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Abstract

In this paper, the inputs are considered to be of two types. The first type of input, as in standardH2 optimal filtering, is a zero mean wide
sense stationary white noise, while the second type is a linear combination of sinusoidal signals each of which has an unknown amplitude and
phase but known frequency. The generalizedH2 optimal filtering problem seeks to find alinear stablefilter that estimates a desired output
such that theH2 norm of the transfer matrix from the white noise input to the estimation error is minimized subject to the constraint that the
mean of the error converges to zero for all initial conditions of the given system and filter and for all possible external sinusoidal signals. The
analysis, design, and performance limitations of generalizedH2 optimal filters are presented here.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A crucial component of the celebrated Kalman filtering prob-
lem (see, for instance,Sorenson, 1985) or otherwise known as
theH2 optimal filtering problem is that it assumes that the noise
(external input) is zero mean. For the case, when the noise has
a non-zero constant (DC) mean, as discussed inBlight (1989)
and as discussed in the body of this paper, a modification to
the standardH2 optimal filter is necessary. In this paper, our
model for the external inputs consists of two different types.
One type is a white noise while the other type is a linear com-
bination of sinusoidal signals each of which has an unknown
amplitude and phase but known frequency. The latter can of
course be used to represent the unknown mean of the noise but
this setting is clearly much more general than that. Under such
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inputs, we seek here a ‘linear stable unbiased(in a generalized
sense)’ filter that renders the steady state performance measure
(namely, the RMS norm of the estimation error signal) as small
aspossible. We call such filtering problems generalizedH2 op-
timal filtering problems. After formulating such generalizedH2
optimal filtering problems, we show that these problems can be
reduced to (standard)H2 optimal filtering problems for an ex-
panded system constructed from the data of the given system.
We will then study the cost incurred by the additional require-
ment of rejecting a sinusoidal signal of known frequency but
unknown amplitude and phase. We will show that the infimum
of the RMS norm is not affected by the additional require-
ment. In general, the solvability conditions of the generalized
H2 optimal filtering problem might be stronger than those of
the standardH2 optimal filtering problem but for a large class
of problems they are identical.
As well known, the RMS norm of a signal is a steady state

performance measure. Such a performance measure is blind to
the transient aspect of estimation error signal. As such, when-
ever the requirement of generalized unbiasedness (see the text
of the paper for details) in the presence of sinusoidal signals
of known frequency but unknown amplitude and phase is met,
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we note that, in the absence of the white noise, the estimation
error is an energy signal. This lets us define the energy of the
error signal as the transient performance measure. In this paper,
we will compute both the steady state and the transient perfor-
mance measures, and show that the non-minimum-phase dy-
namics of the given system plays a significant role in dictating
both these measures. In fact, we will uncover a peculiar prop-
erty: theminimal steady state performancemeasure (namely the
minimal RMS norm of the error signal)reduceswhen the non-
minimum-phase zeros are moved closer to the imaginary axis;
however in contrast the newly defined transient performance
measure increases, and actuallycould be unboundedwhen the
non-minimum-phase zeros are moved closer to the modes of
the second type of input which, by our assumption, are on the
boundary of the stability domain, namely the imaginary axis.
In what follows, the entire complex plane and the open left-

half complex plane are, respectively, denoted byC andC−.

2. Preliminaries

Let us consider the plant or system model

� : ẋ = Ax + Bu, y = Cx + Du, z = Ex + Fu. (1)

Here,u ∈ Rm is the input,x ∈ Rn is the state,y ∈ Rp is the
measured output, andz ∈ Rq is the desired output signal to
be estimated. We decompose the inputu into two parts,u′ =
(u′

1 u′
2)

′, whereu1 ∈ Rm1 andu2 ∈ Rm2. As mentioned in the
Introduction, the first type of input, denoted byu1, is assumed
to be a zero mean wide sense stationary white noise of unit
intensity. On the other hand, the second type of input, denoted
by u2, is assumed to be a linear combination of sinusoidal
signals each of which has an unknown amplitude and phase but
known frequency. Clearly, such a signalu2 can be modeled as
the output of a known linear autonomous system with unknown
initial conditions. Such a system is called an exogenous system
or for short exosystem. Thus, consider

�a : ẋa = Sxa, u2 = Caxa , (2)

wherexa ∈ Rna for somena . An important special case where
this type of problem arises is the case of having a system driven
by a wide sense stationary white noise input with unknown
intensity (variance) and mean. It is easily verified that theH2
optimal filters are independent of the intensity level of the noise.
After all if we changeB intoBVwith V invertible then the class
of H2 optimal filters remains the same even thoughV does
effect the RMS gain. However, having a non-zero mean of the
external input requires a modification of our filter as we will
see later on.
Let us next partition the matrices,B, D, andF in conformity

with the partitioning ofu,

B = (B1 B2), D = (D1 D2), F = (F1 F2). (3)

The system� then has the structure

� :
{
ẋ = Ax + B1u1 + B2u2,

y = Cx + D1u1 + D2u2,

z = Ex + F1u1 + F2u2.

(4)

Our interest lies in estimating the desired output signalzusing
only the outputy but not the inputu. As usual, letẑ be the
estimate ofz as given by a filter, and letez be the estimation
error,ez = z − ẑ.
It is natural to use the following assumption.

Assumption 1. The matrix pair(C,A) is detectable.

We consider a general proper filter of the form

�f : �̇ = L� + My, ẑ = N� + Py. (5)

WheneverP = 0, the above filter is said to be a strictly proper
filter. We require that the filter (5) be internally stable.

3. Problem statement

For the case whenu2=0, we get the standardH2 optimal fil-
tering problem in which a linear stable unbiased filter is sought
that minimizes the RMS norm of the error signalez. In this sec-
tion, we formulate a generalizedH2 optimal filtering problem.
We first have the following definition.

Definition 2. Consider the given system� along with the ex-
osystem�a . We say a linear stable strictly proper (or proper)
filter (5) is generalized unbiasedif, in the absence of the input
u1, the estimation errorez decays asymptotically to zero for all
possible initial conditions of the given system (4) and the filter
(5), and for all possible input signalsu2.

The above definition, wheneveru2=0, reduces to the famil-
iar notion of unbiasedness of filters. Thegeneralized optimal
filtering problem under white noise inputcan be defined now
as the problem of finding, whenever it exists, a linear stable
strictly proper (or proper) filter which is generalized unbiased
while the RMS norm of the error signal‖ez‖rms is as small as
possible. Also, the infimum of the RMS norm of the error sig-
nal ez over the set of all linear stable strictly proper (or proper)
unbiased filters can be called thegeneralized optimal filtering
performance measure under white noise inputvia linear stable
strictly proper (or proper) filters, and can be denoted by�∗

g,sp
(or �∗

g,p). We note that the generalized optimal filtering problem
under white noise input can be given a deterministic interpreta-
tion since the RMS norm of the error signal,ez, is equal to the
H2 norm of the transfer matrix from the inputu1 to the error
ez. That is, we can interpret the generalized optimal filtering
problem under white noise input as the generalizedH2 optimal
filtering problem, and similarly�∗

g,sp (or �∗
g,p) as the general-

izedH2 optimal filtering performance measure via linear stable
strictly proper (or proper) filters.
Whenever the inputu2 is set to zero, the generalizedH2

optimal filtering problem for the given system� reduces to
the celebratedH2 optimal filtering problem (Kalman filtering
problem) for a system�0 given by

�0 : ẋ = Ax + B1u1, y = Cx + D1u1, z = Ex + F1u1. (6)
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Also, in this case, we denote the infimum of the RMS norm of
the error signal over all the linear unbiased stable filters for the
system�0 by �∗

sp or �∗
p depending on whether we use strictly

proper or proper filters.

4. Performance, existence conditions, and design

We need to investigate several issues pertaining to general-
izedH2 optimal filtering, namely computing�∗

g,sp or �∗
g,p, de-

veloping the existence and uniqueness conditions for the gen-
eralizedH2 optimal filters, and designing the generalizedH2
optimal filters. In this section, we relate these issues to those of
standardH2 optimal filtering, however, for an expanded system
�̃ which is constructed by viewing together the given system
� and the exosystem�a as one system,

�̃ :
{ ˙̄x = Aex̄ + Beu1,

y = Cex̄ + D1u1,

z = Eex̄ + F1u1,

(7)

Ae =
(
A B2Ca

0 S

)
, Be =

(
B1
0

)
,

Ce = (C D2Ca), Ee = (E F2Ca). (8)

We will impose the following assumption for̃�. This assump-
tion implies that Assumption 1 for� is satisfied.

Assumption 3. The matrix pair(Ce,Ae) is detectable.

Theorem 4. Consider the system� given in (4) and the ex-
osystem�a given in(2). Let Assumption3 be satisfied for the
expanded system̃� given in (7). Then, �∗

g,sp (or �∗
g,p) equals

the infimum of the RMS norm of the estimation error signalẽz
for the expanded system̃� over all unbiased strictly proper(or
proper) stable filters.

Proof. The proof follows from the proof of Theorem 5.�

The theorem below provides a road-map to study existence,
uniqueness, and design of the generalizedH2 optimal filters.

Theorem 5. Consider the system� given in (4) and the ex-
osystem�a given in(2). Let Assumption3 be satisfied for the
expanded system̃� of (7).Consider a filter�f of the form(5).
Then, the following two statements are equivalent:

(i) The filter�f is a proper(or strictly proper) generalized
H2 optimal filter for�.

(ii) The filter�f is a proper(or strictly proper) H2 optimal
filter for �̃.

Proof. Assume a filter�f of the form (5) is unbiased in the
sense of Definition 2 for the system� along with the associated
exosystem�a , and yields a stable transfer matrixGu1ez from
u1 to ez=z− ẑ. Then it can be trivially verified that such a filter
when applied to the expanded system is unbiased and results
in the same stable transfer matrixGu1ez from u1 to ez = z− ẑ.
The converse of the above implication is also trivially satisfied.

But then it is immediate that a filter is a generalizedH2 optimal
filter for system (4) and the associated exosystem (2) if and
only if it is anH2 optimal filter for system (7). �

In view of Theorem 5, one can deal with various aspects of
the generalizedH2 optimal filtering problem for a given system
in terms of similar issues of a standardH2 optimal filtering
problem for an expanded system. In particular, we refer the
interested reader toSaberi et al. (2000b)andSaberi et al. (1995)
for the issues of design such as testing the solvability conditions,
concerned architecture of filters, and design algorithms.
The above development is based on the assumption that the

pair (Ce,Ae) is detectable. Then, to complete our study, we
need to examine the implications when it is not so. It is natural
indeed to assume that(C,A) is detectable. Moreover, if there
are unstable dynamics which are not observable fromy but
which are observable fromz, then clearly we will never be able
to obtain an unbiased filter. Using theHautus (1973)test for
detectability, this can be formally expressed by the following
necessary condition:

Assumption 6. For all � ∈ C with Re ��0 we have

rank

(�I − A −B2Ca

0 �I − S

C D2Ca

)
= rank




�I − A −B2Ca

0 �I − S

C D2Ca

E F2Ca


 .

If (C,A) is detectable and the above assumption is satisfied
then we can use a reduction technique to get into a situation,
where(Ce,Ae) is detectable. We first findV1 andV2 such that
im(V ′

1 V ′
2)

′ represents the unstable, unobservable dynamics of
the pair(Ce,Ae). Detectability of(C,A) implies thatV2 must
be injective. Moreover, Assumption 6 implies that we must
haveEV 1 + F2CaV2 = 0. Then there exists a suitable basis
transformation for the exosystem such that

V2 =
(
0
I

)
, S =

(
S11 0
S21 S22

)
, Ca = (Ca1 Ca2).

Consider the following exosystem:

�a1 : ẋa1 = S11xa1, u2 = Ca1xa1. (9)

Then the above implies that system (4) with the original ex-
osystem (2) and the same system (4) with the new exosystem
(9) result in the same outputsy andz provided we modify the
initial conditions of the systemx(0) and the exosystemxa(0)
to the initial conditions

x(0) − V1(0 I )xa(0) and (I 0)xa(0)

for the system and exosystem, respectively. From this it is clear
that a filter design for the original system and exosystem can
be reduced to a filter design for the same system but with a
modified (reduced) exosystem. After this reduction we obtain
a system and exosystem which when viewed together are de-
tectable fromy.
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5. Dependence of performance and existence conditions
on the input signal u2

We ask ourselves here two fundamental questions:

(i) How does the performance of generalizedH2 optimal fil-
tering for� differs from the performance ofH2 optimal
filtering for �0?

(ii) How do the solvability conditions of generalizedH2 opti-
mal filtering problem for� differ from those ofH2 optimal
filtering problem for�0?

The following theorem answers the first question.

Theorem 7. Consider the generalizedH2 optimal filtering
problem of Section3 for the system� of (4) along with the
associated exosystem�a of (2) whose performance measure is
indicated by�∗

g,sp or �∗
g,p depending upon whether the class

of strictly proper or proper filters are used. Also, consider the
H2 optimal filtering problem for the system�0 of (6) whose
performance measure is indicated by�∗

sp or �∗
p depending upon

whether the class of strictly proper or proper filters are used.
Then, under Assumptions1 and6,we have

�∗
g,sp= �∗

sp and �∗
g,p = �∗

p.

Proof. We can assume, without loss of generality, thatAssump-
tion 3 is satisfied. In view of Theorem 4,�∗

g,sp (or �∗
g,p) is the

infimum of the RMS norm of the estimation errorẽz over all
the linear unbiased stable strictly proper (or proper) filters for
the expanded system̃� of (7). Also,�∗

sp (or �∗
p) is the infimum

of the RMS norm of the errorez over all the linear unbiased
stable strictly proper (or proper) filters for the system�0 of (6).
To facilitate the comparison of�∗

g,sp (or �∗
g,p) with �∗

sp (or �∗
p),

consider the semi-stabilizing solutionQ of the continuous-time
linear matrix inequality (CLMI),(
AQ + QA′ + B1B

′
1 QC′ + B1D

′
1

CQ + D1B
′
1 D1D

′
1

)
�0, (10)

and the semi-stabilizing solutionQe of the CLMI,(
AeQe + QeA

′
e + BeB

′
e QeC

′
e + BeD

′
1

CeQe + D1B
′
e D1D

′
1

)
�0.

Then it is easily verified that

Qe =
(
Q 0
0 0

)
.

Next, we recall from Saberi et al. (2000b)that �∗
sp =

(trace(EQE′))1/2 and

�∗
p = (trace((E − P ∗C)Q(E − P ∗C)′))1/2,

whereP ∗ is any solution of the equationF1 − PD1 = 0 for
P, and whereQ is the unique semi-stabilizing solution of the
CLMI (10). Then we have

�∗
sp= (traceEQE′)1/2 = (traceEeQeE

′
e)
1/2 = �∗

g,sp.

On the other hand, for proper filters we need to findP ∗ such
thatF1 − P ∗D1 = 0. But then again,

�∗
p = [trace(E − P ∗C)Q(E − P ∗C)′]1/2

= [trace(Ee − P ∗Ce)Qe(Ee − P ∗Ce)
′]1/2 = �∗

g,p.

This completes the proof.�

The following theorem answers the second question regard-
ing the dependency of the solvability conditions of the gener-
alizedH2 optimal filtering problem on the input signalu2.

Theorem 8. Consider the generalizedH2 optimal filtering
problem of Section3 for the system� of (4) along with the
associated exosystem�a of (2). Let Assumption6 be satisfied.
Also, consider theH2 optimal filtering problem for the sys-
tem�0 of (6), and let Assumption1 be satisfied. We have the
following statements:

(i) For the case whenF2 = 0, the generalizedH2 optimal
filtering problem is solvable via strictly proper filters if and
only if theH2 optimal filtering problem for�0 is solvable
via strictly proper filters.

(ii) For the case whenF2 = 0 and additionallyD2 = 0, the
said generalizedH2 optimal filtering problem is solvable
via proper filters if and only if theH2 optimal filtering
problem for�0 is solvable via proper filters.

Proof. Using the reduction technique presented earlier, we can
assume without loss of generality thatAssumption 3 is satisfied.
By Theorem 5, we need to compare the conditions for the
solvability of theH2 optimal filtering problem for the system
�0 of (6) with those of�̃ of (7). Note that we already studied
the relevant CLMIs necessary for such a comparison in the
proof of Theorem 7. LetQ be the semi-stabilizing solution of
the CLMI (10) and defineBQ andDQ by(

AQ + QA′ + B1B
′
1 QC′ + B1D

′
1

CQ + D1B
′
1 D1D

′
1

)

=
(
BQ

DQ

)
(B ′

Q D′
Q).

We consider first strictly proper filters. Strictly properH2 op-
timal filters exist only ifF1 = 0. Then, in view ofSaberi et
al. (2000b), we need to relate the solvability of the exact in-
put decoupling (EID) filtering problems of the following two
systems:

˙̃x = Ax̃ + BQũ, ỹ = Cx̃ + DQũ, z̃ = Ex̃ (11)

and


˙̄x =
(
A B2Ca

0 S

)
x̄ +

(
BQ

0

)
u1,

y = (C D2Ca)x̄ + DQu1,

z = (E 0)x̄.

(12)

In view of Saberi et al. (2000b), it is easily checked that the
EID filtering problem for system (11) is solvable if and only if
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the EID filtering problem for system (12) is solvable after we
have established that

S−(A,BQ,C,DQ)

= (I 0)S−
((

A B2Ca

0 S

)
,

(
BQ

0

)
, (C D2Ca),DQ

)
.

The above can easily be verified. This proves the result (i).
Result (ii) pertaining to proper filters follows similarly. In the
above expression,S−(A,B,C,D) denotes the strongly con-
trollable subspace of a system characterized by the quadruple
(A,B,C,D) (see, for instance,Trentelman et al., 2001). �

The above theorem begs the question whetheru2 affects the
existence of a generalizedH2 optimal filter or not if the matrix
F2 is not zero. The following example answers this question.

Example 9. Consider a system

� : ẋ = u1 + u2, y = x + u1 + u2, z = x + f2u2, (13)

wheref2 is some constant. Also, let the exosystem be

�a : ẋa = 0 and u2 = xa . (14)

In view of Theorem 5, one can verify easily that the generalized
H2 optimal filtering problem for the above given systems�
and�a is not solvable whenf2 is non-zero. However, for the
above system� in the absence of the input signalu2, that is
for the system�0,

�0 : ẋ = u1, y = x + u1, z = x, (15)

one can easily verify that the EID filtering problem is solvable
and hence, in particular, theH2 optimal filtering problem is
solvable. This demonstrates that, in general, the solvability of
the generalizedH2 optimal filtering problem does depend on
the input signalu2 or equivalently on the exosystem�a .

Remark 10. Example 9 demonstrates that Theorem 8 does not
hold if we drop the condition ofF2 being zero. As a matter
of fact, for all systems with(A,B,C1,D1) right-invertible, we
can prove that the generalizedH2 optimal filtering problem is
solvable only ifF2Ca = 0.

6. Transient performance measure

In the previous sections, we defined and discussed a method
of computing the steady state generalizedH2 optimal filtering
performance measure, namely�∗

g,sp or �∗
g,p. In this section, we

define and then compute the transient performance measure. As
discussed in the Introduction, the transient performance mea-
sure is the energy of the error signal in the absence of the white
noise inputu1. To define it clearly, consider the system� given
in (4), the filter�f given in (5), and the exosystem�a given
in (2). Using the matrix triple(Ae, Ce, Ee) as in (8), we can
combine the given system� and the exosystem�a together
and form the expanded system̃� as in (7) except that we set

u1 = 0, i.e., we have

˙̄x = Aex̄, y = Cex̄, z = Eex̄. (16)

Whenever the generalized unbiased requirement is satisfied by
the filter�f , the errorez is an energy signal, and thus we can
define the transient performance measureJ g as follows:

J g(x̄0, �0,�f ) =
∫ ∞

0
ez(t)

′ez(t)dt .

In the above equations,̄x = (x′ x′
a)

′, x̄0 = x̄(0), �0 = �(0).
The initial condition of the filter can be chosen as zero. Let
ei (i = 1, . . . , n + na) be an orthonormal basis ofRn+na . We
note that the initial condition̄x0 of the given system is usu-
ally unknown. This suggests that one can generate an average
transient performance measure as

J̃ g(�f ) =
n+na∑
i=1

J g(ei,0,�f ). (17)

Note that it can be shown that this criterion does not depend
on the specific orthonormal basis used in its definition. In what
follows, we will denote the infimum of̃J g(�f ) over all linear
stable generalized unbiased strictly proper or proper filters by
J̃

∗g
sp or by J̃ ∗g

p , respectively.
It is straightforward to show that̃J g(�f ) is related to the

H2 performance measure when using the same filter for an
appropriately defined auxiliary system,

�au : ẋau = Aexau + Iv, yau = Cexau, zau = Eexau, (18)

wherev is an unknown white noise input. Let theH2 optimal
filtering performance of the system�au over all linear stable
unbiased strictly proper or proper filters, respectively, be de-
noted by�∗

sp(�au) or �∗
p(�au). Then, the following result whose

proof can be written easily relates̃J ∗g
sp andJ̃ ∗g

p , respectively to
�∗
sp(�au) and�∗

p(�au).

Lemma 11. Consider the generalizedH2 optimal filtering
problem of Section3 for the system� of (4) along with the
associated exosystem�a of (2). Let Assumptions1 and 3 be
satisfied. Let �au be given by(18).Then, we have

J̃ ∗g
sp = [�∗

sp(�au)]2 and J̃ ∗g
p = [�∗

p(�au)]2.

Remark 12. We note fromSaberi et al. (2000a)that only the
unstable zero dynamics and the non-left invertible dynamics
of the subsystem characterized by(Ae, I, Ce,0) contribute to
the value of�∗

sp(�au). However, it is easy to see that the said
subsystem does not have any zero dynamics, and moreover it
is left invertible only if rankCe = (n + na). Since rankCe �=
(n+ na), the said subsystem is always non-left invertible. This
implies that�∗

sp(�au) is always non-zero. In other words, the

average transient performance measureJ̃
∗g
sp is always non-zero.

By a similar reasoning, it follows that̃J ∗g
p is non-zero as well.
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7. Limitations of generalizedH2 optimal filtering
performance and transient performance due to the
locations of the invariant zeros

In this section, we study the limitations on�∗
g,sp, �∗

g,p, J̃
∗g
sp ,

and J̃ ∗g
p due to the structural properties of the given system.

Let us first focus on�∗
g,sp or �∗

g,p. In this regard, we already
know that�∗

g,sp=�∗
sp and�∗

g,p=�∗
p. Hence, known results from,

for instance,Saberi et al. (1995)tell us that when the invariant
zeros of the given system� move closer to the imaginary axis,
the achievable performance measure�∗

g,sp or �∗
g,p improves. If

the system� is left-invertible then such a performance measure
will even converge to zero when all the invariant zeros move
towards the imaginary axis.
We consider next̃J ∗g

sp andJ̃ ∗g
p . In this regard, a relevant ques-

tion is under what circumstances̃J ∗g
sp andJ̃ ∗g

p are unbounded.
Apparently, under such circumstances estimation is impossi-
ble. We focus here on developing a relationship betweenJ̃

∗g
sp

or J̃ ∗g
p and the locations/direction of the invariant zeros of the

subsystem characterized by(Ae, I, Ce,0). It turns out that the
non-minimum phase dynamics and the exosystem dynamics
play significant roles in dictating the behavior ofJ̃

∗g
sp or J̃ ∗g

p .
Basically, we find out thatJ̃ ∗g

sp or J̃ ∗g
p is inversely related to

the distance between the invariant zeros and the modes of the
exosystem, and indeed it could go to infinity when the minimal
distance of poles of the exosystem and the invariant zeros of
the system goes to zero. There are two possible exceptions to
this behavior. Firstly, when the effect of the invariant zeros of
the system are asymptotically invisible from the outputz (i.e.,
the non-minimum phase dynamics is asymptotically unobserv-
able from the desired output to be estimated). Secondly, ifu2
is a vector then the input direction of an invariant zero and the
direction of a pole of the exosystem need to be mis-aligned (to
be made precise soon) in order to have the cost bounded when
the pole and the invariant zero get close to each other. Due
to lack of space, we illustrate our findings by considering two
special but important cases and an example.
We proceed now to illustrate the above discussed results.

Let � be any unstable invariant zero of(A,B2, C,D2). Hence,
there exists vectors̃p and q̃ such that

rank

(
�I − A −B2

C D2

)(
p̃

q̃

)
= 0.

Detectability of(C,A) guarantees that̃q �= 0. As seen from
(2) the exosystem is characterized by the matricesS andCa .
If for an eigenvalue� of S, we can choose an eigenvectors
with Ss = �s such thatCas = q̃, then we call the pole of the
exosystem� and the invariant zero� of the systemaligned,
otherwise they are mis-aligned. Note that by scalingp̃ and q̃
we can guarantee, without loss of generality, that‖s‖ = 1. We
will show that if an invariant zero of the system moves towards
an aligned pole of the exosystem then the average transient
performance measure will go to infinity. For two special cases,

Case1: S = 0 andCa = I (input u2 is a vector DC signal),
Case2: m2 = 1 (inputu2 is a scalar signal),

all the poles of the exosystem are aligned to all the invariant
zeros of the system characterized by(A,B2, C,D2). But in
general this might clearly be not the case. Note that, in the
above two cases, it can be shown that Assumption 3 implies
that (A,B2, C,D2) is left-invertible.
As we discussed earlier, the minimal achievableH2 norm of

�au is indeed the minimal average transient performance mea-
sure. To simplify our study of theH2 norm of�au, we restrict
v by settingv = (0 q̃ ′)′�, and we add an additional measure-
menty1 = (m̃ 0)xaux + ñ�, wherem̃ is such thatm̃p̃ = 1 and
ñ= (�−�)−1. Obviously, both these actions reduce the achiev-
ableH2 norm and hence we are investigating a lower bound for
the achievableH2 norm of�au. The above restrictions imply
that we will study the design of an observer for the system

�̄au :



ẋau =

(
A BCa

0 S

)
xau +

(
0
q̃

)
�,

ȳau =
(
m̃ 0
C D2Ca

)
xau +

(
ñ

0

)
�,

zau = (E F2Ca)xau.

Note that an output injection does not change the achievable
H2 norm for the error dynamics and hence we can equally well
study the system

˙̃xau =
(
A + (� − �)p̃m̃ BCa

0 S

)
x̃au +

(
p̃

q̃

)
�,

ỹau =
(
m̃ 0
C D2Ca

)
x̃au +

(
ñ

0

)
�,

z̃au = (E F2Ca)x̃au.

It is easy to see that the state of this system (given zero initial
conditions) will satisfyx̃au(t) = (p̃′q̃ ′))′r(t) for some scalar
valued functionr. Next, we derive a differential equation forr
and express the whole system in terms of the functionr,

ṙ = �r + �,

ỹau = (1 0)′r + ((� − �)−1 0)′�,
z̃au = (Ep̃ F2Caq̃)r.

However, for this scalar system, the achievable performance
measure can very easily be computed. For both strictly proper
and proper filters we obtain as the optimal performance mea-
sure,

2‖(Ep̃ F2Caq̃)‖2 Re �

‖� − �‖2 . (19)

The expression given in (19) is a lower bound for the average
transient performance measureJ̃ ∗g

sp as well asJ̃ ∗g
p . We clearly

see thatJ̃ ∗g
sp as well asJ̃ ∗g

p is inversely related to the distance
between the poles of an exosystem and the non-minimum phase
invariant zeros. That is, when� gets close to an aligned eigen-
value ofS then the achievable performance measure goes to
infinity. However, there is one exception to this unbounded be-
havior. That is, whenEp̃ andF2Caq̃ converge asymptotically
to zero,J̃ ∗g

sp as well asJ̃ ∗g
p can be bounded. Under this circum-

stance, the effect of the invariant zero is asymptotically invisi-
ble in the to-be-estimated output. Note that, in the special cases
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we considered above, poles of exosystem and non-minimum
phase invariant zeros are always aligned.
We consider next an example in which the poles of the ex-

osystem and the non-minimum phase invariant zeros are mis-
aligned. As seen in this example,J̃ ∗g

sp as well asJ̃ ∗g
p need not

be unbounded as the distance between the poles of an exosys-
tem and the non-minimum phase invariant zeros goes to zero.
Thus, the alignment of poles of the exosystem and the non-
minimum phase invariant zeros as mentioned in the beginning
of this section plays a crucial role.

Example 13. Consider system (4) where

A =
(−1 0

0 −1

)
, B1 =

(
1
1

)
, B2 =

(−1− � 0
0 1

)
,

C =
(
1 0
0 1

)
, D1 =

(
0
0

)
, D2 =

(−1 0
0 −1

)
,

while the exosystem is given by

S =
(0 0 0
0 0 1
0 −1 0

)
, Ca =

(
1 1 1
1 1 −1

)
.

The system has an invariant zero in� which, when� → 0,
converges to a pole 0 of the exosystem without exhibiting the
alignment property. In contrast to the aligned case, we see here
that the average transient performance measureJ̃

∗g
sp as well as

J̃
∗g
p does not go to∞. This can be seen by realizing that re-
moving the first part of the measurement removes the invariant
zero, while relying simply only on the second measurement the
system is still detectable. Therefore, an observer design based
on the second measurement only, will not have a transient per-
formance measure that converges to∞. Although due to space
limitations we are not showing here all the details, the reader
can easily work them out.

Remark 14. The observations we made above regarding the
impact of non-minimum-phase dynamics on the transient per-
formance measure of generalizedH2 optimal filtering might
give the impression of being a dual of a property of the output
regulation problem where we also try to reject sinusoidal sig-
nals generated by an exosystem but in a control context. It is
indeed not so. There exist two crucial differences. First of all,
the exosystem represents uncontrollable dynamics in the output
regulation problem and hence we cannot stabilize the dynam-
ics in the standard sense. Here in the context of estimation, this
problem does not arise at all since the exosystem in most cases

is detectable. Secondly and most importantly, in the case of
output regulation the rejection of sinusoidal signals is only re-
lated to the location of the invariant zeros (seeQiu and Davi-
son, 1993) while, in the case of estimation, in addition to the
locations of invariant zeros, their directionality (input zero di-
rections) as well as the directionality (the eigenvectors) of the
modes of the exosystem play significant roles. Thus, the issues
here in the context of estimation are vastly more complex than
those in the output regulation problem.
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