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Abstract

This paper examines the problem of estimating linear time-invariant state-space system mod-
els. In particular it addresses the parametrization and numerical robustness concerns that arise in
the multivariable case. These difficulties are well recognised in the literature, resulting (for ex-
ample) in extensive study of subspace based techniques, as well as recent interest in “data driven”
local co-ordinate approaches to gradient search solutions. The paper here proposes a different
strategy that employs the Expectation Maximisation (EM) technique. The consequence is an al-
gorithm that is iterative, and locally convergent to stationary points of the (Gaussian) Likelihood
function. Furthermore, theoretical and empirical evidence presented here establishes additional
attractive properties such as numerical robustness, avoidance of difficult parametrization choices,
the ability to estimate unstable systems, the ability to naturally and easily estimate non-zero initial
conditions, and moderate computational cost. Moreover, since the methods here are Maximum-
Likelihood based, they have associated known and asymptotically optimal statistical properties.

1 Introduction

A fundamental and widely-applicable approach to the problem of obtaining parametric models from
observed data involves adopting a statistical framework and then selecting as estimated model, that
which maximises the likelihood of the observed data. Schemes guided by this principle are known
as Maximum Likelihood (ML) methods and, due to the fact that they have been studied for almost
a century, they benefit from a very large and sophisticated body of supporting theory [6, 19, 25, 42]
This theoretical underpinning allows, for example, important practical issues such as error analysis
and performance trade-offs to be addressed. Moreover, it provides a rationale for using such methods
since it is generally (but not universally) true that ML estimators are asymptotically optimal, in that
they asymptotically (in observed data length) achieve the Cramér–Rao Lower Bound [18].

However, despite their theoretical advantages, the practical deployment of ML methods is not
always straightforward. This is largely due to the non-convex optimisation problems that are often
implied. Since these cannot be solved in closed-form, they are typically attacked via a gradient-
based search strategy based on Newton’s method or one of its derivatives [12] The ultimate success
of such approaches depends on its curvature with respect to the model parameters. The curvature, in
turn, is dependent on the chosen model parametrization, and the selection of these can be difficult,
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particularly in the multivariable case where the cost contours resulting from natural canonical state-
space parametrizations imply poor numerical conditioning during a gradient-based search [9, 28, 29].

Fully-parametrized state-space models (i.e. those in which all elements of all matrices are uncon-
strained) provide an obvious alternative to canonical structures, at least for modelling input-output
behaviour, since they provide a very general, compact and simple framework within which to repre-
sent finite-dimensional multivariable systems. These are employed by the class of “subspace-based”
estimation methods that have attracted great interest over the last several years as a practical solution
for finding multiple-input, multiple output (MIMO) system models [44, 43, 10, 24]. Via this approach,
and as opposed to ML strategies, estimates are found in closed form without need for iterative search.
While the utility of these algorithms is widely recognised, it is equally acknowledged that, depending
on the problem conditions, their accuracy may be less than that offered by ML or prediction error
estimates [21, 27].

In reaction to this, it has recently been established that fully parametrized models can also be
coupled with ML and prediction error criterions via algorithms that identify, at each iteration of a
gradient based search, a search subspace of minimal dimension [2, 26, 30].

Inspired by these issues, this paper explores a different approach to the problem of finding ML es-
timates of fully-parametrized state-space models from multivariable observations. More specifically,
the work here employs the Expectation Maximisation (EM) algorithm as a means of computing ML
estimates. The EM algorithm enjoys wide popularity and acceptance in a broad variety of fields of
applied statistics. For example, areas as disparate as signal processing and dairy science routinely use
the method [3, 8].However, despite this acceptance and success in other fields, it could be argued that
in systems and control settings, the EM algorithm is not as well understood, accepted and utilised as
it may deserve to be. With this in mind this paper seeks to make the contribution of establishing, via
both theoretical and empirical evidence, that EM algorithm based techniques are a highly competitive
alternative for solving multivariable control-relevant ML estimation problems.

It is important to note that there have been previous works using the EM algorithm in control-
related problems. In [20] the problem of single-input, single-output (SISO) ARX model estimation
on the basis of censored data sets was considered, and was further addressed in [17]. Furthermore, the
work [39], appearing in the statistics literature, addressed the control relevant issue of time series esti-
mation via an EM algorithm based solution and with respect to a particular class of time series models.
Finally, the works [7, 13] address theoretical aspects of EM approaches for parameter estimation of
continuous time diffusions.

By way of contrast, this paper deals with a different set of estimation problems by including
the possibility of exogenous inputs, by progressing beyond polynomial SISO ARX structures to the
employment of MIMO state-space models and by allowing full ARMA noise model estimation.

In relation to these contributions, an essential development here is the derivation of a numerically
robust implementation. This is of key importance since the poor numerical properties of any naı̈ve
implementation limit the feasible state and input-output dimensions of any estimated system to such
a degree as to severely curtail its practical utility. On the other hand, with the robust implementation
derived here, the method proves to be exceptionally dependable, and capable of handling quite high
dimensions of state, input number and output number.

Additionally this paper makes further contributions by providing a self-contained introduction
to the EM approach and its underlying principles, as well as then profiling, both theoretically and
empirically, the performance of the specific EM algorithm based technique developed here for the
purposes of LTI MIMO estimation.
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2 The Expectation-Maximisation (EM) algorithm

As just mentioned, the EM algorithm has a long history within the mathematical statistics community.
The idea underlying the algorithm was first proposed in [1] and then presented in its current, highly
developed form several years later with the publication of [11]. Since then has been widely applied
not only in the area of mathematical statistics [31, 33], but has also in areas relevant to control such
as signal processing, pattern, and speech recognition [36, 41].

However, the fundamental ideas and principles underlying the method do not seem to have perme-
ated widely within the control community. This motivates the following introductory section, intended
as a concise overview of the fundamentals of the EM algorithm.

The first essential point is that the EM algorithm is designed to compute the Maximum-Likelihood
(ML) estimate θ̂ML of a parameter vector θ on the basis of an observed data set Y , for which the
likelihood of this data is written as pθ(Y | U) of the data. That is, the EM method is an algorithm to
find

θ̂ML ∈ {θ ∈ Θ : pθ(Y | U) ≥ pθ′(Y | U) ∀ θ′ ∈ Θ}. (1)

Here U denotes some further (and at this stage, unspecified) information, pθ(· | ·) is a conditional
probability density function that is parametrized by a vector θ ∈ Rd, while Θ ⊂ Rd a compact subset
of candidate parameter vectors from which θ̂ML is to be chosen and is chosen as a closed hypercube
in Rd. As implied by equation (1), the ML estimate θ̂ML need not be unique. This point will be
addressed further in the sequel.

This formalism is well known with regard to control relevant system identification problems. The
traditional approach is to recognise (1) as a particular case of a general class of optimisation problems
where the cost is smooth enough for a gradient based search algorithm to be used [25, 34, 42].

However, instead of exploiting any smoothness of pθ(Y | U), the EM algorithm takes a different
approach by utilising a more fundamental characteristic of the cost that arises by virtue of it being a
probability density function; viz.

∫

R
N

pθ(Y | U) dY = 1, ∀θ. (2)

Engaging this mechanism involves the postulate of a so-called ‘complete data set’ that contains not
only what was actually observed, Y , but also another set of data, X , which one might wish were avail-
able, but in fact is not. The data set X itself is usually termed the ‘missing data’ and its composition
is left largely up to the user. Its choice is usually the key design step in the use of the EM algorithm.
The approach taken here is to select the missing data so that an associated likelihood maximisation
problem can be simply and robustly solved in closed form.

With this in mind, the principles underlying the EM Algorithm depend first on the application of
Bayes’ Rule, which delivers

p(Y )p(X | Y ) = p(X,Y )

and hence,
log pθ(Y | U) = log pθ(X,Y | U) − log pθ(X | Y, U). (3)

This provides an explicit link between a ‘wished for’ log-likelihood function log pθ(X,Y | U) that
depends on unavailable observations X , and the log-likelihood log pθ(Y | U) which is actually avail-
able, and for which a maximiser is sought.

With this link in mind, the essential idea underlying the EM algorithm is to approximate log pθ(X,Y |
U) by a function Q(θ, θ′), which is a projection onto a space defined by available observations, and a
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current estimate θ′ of the likelihood maximiser. That is,

log pθ(X,Y | U) ≈ Q(θ, θ′) , Eθ′{log pθ(X,Y | U) | Y, U}. (4)

Here, Eθ′{·} is the expectation operator with respect to an underlying probability density function
defined by the true system parameters being θ ′. This invites the obvious question as to how maximi-
sation (or approximate maximisation) of pθ(X,Y | U), that depends on unavailable data X , relates to
the prima facie more practical issue of maximising L(θ) = pθ(Y | U). To study this, note that L(θ)
may be written in terms of Q(θ, θ′) according to (3) as

L(θ) , log pθ(Y | U) = Eθ′{log pθ(Y | U) | Y, U} (5)

= Eθ′{log pθ(X,Y | U) | Y, U} − Eθ′{log pθ(X | Y, U) | Y, U}

= Q(θ, θ′) − V(θ, θ′), (6)

where Q(θ, θ′) was defined above in (4) and

V(θ, θ′) , Eθ′{log pθ(X | Y, U) | Y, U}. (7)

Note that the equality (5) follows since the arguments in the integration implied by the expectation
are fixed by the conditioning on (Y,U) (see, for example, Theorem 2.9 of [22]). Furthermore, it is
straightforward (see the following proof of Theorem 5.2) that V(θ ′, θ′) − V(θ, θ′) is the Kullback-
Leibler distance between the two density functions pθ(X | Y, U) and pθ′(X | Y, U). Hence, via
property (2), V(θ′, θ′) − V(θ, θ′) ≥ 0 for all θ, θ′.

Therefore, the decomposition (6) establishes that

Q(θ, θ′) > Q(θ′, θ′) ⇒ L(θ) > L(θ′). (8)

That is, any new θ which increases Q(θ, θ ′) above it’s old value Q(θ′, θ′) must also increase the
likelihood function L(θ).

This principle then leads to the following definition for one iteration of the EM algorithm starting
from an estimate θ̂k of θ̂ML and updating to a (better) one θ̂k+1 according to

1. E Step

Calculate: Q(θ, θ̂k); (9)

2. M Step

Compute: θ̂k+1 = arg max
θ∈Θ

Q(θ, θ̂k). (10)

One iteration of equations (9) and (10) is rarely enough to obtain a satisfactory approximation to θ̂ML

and thus an EM algorithm is usually composed of more than one iteration. The net effect of applying
this algorithm to the ML problem is to replace the single arg max operation on L(θ) (see equation (1))
with a succession of arg max operations on the function Q(·, ·). Clearly, this strategy is only sensible
when the task of computing and maximising Q(θ, θ̂k) is much easier than that of maximising L(θ)
directly. In practice, this turns out to depend largely upon the composition of the missing data set X
and, as such, using an EM algorithm is not always an appropriate strategy. However, it will now be
demonstrated that it is very suitable for solving a wide range of dynamic system estimation problems
of engineering relevance.
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3 Application of the EM algorithm to LTI Parameter Estimation

The estimation problem considered in this paper is to obtain a ML parameter estimate of an nth−order
system described by the state-space equations

[
xt+1

yt

]
=

[
A B
C D

] [
xt
ut

]
+

[
wt
vt

]
(11)

given that the distribution of the initial state is Normal with unknown mean µ and positive definite
covariance matrix P1, i.e.

x1 ∼ N (µ, P1), (12)

and a sequence of input-output data samples (UN , YN ), where

UN , {u1, u2, · · · , uN} and YN , {y1, y2, · · · , yN}. (13)

In equation (11), the vector sequence {xt ∈ Rn} represents the evolution of the system’s state, while
{wt} and {vt} model random disturbances. It is assumed that the latter two sequences can be modelled
as temporally independent random variables with a positive-definite joint covariance matrix and the
following Normal distribution:

[
wt
vt

]
∼ N

([
0
0

]
,

[
Q S
ST R

])
. (14)

Estimating the parameters of a system described by equations (11), (12) and (14) amounts to estimat-
ing the elements of the constant matrices A, B, C , D, Q, R, S, P1 and the vector µ. For convenience
these quantities shall be collected into a vector as follows:

θT ,

[
vec {Γ}T , vec {Π}T , vec {P1}

T , µT
]
, (15)

where

Γ ,

[
A B
C D

]
and Π ,

[
Q S
ST R

]
, (16)

and the vec{·} operator creates a vector from a matrix by stacking its columns on top of one another.
Now, with this definition of the parameter vector θ in mind, the log-likelihood function L(θ) for

the system described above is then [25]

L(θ) = −
Np

2
log(2π) −

1

2

N∑

t=1

log det(CPt|t−1C
T +R)

−
1

2

N∑

t=1

(yt − ŷt|t−1)
T [CPt|t−1C

T +R]−1(yt − ŷt|t−1), (17)

where (Y0 , ∅)
ŷt|t−1 , Eθ{yt|Yt−1} (18)

is the mean square optimal one-step ahead prediction of the system output and

Pt|t−1 , Eθ{(xt − x̂t|t−1)(xt − x̂t|t−1)
T } (19)
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is the covariance matrix associated with the state-estimate x̂t|t−1 , Eθ{xt | Yt−1}. Both of these
quantities may be calculated by the well-known Kalman predictor, a version of which will be presented
in Lemma 3.2.

Now, an essential observation is that if, in addition to the measurements YN and UN , the state
sequence

XN+1 , {x1, x2, . . . , xN+1} (20)

were available then it would be possible to extract an estimate of θ from equation (11) using simple
linear regression techniques. Since knowledge of XN+1 would so radically simplify the estimation
problem it is taken here as the EM algorithm’s missing data.

According to the definition of the EM algorithm (see equations (9) and (10)) the first step is to
determine the function Q(θ, θ′) defined by (4). This is achieved via the following result.

Lemma 3.1. Consider the model structure (11), (12), (14). If the missing data is X , XN+1 (defined
by equation (20)) and the input-output data is U , UN and Y , YN (see (13)), then the function
Q(θ, θ′) defined in (4) is given by

−2Q(θ, θ′) = log detP1 + Tr
{
P−1

1 Eθ′{(x1 − µ)(x1 − µ)T | YN , UN}
}

+N log detΠ +N Tr
{
Π−1

[
Φ − ΨΓT − ΓΨT + ΓΣΓT

]}
, (21)

where

zTt , [xTt , u
T
t ], ξTt , [xTt+1, y

T
t ], Φ ,

1

N

N∑

t=1

Eθ′{ξtξTt | YN , UN}, (22)

Ψ ,
1

N

N∑

t=1

Eθ′{ξtzTt | YN , UN}, Σ ,
1

N

N∑

t=1

Eθ′{ztzTt | YN , UN}. (23)

Proof. The derivation here draws on that presented in [39] wherein a simpler time series modelling
situation was considered. Those ideas are extended here to allow for exogenous inputs together with
full ARMA modelling of the measurement noise component while not requiring (as in [39]) non-
minimal state dimension. To begin, repeated application of Bayes’ Rule, and use of Markov properties
implied by (11) yields

pθ(YN , XN+1 | UN )

= pθ(xN+1, yN |YN−1, XN , UN )pθ(YN−1, XN |UN )

= pθ(xN+1, yN |xN , uN )pθ(xN , yN−1|YN−2, XN−1, UN )pθ(YN−2, XN−1|UN )

= pθ(xN+1, yN |xN , uN )pθ(xN , yN−1|xN−1, uN−1)pθ(YN−2, XN−1|UN )

...
...

... (24)

= pθ(x1)
N∏

t=1

pθ(xt+1, yt | xt, ut). (25)

Furthermore, straightforwardly from equations (11), (12), (14) and (16)

pθ(x1) ∼ N (µ, P1) and pθ

([
xt+1

yt

]∣∣∣∣ xt, ut
)

∼ N (Γzt,Π). (26)
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Therefore, using the relationships (26) and excluding terms that are independent of the quantities
to be estimated, equation (25) may be expressed as

−2 log pθ(YN , XN+1|UN ) = log detP1 + (x1 − µ)TP−1
1 (x1 − µ) +N log det Π

+
N∑

t=1

(ξt − Γzt)
TΠ−1(ξt − Γzt). (27)

Applying the conditional expectation operator Eθ′{· | YN , UN} to both sides of equation (27) yields
(21).

Note that, according to the definitions (22) and (23), all quantities making up Q(θ, θ ′) may be
computed from the elements

x̂t|N , Eθ′{xt | YN , UN}, Eθ′{xtxTt | YN , UN}, and Eθ′{xtxTt−1 | YN , UN} (28)

which, according to the model structure of interest (11) and noise assumptions (14), may be computed
using a standard Kalman smoother, except for the last element in (28), which requires a non-standard
augmentation. This is made explicit in the following lemma.

Lemma 3.2. Let the parameter vector θ ′ be composed of the elements of the A,B,C,D,Q,R, S, P1

and µ, themselves defining the system (11), (12), (14). Then

Eθ′{ytxTt | YN , UN} = ytx̂
T
t|N , (29)

Eθ′{xtxTt | YN , UN} = x̂t|N x̂
T
t|N + Pt|N , (30)

Eθ′{xtxTt−1 | YN , UN} = x̂t|N x̂
T
t−1|N +Mt|N , (31)

where x̂t|N , Pt|N , and Mt|N are calculated via the reverse-time recursions

Jt , Pt|tA
T
P−1
t+1|t (32)

x̂t|N = x̂t|t + Jt
[
x̂t+1|N −Ax̂t|t −But − SR−1yt

]
(33)

Pt|N = Pt|t + Jt
[
Pt+1|N − Pt+1|t

]
JTt , (34)

for t = N, . . . , 1, and
Mt|N = Pt|tJ

T
t−1 + Jt(Mt+1|N −APt|t)J

T
t−1 (35)

for t = N, . . . , 2 and the matrices A, B, Q are defined as

A , A− SR−1C, B , B − SR−1D, Q , Q− SR−1ST . (36)

The quantities x̂t|t, Pt|t, Pt|t−1 required by equations (33) through (35) are themselves pre-computed
using the Kalman Filter equations

Pt|t−1 = APt−1|t−1A
T

+Q (37)

Kt = Pt|t−1C
T
(
CPt|t−1C

T +R
)−1

(38)

Pt|t = Pt|t−1 −KtCPt|t−1 (39)

x̂t|t−1 = Ax̂t−1|t−1 +But−1 + SR−1yt−1 (40)

x̂t|t = x̂t|t−1 +Kt

(
yt − Cx̂t|t−1 −Dut

)
(41)

with t = 1, . . . , N . The recursion (35) is initialised with

MN |N = (I −KNC)APN−1|N−1. (42)
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Proof. Equations (33)-(34) are the well-known Rauch–Tung–Striebel recursions for fixed interval
Kalman Smoothing of the system (11), (12), (14) [22] once transformed as follows:

xt+1 = Axt +But + wt

= Axt +But + wt + SR−1 (yt − Cxt −Dut − vt)︸ ︷︷ ︸
=0

= (A− SR−1C)xt + (B − SR−1D)ut + SR−1yt + wt,

yt = Cxt +Dut + vt,

where now [
wt
vt

]
∼ N

([
0
0

]
,

[
Q− SR−1ST 0

0 R

])
.

These depend on the Kalman Filtered quantities x̂t|t, Pt|t, Pt|t−1 which again are very well known as
being computable via equations (37) through (41) [22]. The expressions (35) and (42) are established
in Property P4.3 of [40].

With the computation of Q(θ, θ′) established as being straightforward, attention now turns, ac-
cording to equation (10), to its maximisation. This is also straightforward (by design) as established
below.

Lemma 3.3. Let Σ satisfy Σ > 0 and let θ be partitioned as θ ∈
[
β, η

]
, where β parametrizes

Γ, µ, and η parametrizes Π, P1. Then

β̂ = arg max
θ∈Θ

Q(θ, θ′)

is given by

Γ =

[
A B
C D

]
= ΨΣ−1, µ = x̂1|N , (43)

where the matrices Φ, Ψ, Γ are defined in equations (22) and (23) and it is assumed that the closed
hypercube Θ is sufficiently large to contain these values.

Furthermore, Π and P1 given by

Π =

[
Q S
ST R

]
= Φ − ΨΣ−1ΨT , P1 = P1|N (44)

form a stationary point of Q(·, θ′) with respect to η, and both Π and P1 defined by equation (44) are
guaranteed positive semi-definite.

Finally, if Π and P1 given by (44) are positive definite, the input sequence, {ut}, is persistently
exciting (in the sense of (52)) and θ ′ implies a controllable and observable system, then the point Π,
P1 is more than a stationary point, it is a global maximiser of Q(·, θ ′) with respect to η.

Proof. To prove equation (43), note that the terms

Tr
{
P−1

1 Eθ′{(x1 − µ)(x1 − µ)T | YN , UN}
}

= Tr
{
P−1

1 [(x̂1|N − µ)(x̂1|N − µ)T + P1]
}

and

Tr
{
Π−1[Φ − ΨΓT − ΓΨT + ΓΣΓT ]

}
= Tr

{
Π−1[(Γ − ΨΣ−1)Σ(Γ − ΨΣ−1)T + Φ − ΨΣ−1ΨT ]

}
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in (21) are clearly (globally) minimised with respect to the elements of β the choices in equation (43).
The expression for Π in equation (44) follows by application of Lemma C.1 and the chain rule to

compute

d

dΠ
log det Π +

d

dΠ
Tr{Π−1(Φ − ΨΣ−1ΨT )} = Π−1 − Π−1(Φ − ΨΣ−1ΨT )Π−1

which is clearly zero for the choice of Π in (44). The expression for P1 follows in a similar manner.
Since Π and P1 are both covariance matrices they are, by construction, positive semi-definite.

Finally, it follows immediately from Lemma C.2 that equations (43) and (44) describe a global
maximiser of Q(·, θ′).

Note that an essential feature of the maximisation steps (43) and (44) is that they do not impose or
require any particular parametrization of the system matrices to be estimated. As in the case of sub-
space based methods, and data-driven local co-ordinate gradient search methods, this imbues the algo-
rithm with an enhanced degree of robustness by avoiding well known pitfalls associated with MIMO
parametrization choices. Furthermore, it allows the EM-based approach proposed here to smoothly
mesh with the aforementioned alternatives, particularly as a means for providing initialisation of the
algorithm via a subspace based approach.

Additionally, note that an estimate µ̂k of any non-zero initial state conditions arises very easily
and naturally, implying that the algorithm can provide dynamic system estimates on the basis of non
steady-state operating data.

At the same time, this lack of imposed parametrization is achieved by a full (and hence over)
parametrization, which raises the issue of whether there is a variance penalty for employing a model
structure with a non-minimal parametrization. This issue has been addressed in [35] where it was
established that, in fact, for quantities that are unaltered by parametrization choice (such as fre-
quency response function) the variance of an estimate is the same for minimally and non-minimally
parametrized model structures.

4 Robust Algorithm Implementation

When collected, the results in Lemmas 3.1, 3.2 and 3.3 deliver the “naı̈ve” EM-based algorithm for
estimating the parameters of the system description (11), (12), (14).

EM Algorithm 4.1. (Naı̈ve Implementation) EM Algorithm for ML Estimation

1. Let k = 0 and initialise estimates at θ̂0 = [A,B,C,D,Q,R, S, P1, µ];

2. Using the system specification θ̂k = [A,B,C,D,Q,R, S, P1 , µ], perform the Kalman-Filter
recursions (37)-(41) followed by the Kalman Smoother (type) recursions (32) through (35) in
order to compute Φ,Ψ and Σ (defined in equations (22) and (23));

3. Maximise Q(θ, θ̂k) with respect to θ by choosing A,B,C,D,Q,R, S, P1 and µ according to
equations (43) and (44) to obtain a new estimate θ̂k+1;

4. If the associated likelihood sequence {L(θ̂k)} has converged then terminate, otherwise incre-
ment k and return to step 2.
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While the above provides a formal algorithm specification, the algorithm is termed “naı̈ve” since
the question of robust and efficient implementation requires further consideration. In particular, the
experience of the authors is that any approach involving the above formal algorithm specification leads
to unsatisfactory results for all but rather trivial state and input/output dimension. In particular, it is es-
sential that the estimated covariance matrix composed of Q,R and S (see equation (14)) is symmetric
and positive semidefinite at all iterations, despite the limitation of finite precision arithmetic.

On the other hand, if a considered approach is taken to dealing with the limitations of finite
precision computation, then Algorithm 4.1 can be implemented in a very robust fashion, as will now
be detailed.

4.1 The Robust E-Step

A major part of the E-step of EM Algorithm 4.1 consists of computing the covariance matrices {Pt|N},
using a set of Kalman smoothing recursions. The latter are used to construct the matrices Σ and Φ
(see equations (22) and (23)). It is possible to ensure that these matrices are positive semi-definite
and symmetric, as required, by employing a “square-root” filtering strategy. Such a scheme uses
recursions that propagate the matrix square-roots of Pt|t−1, Pt|t and Pt|N rather than the full matrices

themselves. The matrices can then computed as, for example, Pt|N = P
1/2
t|N P

T/2
t|N , where P T/2t|N is

shorthand for (P
1/2
t|N )T .

There are several approaches to square-root filtering, but the method chosen here is based on the
methods proposed in [23] and employs the numerically robust and efficient QR factorisation [16]
which, for an arbitrary matrix M decomposes it as M = QR where Q is a unitary matrix and R an
upper-triangular matrix.

Consider first the recursion (34) which propagates Pt|N backwards in time t. We seek a recursion

which instead propagates a square root P 1/2
t|N for which Pt|N = P

T/2
t|N P

1/2
t|N satisfies (34). For this

purpose, the following QR factorisation is useful.



P
T/2
t|t A

T
P
T/2
t|t

Q
T/2

0

0 P
T/2
t+1|NJ

T
t




= QR = Q




R11 R12

0 R22

0 0



. (45)

Here, R is partitioned conformally to the left-hand side of (45). Now, exploiting the unitary nature of
Q, and multiplying this equation on the left by its transpose we obtain




RT
11R11 RT

11R12

RT
12R11 RT

12R12 + RT
22R22


 =




Pt+1|t APt|t

Pt|tA
T

Pt|t + JtPt+1|NJ
T
t


 .

Equating the lower right submatrices then indicates that

RT
22R22 = Pt|t + JtPt+1|NJ

T
t −RT

12R12

= Pt|t + JtPt+1|NJ
T
t −RT

12R11(R
T
11R11)

−1RT
11R12

= Pt|t + JtPt+1|NJ
T
t − Pt|tA

T
(Pt+1|t)

−1APt|t

= Pt|t + Jt
[
Pt+1|N − Pt+1|t

]
JTt (46)
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and therefore, equations (34) and (46) imply that

RT
22R22 = Pt|N (47)

satisfies (34) so that P 1/2
t|N = R22.

Turning now to the forward time recursions (37)-(39) for the Kalman filtered state covariance Pt|t,

a recursion is sought which propagates a square root P 1/2
t|t . Again, a QR factorisation is useful, this

time of the form [
R1/2 CP

1/2
t|t−1

0 P
1/2
t|t−1

]T
= QR = Q

[
R11 R12

0 R22

]
, (48)

where a similar procedure to the one used above reveals that R
T
22 = P

1/2
t|t and therefore that Pt|t =

R
T
22R22 satisfies (39). Finally, the factorisation (48) requires the matrix square root P 1/2

t|t−1, and for
this purpose the factorisation [

P
T/2
t−1|t−1A

T

Q
T/2

]
= Q

[
R̃1

0

]
(49)

can be performed so that by (37)

R̃T
1 R̃1 = APt−1|t−1A

T
+Q = Pt|t−1.

Thus P 1/2
t|t−1 = R̃T

1 .

4.2 The Robust M-Step

Note that a key aspect of the preceding robust implementation of the E-step is that the square root
terms can be used to form matrices Σ and Φ (see equations (22) through (23)) that are guaranteed to
be non-negative and symmetric, even in the presence of finite precision computation.

Since Σ is square, then standard pivoting and Gaussian elimination (as, for example, implemented
by the Matlab / operator) provides a numerically robust means for computing A,B,C and D accord-
ing to (43).

The computation of theQ,R and S matrix updates, again according to equation (44) requires more
careful thought. For example, due to the subtractions involved in (44), positive semi-definiteness could
easily be lost via any naı̈ve implementation. Furthermore, it is again important to guarantee symmetry.
An ad-hoc method for addressing this problem would be to implement (44) directly, and then ensure
symmetry of Π by averaging it with its transpose. This, however, only ensures symmetry, and not
positive semi-definiteness.

With this in mind, the paper here develops a numerically robust means for computing (44) via
performing the following Cholesky factorisation

[
Σ ΨT

Ψ Φ

]
=

[
R11 R12

0 R22

]T [
R11 R12

0 R22

]
(50)

=




RT
11R11 RT

11R12

RT
12R11 RT

12R12 + RT
22R22


 ,
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where all matrices are partitioned conformally to the left-hand side. Equating the lower right sub-
matrices yields

Φ = RT
12R12 + RT

22R22 = RT12R11

(
RT

11R11

)−1
RT

11R12 + RT
22R22.

This implies that Π may be expressed in terms of Cholesky factors as

Π = Φ − ΨΣ−1ΨT = Φ −RT12R11

(
RT

11R11

)−1
RT

11R12 = RT
22R22.

That is,Q,R and S may be calculated at each iteration using the formula Π = RT
22R22. This approach

simultaneously guarantees both the symmetry and non-negative definiteness of the result.
In relation to this, in the interests of maximum robustness, it is important to employ a Cholesky

factorisation method that (unlike that native to Matlab) can cope with rank deficient matrices. For this
purpose, the experience of the authors is that either of the methods presented in [16] (as Algorithm
4.2.4) or in [45] are appropriate.

Finally, the computation of P1 in a manner guaranteeing its symmetry and positive semi-definiteness
is trivial since P 1/2

1 = P
1/2
t|N is already calculated in the E-step (see equation (47)).

4.3 The Robust Algorithm

Summarising the ideas in Section 4.1 and 4.2 we present the following numerically robust algorithm,
which is a central contribution of this paper.

EM Algorithm 4.2. Numerically Robust EM-based Algorithm

1. Let k = 0 and initialise estimates at θ̂0 = [A,B,C,D,Q,R, S, P1, µ];

2. Using the system specification θ̂k = [A,B,C,D,Q,R, S, P1 , µ], compute, for t = 1, . . . , N ,

the sequences {x̂t|t} {P
1/2
t|t−1} and {P

1/2
t|t } via QR−decompositions

[
P
T/2
t−1|t−1A

T

Q
T/2

]
= Q

[
R1

0

]
, P

1/2
t|t−1 = RT

1

[
R1/2 CP

1/2
t|t−1

0 P
1/2
t|t−1

]T
= Q

[
R11 R12

0 R22

]
, P

1/2
t|t = RT

22

and the Kalman filter recursions with initialisation x̂1|0 = µ, P1|0 = P1

Kt = P
1/2
t|t−1P

T/2
t|t−1C

T
(
CP

1/2
t|t−1P

T/2
t|t−1C

T +R
)−1

x̂t|t = (I −KtC)

(
Ax̂t−1|t−1 +

[
B SR−1

] [ ut−1

yt−1

])
+Kt (yt −Dut) ,

where
A , A− SR−1C, B , B − SR−1D, Q , Q− SR−1ST . (51)
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3. Compute, for t = N, . . . , 1, the smoothed sequences {x̂t|N} and {P
1/2
t|N } via QR−decomposition




P
T/2
t|t A

T
P
T/2
t|t

Q
T/2

0

0 P
T/2
t+1|N

JTt




= Q




R11 R12

0 R22

0 0



, P

1/2
t|N = RT

22

and the recursion

x̂t|N = x̂t|t + Jt

(
x̂t+1|N −Ax̂t|t −

[
B SR−1

] [ ut
yt

])
,

where Jt , Pt|tA
T
P−1
t+1|t. Also calculate the sequence {Mt|N} via equation (35) with initiali-

sation (42) for t = N, . . . , 2.

4. Calculate the matrices

Eθ′{ytxTt | YN , UN} = ytx̂
T
t|N ,

Eθ′{xtxTt | YN , UN} = x̂t|N x̂
T
t|N + P

1/2
t|N P

T/2
t|N ,

Eθ′{xtxTt−1 | YN , UN} = x̂t|N x̂
T
t−1|N +Mt|N ,

and construct Φ,Ψ and Σ as described in equations (22) and (23).

5. Maximise Q(θ, θ̂k) with respect to θ to obtain a new estimate θ̂k+1 as follows.

(a) Compute new estimates of A, B, C and D via equation (43) using pivoting and Gaussian
elimination.

(b) Use the the modified Cholesky factorisation [45] to calculate new estimates of Q,R and
S as [

Σ ΨT

Ψ Φ

]T/2
=

[
R11 R12

0 R22

]
,

Π =

[
Q S
ST R

]
= RT

22R22.

(c) Set µ = x̂1|N and P1 = P
1/2
1|NP

T/2
1|N , where x̂1|N and P1 = P

1/2
1|N are computed via Kalman

smoothing in the E-step.

6. If the associated likelihood sequence {L(θ̂k)} has converged via some measure (e.g. relative
decrease below a threshold) terminate, otherwise increment k and return to step 2.

5 Algorithm Properties

With this definition of a numerically robust version of the EM-based algorithm in hand, the paper now
proceeds to investigate some of its convergence properties via a series of theoretical and empirical
studies. For the purposes of theoretical analysis, the following standing assumptions will be imposed.

13



Standing Assumptions 5.1.

1. The set of candidate parameter vectors, Θ, is a closed and bounded hypercube in Rd;

2. Both L(θ) and Q(θ, θ′) are bounded and continuous for all θ, θ ′ ∈ Θ.

5.1 Uniqueness of Iterations

Minimally-parametrized model structures, (those for which each input-output system behaviour corre-
sponds to only one point in parameter space) have traditionally been favoured in system identification.

By way of contrast, the model structure used by the EM algorithm is clearly not minimally-
parametrized since any similarity transformation of the state-space matrices in equation (11) leads to
another potentially valid model with the same input-output behaviour and thus the same likelihood
value. It is therefore natural to question whether, {θ̂k}, the sequence of estimates generated by EM
Algorithm 4.2, are well defined and if so what their convergence properties are. We begin with the
issue of well-posedness.

Theorem 5.1. Suppose that θ̂k parametrizes a controllable and observable system with Π, P1 > 0,
and that for the given data length N , the input sequence {ut} satisfies

1

N

N∑

t=1

utu
T
t > 0. (52)

Then Σ, defined by equation (23), is positive definite and θ̂k+1 is uniquely defined.

Proof. See Appendix A.

Clearly, the condition (52) can be considered a “persistence of excitation” requirement which
forces the input sequence to be informative.

5.2 Limit Points of the Algorithm

With the well-posedness of the definition of the algorithm iterates {θ̂k} established, the paper now
turns to the question of convergence. In relation to this, there exist some general results on the con-
vergence of EM algorithm iterates, which are scattered among a number of papers in the statistical
literature (see, for example, [4, 11, 32, 33, 46]). In what follows, we draw on these results in a manner
tailored to the particular case of Algorithms 4.1 and 4.2. To begin, we establish the important prop-
erty that Algorithms 4.1 and 4.2 generate a sequence of estimate iterates {θ̂k} for which the associated
sequence of likelihoods {L(θ̂k)} is non-decreasing.

Theorem 5.2. Let θ̂k+1 be generated from θ̂k by an iteration of EM Algorithm 4.2. Then

L(θ̂k+1) ≥ L(θ̂k) ∀k = 0, 1, 2, . . . (53)

with equality if and only if both
Q(θ̂k+1, θ̂k) = Q(θ̂k, θ̂k) (54)

and
pbθk+1

(X | Y,U) = pbθk

(X | Y,U) (55)

for almost all X .
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Proof. See also [11]. Equation (6) yields

L(θ̂k+1) − L(θ̂k) =
[
Q(θ̂k+1, θ̂k) −Q(θ̂k, θ̂k)

]
+
[
V(θ̂k, θ̂k) −V(θ̂k+1, θ̂k)

]
(56)

≥ V(θ̂k, θ̂k) − V(θ̂k+1, θ̂k) (57)

where (57) follows from (56) upon using the assumption that {θ̂k} is generated by an EM algorithm.
Via the definition of V(·, θ̂k)

V(θ̂k, θ̂k) − V(θ̂k+1, θ̂k) =

∫
log

(
pbθk

(X|XN , YN )

pbθk+1
(X|YN )

)
pbθk

(X|YN ) dX. (58)

Furthermore, log x ≤ x − 1 with equality if, and only if, x = 1. Consequently, since the area under
pθ(X|Y ) is one for any value of θ,

V(θ̂k+1, θ̂k) − V(θ̂k, θ̂k) ≤

∫ (pbθk+1
(X|Y )

pbθk

(X|Y )
− 1

)
pbθk

(X|Y ) dX

=

∫
pbθk+1

(X|Y ) dX −

∫
pbθk

(X|Y ) dX = 0

which establishes the inequality (53) and hence the important likelihood monotonicity property of the
algorithm. Establishing the necessary and sufficient conditions (54) (55) for equality in (53) involves
recognising (54) is clear. Equation (55) however requires a more elaborate argument which involves
application of Lemma C.3 to (58).

Note that while this shows that Algorithms 4.1 and 4.2 will never lead to a new estimate θ̂k+1 with
a likelihood lower than a preceding one θ̂k, it also establishes that in the more usual case when the
maximisation step yields Q(θ̂k+1, θ̂k) > Q(θ̂k, θ̂k) then in fact the underlying likelihood is strictly
increased; i.e. L(θ̂k+1) > L(θ̂k). Furthermore, note that this fundamental property of the algorithm
is a direct consequence of the essential likelihood function property.

∫
pθ(x)dx = 1, ∀θ. (59)

It may be significant that this, and hence the likelihood monotonicity of the EM algorithm, holds even
when the likelihood function is discontinuous, and hence even in situations for which gradient based
search methods are inapplicable.

To continue the analysis, notice that Standing Assumptions 5.1 together with a requirement that
Π > 0 ensure that the likelihood function L(·) (as defined by equation (17)) is bounded on Θ. Since
{L(θ̂k)} is monotonically increasing it is clear that this sequence must converge. The values to which
is does converge are established by the following lemma.

Lemma 5.1. Let {θ̂k} ⊆ Θ be a sequence of estimates generated by EM Algorithms 4.1 or 4.2 for
which each element parametrizes a controllable and observable system with Π, P1 > 0. Then a limit
point of {θ̂k}, θ?, is a stationary point of L(θ) and the sequence {L(θ̂k)} converges monotonically to
L(θ?).

Proof. Denote the following sets:

Yβ , {(θ, L(θ)) : θ ∈ Θ, L(θ) ≤ L(β)},

Zβ , {(θ, L(θ)) : θ ∈ Θ},

Xβ , {(θ, L(θ)) : θ ∈ Θ, L(θ) ≥ L(β)}.
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Since it is a fundamental property of continuous functions (see Lemma 10.12 of [15]) that the sets
Yβ and Zβ are closed, then it follows that any finite intersections and unions of them are also closed
(Theorem 4.18 of [14]). In particular,

Xβ = Yβ\(Yβ ∩ Zβ)

is a closed subset in Rd × R and hence compact.
Via this and the assumption that Q(θ, θ ′) is continuous in both arguments, all the conditions of

Theorem 2 of [46] are satisfied. Application of this results then completes the proof.

Note that although this result establishes that the sequence of likelihoods {L(θ̂k)} is convergent
to a value L(θ?) associated with (local) maximiser θ? of L(θ), this does not immediately imply that
the parameter estimates {θ̂k} themselves converge to that local maximiser θ?.

In particular, since a non-minimal parametrization is involved, it is natural to be concerned that
the algorithm could lead to a “wandering” of parameter estimates that are parameter-space different,
but system-wise equivalent, and hence all implying the same likelihood L(θ?). In fact, this is not the
case, since as soon the sequence {θ̂k} arrives at a stationary point θ? of L(θ), then all further iterations
of the algorithm remain at this same parameter-space stationary point.

Corollary 5.1. Let θ̂k parametrize a controllable and observable system with Π, P1 > 0. Suppose
that the input sequence UN satisfies the condition (52). Then

L(θ̂k+1) ≥ L(θ̂k) (60)

with equality if and only if θ̂k+1 = θ̂k.

Proof. According to Theorem 5.2, we need only show that θ̂k+1 = θ̂k if and only if both

Q(θ̂k+1, θ̂k) = Q(θ̂k, θ̂k) and pbθk+1
(X | Y,U) = pbθk

(X | Y,U)

for almost all X . Clearly, the “only if” part is trivial. To address the “if” component, note that if
Q(θ̂k+1, θ̂k) = Q(θ̂k, θ̂k) then according to the definition of the EM Algorithm, both θ̂k+1 and θ̂k
must be maximisers of the function Q(·, θ̂k). On the other hand, Theorem 5.1 demonstrates that
Q(·, θ̂k) has only one maximiser. Thus θ̂k+1 = θ̂k.

5.3 Rate of Convergence of Parameter Estimates

The previous results establish the convergence properties of EM Algorithm 4.1 (and its numerically
robust version Algorithm 4.2) about a stationary point θ? of the likelihood. This section now turns to
understanding the convergence rate of Algorithm 4.2 and the factors affecting it.

This is a more difficult question to address, but to try to gain insight an analysis locally about a
stationary point θ? of L(θ) provides the following approximate expression characterising the evolution
of the “estimation error” θ̂k − θ?.

Theorem 5.3. Suppose that θ̂k parametrizes a controllable and observable system with Π, P1 > 0
and that θ? is a stationary point of the likelihood function L(·). Then

θ̂k+1 − θ? =
[
I − I−1

XY (θ̂k)IY (θ̂k)
]
(θ̂k − θ?) + o(‖θ̂k+1 − θ̂k‖

2) + o(‖θ̂k − θ?‖2) (61)
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where

IY (θ̂k) , −
∂2

∂θ∂θT
log pθ(Y |U)

∣∣∣∣
θ=bθk

(62)

and

IXY (θ̂k) , −Ebθk

{
∂2

∂θ∂θT
log pθ(X,Y | U)| Y,U

}∣∣∣∣
θ=bθk+1

= −
∂2

∂θ∂θT
Q(θ, θ̂k)

∣∣∣∣
θ=bθk+1

. (63)

The latter is guaranteed to be invertible provided input condition (52) is satisfied.

Proof. See Appendix B.

This establishes that locally around a stationary point θ?, the EM algorithm proposed in this paper
exhibits an estimation error θ̂k − θ? that approximately evolves according to the autonomous system
given by (61) with order o(·) terms neglected. In particular, this suggests that convergence locally
around θ? will be rapid if the matrices IXY (θ̂k) and IY (θ̂k) are similar.

In relation to this, note that according to (6) and the fact that V(θ ′, θ′) − V(θ, θ′) is a Kullback–
Liebler distance, then L(θ) = Q(θ, θ) and hence Q(θ, θ) mimics the value of the likelihood L(θ).
Theorem 5.3 now further establishes that if Q(θ, θ) is also a good approximation to the second or-
der properties of the likelihood function, that is if IXY (θ̂k) ≈ IY (θ̂k), then local convergence will
be rapid. Moreover, at least locally about θ?, the rate of parameter convergence will be governed
by the smallest eigenvalue of I−1

XY (θ?)IY (θ?) – the larger the dominating eigenvalue the faster the
parameters will converge.

To study the relationship between IXY and IY , note that as a consequence of (6),

IY (θ?) = IXY (θ?) − IX(θ?), (64)

where

IX(θ?) , −Eθ?

{
∂2

∂θ∂θT
log pθ(X | Y,U)| Y,U

}∣∣∣∣
θ=θ?

is the “missing data” X information matrix. All three information matrices are positive semi-definite
by construction and hence regardless of the nature of the missing data X

IY (θ?) ≤ IXY (θ?). (65)

Intuitively then, the more assistance the missing data provides in the solution of an EM iteration the
less effective that iteration will be.

Furthermore, since IXY (θ?) and IY (θ?) are both positive definite by construction, an immediate
consequence of (65) is that the eigenvalues of I −I−1

XY (θ?)IY (θ?) must be real and lie in the interval
[0, 1] since

λi{I − I−1
XY (θ?)IY (θ?)} = 1 − λi{I

T/2
Y (θ?)I−1

XY (θ?)I
1/2
Y (θ?)}︸ ︷︷ ︸

∈[0,1]

∈ [0, 1], (66)

where λi{M} denotes the ith eigenvalue of a matrix M and I
1/2
Y (θ?) is a positive definite matrix

such that IY (θ?) = I
1/2
Y (θ?)I

T/2
Y (θ?). This implies that locally around θ? the EM algorithm can be

expected to display an exponential convergence rate.
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6 Computational Load

The final performance issue to be addressed is that of the computational load of the proposed EM
Algorithms 4.1 and 4.2. This will be addressed by comparing the load relative to the main alternative
method for ML estimation of MIMO systems, which is that provided by recent methods of gradient
search via data driven local co-ordinates (DDLC) [2, 9, 26, 30, 29, 38].

In addressing computational overhead, there are two key issues. Firstly, there is the requirements
per iteration, which we will measure here in terms of necessary floating point operations (FLOPs).
Secondly, it is important to consider the number of iterations. Unfortunately, it is impossible to be
precise with regard to the latter. The experience of the authors is that (as will be demonstrated in
the next section) the number of iterations required by the EM methods proposed here, are typically
(roughly) equal to the number required by the alternative DDLC method.

In consideration of this, the paper will profile computational requirement via FLOP load per it-
eration, and for this purpose a detailed audit of the FLOP count for the key stages of the robust EM
Algorithm 4.2 are provided in Table 1 (Recall m is the number of inputs, p is the number of outputs,
n is the model state dimension, and N is the data length) where the FLOP counts provided are for
the computation of all N quantities such as P 1/2

t|t where necessary. Assuming the typical case of state

Computation Equations Number of FLOPs required

{P
1/2
t|t−1} (49) 10

3 n
3N

{P
1/2
t|t } (48) 32

3 n
3N

{Kt} (38) (7pn+ 1
3p

2 + 5
2p+ 2n2)pN

{x̂t|t} (40),(41) (3n+ p+ 8np+ 2n2 + 2nm+ 2mp)N

{P
1/2
t|N } (45) 56

3 n
3N

{Jt} (32) (4n+ 2)n2N

{x̂t|N} (33) (3 + 2m+ 4n+ 2p)nN

{Mt|N} (35) (8n+ 2)n2N

Φ,Ψ,Σ (22), (23) (9n2 +m2 + 6nm+ 6np+ 2pm+ 2p2)N

Γ (43) (m+ n)2(2 + 7
3n+ 1

3m+ 2p)

Π (44) 1
3(2n+m+ p)3 + (n+ p)3

Table 1: FLOP count for each of the key steps of the robust Algorithm 4.2.

dimension n being of the order (or larger) than the input/output dimensions m, p then indicates that
the total FLOP count per iteration required by Algorithm 4.2 is O(n3N).

Turning now to a DDLC approach, we refer the reader to [2, 26, 30, 29] for the details of the
method. The essential point is that at each iteration, since the methods involved are gradient-search
based, then the gradient itself needs to be computed for each of the components parametrizing the
n(m+ 2p) +mp dimensional manifold of minimal representations. This involves running an n state
filter, with FLOP count O(n2N) (there is no sparsity in any of the matrices involved) for each of these
n(m+ 2p) +mp parameters, which leads to a FLOP count of O(max(p,m)n3N).

For low numbers of inputs and outputs, these FLOP counts of O(n3N) and O(max(p,m)n3N)
for (respectively) Algorithm 4.2 and a DDLC gradient search approach are roughly equivalent, and
establish Algorithm 4.2 as competitive from a computational load point of view. However, for larger
numbers of inputs and outputs, there can be an appreciable difference in the FLOP count due to the
DDLC count being the Algorithm 4.2 count of n3N scaled by max(p,m). As such, and also in con-

18



sideration of the numerical robustness we have observed empirically, we suggest that Algorithm 4.2
should especially be considered for the case of high dimension MIMO estimation.

7 Empirical Study

Having derived the robust Algorithm 4.2 and provided a theoretical analysis of its properties, this
section provides a brief empirical study of the performance of the EM methods proposed here. To
begin with, we compare the results obtained by Algorithm 4.2 to those provided by the main alterna-
tives, which are subspace-based techniques, and data driven local co-ordinate (DDLC) gradient search
approaches.

The comparison method employed here is that employed in [27] for a similar profiling purpose,
and wherein a Monte–Carlo approach is used. To be more specific, our first empirical study involves
the simulation and estimation of 250 different, stable, two-input, two-output, 5th−order systems in
innovations form that were generated randomly using the Matlab drss() command. For each of
these 250 estimation experiments, a new length N = 500 i.i.d. input realisation ut ∼ N (0, I), and a
new i.i.d. innovations realisation et ∼ N (0, 0.04I) was generated.

Three estimates were formed for each of these 250 data sets. Firstly, a (CVA-weighted) sub-
space estimate [24] was found using the Matlab command n4sid() with the options Focus and
N4Weight set to ’Prediction’ and ’CVA’, respectively. Secondly, a DDLC based gradient search,
initialised at the subspace estimate, was used to find a Maximum-Likelihood estimate as proposed
in [29] and implemented via the Matlab pem() function (with the algorithm’s Tolerance set to 0,
and Focus to Prediction). Finally, a further Maximum-Likelihood estimate was found via the robust
EM Algorithm 4.2. In the latter case the algorithm was initialised with the subspace-based estimate
and with the arbitrarily selected noise covariance estimates of Q = I and R = 0.2I . Both iterative
algorithms were forced to run for 100 iterations.

For each of these three estimation methods, and for each of 250 estimation experiments, the mean
prediction error cost associated with the estimated model of

EN (θ̂k) ,
1

pN

N∑

t=1

(yt − ŷt|t−1)
T (yt − ŷt|t−1), (67)

was computed, where the term ŷt|t−1 (implicitly a function of θ) above is defined by equation (18).

The performance of Algorithm 4.2, as measured by EN (θ̂k), and relative to subspace and DDLC
gradient search is then illustrated in figure 1. There, each star, represents one data set, and two
estimation experiments, with the co-ordinates of each star being set by the value of EN (θ̂k) for each
of two estimation methods. A star on the indicated diagonal line then represents equal costEN (θ̂k) for
both methods, while a star below the line represents lower cost (and hence superiority in a prediction
error sense) for the methods indicated on the vertical axis.

With this in mind, Figure 1(a) illustrates that following an initial subspace estimation step by a
further EM algorithm refinement can often lead to a final estimate that is superior in a mean-square
prediction error sense. Of course, under Gaussian conditions, it will also lead to an estimate that is
superior in a maximum likelihood sense as the preceding theoretical analysis has established.

Figure 1(b) illustrates a further point. Namely, in terms of choosing between either a DDLC co-
ordinate gradient search, or the EM-based Algorithm 4.2 as a means of refining an initial subspace-
based estimate, then Algorithm 4.2 is quite competitive; there were many realisations were the EM
method led to substantially lower cost than DDLC, and only a few where EM led to higher cost, in
which cases the relative difference was smaller (than in the reverse case).
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Of course, no general conclusion can be drawn on the basis of specific, even Monte–Carlo based,
simulation examples. However, the authors have noted that the EM-based search appears to be partic-
ularly robust in avoiding capture in local minima, but at the expense of best-case convergence speed.

To provide an illustration of this, consider the case of a particular 8th-order two input two output
fixed multivariable system [A,B,C,D] which is specified as

[A,B,C,D] , ZOH








1
s2 + 1.1s+ 0.1

3
s2 + 2.5s+ 1

1
s2 + s+ 0.21

1
s2 + 1.2s+ 0.32








(68)

=




0.3550q−1 + 0.2465q−2

1 − 1.2727q−1 + 0.3329q−2
0.7092q−1 + 0.3114q−2

1 − 0.7419q−1 + 0.0821q−2

0.3619q−1 + 0.2594q−2

1 − 1.2374q−1 + 0.3679q−2
0.3397q−1 + 0.2277q−2

1 − 1.1196q−1 + 0.3012q−2


 (69)

and for which N = 1000 data points are simulated with i.i.d. input ut ∼ N (0, I), and i.i.d. mea-
surement noise et ∼ N (0, 0.125I). This simulation with different input and noise realisations was
repeated until 100 “successful” DDLC co-ordinate gradient based search estimates were found from
an initialisation of

Ĝ(q, θ̂0) ,




0.1
q2 − q + 0.25

0.1
q2 − 1.40q + 0.49

0.1
q2 − 1.20q + 0.36

0.1
q2 − 0.80q + 0.16


 .

Here, “successful” was taken to mean that the final prediction error variance was within 30% of
the measurement noise variance, and for each data set an ML estimate was also found by EM-
Algorithm 4.2. The sample-average trajectory of diminishing prediction error cost EN (θ̂k) over these
100 successful runs is shown in Figure 2.

The left hand plot shows the case of Gaussian measurement noise, while the right hand plot
illustrates uniformly distributed measurement noise. Note that in both cases, the best case DDLC
gradient search performance over all the simulation runs was superior to the average behaviour of the
EM algorithm.

However, there is a factor that balances this best case performance. Due to high variability in
the DDLC gradient search performance over the simulation runs, the average performance, after “non
successful” runs were censored from the averaging, is slightly inferior to that of the average EM algo-
rithm convergence rate, for which there were no non-successful runs that required culling. Indeed, due
to the observed low variability in EM algorithm behaviour, its average performance is representative
of its worst case as well.

While again this simulation provides only one specific robustness example, the experience of the
authors is that it appears to be a more general principle. Namely, in comparison to DDLC based
gradient search, the EM algorithm presented in this paper is particularly reliable in its ability to avoid
becoming locked in local minima, but perhaps at the cost of slower convergence rate.

A further robustness aspect is illustrated in the right hand plot of figure 2, wherein the case of
uniform distributed measurement noise is presented. This is a situation where the assumptions under-
lying the ML criterion employed in this paper are violated, but nevertheless the robust EM algorithm
presented here still converges reliably to an estimate that is the global minimiser of prediction error.
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Note that in this case, no non-convergent trajectories were culled in computing the average EM be-
haviour but the 9% of the DDLC gradient search runs which did not converge were censored before
the average trajectory illustrated in Figure 2(b) was computed. As before, the best-case performance
of the gradient based scheme was significantly faster than the average for the EM algorithm.
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Figure 1: Simulation 1 - Monte-Carlo Study Results. The left-hand figure shows a comparison of the
CCA weighted subspace and EM algorithm ML estimates. The right-hand figure shows a comparison
of DDLC parametrized gradient-search versus EM algorithm ML estimates.

8 Conclusions

The contribution of this paper is to derive a numerically robust and algorithmically reliable method
for the estimation of possibly high dimension LTI MIMO systems. The key principle underlying
the methods proposed here is the Expectation-Maximisation technique. Attractive features of the
algorithm derived and studied here include numerical robustness, ability to deal with non-smooth
likelihood surfaces, ease of initial condition estimation, moderate computational cost which scales
well with the number of model states and input-output dimension, and robustness to local-minima
attraction.

Balancing this, the convergence rate of the EM methods derived here have been observed as
being generally slower than the best case performance of the main alternative methods of DDLC
parametrized gradient search, although the average behaviour of the two methods have been observed
by the authors as basically equivalent.
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Figure 2: Simulation 2 - Sample average prediction-error cost EN (θ̂k) evolution for DDLC
parametrized gradient search via Matlab 6.5’s pem() function (dashed line) versus EM-
Algorithm 4.2 (solid line)). Also shown is the best case performance of the pem() function (dot-
dashed lines) and the global minimum value of the expected likelihood E {L(θ)} (dotted line). Sub-
figure (a) shows the case of Gaussian measurement noise and sub-figure (b) shows the case of uni-
formly distributed measurement noise.

A Proof of Theorem 5.1

Proof. Define the following quantities:

A ,
1

N

N∑

t=1

x̂t|N x̂
T
t|N , B ,

1

N

N∑

t=1

x̂t|Nu
T
t ,

C ,
1

N

N∑

t=1

utu
T
t , D ,

1

N

N∑

t=1

Pt|N .

These allow Σ to be expressed as

Σ =
1

N

N∑

t=1

Ebθk

{[
xt
ut

] [
xt
ut

]T ∣∣∣∣∣YN , UN
}

=

[
A + D B
BT C

]
.

By construction, [
A B
BT C

]
≥ 0

and therefore, by virtue of the fact that C > 0,

[
A− BC−1BT 0

0 C

]
=

[
I −BC−1

0 I

] [
A B
BT C

] [
I 0

−C−1BT I

]
≥ 0.
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Since the model is controllable and observable and Π is positive definite, Lemma C.4 proves that
D > 0. Therefore [

A + D − BC−1BT 0
0 C

]
> 0

and thus
[
A + D B
BT C

]
=

[
I BC−1

0 I

] [
A + D − BC−1CT 0

0 C

] [
I 0

C−1BT I

]
> 0.

As a consequence, according to (43) and (44), θk+1 is uniquely defined.

B Proof of Theorem 5.3

Proof. A linear Taylor’s expansion of ∂L(θ)
∂θ about θ̂k provides

∂L(θ)

∂θ
=
∂L(θ̂k)

∂θ
+
∂2L(θ̂k)

∂θ∂θT
(θ − θ̂k) + o(‖θ − θ̂k‖

2). (70)

Letting θ = θ? and noting that ∂L(θ?)
∂θ = 0, then establishes that

∂2L(θ̂k)

∂θ∂θT
(θ̂k − θ?) =

∂L(θ̂k)

∂θ
+ o(‖θ? − θ̂k‖

2). (71)

Also by Taylor expansion,

∂Q(θ, θ̂k)

∂θ

∣∣∣∣∣
θ=bθk

=
∂Q(θ, θ̂k)

∂θ

∣∣∣∣∣
θ=bθk+1

+
∂2Q(θ, θ̂k)

∂θ∂θT

∣∣∣∣∣
θ=bθk+1

(θ̂k − θ̂k+1) + o(‖θ̂k+1 − θ̂k‖
2)

=
∂2Q(θ, θ̂k)

∂θ∂θT

∣∣∣∣∣
θ=bθk+1

(θ̂k − θ̂k+1) + o(‖θ̂k+1 − θ̂k‖
2), (72)

where the second line follows from the first on noticing that {θ̂k} is generated by an EM algorithm.
Now, according to Lemma C.5,

∂L(θ̂k)

∂θ
=
∂Q(θ, θ̂k)

∂θ

∣∣∣∣∣
θ=bθk

so that by combining equations (71) and (72) we obtain

∂2L(θ̂k)

∂θ∂θT
(θ̂k − θ?) =

∂2Q(θ, θ̂k)

∂θ∂θT

∣∣∣∣∣
θ=bθk+1

(θ̂k − θ̂k+1) + o(‖θ̂k+1 − θ̂k‖
2) + o(‖θ? − θ̂k‖

2).

Therefore,

∂2Q(θ, θ̂k)

∂θ∂θT

∣∣∣∣∣
θ=bθk+1

(θ̂k+1 − θ?) =
∂2Q(θ, θ̂k)

∂θ∂θT

∣∣∣∣∣
θ=bθk+1

(θ̂k − θ?) +
∂2Q(θ, θ̂k)

∂θ∂θT

∣∣∣∣∣
θ=bθk+1

(θ̂k+1 − θ̂k)

+o(‖θ̂k+1 − θ̂k‖
2) + o(‖θ? − θ̂k‖

2)

=
∂2Q(θ, θ̂k)

∂θ∂θT

∣∣∣∣∣
θ=bθk+1

(θ̂k − θ?) −
∂2L(θ̂k)

∂θ∂θT
(θ̂k − θ?) (73)

+o(‖θ̂k+1 − θ̂k‖
2) + o(‖θ? − θ̂k‖

2).
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Since Lemma C.2 proves that ∂2Q(θ,bθk)
∂θ∂θT

∣∣∣
θ=bθk+1

> 0, the result follows directly from equation (73).

C Technical Lemmata

Lemma C.1. Suppose M,N ∈ R
n×n and M is invertible. Then

∂

∂M
log detM = M−T ,

∂

∂M
Tr{M−1N} = −M−TNTM−T ,

∂

∂M
Tr{MN} = NT .

Proof. See [18].

Lemma C.2. Let the parameter vector θ̂k parametrize a controllable and observable system with
Π, P1 > 0. Assume that the input condition (52) are satisfied. Then

∂2

∂θ∂θT
Q(θ, θ̂k)

∣∣∣∣
θ=bθk+1

(74)

=




−NΣ ⊗ Π−1 0 0 0

0 −N
2 Π−1 ⊗ Π−1 0 0

0 0 −1
2P

−1
1|N ⊗ P−1

1|N 0

0 0 0 −P−1
1|N


 > 0,

where θ and Q(θ, θ̂k) are defined by equations (15) and (21), the matrix Π is defined by equation (43)
and Φ, Ψ and Σ are defined in equations (22) and (23) with θ ′ , θ̂k.

Proof. According to Lemma 3.1,

−2Q(θ, θ′) = log detP1 + Tr
{
P−1

1 Eθ′{(x1 − µ)(x1 − µ)T | YN , UN}
}

+N log det Π +NTr
{
Π−1

[
Φ − ΨΓT − ΓΨT + ΓΣΓT

]}
.

Now Lemma C.1 and the product rule provide

∂Q(θ, θ?)

∂Γ
= −

N

2

∂

∂Γ
Tr
{
Π−1

[
Φ − ΨΓT − ΓΨT + ΓΣΓT

]}

= NΠ−1(Ψ − ΓΣ). (75)

Using the identities (see [5])

vec {W1W2W3} = (W T
3 ⊗W1)vec {W2}

and
(W1 ⊗W2)(W3 ⊗W4) = (W1W3) ⊗ (W2W4),

where {Wi} are appropriately sized matrices, we obtain from equation (75),

∂Q(θ, θ̂k)

∂vec {Γ}
= Nvec

{
Π−1(Ψ − ΓΣ)

}

= Nvec
{
Π−1Ψ

}
−N(Σ ⊗ Π−1)vec {Γ} (76)

= N
[
(Ψ − ΓΣ)T ⊗ I

]
vec
{
Π−1

}
. (77)
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Clearly, the partial derivative of equation (77) with respect to the parameters in µ and the P1 matrix
will equate to zero.

Straightforwardly from (76),

∂2Q(θ, θ̂k)

∂vec {Γ} ∂vec {Γ}T

∣∣∣∣∣
θ=bθk+1

= −NΣ ⊗ Π−1,

while equations (43) and (77) yield

∂2Q(θ, θ̂k)

∂vec {Γ} ∂vec {Π}T

∣∣∣∣∣
θ=bθk+1

= (Ψ − ΨΣ−1Σ) ×
∂vec

{
Π−1

}

∂vec {Π}T

∣∣∣∣∣
θ=bθk+1

= 0.

We now turn to calculating the partial derivatives of Q(θ, θ̂k) with respect to the parameters of Π.
Lemma C.1 proves that

∂Q(θ, θ̂k)

∂Π
=
N

2
Π−1

[
Φ − ΨΓT − ΓΨT + ΓΣΓT

]
Π−1 −

N

2
Π−1

so that

∂Q(θ, θ̂k)

∂vec {Π}
=

N

2
vec
{
Π−1

[
Φ − ΨΓT − ΓΨT + ΓΣΓT

]
Π−1 − Π−1

}
. (78)

Lemmas C.1 and C.6, and the product rule then yield

∂2Q(θ, θ̂k)

∂vec {Π} ∂vec {Π}T

=
N

2

(([
Φ − ΨΓT − ΓΨT + ΓΣΓT

]
Π−1

)T
⊗ I
) ∂vec

{
Π−1

}

∂vec {Π}T
+

N

2

(
I ⊗

(
Π−1

[
Φ − ΨΓT − ΓΨT + ΓΣΓT

])) ∂vec
{
Π−1

}

∂vec {Π}T
−

N

2

∂vec
{
Π−1

}

∂vec {Π}T

=
N

2
Π−1 ⊗ Π−1 −

N

2

(([
Φ − ΨΓT − ΓΨT + ΓΣΓT

]
Π−1

)T
⊗ I
) (

Π−1 ⊗ Π−1
)
−

N

2

(
I ⊗

(
Π−1

[
Φ − ΨΓT − ΓΨT + ΓΣΓT

])) (
Π−1 ⊗ Π−1

)
.

Finally, using equation (43) we obtain the identity

Φ − ΨΓT − ΓΨT + ΓΣΓT = Φ − ΨΣ−1ΨT − ΨΣ−1ΨT + ΨΣ−1ΣΣ−1ΨT

= Φ − ΨΣ−1ΨT

= Π

so that
∂2Q(θ, θ̂k)

∂vec {Π} ∂vec {Π}T

∣∣∣∣∣
θ=bθk+1

= −
N

2
Π−1 ⊗ Π−1.
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The elements of Q(θ, θ̂k)
∣∣∣
θ=bθk+1

associated with the matrix elements of P1 and µ are computed

in a similar manner.
In order to demonstrate the positivity of ∂2

∂θ∂θT Q(θ, θ̂k)
∣∣∣
θ=bθk+1

, notice that Σ is positive definite

as a consequence of Theorem 5.1 and Π is positive definite and bounded above by virtue of the
compactness assumption in Standing Assumptions 5.1. Finally, Lemma C.4 establishes that P1|N is
also positive definite and bounded above.

Lemma C.3. Let f and g be non-negative and integrable functions with respect to a measure µ and
S be the region in which f > 0. If

∫
S(f − g)dµ ≥ 0, then

∫

S
f log

(
f

g

)
dµ ≥ 0, (79)

with equality if and only if f = g almost everywhere.

Proof. The following is partially based on an argument presented in [37]. Equation (79) is proved as
follows.

∫

S
f log

(
f

g

)
dµ = −

∫

S
f log

(
g

f

)
dµ

≥ −

∫

S
f

(
g

f
− 1

)
dµ

=

∫

S
(f − g)dµ

≥ 0.

The first inequality is due to the well-known fact that log x ≤ x− 1.
To prove the second part of the lemma it is necessary to deal with its two components separately.

The ‘if’ proof is trivial - if f = g a.e. then log(f/g) = 0 a.e. and therefore
∫

S
f log

(
f

g

)
dµ = 0.

In order to prove the ‘only if’ part note that log(x) may be rewritten as [37]

log x = (x− 1) −
(x− 1)2

2λ2
with λ ∈ [1, x],

for any x > 0. Therefore, we may write

log

(
g

f

)
=

(
g

f
− 1

)
−

(
g

f
− 1

)2

(2λ2)−1,

and thus
∫

S
f log

(
g

f

)
dµ =

∫

S
(g − f)dµ−

∫

S
f

(
g

f
− 1

)2

(2λ2)−1dµ. (80)

By assumption the first term on the right hand side of (80) is less than or equal to zero. Similarly the
second term can be no greater than zero. Since the whole expression is equal to zero it is necessary to
choose f and g so that both terms are uniformly zero.
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Noting that f > 0 and that
(
g
f − 1

)2
≥ 0, this implies that

∫

S
f

(
g

f
− 1

)2

(2λ2)−1dµ = 0

only when f = g. Since this also makes the first term of (80) equal to zero the proof is complete.

Lemma C.4. Consider the system (11), (14). Let the pair (A,Q
1/2

) (defined by equation (36)) be
controllable, the pair (C,A) be observable, and the matrices Π and P1 positive definite. Then there
exist constants β1, β2 > 0 such that

β1I ≥ Pt|N ≥ β2I ∀t ≥ 1. (81)

Proof. According to Lemmas 7.2 and 7.3 of [22], there exist positive constants α1 and α2 such that

α1I ≤ Pt|t ≤ α2I (82)

for all t ≥ 1. We shall now prove that Pt|N is bounded below.
Via equations (38), (39) and (82),

xTPt|t−1x = xTPt|tx+ xTPt|t−1C
T (CPt|t−1C

T +R)−1CPt|t−1x

≥ xTPt|tx (83)

≥ α1

for all t ≥ 1.
Using the well-known Matrix Inversion Lemma and equations (32) and (37), equation (34) yields

Pt|N = Pt|t + Jt(Pt+1|N − Pt+1|t)J
T
t

= Pt|t − Pt|tA
T
(Pt+1|t)

−1APt|t + Pt|tA
T
P−1
t+1|tPt+1|NP

−1
t+1|tAPt|t

= Pt|t − Pt|tA
T
(APt|tA

T
+Q)−1APt|t + Pt|tA

T
P−1
t+1|tPt+1|NP

−1
t+1|tAPt|t

=
(
P−1
t|t +AQ

−1
A
T
)−1

+ Pt|tA
T
P−1
t+1|tPt+1|NP

−1
t+1|tAPt|t. (84)

Since A is bounded and Q > 0 it follows from equation (82) that the first term on the right-hand side
of equation (84) is positive definite. The second term is positive semi-definite by construction so that,
for an arbitrary vector x satisfying ‖x‖ = 1,

xTPt|Nx ≥ xT
(
P−1
t|t +AQ

−1
A
T
)−1

x ≥ α3 > 0 ∀t ≥ 1.

We turn now to proving that Pt|N is bounded above. Notice that if Pt+1|N ≤ Pt+1|t then via
equations (34) and (83)

Pt|N = Pt|t − Jt (Pt+1|t − Pt+1|N )
︸ ︷︷ ︸

≥0

JTt ≤ Pt|t ≤ Pt|t−1.

The result is completed on noting that, via equation (83), PN |N ≤ PN |N−1.
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Lemma C.5 (Fisher’s Identity). Let pθ(X,Y ) denote the probability density function of X and Y
conditional upon a parameter vector θ, and let pθ(Y ) refer to the probability density function of the
Y conditional upon that same parameter vector θ. Then

∂

∂θ
log pθ(Y ) = Eψ

{
∂

∂θ
log pθ(X,Y )

∣∣∣∣ Y
}∣∣∣∣

ψ=θ

=
∂

∂θ
Q(θ, ψ)

∣∣∣∣
ψ=θ

where Eθ {· | Y } is the conditional expectation operator given Y and θ.

Proof. Let

∂

∂θ
Q(θ, ψ) = Eψ

{
∂

∂θ
log pθ(X,Y )

∣∣∣∣ Y
}

=

∫
pψ(X | Y )

∂

∂θ
log pθ(X,Y )dX

=

∫
pψ(X | Y )

1

pθ(X,Y )

∂

∂θ
pθ(X,Y )dX.

Therefore, when ψ = θ,

∂

∂θ
Q(θ, ψ)

∣∣∣∣
ψ=θ

=

∫
1

pθ(Y )

∂

∂θ
(pθ(X | Y )pθ(Y ))dX

=

∫
1

pθ(Y )
pθ(X | Y )

∂

∂θ
pθ(Y )dX +

∫
∂

∂θ
pθ(X | Y )dX

=
1

pθ(Y )

∂

∂θ
pθ(Y )

∫
pθ(X | Y )dX + 0

=
∂

∂θ
log pθ(Y ).

Lemma C.6. Suppose M ∈ R
n×n is an invertible matrix. Then

dvec
{
M−1

}

dvec {M}T
= −M−T ⊗M−1.

Proof.
M−1M = I

Therefore, denoting mi,j as the i, jth of M ,

∂M−1

∂mi,j
M +M−1 ∂M

∂mi,j
= 0.

Hence (ei is the ith column of an identity matrix)

∂M−1

∂mi,j
= −M−1 ∂M

∂mi,j
M−1 = −M−1eie

T
j M

−1.

It then follows directly from the properties of the Kronecker product operator [5] that

∂vec
{
M−1

}

∂mi,j
= −Nvec

{
eie

T
j

}
, (85)
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where N , M−T ⊗M−1. Equation (85) may be written as

∂vec
{
M−1

}

∂mi,j
= −N(:, n× (j − 1) + i).

Finally, recognising that mi,j = [vec {M}]n×(j−1)+i,

∂vec
{
M−1

}

∂vec {M}T
= −N = M−T ⊗M−1.
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