order residual generator dynamics and
writing the residual generator on operator form give

r(t) =
p2 + p + 1

p2 + a2p + a1
u(t)

It is clear that this can easily be written on explicit
state-space form and that the residualr can be com-
puted without the need to estimate any derivatives.
This is the approach that in the following sections will
be mimicked for the non-linear case. Unfortunately,
but hardly surprising, is that the realization step that
was immediate in the linear case is not direct in the
non-linear case.

A generalization, for the case of a first order con-
sistency relation, of the above approach for the non-
linear case would be to find residual generator dynam-
icsh and a transformationΨ such that

ṙ + h(r, u) = Ψ(c(u̇, u), u) (3)

can be realized on state-space form with no differ-
entiated inputs. The functionsh and Ψ must quite
naturally satisfy the constraints thatr = 0 is a stable
locus of the differential equation

ṙ + h(r, u) = 0

and thatΨ(0, u) = 0 for all u. This means that the
residual generator is stable and that ifc(u) is a con-
sistency relation so isΨ(c(u̇, u), u). Note that if there
existsu such thatΨ(c, u) = 0 for c 6= 0, the transfor-
mation of the original consistency relation may reduce
the detectability performance of the residual compared
to the detectability of the original consistency relation.

Now, an example will be presented that shows how
h and Ψ can be chosen in a specific case. General
methodology will be presented in subsequent sections.
Example 2.Consider the same non-linear consistency
relation as in Example 1

c(u̇, u) = u2u̇1 + 2u1u̇2 + θu3

where u is the vector of known signals as in (1).
It is straightforward to verify that it is not possible
to put ṙ + βr = c(u̇, u) on explicit state-space
form and a transformation ofc is necessary. Now,
chooseΨ(c(u̇, u), u) = u2c(u̇, u), to obtain a new
consistency relation

Ψ(c(u̇, u), u) = u2
2u̇1 + 2u1u2u̇2 + θu3u2

=
d

dt
(u1u

2
2) + θu3u2

which is linear after a change of variables. Then the
linear approach applies to

ṙ + h(r, u) = Ψ(c(u̇, u), u)



with linear residual generator dynamics, i.e.h(r, u) =
βr, and the corresponding state-space realization is
given by

ẇ = −βw − βu1u
2
2 + θu3u2

r = w + u1u
2
2

�

Now, the main objectives of the paper are summarized.

Problem formulation : Given a set of consistency re-
lations, the objective is to investigate possible trans-
formations of these relations to obtain a new set of
consistency relations that can be used to compute
residuals where the order of the derivatives have been
lowered by one.

The goal is to put the residual generator on state-space
form using established realization theory. It is impor-
tant to note that in the residual generation problem,
the residual is not uniquely defined, the only require-
ment is that the residual is sensitive to a predefined
set of faults. This introduces some extra design free-
dom not available in standard realization procedures.
Utilization of this extra freedom is instrumental in the
proposed solution.

First we consider consistency relations of order one
and derive conditions for when it is possible to remove
all derivatives. For cases where all derivatives can
not be removed, partial solutions may exist where
the number of differentiated inputs in the residual
generator is lowered. These possibilities are described
further in Section 7 where it is also described how the
methodology can be used on higher order consistency
relations to lower the order of the derivatives one step.

3. INTRODUCING RESIDUAL GENERATOR
DYNAMICS

The objective of this section is to investigate when
there exists residual generator dynamicsh(r, u) such
that

ṙ + h(r, u) = c(u̇, u) (4)

can be transformed into a stable state-space realiza-
tion with no input derivatives. It is assumed that the
function c is differentiable. The results presented be-
low form a foundation for a more general approach
presented in the next section where also the transfor-
mationΨ is also considered.

First, assume that the consistency relation can be
written on the form

c(u̇, u) =
n

∑

i=1

gi(u)u̇i + v(u) (5)

and that the functionsgi are differentiable. If the
vector field

g(u) = (g1(u), . . . , gn(u))

has a potential, i.e.

gi =
∂λ

∂ui

for some functionλ(u) then it holds that

d

dt
λ(u) =

n
∑

i=1

gi(u)u̇i

In this case we can choose linear residual generator
dynamics

h(r, u) = βr, β > 0

and rewrite (4) into a linear problem

ṙ + βr =
d

dt
λ(u) + v(u) (6)

which can easily be written on state-space form. Ac-
cording to Poincare’s Lemma there exists a potential
λ if and only if the vector fieldg fulfills the condition

∂gi

∂uj
−

∂gj

∂ui
= 0 (7)

for all i, j. Hence, condition (7) issufficientfor the
existence of residual generator dynamics that makes
it possible to write the residual generator on state-
space form. Also, it is always possible to chooselinear
dynamics which makes it easy to ensure stability of the
filter.

The following Lemma shows that conditions (5) and
(7) are in fact also necessary. The proof is omitted and
is a slight adaptation of the proofs in (Delaleau and
Respondek, 1995).

Lemma 1.Let c(u̇, u) be a consistency relation of or-
der 1. There exists residual generator dynamicsh(r, u)
and a change of coordinates such that (4) is trans-
formed into a state-space realization with no input
derivatives if and only ifc(u̇, u) can be written on
the form (5) and there exists a potential for the vector
field g.

4. USING TRANSFORMED CONSISTENCY
RELATIONS

The previous section introduced residual generator
dynamics to remove derivatives in the computational
form. Now the approach will be extended by allowing
a transformation of the consistency relation. The ob-
jective of this section is to determine when there exists
residual generator dynamicsh and a transformation
Ψ such that (3) can be transformed into a state-space
realization with no input derivatives. The difference
between this problem and the standard problem of
non-linear system realization is that in this case, we
have the freedom to choose the functionsh and Ψ.
The objective is to choose these functions so that real-
ization is possible.

According to Lemma 1 it is necessary thatΨ(c(u̇, u), u)
can be written on the form (5). If the original consis-
tency relationc(u̇, u) can be written on this form, then



the only possible transformation is to multiply by a
function α(u) as in Example 2. Therefore the proce-
dure to find the transformationΨ can be divided into
two steps. First, if it is possible, construct a transfor-
mation so that a consistency relation on the form (5) is
obtained. Then determine if there exists an integrating
factorα(u).

The first step, i.e. construction of a transformation
Ψ1 such thatΨ1(c(u̇, u), u) is on form (5), is usually
either trivial or impossible. Thus, this is not pursued
further here and it is assumed that this step has been
successful. In the previous section it was shown that
it is no restriction to only consider linear residual
generator dynamics. The remaining problem is now
to state necessary and sufficient conditions for the
existence of an integrating factorα so that the equation

ṙ + βr = α(u)c(u̇, u) (8)

can be transformed into a state-space realization with
no input derivatives.

Looking back at the discussion in the previous section,
the difference is that vector fieldg has now been
replaced byαg. This implies that the problem here is
equivalent to the existence of a functionα such that
the vector fieldαg has a potential. Below is a key
result giving necessary and sufficient conditions. It is
important to note that in contrast to the global result in
the previous section, the result below is local.

Theorem 1.Let c(u̇, u) be a consistency relation of
order 1. There exists, in a neighborhood of a point
u0, an integrating factorα(u) 6≡ 0 and a change of
coordinates such that (8) is transformed into a state-
space realization with no input derivatives if and only
if c(u̇, u) can be written on the form (5) where the
functionsgi satisfy the condition

gi

(

∂gk

∂uj
−

∂gj

∂uk

)

+ gj

(

∂gi

∂uk
−

∂gk

∂ui

)

+ gk

(

∂gj

∂ui
−

∂gi

∂uj

)

= 0 (9)

for all i, j, k andg 6= 0 in a neighborhood ofu0.

PROOF. It follows from Lemma 1 and the discussion
above that the problem here is equivalent to the exis-
tence of anα such thatαg has a potential. A neces-
sary and sufficient condition is given by the Frobenius
theorem presented in the next section. Condition (9)
is a nontrivial reformulation of condition (14). See
(Choquet-Bruhatet al., 1982) for details. �

Remark 1.It is straightforward to verify that in case
of two differentiated inputs, the condition in the theo-
rem is always fulfilled.

Remark 2.In three dimensions the conditions (7) and
(9) can be written curl(g) = 0 and curl(g) · g = 0
respectively.

5. COMBINE CONSISTENCY RELATIONS

There are cases where the conditions in Theorem 1 are
not fulfilled. However, for a given system there often
exists more than one consistency relation. This section
develops an extension to the previous section and
more than one relation is used in the design. Such an
extension relaxes the restrictiveness of condition (9) in
Theorem 1. A detailed description of the mathematical
background used in this section can be found in e.g.
(Isidori, 1995). In this section, results from differential
geometry is used and in this framework, the vector
fieldsg in (5) are covector fields.

Given a set of consistency relationsci(u̇, u) = 0,
i = 1, . . . , r, the objective is to combine the set of con-
sistency relations into one such that the methodology
from the previous section can be applied. Note that,
the discussion below will only include sufficient con-
ditions for existence of such a combination of consis-
tency relations. No necessary conditions are included.

Now, following the discussion regarding possible
transformations in Section 4, it is from now on as-
sumed that the class of transformations used to com-
bine the consistency relations is restricted to:

c(u̇, u) = α1(u)c1(u̇, u) + . . . + αr(u)cr(u̇, u) = 0

It is, as in the previous section, assumed that the
functionsci(u̇, u) can be written on the form (5) and
the corresponding covector fields are denoted bygi. It
follows thatc(u̇, u) can be written on the same form
(5) and the corresponding covector fieldg is given by

g(u) = α1(u)g1(u) + . . . + αr(u)gr(u) (10)

In the present case, the question at issue is whether or
not there exist a potentialλ and coefficient functions
α1, . . . , αr such that

dλ(u) = α1(u)g1(u) + . . . + αr(u)gr(u) (11)

Let the codistributionΩ be defined by

Ω(u) = span{g1(u), . . . , gr(u)}

Equation (11) can then be written as

dλ ∈ Ω (12)

It is assumed thatΩ is non-singular in a neighborhood
U of a pointu0, i.e. the dimension ofΩ(u) is constant
in U . Without loss of generality, the covector fields
gi are assumed to be independent, i.e. the dimension
of Ω is r. Frobenius theorem gives a necessary and
sufficient condition for the local existence of a set of
functionsλ1(u), . . . , λr(u) such that

span{dλ1(u), . . . , dλr(u)} = Ω(u) (13)

in a neighborhood ofu0. In this case, any of the
functions λ1, . . . , λr fulfills (12). Equation (12) is
equivalent to

dλΩ⊥ = 0

whereΩ⊥ is the distribution that for every point as-
signs the subspace orthogonal toΩ. The condition in



Frobenius theorem, for a spanning solution (13), is
that the distributionΩ⊥ has to be involutive, which
means that the following condition has to be fulfilled:

τ1 ∈ Ω⊥, τ2 ∈ Ω⊥ =⇒ [τ1, τ2] ∈ Ω⊥ (14)

where [τ1, τ2] denotes the Lie bracket of the vector
fields τ1 and τ2. Note that this condition is always
fulfilled if the dimension ofΩ⊥ is equal to one, i.e
the dimension ofΩ is n − 1. This is an extension of
Remark 1 to dimensions higher than two. Practically,
this means that if there is one more differentiated input
than consistency relations, that can be written on form
(5), the methodology will succeed.

For our purpose it is not necessary to find a set
of potentials whose gradients span the codistribution
Ω. Even if condition (14) is not fulfilled, it may
still be possible construct a smaller set of functions
{λ1, . . . , λq} that fulfill condition (12) and span aq-
dimensional subspace that is contained inΩ at every
point. Thelargestcodistribution spanned by gradients
is obtained as follows. First, construct the involutive
closure inv(Ω⊥) of Ω⊥, i.e. thesmallestinvolutive
distribution that containsΩ⊥. Then the annihilator
(inv (Ω⊥))⊥ of this distribution is the sought codis-
tribution. If this codistribution is the zero codistribu-
tion then no solution exists. The involutivity condition
in Frobenius theorem is fulfilled by construction and
there exist functions{λ1, . . . , λq} such that

span{dλ1, . . . , dλq} = (inv (Ω⊥))⊥ ⊂ Ω (15)

Example 3.Consider two consistency relations:

c1(u, u̇) = u2u̇1 + u̇2 + u̇3

c2(u, u̇) = u2u̇1 + Au1u̇2

whereA is a known constant. Assume the objective is
to detect any fault that influence eitherc1 or c2. It is
clear that both is on form (5) with the corresponding
covector fieldsg1 = [u2 1 1], g2 = [u2 Au1 0], and
vi = 0. One can note that

curl(g1) · g1 = −1 6= 0, curl(g2) · g2 = 0

which, according to Remark 2 of Theorem 1, means
that there exists an integrating factor forc2 but not for
c1.

The codistributionΩ is by definition spanned by
{g1, g2} and it is easily verified that

Ω⊥ = span{[−Au1, u2, Au1u2 − u2]}

SinceΩ⊥ is one dimensional it is involutive and there-
fore there exist two independent solutions ofdλΩ⊥ =
0. The solutions can be determined by solving a set of
ordinary differential equations (Isidori, 1995) and here
the solutions are

λ1 = (1 − A)(u2 + u3) − Au1u2 + (2A − 1)u
1/A
1 u2

λ2 = Au
1/A
1 u2

The integrating factorsαi can be calculated by solving
the linear system of equationsdλi = αi,1g1 + αi,2g2

and the residual generators then become

ẋi = −βxi − βλi(u) + αi,1vi(u) + αi,2v2(u)

ri = xi + λi(u)

whereri are the residuals. �

6. FAULT DETECTABILITY

To investigate fault detectability properties of the
residual generators designed in the previous sections,
assume that the original set of consistency relations
have fault sensitivities according to

ci(u̇, u) = si(f, u, u̇)

wheref is a vector of faults. Recall Example 1 where
the fault sensitivity of the consistency relation was
given bysi = θ2f .

The fault sensitivity of the residual generator (8) is
given by

ṙ + βr =
r

∑

i=1

αi(u)si(f, u, u̇)

This means that the residualr will be sensitive to
exactly those faults that affect the original consistency
relations whose corresponding coefficientαi(u) 6≡ 0.
However, in operating points whereαi(u) is small
or zero, fault sensitivity may be reduced or even re-
moved. Thus, the coefficientαi shapes the fault re-
sponse in the residual. Note that the filtering im-
posed by the residual generator dynamics does not,
except for the low pass filtering effect, remove fault
sensitivity.

7. HIGHER ORDER CONSISTENCY RELATIONS
AND PARTIAL SOLUTIONS

In previous sections, methodology to lower all first
order derivatives in a consistency relation has been
described. The topic of this section is to investigate
what can be done if either we have a higher order con-
sistency relation or if the conditions for the method-
ology to work are not satisfied. For the first case it
will be shown how also higher order derivatives can be
lowered one step and for the latter outline a procedure
to lower some derivatives for the case when all deriva-
tives can not be removed. It will also be clear that the
two approaches can be combined in a straightforward
manner.

When considering higher order derivatives, previous
results directly applies. Letu(k) denote the k:th deriva-
tive of u. If the aim is to lower the derivativesu(ki)

i

one step, considerzi = u
(ki−1)
i as variables. All other

signals, excepṫzi = u
(ki)
i , are considered parameters.



The procedure is best illustrated below by a small
example.
Example 4. Consider the second order consistency
relation below

c(u, u̇, ü) = u2ü1 + 2u1u̇2

The aim is to lower the second order derivativeü1 to a
first order derivative and also to remove the derivative
of u2. Following the discussion above, consideru̇1

andu2 as variables, and all lower order derivatives as
parameters:

A := 2u1, z1 := u̇1, z2 := u2

In these new variables, the consistency relation be-
comes

c(z, ż) = z2ż1 + Aż2

Following the design procedure from previous sec-
tions, we can compute a potentialλ and an integrating
factorα to obtain a new consistency relationc′ = αc

as

c′ = αc =
d

dt
(u̇1 + 2u1 lnu2) − 2u̇1 lnu2

By adding linear first order dynamics, a residual can
then be computed where the only derivative needed is
u̇1 instead of̈u1 andu̇2. �

Using the same approach, considering some signals
as variables and some as parameters, it is sometimes
possible to lower some of the derivatives in case it
is not possible to lower all. This is illustrated in the
following example.
Example 5.Consider the consistency relation

c(u, u̇) = u2u̇1 + u1u3u̇2 + u̇2
3

which clearly does not fulfill the conditions in Theo-
rem 1. In particular it is not on the form (5) because
of the termu̇2

3. Consider only the first two terms in the
consistency relation and assumeu3 to be a parameter
A. This implies that the first two terms are considered
to be on the formu2u̇1 +Au1u̇2, which can be shown
to satisfy the conditions in Theorem 1. Following the
methodology we obtain

λ = u1u
u3

2 , α = uu3−1
2

and the resulting, transformed, consistency relation is

c′ = αc = λ̇ + uu3−1
2 u̇2

3 − u1u
u3

2 lnu2 u̇3

whereu̇1 andu̇2 has been removed whilėu3 remains.
Note that the last termu1u

u3

2 lnu2 u̇3, which includes
u̇3, appears due to thatu3 is a parameter in the de-
sign. This means that there exists a trade-off between
lowering the derivative order of signals considered
as variables and a possible raise of derivative order
among signals considered as parameters. �

8. CONCLUSIONS

The main results of this paper show how to lower, or
if possible avoid, the need to estimate derivatives of

known signals in order to compute a residual based
on non-linear consistency relations. This is achieved
by rewriting the problem into an integrability problem
using state-space realization theory. An advantage of
the approach, compared to for example the observer
based approaches in (Persis and Isidori, 2001), is that
general differential algebraic system descriptions can
be handled in the same way as for example ordinary
differential equations.

A key result is given by Theorem 1 which provides
the designer with necessary and sufficient, easily veri-
fied, conditions to remove all derivatives in first order
consistency relations. An attractive property of the
method is that it isalwayspossible to choose linear
residual generator dynamics and stability of the resid-
ual is therefore easy to guarantee. For cases where it
is not possible to remove all derivatives, the method
can still be useful. Procedures are presented where the
results can be used to provide partial solutions, e.g.
lower some of the derivatives instead of all.

9. REFERENCES

Choquet-Bruhat, Y., C. DeWitt-Morette and
M. Dillard-Bleick (1982). Analysis, manifolds
and physics. revised ed.. North-Holland Publish-
ing Co.. Amsterdam.

Delaleau, E. and W. Respondek (1995). Lowering the
orders of derivatives of controls in generalized
state space systems.Journal of Mathematical
Systems, Estimation, and Control5(3), 1–27.

Frisk, E. and M. Nyberg (2001). A minimal poly-
nomial basis solution to residual generation for
fault diagnosis in linear systems.Automatica
37, 1417–1424.

Gertler, J. (1991). Analytical redundancy methods in
fault detection and isolation; survey and synthe-
sis. Safeprocess. Baden-Baden, Germany. pp. 9–
21.

Isidori, A. (1995).Nonlinear Control Systems. 3rd ed..
Springer Verlag.

Persis, C. De and A. Isidori (2001). A geometric ap-
proach to nonlinear fault detection and isolation.
IEEE Automatic Control46(6), 853–865.

Staroswiecki, M. and G. Comtet-Varga (2001). An-
alytical redundancy relations for fault detection
and isolation in algebraic dynamic systems.Au-
tomatica37(5), 687–699.


