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Abstract

In this paper, the inputs are considered to be of two types. The first type of input, as in stahdaptimal filtering, is a zero mean wide
sense stationary white noise, while the second type is a linear combination of sinusoidal signals each of which has an unknown amplitude
phase but known frequency. The generaliZég optimal filtering problem seeks to find lmear stablefilter that estimates a desired output
such that theil, norm of the transfer matrix from the white noise input to the estimation error is minimized subject to the constraint that the
mean of the error converges to zero for all initial conditions of the given system and filter and for all possible external sinusoidal signals. T
analysis, design, and performance limitations of generaliZgaptimal filters are presented here.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction inputs, we seek here #rear stable unbiase@in a generalized
sensg filter that renders the steady state performance measure
A crucial component of the celebrated Kalman filtering prob-(namely, the RMS norm of the estimation error signal) as small
lem (see, for instanc&orenson, 198%r otherwise known as aspossible We call such filtering problems generaliz&d op-
the H» optimal filtering problem is that it assumes that the noisetimal filtering problems. After formulating such generalizég
(external input) is zero mean. For the case, when the noise haptimal filtering problems, we show that these problems can be
a non-zero constant (DC) mean, as discussdglight (1989) reduced to (standardy, optimal filtering problems for an ex-
and as discussed in the body of this paper, a modification tpanded system constructed from the data of the given system.
the standard{» optimal filter is necessary. In this paper, our We will then study the cost incurred by the additional require-
model for the external inputs consists of two different types.ment of rejecting a sinusoidal signal of known frequency but
One type is a white noise while the other type is a linear comunknown amplitude and phase. We will show that the infimum
bination of sinusoidal signals each of which has an unknowrof the RMS norm is not affected by the additional require-
amplitude and phase but known frequency. The latter can afhent. In general, the solvability conditions of the generalized
course be used to represent the unknown mean of the noise bt optimal filtering problem might be stronger than those of
this setting is clearly much more general than that. Under sucthe standardd, optimal filtering problem but for a large class
of problems they are identical.
* This paper was not presented at any IFAC meeting. This paper was AS well known, the RMS norm of a signal is a steady state
recommended for publication in revised form by Associate Editor Tongwenperformance measure. Such a performance measure is blind to

Chen under the direction of Editor lan Petersen. the transient aspect of estimation error signal. As such, when-
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A.A.Stoorvogel@tue.n[A.A. Stoorvogel),sannuti@ece.rutgers.edu of the paper for details) in the presence of sinusoidal signals
(P. Sannuti). of known frequency but unknown amplitude and phase is met,
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we note that, in the absence of the white noise, the estimatio®ur interest lies in estimating the desired output signaging

error is an energy signal. This lets us define the energy of thenly the outputy but not the inputu. As usual, letz be the

error signal as the transient performance measure. In this pap@stimate ofz as given by a filter, and let, be the estimation
we will compute both the steady state and the transient perfoerror,e, = z — Z.

mance measures, and show that the non-minimum-phase dy-It is natural to use the following assumption.

namics of the given system plays a significant role in dictating

both these measures. In fact, we will uncover a peculiar propAssumption 1. The matrix pair(C, A) is detectable.

erty: the minimal steady state performance measure (namely the

minimal RMS norm of the error signat@ducesvhen the non- We consider a general proper filter of the form
minimum-phase zeros are moved closer to the imaginary axis;
however in contrast the newly defined transient performancgs : ¢ = Lé+ My, 7= N&+ Py. (5)

measure increases, and actuaibuld be unboundedhen the

non-minimum-phase zeros are moved closer to the modes gfheneverP = 0, the above filter is said to be a strictly proper

the second type of input which, by our assumption, are on théiiter. We require that the filter (5) be internally stable.
boundary of the stability domain, namely the imaginary axis.
In what follows, the entire complex plane and the open left-

half complex plane are, respectively, denotedlognd C~. 3. Problem statement
2. Preliminaries For the case whem, =0, we get the standaré, optimal fil-
tering problem in which a linear stable unbiased filter is sought
Let us consider the plant or system model that minimizes the RMS norm of the error sigiaal In this sec-
tion, we formulate a generalized, optimal filtering problem.
2ix=Ax+Bu, y=Cx+Du, z=Ex+Fu (1) we first have the following definition.

Here,u € R™ is the input,x € R" is the statey € R? is the
measured output, and € R? is the desired output signal to
be estimated. We decompose the inpunto two parts,u’ =

Definition 2. Consider the given systet along with the ex-
osystemX,. We say a linear stable strictly proper (or proper)
(u, ub)', whereu; € R™ andu, € R™2, As mentioned in the filter (5) is generalized unbiase€ in the absence of the input

Introduction, the first type of input, denoted by, is assumed % the estimation erraf, decays asymptotically to zero for all
to be a zero mean wide sense stationary white noise of unnossible initial conditions of the given system (4) and the filter

intensity. On the other hand, the second type of input, denotetp): and for all possible input signais.

by u», is assumed to be a linear combination of sinusoidal o )
signals each of which has an unknown amplitude and phase but 1 "€ above definition, whenevep = 0, reduces to the famil-
known frequency. Clearly, such a signal can be modeled as iar I’].OIIOI’] of unblasednes§ of flllters_. Tgenerallzeq optimal
the output of a known linear autonomous system with unknowli!t€ing problem under white noise inpaan be defined now

initial conditions. Such a system is called an exogenous systeﬁ'ﬁthe problem of finding,.whene.ver'it exists, f"‘ linear ;table
or for short exosystem. Thus, consider strictly proper (or proper) filter which is generalized unbiased
' while the RMS norm of the error signéé; ||;ms is as small as

2g i Xg=S8xq4, uz=Cyxy, (2)  possible. Also, the infimum of the RMS norm of the error sig-
nal e, over the set of all linear stable strictly proper (or proper)

Wherex“ € R™ for Somen,. An important spgcial case wher_e unbiased filters can be called theneralized optimal filtering
this type of problem arises is the case of having a system drlVeﬂerformance measure under white noise ingiatlinear stable
by a wide sense stationary white noise input with unknow

n's;trictly proper (or proper) filters, and can be denoted by,

. . . . . o ) ! p
mte_nsw_(vanancg) and mean. It is gasny yenﬂed thatﬂge_ (ory* ). We note that the generalized optimal filtering problem
optimal filters are independent of the intensity level of the noise,, . 18P

. ; . : - under white noise input can be given a deterministic interpreta-
After all if we changeB into BV with V invertible then the class P ¢ P

f imal il s th holdd tion since the RMS norm of the error signal, is equal to the
of Hy optimal filters remains the same even thougtoes H»> norm of the transfer matrix from the input to the error

effect thq RMS gain. However,_ hav!ng a non-zero mean of Fh%z. That is, we can interpret the generalized optimal filtering
external input requires a modification of our filter as we will

problem under white noise input as the generalizgdptimal
see later on.

L ition th iceB. D. andF i formi filtering problem, and similarlyy, s, (or y; ;) as the general-
. etus nex_t Paf““‘)” the matrice8, D, andF in conformity ;¢4 Ho optimal filtering performance measure via linear stable
with the partitioning ofu,

strictly proper (or proper) filters.

B=(B1 By), D=(D1Dy), F=(F F). (3) Whenever the input:y is set to zero, the generalized,
optimal filtering problem for the given systet reduces to
The system then has the structure the celebratedd, optimal filtering problem (Kalman filtering
% = Ax + Buy + Bouo, problem) for a systemdg given by
2 iy:Cx—i—Dlul—l—Dzuz, (4) ]
7 =Ex + Fiu1 + Fouo. 2o:x=Ax+ Bui, y=Cx+ Diuy, z=Ex + Fiuy. (6)
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Also, in this case, we denote the infimum of the RMS norm ofBut then it is immediate that a filter is a generalizégloptimal
the error signal over all the linear unbiased stable filters for thédilter for system (4) and the associated exosystem (2) if and
systemXyp by ygp or y;; depending on whether we use strictly only if it is an H> optimal filter for system (7). O
proper or proper filters.
In view of Theorem 5, one can deal with various aspects of
4. Performance, existence conditions, and design the generalized{, optimal filtering problem for a given system
in terms of similar issues of a standaffp optimal filtering
We need to investigate several issues pertaining to generghroblem for an expanded system. In particular, we refer the
ized H optimal filtering, namely computing; ¢, or 7§ , de- interested reader ®aberi et al. (2000k@ndSaberi et al. (1995)
veloping the existence and uniqueness conditions for the gefior the issues of design such as testing the solvability conditions,
eralized H, optimal filters, and designing the generalizdd ~ concerned architecture of filters, and design algorithms.
optimal filters. In this section, we relate these issues to those of The above development is based on the assumption that the
standardH; optimal filtering, however, for an expanded systempair (C,, A.) is detectable. Then, to complete our study, we
> which is constructed by viewing together the given systenneed to examine the implications when it is not so. It is natural

X and the exosyster, as one system, indeed to assume thaf', A) is detectable. Moreover, if there
. _ are unstable dynamics which are not observable fyobut
. [¥=Aex + Beua, which are observable from then clearly we will never be able
20y y=Cex + Dy, (7) " to obtain an unbiased filter. Using tiréautus (1973)est for
2= Eex + Fug, detectability, this can be formally expressed by the following
A ByC, By necessary condition:
e (3 ). ne(8)

. _ . >
C,=(C DyC,). E,=(E FsC,). ®) Assumption 6. For all A € C with Re 2>0 we have

M —A —BC,

We will impose the following assumption fa. This assump- M —A —ByC, 0 S
tion implies that Assumption 1 fa¥ is satisfied. rank( 0 M — S) = rank c D _C
2Ca

¢ DZCa E FZCa

Assumption 3. The matrix pair(C,, A,) is detectable.

h ider th . . 4 th If (C, A) is detectable and the above assumption is satisfied
Theorem 4. Consider the systen given in(4) and the ex- 0 e can use a reduction technique to get into a situation,
osystent, given in(2). Let Assumptior8 be satisfied for the where(C,, A,) is detectable. We first finéf; and V> such that

expanded syste given in (7). Then 7, o5 (O 75 p) €QUAIS i vy 1y represents the unstable, unobservable dynamics of
the infimum of the RMS norm of the estimation error sighal the pair(C,, A,). Detectability of(C, A) implies thatV, must

for the expanded systeHover all unbiased strictly propefor e’ jniaciive. Moreover, Assumption 6 implies that we must
proper) stable filters have EV1 + F»C,V> = 0. Then there exists a suitable basis

transformation for the exosystem such that
Proof. The proof follows from the proof of Theorem 5[] y

0 S 0
The theorem below provides a road-map to study existence/2 = <1> S (Si 522) v Ca=(Ca1 Ca2).
unigueness, and design of the generalizbdoptimal filters.

Consider the following exosystem:
Theorem 5. Consider the system given in(4) and the ex-

osystem¥, given in(2). Let Assumptior8 be satisfied for the X1 : x.1 = S11xa1,  u2 = Ca1x41. (9)
expanded systet of (7). Consider a filter2; of the form(5).
Then the following two statements are equivatent Then the above implies that system (4) with the original ex-

_ _ _ _ _ osystem (2) and the same system (4) with the new exosystem
(i) The filter 2t is a proper(or strictly propel) generalized  (9) result in the same outpuysandz provided we modify the

H> optimal filter for X. initial conditions of the system(0) and the exosystem, (0)
(i) The filter 2t is a proper(or strictly prope) Hz optimal  to the initial conditions
filter for X.

x(0) — V1(0 Dx,(0) and (I 0)x,(0)
Proof. Assume a filter2; of the form (5) is unbiased in the
sense of Definition 2 for the systebhalong with the associated for the system and exosystem, respectively. From this it is clear
exosystem>,, and yields a stable transfer matii,,.. from  that a filter design for the original system and exosystem can
u1 toe,=z—2z. Then it can be trivially verified that such a filter be reduced to a filter design for the same system but with a
when applied to the expanded system is unbiased and resutizodified (reduced) exosystem. After this reduction we obtain
in the same stable transfer matd,,,, fromu; toe, =z — 2. a system and exosystem which when viewed together are de-
The converse of the above implication is also trivially satisfiedtectable fromy.
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5. Dependence of performance and existence conditions
on the input signal u»

We ask ourselves here two fundamental questions:

(i) How does the performance of generalizdg optimal fil-
tering for X differs from the performance aff, optimal
filtering for Xo?

(i) How do the solvability conditions of generalized, opti-
mal filtering problem fo2' differ from those ofH» optimal
filtering problem forXp?

The following theorem answers the first question.

Theorem 7. Consider the generalizeds, optimal filtering
problem of Sectior8 for the systen® of (4) along with the
associated exosystehy of (2) whose performance measure is
indicated byyy ¢, Or 7, , depending upon whether the class
of strictly proper or proper filters are usedlso, consider the
H> optimal filtering problem for the systeityy of (6) whose
performance measure is indicated gy or y;; depending upon
whether the class of strictly proper or proper filters are used
Then under Assumption$ and 6, we have

Tesp="7sp and 7 p=7p.

Proof. We can assume, without loss of generality, that Assump-

tion 3 is satisfied. In view of Theorem 4§,Sp (or y;p) is the
infimum of the RMS norm of the estimation errér over all

A. Saberi et al. / Automatica 41 (2005) 2115-2121

On the other hand, for proper filters we need to fiitl such
that F; — P*Dy = 0. But then again,
[tracg E — P*C)Q(E — P*C)'1¥?

= [trac&E, — P*C.) Qc(Ec — P*C)'1M2 =75 .

p=

This completes the proof.(J

The following theorem answers the second question regard-
ing the dependency of the solvability conditions of the gener-
alized Hy optimal filtering problem on the input signa.

Theorem 8. Consider the generalized/, optimal filtering
problem of Sectior8 for the systen® of (4) along with the
associated exosystehy of (2). Let Assumptior be satisfied
Also, consider theH> optimal filtering problem for the sys-
tem Xy of (6), and let Assumptiod be satisfiedWe have the
following statements

(i) For the case wherf, = 0, the generalizedd, optimal
filtering problem is solvable via strictly proper filters if and
only if the H> optimal filtering problem foXg is solvable
via strictly proper filters

For the case wherF, = 0 and additionally D, = 0, the
said generalizedH» optimal filtering problem is solvable
via proper filters if and only if thefd, optimal filtering
problem forXy is solvable via proper filters

(ii)

Proof. Using the reduction technique presented earlier, we can

the linear unbiased stable strictly proper (or proper) filters forassyme without loss of generality that Assumption 3 is satisfied.

the expanded systed of (7). Also, 7sp (O 7p) is the infimum
of the RMS norm of the errog, over all the linear unbiased
stable strictly proper (or proper) filters for the syst&gof (6).
To facilitate the comparison af; ¢, (Or g ;) With g, (or yp),
consider the semi-stabilizing soluti@hof the continuous-time
linear matrix inequality (CLMI),

)0

(

and the semi-stabilizing solutio@, of the CLMI,

( )so
Then it is easily verified that
_(2 O

Next, we recall from Saberi et al. (2000b}that yg, =
(tracg EQE’))Y? and

AQ+ QA"+ B1B;
CcCO+ DlBi

ocC’' + BlD/l

DlD/l (10)

AcQ.+ Q.A, + BB,
Ce Qe + DlBé

0.C, + B.D}
DlD;,L

)% = (trace(E — P*C)Q(E — P*C))Y/?,

where P* is any solution of the equatioh; — P D1 = 0 for
P, and whereQ is the unique semi-stabilizing solution of the
CLMI (10). Then we have

yep= (traceE QE")'/? = (traceE, Q. E))"/* = v} o,

By Theorem 5, we need to compare the conditions for the
solvability of the H, optimal filtering problem for the system
Yo of (6) with those ofX of (7). Note that we already studied
the relevant CLMIs necessary for such a comparison in the
proof of Theorem 7. Le@ be the semi-stabilizing solution of
the CLMI (10) and defineBgp and D¢ by

CO+ D]_B:/L

< |
(B} 0

We consider first strictly proper filters. Strictly prop&p op-
timal filters exist only if F/; = 0. Then, in view ofSaberi et
al. (2000b) we need to relate the solvability of the exact in-
put decoupling (EID) filtering problems of the following two
systems:

AQ+ QA"+ B1B] QC'+ B1D]

DlDi

X=AX+ Boi, y=Cx+ Dgu, Z=Ex (12)
and
X= <'3 BZSC”) + <BOQ) uj,
(12)

y=(C D2Cy)x + Doua,
= (E O)x.

In view of Saberi et al. (2000b}t is easily checked that the
EID filtering problem for system (11) is solvable if and only if
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the EID filtering problem for system (12) is solvable after weu; =0, i.e., we have
have established that ]
X =A.x, =Cex, z=E.x. 16
S~ (A, Bg,C, D) eXo  y="Ce e (16)
_ _((A B2C, Bo Whenever the generalized unbiased requirement is satisfied by
=07 (( o s ) ' ( 0 ) (€ D), DQ) ' the filter Z¢, the errore, is an energy signal, and thus we can

define the transient performance measiifeas follows:
The above can easily be verified. This proves the result (i).

Result (ii) pertaining to proper filters follows similarly. In the ¢ = o ,

above expressiony~ (A, B, C, D) denotes the strongly con- 7* (0. Co. 21) 2/0 ez(1)'ez (1) dr.

trollable subspace of a system characterized by the quadruple

(A, B, C, D) (see, for instancelrentelman et al., 2001 O In the above equations; = (x” x))’, Xo = X(0), & = &(0).
The initial condition of the filter can be chosen as zero. Let

The above theorem begs the question whetheaffects the ¢; i =1,...,n + n,) be an orthonormal basis 6" "«. We

existence of a generalized, optimal filter or not if the matrix  note that the initial conditiortg of the given system is usu-

F> is not zero. The following example answers this question. ally unknown. This suggests that one can generate an average
transient performance measure as

Example 9. Consider a system

n+ng
Sii=urtuz y=xturtus z=x+fuz, (18) JEEH =Y J(e. 0, Xp). (7)
i=1
where f> is some constant. Also, let the exosystem be
Note that it can be shown that this criterion does not depend
2,:%,=0 and upx=x,. (14)  on the specific orthonormal basis used in its definition. In what
follows, we will denote the infimum off $(Z;) over all linear
In view of Theorem 5, one can verify easily that the generalizedtable generalized unbiased strictly proper or proper filters by
H> optimal filtering problem for the above given systefis fs*g or by f;g , respectively.
and 2, is not solvable whery? is non-zero. However, for the |t js straightforward to show thaf®(Zt) is related to the
above systent in the absence of the input signad, thatis g, performance measure when using the same filter for an
for the systemo, appropriately defined auxiliary system,

2o:¥=u1, y=x+dui, z=x, (15) 2au i Xau = AeXau + 1V, Yau = CeXau, Zau = EeXau, (18)

ong (P:1an eas!ly ventf_y tlhat ttr;]eHElD I_llterllrﬁtprpblem |;|solv_ablewherev is an unknown white noise input. Let thi& optimal

and hence, In particuiar, 2 optimal Tiltering problem 1S ilitering performance of the systei,, over all linear stable
solvable. Th|s demon;trate; thgt, in general, the solvability o nbiased strictly proper or proper filters, respectively, be de-
the generalizedd, optimal filtering problem does depend on noted bwép(zau) ory;(zau). Then, the following result whose

the input signal; or equivalently on the exosystem. - -
put signatiz o €9 Y ystely proof can be written easily relatdgs andJy®, respectively to

Remark 10. Example 9 demonstrates that Theorem 8 does notsp(Zau) andyp(Zau).
hold if we drop the condition of; being zero. As a matter
of fact, for all systems witliA, B, C1, D1) right-invertible, we

can prove that the generalizéfy optimal filtering problem is
solvable only if F,C, = 0.

Lemma 11. Consider the generalizedi, optimal filtering
problem of Sectior8 for the systen® of (4) along with the
associated exosystem, of (2). Let Assumptiond and 3 be
satisfied Let X,, be given by(18). Then we have

6. Transient performance measure Js*pg _ [V;p(zau)]z and Jsg _ [V;(Zau)]z-

In the previous sections, we defined and discussed a method )

of computing the steady state generaliZésloptimal filtering ~ Reémark 12. We note fromSaberi et al. (2000ahat only the
performance measure, namegysp or 7% o In this section, we unstable zero dynamics an_d the non-left mverublg dynamics
define and then compute the transient performance measure. Rfsthe subsyitem characterlzeq C_er, L, C.. 0) contribute to i
discussed in the Introduction, the transient performance medl® Value ofyg(Zq,). However, it is easy to see that the said
sure is the energy of the error signal in the absence of the whigiPSystem does not have any zero dynamics, and moreover it

noise inputz. To define it clearly, consider the systefmgiven IS left invertible_only i rankCe_ = (n+ nq). Since_ rank_Ce # .
in (4), the filter Xy given in (5), and the exosystes, given (n +ny,), the said subsystem is always non-left invertible. This

in (2). Using the matrix triple(A,, C,, E,) as in (8), we can implies thatys,(2a) is always non-zero. In other words, the

combine the given systerii and the exosysteny, together —average transient performance measﬁﬁeis always non-zero.
and form the expanded syste@nas in (7) except that we set By a similar reasoning, it follows thalf;g is non-zero as well.
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7. Limitations of generalized H, optimal filtering all the poles of the exosystem are aligned to all the invariant
performance and transient performance due to the zeros of the system characterized @Y, B2, C, D»). But in
locations of the invariant zeros general this might clearly be not the case. Note that, in the

above two cases, it can be shown that Assumption 3 implies
In this section, we study the limitations cyg_sp, y;p, f;,"é, that (A, B, C, Do) is left-invertible.

and J;¢ due to the structural properties of the given system. AS we discussed earlier, the minimal achievakiienorm of
Let us first focus ony’ o, or 7% . In this regard, we already Zau 1S mde_ed t_he minimal average transient performanc&_e mea-
know thaty ¢ =7%,andy% ,=75. Hence, known results from, sure. To _S|mpl|fy our study of théf> norm Och_uf, we restrict
for instance Saberi et al. (1995l us that when the invariant v by settingy = (0 §')’w, and we add an additional measure-
zeros of the given systeii move closer to the imaginary axis, Mentyr = (n;1 0)Xaux + i1, wheresm is such thainp = 1 and.
the achievable performance measyifg, or 7% , improves. If 7= (1~ /)~". Obviously, both these actions reduce the achiev-
the systent is left-invertible then such a performance measureble H> norm and hence we are investigating a lower bound for
will even converge to zero when all the invariant zeros movehe achievabléff, norm of X, The above restrictions imply

towards the imaginary axis. that we will study the design of an observer for the system
We consider nexigs andJp®. In this regard, a relevant ques- ) A BC, 0

tion is under what circumstances; andJp® are unbounded. tau = <o S )x’“‘ + (~> @

Apparently, under such circumstances estimation is impossiy,, : { _ 7 0 7

ble. We focus here on developing a relationship betwﬁn Yau =\ cha>xau + <0> @,

or i,;‘g and the locations/direction of the invariant zeros of the Zau = (E F2Co)xqy.

subsystem characterized b¥., I, C., 0). It turns out that the
non-minimum phase dynamics and the exosystem dynami
play significant roles in dictating the behavior &§5 or Jp*.
Basically, we find out thatigs or Jp* is inversely related to
the distance between the invariant zeros and the modes of the A+ (u—2)pm BC,)\ - p
exosystem, and indeed it could go to infinity when the minimal*a = ( 0 S )x““ + ( ~) @
distance of poles of the exosystem and the invariant zeros of W 0 3 i

(2 ple)ios (3)

CNote that an output injection does not change the achievable
132 norm for the error dynamics and hence we can equally well
study the system

the system goes to zero. There are two possible exceptions fau = C DsC,

this behavior. Firstly, when the effect of the invariant zeros of _ .

the system are asymptotically invisible from the outp(ite., < = (E F2Ca)Xau-

the non-minimum phase dynamics is asymptotically unobservy js easy to see that the state of this system (given zero initial
able from the desired output to be estimated). Secondly if  conditions) will satisfy%..(t) = (5'"))'r(t) for some scalar

is a vector then the input direction of an invariant zero and the/gjued functiorr. Next, we derive a differential equation for

direction of a pole of the exosystem need to be mis-aligned (tgnq express the whole system in terms of the funatjon
be made precise soon) in order to have the cost bounded when

the pole and the invariant zero get close to each other. Dué = pur + w,
to Ia(_:k of space, we illustrate our findings by considering twos, — (1 0)r + ((u— 1)t 0) o,
special but important cases and an example. Zu=(Ep  FaCul)r
We proceed now to illustrate the above discussed results.”" e
Let 2 be any unstable invariant zero ¢4, B2, C, D»). Hence, However, for this scalar system, the achievable performance

there exists vectorg andg such that measure can very easily be computed. For both strictly proper
and proper filters we obtain as the optimal performance mea-
_ _ 5 sure,
rank(U A BZ) (‘?):0.
¢ D 4 Re .

2Ep F2Cad)l? (19)

5
Detectability of (C, A) guarantees thaj # 0. As seen from I =41
(2) the exosystem is characterized by the matriBesd C,.  The expression given in (19) is a lower bound for the average
If for an eigenvalueu of S, we can choose an eigenvectr transient performance measu@g as well aslgg. We clearly
with Ss = us such thatC,s = g, then we call the pole of the see thatids as well as/p® is inversely related to the distance
exosystemu and the invariant zerd of the systemaligned between the poles of an exosystem and the non-minimum phase
otherwise they are mis-aligned. Note that by scalingnd g invariant zeros. That is, whehgets close to an aligned eigen-
we can guarantee, without loss of generality, thdit=1. We  value of S then the achievable performance measure goes to
will show that if an invariant zero of the system moves towardsinfinity. However, there is one exception to this unbounded be-
an aligned pole of the exosystem then the average transiehavior. That is, wherE p and F>C,g converge asymptotically
performance measure will go to infinity. For two special casesto zero,fs*pg as well asf,;kg can be bounded. Under this circum-
Casel: S =0 andC, =1 (inputuz is a vector DC signal), stance, the effect of the invariant zero is asymptotically invisi-

Case2: my =1 (inputuz is a scalar signal), ble in the to-be-estimated output. Note that, in the special cases
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we considered above, poles of exosystem and non-minimurns detectable. Secondly and most importantly, in the case of
phase invariant zeros are always aligned. output regulation the rejection of sinusoidal signals is only re-

We consider next an example in which the poles of the exlated to the location of the invariant zeros (€@& and Davi-
osystem and the non-minimum phase invariant zeros are mison, 1993 while, in the case of estimation, in addition to the
aligned. As seen in this examplgpg as well asfgg need not locations of invariant zeros, their directionality (input zero di-
be unbounded as the distance between the poles of an exosysetions) as well as the directionality (the eigenvectors) of the
tem and the non-minimum phase invariant zeros goes to zermodes of the exosystem play significant roles. Thus, the issues
Thus, the alignment of poles of the exosystem and the norhere in the context of estimation are vastly more complex than
minimum phase invariant zeros as mentioned in the beginninthose in the output regulation problem.
of this section plays a crucial role.
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