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Properties ofModulated andDemodulatedSystemswith

Implications toFeedbackLimitations

K. Lau a,1, G. C. Goodwin a, R.T. M’Closkey b,2

aARC Centre for Complex Dynamic Systems and Control, The University of Newcastle, Callaghan, 2308 NSW, AUSTRALIA.

bMechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA 90095-1567.

Abstract

It is well known that the poles, zeros and delay of a system play an important role in determining the associated feedback
performance limitations. In this paper, we first derive an approximate transfer function for a modulated and demodulated
system of a particular form. We next analyse the behaviour of the poles, zeros, and delay of this transfer function when the
modulation frequency is varied. Some implications of these results are also briefly discussed.

Key words: Performance limitations, performance trade-offs, poles and zeros, modulated and demodulated systems

1 Introduction

Modulated and demodulated control systems are found
in certain specific applications. An early example of
a modulated control system is the ‘envelope feedback
for a radio frequency transmitter’ discussed in [3, Sect.
19.3]. More recent examples of modulated and demod-
ulated systems include vibratory microgyroscopes, such
as those described in [5], and rotating gravity gradiome-
ters 3 . Modulated control can also be used to damp
vibrations of flexible structures [10].

The above examples provide motivation for the study of
modulated control systems. The microgyro system [5],
in particular, provided the original motivation for this
paper. The drive control loop of this system uses an au-
tomatic gain controller (AGC) to maintain an oscillation
at the resonance frequency of the device. In [9], it was
shown that the AGC essentially consists of a demodu-
lator, a nonlinear amplitude controller, and a modula-
tor. It was observed in [5] that, with this scheme, it is
possible to regulate the relatively fast oscillation despite
a large time delay. An alternative explanation (to that
given in [5]) for this apparent paradox is given in Sect. 5
of the current paper.

In [10], the application of modulated control to vibration
damping in flexible structures is considered. The control

1 Corresponding author. Email:K.Lau@newcastle.edu.au
2 R. T. M’Closkey is supported by NSF grant ECS-9985046.
3 See, for example, [7], [2]. A description of the Bell rotating
gradiometer can also be found at http://www.bellgeo.com
under the heading ‘FTG’.

scheme relies on the fact that the response of a flexible
structure can be viewed as a sum of modulated signals,
corresponding to the resonant modes of the structure.
Thus, each resonant mode can be controlled by first de-
modulating the response, passing the low frequency sig-
nal through a (baseband) controller, and then modulat-
ing the resulting signal back up to the resonance fre-
quency. The advantage of this approach is that it allows
the wide bandwidth flexible structure to be controlled
with a bank of low bandwidth baseband controllers.

Motivated by the above applications, the goal of the cur-
rent paper is to gain an understanding of the properties
of modulated systems and to lay a foundation for under-
standing the associated design trade-offs.

Thus, we consider a modulated and demodulated system
of the type shown in Fig. 1. In this figure, G(s) denotes
the transfer function of a linear system and d0(t) repre-
sents an output disturbance. The input to G(s) is cosω0t
modulated (i.e., multiplied) by u(t). The output is de-
modulated by correlating it with cos(ω0t + φ) (where φ
is an appropriate phase shift) and passing the resulting
signal through a low pass filter F (s). We refer to G(s)
as the base system.

In this paper, we first derive a (approximate) transfer
function for the system in Fig. 1. We then analyse the
behaviour of the poles, zeros and delay of this transfer
function as ω0 is varied. One of the motivations for this
study is the fact that the closed loop performance limi-
tations for a linear system are, to a large extent, deter-
mined by its poles, zeros and delay. In particular, we refer
to the time and frequency domain integral constraints
discussed in detail in [11] and [13].
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u(t) ym(t) yf(t)

cos ω0t 2 cos(ω0t + φ)d0(t)

G(s) F (s)

Base System Harmonic Filter

Fig. 1. Block diagram of modulated and demodulated system

The structure of the remainder of the paper is as fol-
lows: In Sect. 2, we derive the approximate transfer
function. Then, in Sect. 3, we provide example time re-
sponses. Sect. 4 contains the main results of the paper.
This is followed by some brief comments on the implica-
tions of these results on feedback performance trade-offs
(Sect. 5). Sect. 6 concludes the paper.

1.1 Notation

In this paper, arg z denotes the argument and Arg z de-
notes the principal argument of z. Thus, −π < Arg z ≤
π. f(x+

0 ) is used to denote limx→x
+

0

f(x). f(x−

0 ) is de-

fined similarly. Upper case is often used to denote the
Laplace transform of a signal.

2 General System Description

We return to the modulated and demodulated system
shown in Fig. 1. We note that φ is a function of ω0

defined by φ(ω0) = Arg[G(jω0)]. However, we omit the
argument of φ when it is clear from the context.

The following assumptions are made:

Assumptions

(1) u(t) is a band-limited signal having bandwidth ωb

rad/s (by this we mean that |U(jω)| is small for
ω > ωb).

(2) ω0 > ωb.
(3) jω0 is not a pole or zero of G(s) (i.e., φ(ω0) is well

defined).
(4) F (s) is a low pass filter which rolls off between ωb

and 2ω0 − ωb.

Note that the role of F (s) is to significantly reduce the
demodulated output components appearing at the base
frequencies shifted by 2ω0 relative to the base frequen-
cies.

For any u which stabilises the modulated system, it is
readily seen that Yf (s) is given by

F (s)

[

Gm(s, ω0)U(s) + 1
2

[

e−jφG(s + jω0)U(s + 2jω0)

+e+jφG(s − jω0)U(s − 2jω0)
]

]

+ Df(s),

where

Gm(s, ω0) = 1
2

(

e−jφG(s + jω0) + ejφG(s − jω0)
)

and Df (s) = (e−jφD0(s + jω0) + ejφD0(s− jω0))F (s).

Assumptions 1, 2 and 4 imply that F (jω)U(jω±2jω0) ≈
0, and so we can safely approximate the output response

as

yf (t) ≈ L
−1{U(s)Gm(s, ω0)F (s) + Df (s)}.

It follows that the modulated system has an approx-
imate transfer function of Gm(s, ω0)F (s) 4 . It is clear
that the fidelity of this model for the modulated system
will depend on the fidelity of the base system model G
at the frequencies between ω0 −ωb and ω0 +ωb (i.e., the
baseband shifted by ω0).

The following example clarifies the relationship between
ym, yf and Gm.

3 Example Time Responses

Consider the following base system:

G(s) =
s − 1

(s + 5)(s + 10)
.

Suppose that this system is modulated at ω0 = 7 rad/s.
Then

Gm(s, 7) =
cos(0.15)(s2 + 1.71s + 66.94)(s + 11.22)

(s2 + 10s + 74)(s2 + 20s + 149)
.

Let F (s) =
89.13

s4 + 8.03s3 + 32.23s2 + 75.80s + 89.13

and U(s) = F (s)/s. Note that F (s) is a 4th order But-
terworth filter with a bandwidth of approx. 3.1 rad/s.
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Fig. 2. Step responses

Fig. 2 contains plots of the modulated output ym(t) and
the filtered output yf(t) the system in Fig. 1. The output
of Gm (i.e. L −1{Gm(s, 7)U(s)}) is also shown. It can be
seen that the output of Gm is the envelope of ym(t), and
that yf(t) is an approximation of the envelope filtered by
F (s). We note that the ‘delay’ observed in yf (t) relative
to the output of Gm is due to the phase shift of the low
pass filter.

4 Poles, Zeros, and Delays

In this section, we analyse the behaviour of the poles,
zeros and delay of Gm(s, ω0) as functions of the modula-
tion frequency ω0. We note that we have omitted some of

4 We note that results which are similar or equivalent to
this may be found in the literature (e.g., [8] or [4]).
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the proofs and provided condensed versions of the rest.
A complete set of proofs can be found in Sect. 4 of [9].

Suppose that G(s) = N(s)/D(s), where N(s) and D(s)
are polynomials with real coefficients. We assume that
N(s) and D(s) are coprime and can be written as N(s) =
∏m

i=1(s−zi) and D(s) =
∏n

i=1(s−pi), where zi, pi ∈ C

and Re [zi] 6= 0. We also assume that r = n − m > 0,
i.e., that G(s) is strictly proper. Then

Gm(s, ω0) =
1

2

Nm(s, ω0)

Dm(s, ω0)
, (1)

where Nm(s, ω0) = e−jφN(s + jω0)D(s − jω0)

+ ejφN(s − jω0)D(s + jω0), (2)

and Dm(s, ω0) = D(s + jω0)D(s − jω0). (3)

We note that Nm(s, ω0) and Dm(s, ω0) may have com-
mon factors for some modulation frequencies. However,
we will show that this occurs only at isolated values of
ω0. Hence, the zeros of Dm(s, ω0) will, in the sequel, be
referred to as the poles of the modulated system (or of
Gm(s, ω0)). Similarly, the zeros of Nm(s, ω0) will be re-
ferred to as the zeros of Gm(s, ω0).

4.1 Poles

An immediate consequence of (3) is the following:

Lemma 4.1 For each ω0 ∈ R, the zeros of Dm(s, ω0)
are given by s = pi ± jω0 for i = 1, ..., n.

Remark 1 We thus see that the poles of the trans-
fer function Gm(s, ω0) are simply shifted forms of the
poles of G(s). This is a straightforward connection.

2

4.2 Zeros

Determining the zeros of Nm(s, ω0) is, in general, more
difficult. 5 We can, however, gain some insight into the
location of the zeros by analysing the limiting behaviour
of the zeros as ω0 → 0 and as ω0 → ∞. We first note
that, for a given ω0, Nm(s, ω0) is a polynomial in s. Thus
Nm(s, ω0) can be written as

Nm(s, ω0) =

n+m
∑

i=0

ci(ω0)s
i. (4)

Since Nm(a, ω0) is real ∀ a ∈ R, the coefficients ci(ω0)
are real functions of ω0. It is also clear that ci is contin-
uous at ω0 = ω1 if jω1 is not a pole or zero of G(s).

Suppose that ∀ ω0 ∈ (ω1, ω2), jω0 is not a pole or zero of
G(s) and the degree of Nm(s, ω0) is M . We let the zeros

5 We note that the system in Fig. 1 is a periodic system.
Hence, the relative degree of the system can be determined
from [6, Def. 3]. However, the results in [6] on computing
zeros cannot be applied to this system because it does not
have a uniform relative degree.

of Nm(s, ω0) be denoted by ζi(ω0), i = 1, ..., M . Then
Nm(s, ω0) can also be expressed in the following form:

Nm(s, ω0) = cM (ω0)

M
∏

i=1

(s − ζi(ω0)). (5)

Since the coefficients of Nm(s, ω0) are continuous on
(ω1, ω2), the zeros of Nm(s, ω0) are also continuous func-
tions of ω0.

By comparing the coefficients we obtain the following
formulae:

cn+m(ω0) = 2 cosφ(ω0) (6)

and cn+m−1(ω0) = −2ω0r sin φ(ω0)

− 2 cosφ(ω0)

[

m
∑

i=1

zi +

n
∑

i=1

pi

]

. (7)

Equations (6) and (7) imply that the degree of Nm(s, ω0)
will be n + m − 1 whenever |φ(ω0)| = π/2 as stated in
the following lemma.

Lemma 4.2 For each ω0 > 0, the degree of Nm(s, ω0) is

m + n if |φ(ω0)| 6= π/2

and m + n − 1 if |φ(ω0)| = π/2.

The following lemma describes the behaviour of ζi, i =
1, ..., M as ω0 → ω+

1 . We note that the lemma is stated
for the case of ω0 → ω+

1 but clearly also holds for the
case of ω0 → ω−

1 .

Lemma 4.3 Consider the polynomial (in s) defined by
(4). Let M be the degree of Nm(s, ω0) as ω0 approaches ω1

from above. Suppose that ci(ω
+
1 ) is finite ∀ i and let M ′ ≤

M be the degree of Nm(s, ω+
1 ). Then as ω0 → ω+

1 , M ′ of
the zeros of Nm(s, ω0) tend to the zeros of Nm(s, ω+

1 ). If
M−M ′ = 1, then the remaining zero tends to ∞ or −∞.

Proof Outline

The first part of the result (regarding the first M ′ zeros)
follows from Rouche’s theorem. The second part follows
from the fact that M ′ of the zeros tend to finite locations
and that

lim
ω0→0+

∣

∣

∣

∣

∣

M
∑

i=1

ζi(ω0)

∣

∣

∣

∣

∣

= lim
ω0→0+

∣

∣

∣

∣

cn+m−1(ω0)

cn+m(ω0)

∣

∣

∣

∣

= ∞. (8)

2

Lems. 4.2 and 4.3 imply that if |φ(ω1)| = π/2, then
n + m − 1 of the zeros are continuous at ω0 = ω1 and
the remaining zero tends to ∞ or −∞ as ω0 → ω+

1

or ω−

1 . We also note that if G(s) has a pole or zero of
multiplicity m1 at jω1, then ci(ω

+
1 ) = −ci(ω

−

1 ) if m1 is
odd and ci(ω

+
1 ) = ci(ω

−

1 ) if m1 is even. Thus, provided
that cM (ω+

1 ) 6= 0, there exist M continuous functions
ζi(ω0) which satisfy (5) in the neighbourhood of ω1.
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We are now in a position to present two important results
on the zero loci of the modulated system. These describe
the behaviour of the zeros as ω0 → 0 and as ω0 → ∞,
respectively.

Theorem 4.4 (a) Let ω1 > 0 be chosen s.t. Nm(s, ω0)
has degree M on (0, ω1). Let µ be the number of singu-
larities (i.e., poles or zeros of G(s)) at the origin, and let
the sets of zeros and poles of G(s) be denoted by ZG and
PG, respectively. Also let

Z0 =
{

ζi(0
+) : |ζi(0

+)| 6= ∞, i = 1, ..., M
}

and Z1 = {z0 : Nω(z0) = 0} , (9)

where Nω(s) = φ′(0+)N(s)D(s) − N ′(s)D(s) +
N(s)D′(s). Then

Z0 =

{

ZG ∪ PG, if µ is even,

Z1, if µ is odd.

(b) Suppose that µ is even, and α is a pole or zero (of
G(s)) of multiplicity mα. Let ζi(0

+) = α for i = 1, ..., mα

and let ζ+
i be defined by

ζ+
i = lim

ω0→0+

ζi(ω0) − α

ω0
, i = 1, ..., mα.

Then for each i, ∃ k ∈ {1, ...mα} s.t.

ζ+
i =







tan
(

kπ
mα

)

, mα odd,

tan
(

π
2mα

+ kπ
mα

)

, mα even.
(10)

Furthermore, ζ+
i = ζ+

l iff i = l (i.e., the ζ+
i ’s are dis-

tinct).

Proof Outline

(a) We note that if µ is even, then φ(0+) = 0 or π. The
result then follows from Lem. 4.3.

If µ is odd, then |φ(0+)| = π/2 which implies that
ck(0+) = 0 ∀ k. It follows from the definition of the
derivative that

lim
ω0→0+

Nm(s, ω0)

ω0
=

∂Nm

∂ω0
(s, 0+) = 2jejφ(0+)Nω(s).

Let M ′ be the degree of Nω(s). Since the zeros of
Nm(s, ω0)/ω0 and Nm(s, ω0) are the same ∀ ω0 > 0,
Lem. 4.3 implies that Z1 ⊆ Z0. It can easily be shown
that M − M ′ ≤ 1, and hence that Z1 = Z0.

(b) We prove the second part of the theorem for the
case of α ∈ {zi : i = 1, ..., m}. The proof when α
is a pole is similar. Suppose that ζl(0

+) = α. Since

Nm(ζl(ω0), ω0) = 0,

(ζl(ω0) − α − jω0)
mα

(ζl(ω0) − α + jω0)mα

= −
e−jφ(ω0)Ñ(ζl(ω0) + jω0)D(ζl(ω0) − jω0)

e+jφ(ω0)Ñ(ζl(ω0) − jω0)D(ζl(ω0) + jω0)
,

where Ñ(s) = N(s)
(s−α)mα

. From this equation it can be

shown that

(

1 + jζ+
l

1 − jζ+
l

)mα

= (−1)mα+1. (11)

Equation (11) implies that | ζl(ω0)−α

ω0
| does not → ∞, and

hence that ζ+
l is real. Equation (11) also implies that

2mα arg
(

1 + jζ+
l

)

= (mα + 1)π + 2kπ (12)

for some integer k. The result follows by solving for ζ+
l .

We now show that the ζ+
i ’s are distinct. We first note

that as ω0 → 0+, φ → 0 or π (µ is even), and so
∂Nm

∂s
(s, ω0) has n+m− 1 zeros. Denote these by ηi(ω0),

i = 1, ..., n + m − 1. It is clear that ∂Nm

∂s
(s, 0+) has ex-

actly mα − 1 zeros at α. Therefore, mα − 1 of the ηi’s
→ α. We assume without loss of generality that these
are η1, ...ηmα−1. Let η+

l be defined in a similar manner

to ζ+
l . By using a similar argument to that given above,

it can be shown that for each l ∈ {1, ..., mα − 1}

2(mα − 1) arg
(

1 + jη+
l

)

= mαπ + 2kπ (13)

for some integer k. We also note that

(n + m)

n+m−1
∏

i=1

(s − ηi(ω0)) =
∂

∂s

n+m
∏

i=1

(s − ζi(ω0)).

By letting s = ζ1(ω0), dividing both sides by ωmα−1
0 and

taking limits we obtain

lim
ω0→0+

[

(n + m)

mα−1
∏

i=1

∆ηi(ω0)

ω0

n+m−1
∏

i=mα

∆ηi(ω0)

]

= lim
ω0→0+

[

mα
∏

i=2

∆ζi(ω0)

ω0

n+m
∏

i=mα+1

∆ζi(ω0)

]

,

where ∆ηi(ω0) = ζ1(ω0) − ηi(ω0) and ∆ζi(ω0) =
ζ1(ω0) − ζi(ω0). Equations (12) and (13) imply that,

for i = 1, ..., mα − 1, limω0→0+
ζ1(ω0)−ηi(ω0)

ω0
6= 0. Since

∂Nm

∂s
(s, 0+) has only mα−1 zeros at α, ζ1(0

+)−ηi(0
+) 6=

0 for i = mα, ..., n + m − 1. For i = mα + 1, ..., n + m,
ζ1(0

+)− ζi(0
+) is also nonzero and finite. It follows that

limω0→0+
ζ1(ω0)−ζi(ω0)

ω0
6= 0 for i = 2, ..., mα and hence

that the ζ+
i ’s are distinct. 2
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Remark 2 Thm. 4.4(b) implies that mα (µ even) or
mα − 1 (µ odd) of the ζ+

i ’s are real and non-zero. It
follows that the angle of departure of each of these loci
is 0 or π. If µ is odd then there is exactly one value of k
s.t. ζk(0+) = α and ζ+

k = 0. If α is real then ζk also has
an angle of departure of 0 or π because complex zeros
must occur in conjugate pairs. 2

Next we consider the case ω0 → ∞:

Theorem 4.5 (a) Let ηi(ω0) = ζi(ω0)/ω0 for ω0 > 0.
As ω0 → ∞, 2m of the zeros of Nm(s, ω0) tend to zi+jω0

and zi − jω0, i = 1, ..., m.
(b) If r is even, then the remaining zeros satisfy the fol-
lowing condition:

lim
ω0→∞

ηi(ω0) = − tan

(

π

2r
+

kπ

r

)

, k = 0, ..., r − 1.

If r is odd, then r − 1 of the remaining zeros satisfy the
following condition:

lim
ω0→∞

ηi(ω0) = − tan

(

π

2
+

kπ

r

)

, k = 1, ..., r − 1,

and the final ηi tends to ∞ or −∞.

Proof Outline

(a) We observe that for all ε > 0 and all θ ∈ [0, 2π),

∣

∣

∣

∣

∣

G
(

zi ± 2jω0 + εejθ
)

G (zi + εejθ)

∣

∣

∣

∣

∣

→ 0 as ω0 → ∞ (14)

because G(s) is proper. The result can be proved by
combining this observation with Rouche’s theorem.

(b) To establish the second part of the theorem we ob-
serve that for ω0 > 0, ηi(ω0) is a zero of

P (s, ε) :=e−jφ(ω0)
m
∏

i=1

(s + j − εzi)
n

∏

i=1

(s − j − εpi)

+ ejφ(ω0)
m
∏

i=1

(s − j − εzi)

n
∏

i=1

(s + j − εpi),

where ε = 1/ω0. Let M ′ +2m be the degree of P (s, 0+).
Since

P (s, 0+) =(s2 + 1)m
[

e−jφ(∞)(s − j)r + ejφ(∞)(s + j)r
]

and e−jφ(∞)/ejφ(∞) = (−1)r, it can be deduced that
M ′ = r if r is even and M ′ = r − 1 if r is odd. It follows
from Lem. 4.3 that as ω0 → ∞ (or as ε → 0), 2m of the
ηi’s → ±j (these correspond to the 2m ζi’s in part (a))
and M ′ of the ηi’s tend to the (finite) solutions of

(

s + j

s − j

)r

= −(−1)r.
2

For almost all ω0 > 0, the zeros and poles of Gm(s, ω0)
will be the same as the zeros of Nm(s, ω0) and Dm(s, ω0),
respectively. However, at isolated values of ω0 we may
have ‘pole-zero’ cancellations as stated in the following
lemma.

Lemma 4.6 For each ω1 > 0, Nm(s, ω1) and Dm(s, ω1)
have a common zero iff ∃ k, l ∈ {1, ..., n} s.t.

pl = pk + 2jω1. (15)

Let mi denote the multiplicity of pi for i = 1, ..., n. If
ω1 > 0, and condition (15) is satisfied, then Nm(s, ω1)
has at least min{mk, ml} zeros at pk + jω1 = pl − jω1.

Remark 3 We have thus seen that the zeros of the
transfer function Gm(s, ω0) are, in general, not simply
related to the zeros of G(s). However, Thm. 4.5 shows
that for large ω0 (relative to the location of the poles of
G(s)), the zeros of Gm(s, ω0) approach the shifted forms
of the zeros of G(s) together with some extra zeros which
converge to specific asymptotes. 2

Remark 4 The situation described in Remark 3, and
formalised by Thm. 4.5, is reminiscent of the zeros of un-
modulated sampled data systems having zero order hold
input. We recall that, when expressed in the equivalent
delta domain [12], the zeros of these systems tend, as the
sampling rate is increased, to the zeros of the underlying
continuous time system, together with some extra zeros
(sometimes called the sampling zeros) which converge to
specific locations ([1], [12]). 2

We illustrate the above results with an example.

Example 1

Consider the following base system:

G(s) =
(s − 0.5)(s + 1)

(s + 0.5)(s + 2)2
.

Notice that this system has zeros at 0.5 and −1. For this
example, we have φ(0) = −π and |φ(ω0)| = π/2 has one
solution at ω0 = ωx ≈ 0.4885. G(s) has no poles or zeros
at the origin and hence µ is even. It follows that the loci
of the zeros of Gm(s, ω0) start at the poles and zeros of
G(s) and as ω0 → ∞, two of the loci tend to 0.5 ± jω0

and two tend to −1 ± jω0. The relative degree is one
(r = 1), and so the remaining zero tends to −∞.

The loci (in the complex plane) of the five zeros of
Nm(s, ω0) are shown in Fig. 3(a). The arrows indicate
the direction of increasing ω0. The real and imaginary
parts of the zeros are plotted against ω0 in Figs. 3(b)
and 3(c). The zeros are labelled ζi, i = 1, ..., 5. As pre-
dicted by Thm. 4.5 (see also Remark 3), ζ3, ζ4 converge
to 0.5± jω0 and ζ1, ζ2 converge to −1± jω0. Note that
ζ4 and ζ5 both begin at −2. From Figs. 3(b) and 3(c)
it can be seen that ζ5 → −∞ along the real axis. ζ4

is discontinuous and tends to −∞ and ∞ as ω0 → ωx

from below and above, respectively. Hence, in Fig. 3(a),
ζ4 is in two parts and the part on the left overlaps ζ5.
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Fig. 3. Example 1 - (a) Loci of the zeros (b) real part of the loci (c) imaginary part of the loci

We also observe that the poles and zeros of G(s) are all
real, and so the angles of departure of the loci are all
0 or π (i.e., they depart along the real axis). It is also
possible to verify that ζi, i = 1, ..., 5 have initial slopes of
0 , 0 , 0, tan(π/4) = 1 and tan(3π/4) = −1, respectively
(Thm. 4.4). 2

4.3 Delays

We next consider the impact of delays in the base sys-
tem. The following lemma states that if a linear system
is modulated and demodulated, then the delay is pre-
served.

Lemma 4.7 Suppose that G̃(s) = e−sτG(s), τ > 0.

Then G̃m(s, ω0) = e−sτGm(s, ω0).

Proof

The proof follows from the definition of G̃m and the
observation that φ̃(ω0) = φ(ω0) − jω0τ . 2

4.4 Summary

In this section, we have shown that the poles of Gm(s, ω0)
are given by pi ± jω0. The behaviour of the loci of the
zeros is more complex. It was found that the loci are con-
tinuous (on R+) except at points where |φ(ω0)| crosses
(or touches) π/2. At these points, one of the zeros ‘van-
ishes’ and the rest are continuous. As ω0 → 0 the zeros
tend to the poles and zeros of G(s) (when µ is even) or
the zeros of Nω(s) (when µ odd). For large ω0 (relative
to the location of the poles and zeros of G(s)), 2m of the
zeros tend to zi + jω0 and zi − jω0 and the remaining
zeros tend to ∞ or −∞. Finally, it was shown that the
delay of a system is invariant with respect to modulation
and demodulation.

5 Implications on Feedback Performance Limi-
tations.

Once the poles, zeros and delay of Gm(s, ω0) are known
the feedback performance limitations for the modulated
system can be found by applying linear system results
[9]. The following observations are particularly interest-
ing:

(1) Since the delay is preserved by modulation, the de-
lay limits the closed loop bandwidth of the response

at yf , not the response at ym. In particular, the
speed of the oscillation at ym(t) (or the modulation
frequency) is not limited by the delay. This explains
the paradox referred to in the introduction, that in
the microgyro system it is possible to regulate the
relatively fast oscillation (≈ 4.5 kHz) despite the
large delay.

(2) Theorem 4.4 states that if µ is even, then the zeros
of Gm(s, ω0) tend to the poles and zeros of G(s) as
ω0 → 0. It follows that if G(s) has an unstable pole,
then G(s, ω0) will have an approximate pole-zero
cancellation in the open right half plane (ORHP)
when ω0 is small. 6 This implies that large peaks
in the closed loop sensitivity functions will be un-
avoidable as the right hand sides (RHS) of the Pois-
son Integrals for Sω0

(s) and Tω0
(s) will be large [13,

Thms. 3.3.1 and 3.3.2]. We note that an approxi-
mate pole-zero cancellation also occurs when ω0 is
close to the resonant frequency of a conjugate pair
of poles of G(s) (Lem. 4.6).

6 Conclusion

In this paper, the poles, zeros and delays of modulated
and demodulated systems have been analysed. It has
been shown that the poles of Gm are the poles of G
shifted by ±jω0 and that the delay is preserved. Several
results on the continuity and asymptotic behaviour of
the zero loci have also been given. Some implications of
these results were also briefly discussed.
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