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Abstract

This paper examines the identification of multi-input systems. Motivated by an
experiment design problem (should one excite the various inputs simultaneously
or separately), we examine the effect of an additional input on the variance of
the estimated coefficients of parametrized rational transfer function models, with
special emphasis on the commonly used FIR, ARX, ARMAX, OE and BJ model
structures. We first show that, for model structures that have common parameters in
the input-output and noise models (e.g. ARMAX), any additional input contributes
to a reduction of the covariance of all parameter estimates. We then show that
the accuracy improvement extends beyond the case of common parameters in all
transfer functions, and we show exactly which parameter estimates are improved
when a new input is added. We also conclude that it is always better to excite all
inputs simultaneously.
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1 Introduction

Our initial motivation for this piece of research was as follows. Suppose we
are to identify a system with one output and several inputs, and we are given
a limited amount of experimentation time to do so. Is it then better to excite
one input at a time, each over part of the experimentation time, or should one
excite all inputs simultaneously, assuming of course that inputs are mutually
independent? Note that multiple-input multiple-output (MIMO) systems are
typically identified as a series of multiple-input single-output systems.

In the literature, it is argued that in industry the guideline for identification
practice is still single-variable based thinking [10]. However, several authors
propose to excite all inputs simultaneously [11,2]. Still, there is no pertinent
analysis of the variance to support these statements.

To obtain a reliable answer to the question stated in the first paragraph,
we perform an analysis of the variance of the estimated parameters, in the
parametric model structures most commonly used in system identification:
FIR (Finite Impulse Response), ARX (Auto-Regressive with eXogeneous in-
puts), ARMAX (Auto-Regressive Moving-Average with eXogeneous inputs),
OE (Output Error) and BJ (Box-Jenkins). In all cases, we assume that the
system is in the model set. The expression for the distribution of parameter
estimates that are asymptotic in the number of data is a classical result [6].
The theoretical conditions for the validity of this asymptotic theory have re-
cently been treated in [3]. The question we address in our analysis of variance
is: “What is the effect on the variance of the estimated coefficients of an ad-
ditional input signal?”. For example, consider an ARMAX model with two
inputs: A(z−1)y(t) = B1(z

−1)u1(t) + B2(z
−1)u2(t) + C(z−1)e(t) where z−1 is

the delay operator. What is the effect on the variance of the estimated coef-
ficients of the A,B1, and C polynomials when the system is excited by two
independent inputs u1 and u2, compared to the situation when u2 = 0?

To motivate the reader, and to show that the answer to this question is not
trivial, we take the rather unconventional approach of starting this paper
with a quizz. We ask the reader to determine, for each of the following model
structures, which of the polynomial estimates will be improved when the input
signal u2 is added, compared to the situation where only the signal u1 is
applied, i.e. u2 = 0. The standing assumption is that the two input signals are
independent, and that the true system is always in the model set.
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M1 : A(z−1)y(t) = B1(z
−1)u1(t) +B2(z

−1)u2(t) + C(z−1)e(t)

M2 : y(t) =
B1(z

−1)

F (z−1)
u1(t) +

B2(z
−1)

F (z−1)
u2(t) +

B1(z
−1)

D(z−1)
e(t)

M3 : y(t) =
B(z−1)

F1(z−1)
u1(t) +

B(z−1)

F2(z−1)
u2(t) +

C(z−1)

D(z−1)
e(t)

M4 : y(t) =
B1(z

−1)

F1(z−1)
u1(t) +

B2(z
−1)

D(z−1)
u2(t) +

C(z−1)

D(z−1)
e(t)

The solution to the quizz is provided at the end of Section 4.

It quickly became clear to us that the effect of an additional input on the accu-
racy of the estimated polynomial coefficients, and the question of whether one
should excite the inputs separately during part of the experimentation time,
or rather simultaneously, might well be different for different model structures.
The conclusion of our analysis is that, whatever the model structure, one never
does worse with simultaneous excitation than with separate excitation and, for
many model structures, one actually gets a smaller covariance matrix of the
estimated polynomial coefficients, including coefficients related to the other
input signals or to the noise model.

This result in itself is probably not too surprising, even though a number of sys-
tem identification experts would probably be inclined to apply the excitation
signals during separate experimentation periods in the case of a Multiple-Input
Single-Output (MISO) system. However, our covariance analysis led to some
results that run contrary to commonly held beliefs in the system identification
community. Let us just foreshadow here two of these findings.

• It is a commonly held view that, in open-loop identification, the variance of
the noise model is unaffected by the input signal. This view finds its origins
in the widely used variance formula for the estimated noise model of a linear
time-invariant system y(t) = G(z)u(t) +H(z)e(t):

var(ĤN(ejω)) ≃ n

N

Φv(e
jω)

|H(ejω)|2 (1)

in which the input signal plays no role whatsoever [6]. In this expression,
Φv(ω) is the power spectrum of the noise v(t) = H(z)e(t) with e(t) being a
zero-mean white noise, n is the order of the noise model, N is the number
of data, and ĤN(ejω) is the noise model estimate at frequency ω . This
formula, together with a corresponding formula for ĜN(ejω), was proposed
by Ljung [5] under the assumption of model order and number of data
tending both to infinity in some specific manner. Recently, exact variance
expressions that are not asymptotic in model order have been derived in [9]
and [7]. For example, Ninness and Hjalmarsson have considered the BJ and
OE models and found that, in these cases, the variance of the noise model is
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independent of the input signal. However, no result is available for the ARX
and ARMAX models, which are treated in this paper. We show in particular
that, for the ARMAX model A(z−1)y(t) = B(z−1)u(t) + C(z−1)e(t) ( with
z−1 being the delay operator), the input signal u(t) does in fact contribute
to a reduction of the variance of ĈN , as well as that of ÂN .

• It follows from the first result that the addition of a second input signal,

say u2(t), always reduces the variance of the estimated noise model ĈN (ejω)

ÂN (ejω)

of an ARMAX model. In addition, we show that, for ARX and ARMAX
models, the addition of a signal u2(t) also improves the estimation of the
polynomial B1(z

−1) related to the first input.

Our results do not contradict any established result in the identification liter-
ature. The longstanding variance formulas based on asymptotic model orders
have contributed to the widely held but incorrect view that the input signal
has no bearing on the precision of the noise model in open-loop identification.
These formulas are presently being reassessed and replaced by more precise
formulas for finite order models. The results of this paper are part of this
reassessment.

Our most significant new contributions, in this respect, are our analysis of
the role of the input signal in the increased precision of all parameters for
ARMAX model structures, as well as the necessary and sufficient conditions
on the parametric structure of multiple-input single-output (MISO) model
structures under which the addition of a new input term improves the accuracy
of polynomial estimates.

Our second contribution concerns input design in the case of systems with sev-
eral inputs, or where several input signals can be applied. Our results provide
an answer to the question of whether or not one should excite all inputs simul-
taneously. They also suggest that, if possible, it pays to add an input into the
system for the sake of identifying model parameters whenever the correspond-
ing input-output transfer function has common parameters with some other
transfer function appearing in the model structure. For example, if the physics
of the problem allow one to convert the ARMAX system Ay = Bu + Ce to
the system Ay = Bu+B2u2 +Ce, then the addition of the signal u2 improves
the precision of all other estimated polynomials A,B and C. Such thought
would certainly not have occurred to the authors prior to this piece of re-
search. We shall leave it to the reader to decide whether some of our findings
are surprizing or not.

The paper is organized as follows. Relevant material on Prediction Error Iden-
tification is given in Section 2. In Section 3, we present the variance analysis
for systems with one output and two inputs, successively for FIR, ARX, AR-
MAX and BJ models. These results are extended to arbitrary MISO model
structures in Section 4. Section 5 focuses on input design problems for the case
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of MISO systems: we show in that section that one can never do better than
simultaneous excitation of all inputs. Section 6 brings some final remarks.

2 Preliminaries on Prediction Error Identification

In this section, we consider the identification of an unknown linear time-
invariant “true” system with one output and two inputs (hereafter denoted a
DISO system, for double-input single-output):

S : y(t) = G1(z, θ0)u1(t) +G2(z, θ0)u2(t) +H(z, θ0)e(t), (2)

where G1(z, θ0) and G2(z, θ0) are strictly causal rational transfer functions,
H(z, θ0) is the stable and inversely stable noise model driven by a white noise
input e with variance σ2

e , y is the measured output, u1 and u2 are two input sig-
nals. A special case of (2) is a single-input single-output (SISO) system, when
u2 = 0. We consider the identification of a model for S using a parametrized
model set:

M = {G1(z, θ), G2(z, θ), H(z, θ), θ ∈ Dθ ⊂ Rk} (3)

where G1(z, θ), G2(z, θ) and H(z, θ) are rational transfer functions, θ ∈ Rk is
a parameter vector, and Dθ is a subset of admissible values for θ. The analysis
of this paper will focus entirely on variance errors; thus we assume from now
on that S ∈ M, i.e. θ0 ∈ Dθ. To every θ corresponds a one-step ahead predictor
ŷ(t|t− 1, θ), and hence a one-step ahead prediction error:

ε(t, θ), y(t) − ŷ(t|t− 1, θ) (4)

=H−1(z, θ)[y(t) −G1(z, θ)u1(t) −G2(z, θ)u2(t)]

The least-squares PE estimate θ̂N based on N input-output data is defined as

θ̂N = arg min
θ∈Dθ

VN(θ), with VN(θ) =
1

N

N∑

t=1

[ε(t, θ)]2. (5)

The estimate θ̂N defines the model Ĝ1 = G1(z, θ̂N ), Ĝ2 = G2(z, θ̂N ), Ĥ =

H(z, θ̂N ). Since S ∈ M, it follows that under reasonable conditions θ̂N
N→∞−→ θ0.

Thus, the transfer function estimates converge to the true transfer functions.
The parameter error then converges to a Gaussian random variable [6]:

√
N(θ̂N − θ0)

D−→ N(0, Pθ), asN → ∞ (6)

where
Pθ = σ2

e [Eψ(t, θ0)ψ
T (t, θ0)]

−1 , σ2
eM

−1, (7)
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with an obvious definition for the information matrix M ∈ Rk×k. Here ψ(t, θ)
is the gradient of the prediction error with respect to the parameters (i.e. the
sensitivity of these errors to parameter variations):

ψ(t, θ) ,
∂ε(t, θ)

∂θ
= −∂ŷ(t|t− 1, θ)

∂θ
(8)

It follows from the formulas (8), (4) and (2) that this gradient ψ, evaluated
at θ = θ0, can be rewritten as follows:

ψ(t, θ0)=
−1

H(z, θ0)

[
∂G1(z, θ)

∂θ

∣∣∣∣∣
θ=θ0

u1(t)

+
∂G2(z, θ)

∂θ

∣∣∣∣∣
θ=θ0

u2(t) +
∂H(z, θ)

∂θ

∣∣∣∣∣
θ=θ0

e(t)

]
. (9)

Combining (7) and (9), and using Parseval’s theorem, the information matrix
M can then be written as:

M =
1

2π

∫ π

−π

1

|H|2
{(

∂G1

∂θ

)(
∂G1

∂θ

)∗

Φu1 (10)

+

(
∂G2

∂θ

)(
∂G2

∂θ

)∗

Φu2 +

(
∂H

∂θ

)(
∂H

∂θ

)∗

σ2
e

}
dω

where all quantities are evaluated at θ = θ0. For a sufficiently large number
N of data, the asymptotic covariance formulas (6)-(7) are typically used to
compute approximate expressions for the covariance of the parameter vector
estimate:

cov(θ̂N ) ≈ 1

N
Pθ =

σ2
e

N
M−1. (11)

Expression (10) will be our key tool for the analysis of the effect of one input
signal, say u2, on the covariance of the estimates of the various model poly-
nomial coefficients. For example, by specializing this formula to an ARMAX
model structure A(z−1)y(t) = B1(z

−1)u1(t) + B2(z
−1)u2(t) + C(z−1)e(t), one

can examine whether or not the input u2 reduces the variance of some or all
of the estimated coefficients of the polynomials A,B1 and C. We mention that
the gradients appearing in (10) have been computed in [4] for all commonly
used polynomial model structures (FIR, ARX, OE, BJ, ARMAX).

For model structures that are linear in the parameters, such as FIR or ARX,
the one-step ahead predictor can be written as:

ŷ(t|t− 1, θ) = ϕT (t)θ, (12)

where ϕ(t) ∈ Rk is a vector containing known input and output signals only,
i.e. independent of θ. In such cases, the matrix M = Eϕ(t)ϕT (t) is very
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easy to compute, and there is no need to resort to the frequency domain
integral expression (10). Finally, we shall need the following technical result
on persistently exciting signals.

Definition 1 [6],[8] Let u(t) be a quasi-stationary signal, and denote
UT (t − 1) , [u(t − 1) . . . u(t − n)]. Then u(t) is called persistently exciting
of order n if and only if the matrix RUU , E{U(t − 1)UT (t − 1)} is positive
definite.

Proposition 1 [8] Let y(t) be the output of an asymptotically stable rational

filter B(z−1)
A(z−1)

driven by the input signal u(t), with B(z−1) =
∑nb

j=1 b
jz−j and

A(z−1) = 1+
∑na

j=1 a
jz−j. Define the regression vector ϕT (t) = [−y(t−1) . . .−

y(t−na); u(t−1) . . . u(t−nb)]. Then, the covariance matrix R , E{ϕ(t)ϕT (t)}
is positive definite if and only if u(t) is persistently exciting of order na + nb

and the polynomials A(z) and B(z) are coprime.

Proof. See Complement C5.1 in [8].

In this paper we shall consider the identification of multiple-input rational
systems of the following general form:

y(t) = G1(z)u1(t) +G2(z)u2(t) + · · ·+Gm(z)um(t) +H(z)e(t), (13)

where the Gi(z) are scalar strictly causal rational transfer functions, and
H(z) is a stable and inversely stable rational transfer function. Throughout
the paper we shall make the following standing assumptions about the input
signals u1, . . . , um.

Standing Assumptions:

(1) The inputs to the system (13) are quasi-stationary signals which are
statistically independent from one another [6].

(2) Each input signal ui(t) is persistently exciting of order ni, where ni is
the sum of the degrees of the numerator and denominator polynomials of
Gi(z).

3 Effect of a second input on classical polynomial model structures

In this section, we use the formula (10), or its simplified version M =
Eϕ(t)ϕT (t) whenever appropriate, to study the effect of the addition of a
second input on the variance of the parameter estimates, for the classical FIR,
ARX, ARMAX and BJ models.
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3.1 FIR models

Consider that the true system is described by the following FIR model struc-
ture:

y(t) = B1(z
−1)u1(t) +B2(z

−1)u2(t) + e(t), (14)

where B1(z
−1) =

∑n
j=1 b

j
1z

−j and B2(z
−1) =

∑n
j=1 b

j
2z

−j are polynomials in
the delay operator z−1. For simplicity, we shall throughout this paper choose
all polynomials in our models to have the same degree. The system can be
rewritten in linear regression form:

y(t) = ϕT (t)θ0 + e(t), (15)

with

θT
0 = [b11 . . . b

n
1 ; b12 . . . b

n
2 ] , [ bT

1 ; bT
2 ]

ϕT (t) = [u1(t−1) . . . u1(t−n); u2(t−1) . . . u2(t−n)]

, [UT
1 (t− 1) ; UT

2 (t− 1)],

with the obvious definitions for the n-dimensional vectors b1, b2, U1(t − 1)
and U2(t − 1). The least-squares parameter estimate θ̂N of θ0 based on N

input-output data is unbiased, and its covariance, for large N , is given by (11)
with

Pθ = σ2
e



RU1U1 0

0 RU2U2




−1

(16)

where RUiUi
, E{Ui(t − 1)UT

i (t − 1)} for i = 1, 2. In the special case where
the inputs are white noises with variance σ2

u1
and σ2

u2
, respectively, we get the

following approximate formula:

cov(θ̂N ) ≈ 1

N




σ2
e

σ2
u1

In 0

0 σ2
e

σ2
u2

In


 (17)

Analysis of the FIR case

(1) The asymptotic accuracy of the estimates of the bj1 coefficients is inde-
pendent of the presence of u2. Thus, even if in the output signal y the
part due to the signal u2 accounts for 90% of the total power, say, this
has no effect on the quality of the estimates of the B1 coefficients.

(2) For a white noise input signal u1, the accuracy of the estimate of each

coefficient bj1 is identical; it depends only on the signal to noise ratio
σ2

u1

σ2
e
.
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3.2 ARX models

Consider now an ARX model structure with two independent inputs:

A(z−1)y(t) = B1(z
−1)u1(t) +B2(z

−1)u2(t) + e(t) (18)

where A(z−1) = 1+
∑n

j=1 a
jz−j and B1(z

−1), B2(z
−1) are as before. The system

can also be rewritten in the linear regression form (15), where φ(t) and θ0 are
now defined as

θT
0 = [a1 . . . an; b11 . . . b

n
1 ; b12 . . . b

n
2 ] , [ aT ; bT

1 ; bT
2 ]

ϕT (t) = [−y(t− 1) . . .− y(t− n); u1(t−1) . . . u1(t−n); u2(t−1) . . . u2(t−n)]

, [Y T (t− 1) ; UT
1 (t− 1) ; UT

2 (t− 1)],

with the obvious definitions for the n-dimensional vectors a, b1, b2, Y (t− 1),
U1(t− 1) and U2(t− 1). For an ARX model, the covariance, for large N , can
be approximated by (11), where M is now given by

M =




RY Y RY U1 RY U2

RU1Y RU1U1 0

RU2Y 0 RU2U2




(19)

with RY Y , E{Y (t−1)Y T (t−1)}, RY U1 , E{Y (t−1)UT
1 (t−1)}, etc. In order

to apprehend the effect of the input signals on the accuracy of the parameter
estimates of the polynomials A,B1 and B2, we need to compute, blockwise,
the inverse of the information matrix M . We denote:

C , M−1 =




Caa Cab1
Cab2

Cb1a
Cb1b1

Cb1b2

Cb2a
Cb2b1

Cb2b2




(20)

Remember that Pθ = σ2
eM

−1 = σ2
eC; in particular cov(â) ≈ σ2

e

N
Caa, cov(b̂1) ≈

σ2
e

N
Cb1b1

, and cov(b̂2) ≈ σ2
e

N
Cb2b2

.

We now compare the covariances of the estimates of the parameter vectors a,
b1 and b2, based on N input-output data, for the case where two indepen-
dent input signals, u1 and u2, are applied simultaneously with the case where
only one input is applied (i.e. u2 = 0). We use the superscripts (2) and (1)
to distinguish between these two excitation conditions. For the case of two
simultaneous and independent inputs, we have:
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C(2)
aa

= (RY Y −RY U1R
−1
U1U1

RU1Y − RY U2R
−1
U2U2

RU2Y )−1 (21)

C
(2)
b1b1

= (RU1U1 − RU1Y (RY Y −RY U2R
−1
U2U2

RU2Y )−1RY U1)
−1

When only u1 is applied (i.e. u2 = 0), the matrix M reduces to its first
two block rows and columns. For this case, the block-diagonal elements of its
inverse matrix C are:

C(1)
aa

= (RY Y −RY U1R
−1
U1U1

RU1Y )−1 (22)

C
(1)
b1b1

= (RU1U1 − RU1YR
−1
Y YRY U1)

−1

We can now establish the following result.

Theorem 1 Consider the identification of the parameter vectors a and b1 of
the ARX model (18) under the Standing Assumptions. Then, the covariance
matrices of the parameter estimates â and b̂1 are smaller if u2 6= 0 than if
u2 = 0, i.e.

C(2)
aa

< C(1)
aa

and C
(2)
b1b1

< C
(1)
b1b1

.

Proof. In performing the comparison, we must keep in mind that the covari-
ances RY Y are different in these two situations. To take this into account, we
split up the covariance matrix RY Y into the sum of its contributions due to
u1, u2 and e, respectively (see (10)):

RY Y = RY Y (u1) +RY Y (u2) +RY Y (e). (23)

By the Standing Assumption (2) and Proposition 1, it follows that



RY Y (u2) RY U2

RU2Y RU2U2


 > 0 (24)

Comparing (21) with (22), we now observe that:

(C(2)
aa

)−1 − (C(1)
aa

)−1 = RY Y (u2) − RY U2R
−1
U2U2

RU2Y > 0,

where the last inequality follows from (24). Hence C(2)
aa

< C(1)
aa

. Comparing

C
(1)
b1b1

and C
(2)
b1b1

, we observe that they differ by the inverse that appears in
the middle of their second term. In the case where u2 = 0, the term to be
inverted is RY Y (u1) + RY Y (e). When u2 6= 0, that term becomes RY Y (u1) +
RY Y (e)+RY Y (u2)−RY U2R

−1
U2U2

RU2Y . For the same reason as above, the latter

term is always strictly larger than the former, and hence C
(2)
b1b1

< C
(1)
b1b1

. �
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Analysis of the ARX case

(1) Addition of a second input signal in an ARX system improves the ac-
curacy of all parameter estimates. While the improved accuracy of the
estimate of the A polynomial is easily understood by the increased energy
in the y(t) data resulting in a better signal to noise ratio, the improve-
ment of the estimate of the polynomial B1 as a result of the addition of
the input signal u2 may come as a surprise. In fact, this improved accu-
racy results from the improved accuracy of the A polynomial estimate
and the correlation between the estimates of the A and B1 polynomial
coefficients. Thus, the effect of the additional signal u2 on the accuracy
of â is direct, while the effect on b̂1 is indirect via â.

(2) To get a better understanding of this, we examine what happens when
we let the energy of the signal u2 increase. Consider that the formulas
derived above have been written for some variance σ2

u2
of the signal u2,

and let us now replace this variance by Kσ2
u2

, with K going to infinity.

We examine the effect of K on the covariances of â and b̂1, respectively.
Using (21) and (23), we get:

(C(2)
aa

)−1 =RY Y (u1) +RY Y (e) − RY U1R
−1
U1U1

RU1Y

+K[RY Y (u2) −RY U2R
−1
U2U2

RU2Y ] (25)

(C
(2)
b1b1

)−1 =RU1U1 − RU1Y [RY Y (u1) +RY Y (e)

+K(RY Y (u2) −RY U2R
−1
U2U2

RU2Y )]−1RY U1 (26)

It follows from these expressions that

lim
K→∞

(C(2)
aa

)−1 = ∞, and lim
K→∞

(C
(2)
b1b1

)−1 = RU1U1 .

Thus, when the energy of the additional input u2 grows indefinitely, the
covariance of â goes to zero, while that of b̂1 goes to the covariance that
would be obtained for a FIR model with input u1 only. The intuition
behind this last observation is that, when the variance of u2 goes to
infinity, the parameters of the A and B2 polynomials become perfectly
known, and the estimation of the B1 polynomial reduces to that of a FIR
model y(t) = B1(z

−1)u1(t) + e(t).

Simulation example

We consider the DISO ARX model structure (18) with A = 1 − 0.2z−1,
B1 = 10z−1 + z−2, B2 = 0.1z−1 + 4z−2, where u1, u2, and e are three
independent white noises, with standard deviations σu1 = 2, σu2 = 10, and
σe = 4, respectively. We compare the situation where only input u1 is applied
with the situation where the two inputs are applied simultaneously. For
each case, we compute the theoretical covariance matrix and also perform a
Monte-Carlo simulation to confirm these theoretical results.
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Case A: 1 input

The theoretical asymptotic covariance matrix Pθ for θ = (a1, b11, b
2
1) is:

Pθ =




0.2954 0 −2.9538

0 4.0000 0

−2.9538 0 33.5385




The variances of the 3 parameter estimates computed by 1000 Monte-Carlo
runs are:

0.2849 4.0171 32.7052

Case B: 2 inputs

The theoretical covariance matrix for the vector θ = (a1, b11, b
2
1, b

1
2, b

2
2) is:

Pθ =




0.0092 0 −0.0921 0 −0.0009

0 4.0000 0 0 0

−0.0921 0 4.9208 0 0.0092

0 0 0 0.1600 0

−0.0009 0 0.0092 0 0.1601




The variances obtained by Monte-Carlo runs are now:

0.0088 4.0185 5.1151 0.1616 0.1580

Comparing the two situations, we observe that the presence of the second
input u2 not only reduces the variance of a1 drastically, but it also significantly
improves the precision of the estimated coefficient b21. Note that it has no effect
on b11 because of the sampling delay. The Monte-Carlo simulations thus confirm
the theoretical calculations. With the same Monte-Carlo runs, we also compute

the experimental variances of the transfer function estimates B̂1

Â
, evaluated at

500 frequency points. The results are shown in Figure 1: full line for the 2-
input system, dashed line for the one-input case. The absolute values of the
variances are represented.

3.3 ARMAX models

For an ARMAX system, we need to refer to the frequency domain expression
(10), with the general expressions of the sensitivities specialized to the AR-
MAX case. As we shall see, the effect of adding a second input signal in an
ARMAX model structure follows immediately from the covariance analysis of

12
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Fig. 1. Variance of B̂1

Â
for the ARX model with 2 inputs (full line) and one input

(dashed line).

a SISO ARMAX model structure. Thus, we first consider the SISO ARMAX
structure:

A(z−1)y(t) = B(z−1)u(t) + C(z−1)e(t) (27)

with A and B as before and C(z−1) = 1 +
∑n

j=1 c
jz−j . The parameter vector

is defined as:
θT , [ aT ; bT ; cT ].

For this ARMAX model, the two terms in the expression (10) of the informa-
tion matrix become:

1

H

∂G

∂θ
=

1

C




−B
A

e−jω

...

−B
A

e−jωn

e−jω

...

e−jωn

0
...

0




,
1

H

∂H

∂θ
=

1

C




−C
A

e−jω

...

−C
A

e−jωn

0
...

0

e−jω

...

e−jωn




With these expressions under our belt, we observe that the information matrix
M for an ARMAX model takes the following block-diagonal structure:

M =




Maa(u) +Maa(e) Mab(u) Mac(e)

Mba(u) Mbb(u) 0

Mca(e) 0 Mcc(e)




(28)

13



where, e.g., Maa(u) denotes the contribution of the (1, 1)-term of the informa-
tion matrix that is due to the signal u. By computing the inverse C = M−1

of (28), we can then study the effect of the input signal u on the precision of
each of the components â, b̂, and ĉ of the parameter estimate θ̂. We have the
following result.

Theorem 2 Consider the identification of the parameters of the ARMAX
model (27) under the Standing Assumptions. The input signal u contributes
to the estimation of all parameter estimates, â, b̂ and ĉ. In particular, the
covariance matrix of ĉ has the following expression:

Pc(ARMAX) = σ2
e{Mcc(e)−Mca(e)[Maa(u) +Maa(e)

−Mab(u)M−1
bb

(u)Mba(u)]
−1Mac(e)}−1 (29)

For the corresponding ARMA model structure (i.e. no input) with the same A
and C polynomial, the covariance of the estimate of the C polynomial is larger
than in the ARMAX model structure:

Pc(ARMA) = σ2
e{Mcc(e) −Mca(e)M

−1
aa

(e)Mac(e)}−1 > Pc(ARMAX) (30)

Proof. Expression (29) follows by straightforward calculation of the (3, 3)
block-element of M−1, while (30) is obtained from the corresponding formu-
las for the ARMA model case. By comparing expressions (29) and (30), and
noting that Maa(u) −Mab(u)M−1

bb
(u)M21(u) > 0 by Proposition 1, it follows

immediately that Pc(ARMA) > Pc(ARMAX). �

Corollary 1 Consider the identification of the parameter vectors a, b1 and c

of the ARMAX model:

A(z−1)y(t) = B1(z
−1)u1(t) +B2(z

−1)u2(t) + C(z−1)e(t) (31)

under the Standing Assumptions on u1 and u2. Then, the covariance matrices
of the parameter estimates â, b̂1 and ĉ are smaller if u2 6= 0 than if u2 = 0.

Proof. Theorem 1 states that u2 reduces the covariance of â and b̂1, while
Theorem 2 states that it also reduces the covariance of ĉ. �

Analysis of the ARMAX case

(1) In an ARMAX system, the input signal u affects the variance of the
estimates of theA,B and C polynomials. In particular, the variance of the
estimates of the A and C polynomials is smaller than in the corresponding
ARMA model.

14



(2) The addition of a second input in an ARMAX model structure reduces
the covariance of the estimates of all polynomials.

(3) If the variance of the input signal u grows indefinitely, expression (29)
shows that the covariance matrix Pc(ARMAX) for the parameter esti-
mate ĉ tends to σ2

eM
−1
cc

(e). This is the variance that would be obtained
for the identification of the corresponding Moving Average (MA) model
y(t) = C(z−1)e(t). It is smaller than the corresponding Pc(ARMA) of
(30). The intuition, as for the similar observation made for the ARX
model with two input signals, is that the polynomials A and B become
perfectly known when the input signal power tends to infinity.

Simulation example

We have simulated the ARMAX model (27) with A = 1 − 0.2z−1,
B = 10z−1 + z−2 and C = 1 − 1.6z−1 + 0.64z−2, and with u and e two
independent white noises with σu = 1 and σe = 4, respectively. We have
compared, both theoretically and by Monte-Carlo simulations with 1000
runs, the covariances obtained for the parameter estimates for this ARMAX
model with those obtained with the ARMA model with the same A and C

polynomials, i.e. with u = 0 in the above model.

ARMA model

The theoretical asymptotic covariance matrix Pθ with θ = (a1, c1, c2) is:

Pθ =




3.6879 2.4837 −2.3934

2.4837 2.2631 −2.1879

−2.3934 −2.1879 2.1437




The variances obtained by Monte-Carlo runs are:

3.9433 2.4015 2.2896

ARMAX model

The theoretical covariance matrix for the vector θ = (a1, b1, b2, c1, c2) is:

Pθ =




0.6906 −1.8792 11.2279 0.4651 −0.4482

−1.8792 14.5597 −39.7682 −1.2656 1.2195

11.2279 −39.7682 191.9959 7.5617 −7.2867

0.4651 −1.2656 7.5617 0.9036 −0.8778

−0.4482 1.2195 −7.2867 −0.8778 0.8813



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The variances obtained with 1000 Monte-Carlo runs are:

0.6805 15.8600 194.6594 0.9922 0.9735

The Monte-Carlo simulations confirm the theoretical computations. We ob-
serve that the presence of an input signal in the ARMAX model, in comparison
with the ARMA model, not only reduces the variance of the a parameter (by a
factor of 5), but also that of the c1 and c2 parameter estimates (by a factor of

2.5). We have also computed the variance of the estimated models Ĉ

Â
obtained

with the Monte-Carlo simulations for the ARMA and ARMAX models.
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Fig. 2. Variance of Ĉ

Â
for the ARMA (dashed line) and ARMAX (full line) models.

3.4 Box-Jenkins models

Consider now a BJ model structure with two independent inputs:

y(t) =
B1(z

−1)

F1(z−1)
u1(t) +

B2(z
−1)

F2(z−1)
u2(t) +

C(z−1)

D(z−1)
e(t) (32)

where the polynomials B1, B2 and C are as before, and the polynomials F1,
F2 and D are all monic of degree n. The parameter vector is defined as

θT , [ b1
T ; f1

T ; b2
T ; f2

T ; cT ; dT ].
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For a BJ model with a single input, the terms in the expression (10) of the
information matrix specialize to:

1

H

∂G

∂θ
=

D

CF




e−jω

...

e−jωn

−B
F

e−jω

...

−B
F

e−jωn

0
...

0

0
...

0




,
1

H

∂H

∂θ
=




0
...

0

0
...

0

− 1
C

e−jω

...

− 1
C

e−jωn

− 1
D

e−jω

...

− 1
D

e−jωn




Introducing these expressions into (10), we observe that the information ma-
trix for the SISO BJ model structure is block-diagonal. With the addition of
a second input signal, this information matrix takes the following form:

M =




M11(u1) 0 0

0 M22(u2) 0

0 0 M33(e)




(33)

Analysis of the BJ case

(1) With a BJ model structure, the input signal has no effect on the preci-
sion of the noise model estimate. This observation is valid for open-loop
identification only. In closed-loop identification of BJ models, the input
signal u does influence the noise model estimate (see [1]).

(2) The effect of each input signal on the parameter estimate covariance is
completely decoupled from the other input signals. Addition of a second
input signal u2 therefore does not improve the quality of the estimates of
any polynomials not related to that input.

(3) The situation for OE models is identical to that for BJ models.
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4 Generalization to arbitrary multi-input model structures

In this section, we generalize the results of the previous section to arbitrary
multi-input systems. We shall derive exact conditions on the structure of the
parametrization of multi-input models under which the addition of a new
input term improves the quality of the parameter estimates appearing in the
other transfer functions. For the m-input 1-output system (13), the following
completely general polynomial model structure can be written:

y(t) =
B1(z

−1)

F1(z−1)
u1(t)+

B2(z
−1)

F2(z−1)
u2(t)+· · ·+Bm(z−1)

Fm(z−1)
um(t)+

C(z−1)

D(z−1)
e(t). (34)

Here Bi, Fi, i = 1, . . . , m, as well as C and D are polynomials in the shift
operator z−1, with C andD monic. These polynomials may or may not contain
common parameters. For example, the ARMAX model with two inputs is a
special case of (34) in which m = 2, with F1 = F2 = D = A. As before, it is
assumed that the true m-input 1-output system can be represented by (34)
for a particular value of the parameters.

Consider first the estimates of the parameters of the model structure (34)
obtained from an identification experiment X1 with m inputs for which the
Standing Assumptions hold. Consider next a second identification experiment
X2, in which the input signals u1, . . . , um are the same as before but with

the application of an additional input term Bm+1(z−1)
Fm+1(z−1)

um+1(t), also obeying the
Standing Assumptions. By the analysis of Section 3, we already know that if
Bm+1 or Fm+1 has common parameters with some of the other transfer func-
tions, this additional input will improve the quality of the estimates of these
other transfer functions. However, the analysis of Section 3 does not tell us
exactly which polynomial estimates are improved. One might be tempted to
believe that the polynomial estimates that are improved by the addition of
Bm+1(z−1)
Fm+1(z−1)

um+1(t) are those that appear in transfer functions that have com-
mon parameters with either Bm+1 or Fm+1. For example, on the basis of the

analysis of Section 3, addition of the input term Bm+1(z−1)
A(z−1)

um+1(t) in an AR-
MAX system is expected to improve all polynomial estimates of the model,
because the polynomial A appears in all transfer functions. As our analysis
will show, even though having parameters in common with the polynomials
Bm+1 or Fm+1 appearing in the added input term is a sufficient condition for
accuracy improvement, it is not a necessary condition. Thus, the quality im-
provement carries to more transfer function estimates than those that have

common parameters with the added transfer function Bm+1(z−1)
Fm+1(z−1)

.

Our procedure for deriving necessary and sufficient conditions for accuracy
improvement is to first compute the covariance of the polynomial estimates of

any one of the transfer functions Bi(z
−1)

Fi(z−1)
, i = 1, . . . , m or C(z−1)

D(z−1)
of the system
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(34) when it is excited bym inputs, and to then examine under what structural

conditions the addition of the input term Bm+1(z−1)
Fm+1(z−1)

um+1(t) improves the qual-
ity of these parameter estimates when all other conditions are left unchanged
and the Standing Assumptions hold.

In analyzing the effect of adding an extra input signal on the estimates of
the polynomials appearing in other transfer functions, we first observe that
no distinction is made between the covariance of the parameter estimates
of the transfer functions Gi(z) excited by the measured signals ui(t) and the
covariance of the parameter estimates of the transfer function H(z) excited by
the unmeasured white noise signal e(t) (see (9) and (10)). In other words, the
conditions on the parametric structure under which the addition of an input

term Bm+1(z−1)
Fm+1(z−1)

um+1(t) improves the estimates of the parameters of Bi, Fi are
identical to the conditions under which such additional input term improves
the estimates of the parameters of the C and D polynomials in the model of
H(z). Since all considered models contain a noise term H(z)e(t), and in order
to keep the analysis as simple as possible, we thus seek necessary and sufficient
conditions under which the parameter estimates of the noise model H(z) =
C(z−1)
D(z−1)

are improved by addition of an input term. The first lemma provides

the conditions under which addition of the input term G(z)u(t) improves the
parameter estimates of the noise model.

In a first experiment, denoted X1, we consider the identification of the system
S1 : y(t) = H(z, β0, γ0)e(t) with a parametric model structure M1 : y(t) =
H(z, β, γ)e(t) using N output data, where β and γ are parameter vectors. We

compare the covariance of the parameter estimates β̂
(1)
N and γ̂

(1)
N obtained in

experiment X1 with the covariance of the estimates of these same parameter
vectors obtained from N input-output data collected on the following two
systems:

S2 : y(t)= G(z, α0)u(t) +H(z, β0, γ0)e(t) (35)

S3 : y(t)= G(z, α0, β0)u(t) +H(z, β0, γ0)e(t) (36)

Here u is a measured input signal, independent of the white noise signal e. In
each case, we take a model structure that is able to represent the true system:

M2 : y(t)= G(z, α)u(t) +H(z, β, γ)e(t) (37)

M3 : y(t)= G(z, α, β)u(t) +H(z, β, γ)e(t) (38)

Note that in the system S3 and the corresponding model structure M3, the
added input term G(z, α, β)u(t) has common parameters with the noise model
H(z, β, γ), while in the system S2 the parameters of these two transfer func-
tions are disjoint.
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Lemma 1 Consider the estimation of the parameter vector (βT , γT ) of the
noise model H(z, β, γ) based on N data under three different experimen-
tal conditions, representing three different combinations of data generation
mechanism and model structure: X1 = {S1 ∈ M1}, X2 = {S2 ∈ M2}, X3 =
{S3 ∈ M3}. Assume also that the Standing Assumptions on u hold for ex-
periments X2 and X3. Then, the covariance of the parameter vector estimate
(β̂T

N , γ̂
T
N) is identical in experiments X1 and X2, while it is smaller in experi-

ment X3 than in the other two experiments. The accuracy of both β̂N and γ̂N

are improved by the presence of common parameters, and not just that of the
common parameter vector β̂N .

Proof. For experiment X1, the covariance matrix of the parameter vector
estimate is

cov



β̂

(1)
N

γ̂
(1)
N


 =

σ2
e

N



Mββ(e) Mβγ(e)

Mγβ(e) Mγγ(e)




−1

,
σ2

e

N

(
M (1)

)−1
(39)

where the structure of the information matrix M (1) follows from (10), with

Mβγ(e) , 1
2π

∫ π
−π

σ2
e

|H|2

(
∂H
∂β

) (
∂H
∂γ

)∗
dω, and similarly for the other elements.

For experiment X2, the information matrix for the estimation of the parameter
vector (αT βT γT ) is block-diagonal with Mαα(u) as the (1, 1) block-element
and M (1) as the (2, 2) block-element. Therefore, the covariance of the estimate
(β̂T

N γ̂T
N) is again given by the right hand side of (39) for this experimental

situation.

For experiment X3, we get

cov




α̂
(3)
N

β̂
(3)
N

γ̂
(3)
N




=
σ2

e

N




Mαα(u) Mαβ(u) 0

Mβα(u) Mββ(u) +Mββ(e) Mβγ(e)

0 Mγβ(e) Mγγ(e)




−1

(40)

It then follows that, for this experimental condition,

cov



β̂

(3)
N

γ̂
(3)
N


 =

σ2
e

N



Mββ(e)+Mββ(u)−Mβα(u)M−1

αα (u)Mαβ(u) Mβγ(e)

Mγβ(e) Mγγ(e)




−1

(41)
By the Standing Assumption on G(z, α, β)u(t), the term Mββ(u) −
Mβα(u)M−1

αα (u)Mαβ(u) is positive definite. Comparing (41) with (39), we con-
clude that the covariance of the estimate of (βT γT ) is smaller with experiment
X3 than with the other two experiments. Not only is the covariance of the
common parameter vector β̂N made smaller by the addition of the input term
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G(z, α0, β0)u(t), but also that of the parameter vector γ̂N that appears only
in the noise model. With experimental conditions X1 and X2, we get

cov(γ̂N) =
σ2

e

N

[
Mγγ(e) −Mγβ(e)M−1

ββ (e)Mβγ(e)
]−1

, (42)

while with experimental conditions X3 we get the strictly smaller value

cov(γ̂
(3)
N ) =

σ2
e

N
[Mγγ(e) −Mγβ(e) (Mββ(e) +Mββ(u) (43)

−Mβα(u)M−1
αα (u)Mαβ(u)

)−1
Mβγ(e)

]−1

�

Comments

• The analysis made in Lemma 1 would be identical if S1 was replaced by
S̃1 : y(t) = G1(z, β0, γ0)u1(t) + e(t), and if we were to study the effect of
adding an input term G2(z, α0)u2(t) (respectively G2(z, α0, β0)u2(t)) on the
accuracy of the parameter estimates of the model G1(z, β, γ).

• Lemma 1 shows that addition of the input term G(z)u(t) increases the
precision of all parameters that appear in the other transfer function if and
only if the model G(z, θ) for this input term has common parameters with
that other transfer function.

The next lemma shows that this increased accuracy extends to the parameters
of all other transfer function models that have common parameters with the
transfer function models whose accuracy has been increased as a result of the
added input term, and not just to transfer function models that have common
parameters with this added input term; in other words, the increased accuracy
has a “snowball effect”.

Lemma 2 Consider the estimation of the parameter vectors β and γ appear-
ing jointly in a particular transfer function model Gi(z, β, γ) or H(z, β, γ) of
the MISO model (34). Consider two different experimental conditions, X1 and
X2 (X2 is the same as X1 but with an additional input term), and assume
that the covariance of β̂N is smaller in experiment X2 than in experiment X1:
cov(β̂

(2)
N ) ≤ cov(β̂

(1)
N ). Then, cov(γ̂

(2)
N ) ≤ cov(γ̂

(1)
N ).

Proof. First let us comment that, in the context of this paper, cov(β̂
(2)
N ) ≤

cov(β̂
(1)
N ) typically occurs because the subvector β apears in the added term

Gm+1(z)um+1(t) of experiment X2 . Let α(1) be the vector of all parameters,
other than β, that appear in all other transfer models in experiment X1, and
let α(2) be the vector of all such parameters in experiment X2. Then the
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information matrices for the two experiments have the following forms:

M (i) =




Mα(i)α(i) Mα(i)β 0

Mβα(i) Mββ Mβγ

0 Mγβ Mγγ




i = 1, 2 (44)

Note that α(1) and α(2) (and hence Mα(1)α(1) and Mα(2)α(2)) do not necessarily
have the same dimension; typically dim(α(2)) ≥ dim(α(1)) when experiment
X2 contains an additional input term. Let us denote by C(i) the inverse of
M (i), with an identical partitioning. The (2, 2) and (3, 3) block-elements of
C(i) are then obtained as:

C
(i)
ββ =

[
Mββ −MβγM

−1
γγ Mγβ −Mβα(i)M−1

α(i)α(i)Mα(i)β

]−1
(45)

C(i)
γγ =

[
Mγγ −Mγβ

(
Mββ −Mβα(i)M−1

α(i)α(i)Mα(i)β

)−1
Mβγ

]−1

(46)

Combining these last two equations, we get a remarkable relationship between
C(i)

γγ and C
(i)
ββ in which the dependence on the accuracy of the estimates of all

other parameters (those contained in α(i)) has been eliminated:

C(i)
γγ =

[
Mγγ −Mγβ

(
(C

(i)
ββ)−1 +MβγM

−1
γγ Mγβ

)−1
Mβγ

]−1

. (47)

This relationship holds for both experiments, X1 and X2. Since cov(β̂
(i)
N ) =

σ2
e

N
C

(i)
ββ and cov(γ̂

(i)
N ) = σ2

e

N
C(i)

γγ we have thus proved that

cov(β̂
(2)
N ) ≤ cov(β̂

(1)
N ) ⇔ cov(γ̂

(2)
N ) ≤ cov(γ̂

(1)
N ). (48)

�

Observe that the result of Lemma 2 is rather general and applies to broader
situations than the one considered here of the addition of an input signal term.
Suppose, for example, that the accuracy of some subvector β̂N appearing in
one of the transfer function models is improved because the level of the input
signal power is increased at the corresponding input. Then, the covariance of
the estimated parameters appearing in other transfer function models jointly
with the β subvector is also decreased.

With the results of the two previous lemmas, we can now state precisely which
of the parameter estimates of a MISO system can be improved by the addition
of a new input term. To make a precise statement, we need to introduce the
following definition.
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Definition 2 Consider a set of parametrized transfer functions S =
{G1, G2, . . . , Gm}. We shall say that Gi is linked with Gj if Gi and Gj

have common parameters; we denote this by Gi

⋂
Gj. We shall say that Gi

is connected to Gj if there exists a sequence of elements of S such that
Gi

⋂
Gk

⋂
. . .
⋂
Gl

⋂
Gj.

We can then state the main result of this paper.

Theorem 3 Consider an identification experiment with the m-input 1-output
system described by (13), and consider now a second identification experi-
ment with the same input signals u1, . . . , um, but with the additional input
term Gm+1(z)um+1(t). Let the Standing Assumptions hold in both experiments.
Then, the addition of the input term Gm+1(z)um+1(t) in the second experiment
improves the parameter estimates of all polynomials in all transfer function
models Gi, i = 1, . . . , m and H that are connected to the model of Gm+1(z).

Proof. The proof is an immediate consequence of Lemmas 1 and 2. �

With the results of this section, we are now able to provide an answer to the
quizz proposed in the Introduction. With the Standing Assumptions holding,
the presence of a non-zero input signal u2 in the four model structures, com-
pared to the situation where u2 = 0, improves the quality of the following
polynomial estimates: for model M1: A,B1 and C; for model M2: B1, F and
D; for model M3: B and F1; and for model M4: C and D.

5 Input design considerations

In this section, we come back to the initial motivation that led us to investi-
gate the variance formulas presented so far: assuming that we are to identify
a system with several inputs, is it better to excite one input at a time or all
inputs simultaneously, given that these inputs are independent? We consider
systems with two inputs, since all qualitative statements we make in this
section will remain unchanged for systems with more than two inputs. In order
to make fair comparisons, and since the variance of all parameter estimates
decays as 1

N
, we assume that the total experimentation time N is fixed. Thus,

we compare excitation with two independent signals u1 and u2 simultaneously
during the whole time interval, with excitation with u1 only over [0, N

2
] and

with u2 only over [N
2
, N ], say. Finally, we shall limit our analysis to the

model structures that are most commonly used in system identification, and
we also consider that the Standing Assumptions hold for the signals u1 and u2.
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5.1 ARX and ARMAX model structures

We first consider the input design question stated above for model structures
that have common parameters in the input/output and noise models, i.e. ARX
and ARMAX models. For these model structures, we have shown that the
addition of a new input signal contributes to a strict decrease of the covariance
of all estimated polynomials. We give a complete analysis for the case of an
ARX model structure (see subsection 3.2).

In the case of simultaneous excitation over [0, N ], the information matrix is
given by (see (19)):

Msim =




RY Y (e) +RY Y (u1) +RY Y (u2) RY U1 RY U2

RU1Y RU1U1 0

RU2Y 0 RU2U2




(49)

In the case of separate excitation over half the interval length, and assuming
that the power spectra (or, equivalently, the covariances) of the excitation
signals are identical in both experiments, we get:

Msep =




RY Y (e) + 1
2
RY Y (u1) + 1

2
RY Y (u2)

1
2
RY U1

1
2
RY U2

1
2
RU1Y

1
2
RU1U1 0

1
2
RU2Y 0 1

2
RU2U2




(50)

Now observe that

Msim −Msep =
1

2




RY Y (u1) +RY Y (u2) RY U1 RY U2

RU1Y RU1U1 0

RU2Y 0 RU2U2



> 0, (51)

where the positive definiteness follows from the Standing Assumptions on the
signals u1 and u2. Therefore (Msim)−1 < (Msep)

−1 and, using (11), it follows

that the covariances of â and b̂1 are both strictly larger in the case of separate
excitation. The expressions of these covariances follow easily from (49) and
(50). For the case of simultaneous excitation over [0, N ], we get:

[cov(â)]−1 =
N

σ2
e

[RY Y (e) + Γ(u1) + Γ(u2)] (52)

[
cov(b̂1)

]−1
=
N

σ2
e

[RU1U1 − RU1Y (RY Y (e) +RY Y (u1) + Γ(u2))
−1RY U1 ]
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where we have introduced the matrices Γ(ui) , RY Y (ui)−RY Ui
R−1

UiUi
RUiY , i =

1, 2, which are positive definite by the Standing Assumptions. In the case of
separate excitation over half the interval length, we get:

[cov(â)]−1 =
N

2σ2
e

[RY Y (e) + Γ(u1)] +
N

2σ2
e

[RY Y (e) + Γ(u2)]

=
N

σ2
e

[RY Y (e) +
1

2
(Γ(u1) + Γ(u2))] (53)

[
cov(b̂1)

]−1
=

N

2σ2
e

[RU1U1 −
1

2
RU1Y (RY Y (e) +

1

2
RY Y (u1) +

1

2
Γ(u2))

−1RY U1 ]

In the case where the output power is constrained, it is reasonable to trans-
late the constraint on the output power into the constraint RY Y ≤ Rmax for
some given Rmax. In the case of simultaneous excitation, the information ma-
trix is then again given by (49), where the (1, 1) block-term is now equal to
Rmax. In the case of separate excitation, one should then adjust the power
level of the input signal u1 so that, during the interval [0, N

2
] during which it

is applied, it produces the same output power (or the same Rmax) as in the
simultaneous excitation experiment, and likewise for u2 during the interval
[N

2
, N ]. Although an exact comparison between the covariances achieved with

simultaneous and with separate excitation is very difficult to compute, a rea-
sonable approximation shows that the information matrix will be nearly the
same as for the case of simultaneous excitation. Thus, in the case of output
power constraints, the two strategies will yield roughly the same accuracy for
the parameter estimates.

We conclude this subsection with an additional input design recommendation
that results from the analysis of Section 3. Suppose we are to identify a SISO
ARX or ARMAX model, and assume that the power of the input signal u is
constrained. If it is physically possible to add an additional excitation u2 such
that the input-output model for u2 has common parameters with the model for
u or with the noise model, then our analysis suggests that adding this second
excitation improves the accuracy of the estimates of the other polynomials. In
particular, if one needs to identify an ARX model Ay = Bu+ e with a power
constraint on u and if it is possible to add a second input signal such that
Ay = Bu + B2u2 + e, then the excitation by u2 will improve the parameter
estimates of A and B.

5.2 FIR, OE and BJ model structures

We consider now separately parametrized model structures, i.e. FIR, OE and
BJ models. For such model structures, the input ui affects the precision of the
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estimate of Gi(z) only. If there is no constraint on the output variance, the
optimal design is then to excite both inputs simultaneously and independently
during the whole time interval of length N , with the maximum admissible
input signal powers. If there is a constraint on the output power, and assuming
for simplicity that the contributions to the output power of the two input
signals are the same, then calculations show that exciting the two inputs
simultaneously during the whole interval, or exciting each separately at the
maximum allowable power during half of the total experimentation time will
lead to the same covariance for the parameters of the estimated input/output
transfer functions.

6 Conclusions

We have examined the effect of an additional input signal excitation on the
variance of the parameter estimates of multiple-input single-output systems,
in the situation where the system is in the model set. We have shown that the
addition of an input term can only improve the accuracy of some of the other
estimated transfer functions. More precisely, we have presented conditions on
the structure of the parametrization of MISO systems that allow one to know
exactly which transfer functions will be estimated more accurately when a
new input term is added. We have also shown that, if the accuracy of some of
the parameters of a transfer function model is improved, then the accuracy of
all parameters in this transfer function model is improved.

For the commonly used ARX and ARMAX model structures, the addition
of a new input signal um+1 improves the accuracy of all parameter estimates,
including those of the Bi polynomials corresponding to the other signals ui, i =
1, · · · , m, and of the C polynomial of the noise model. For FIR, OE, or BJ
structures, the additional input signal um+1 does not affect the variances of
the parameters corresponding to the other inputs or to the noise model.

Finally, our results have enabled us to address the question of whether one
should excite the different inputs of MISO systems simultaneously or sep-
arately. In a nutshell, the general recommendation is that, by applying si-
multaneous and independent excitations, one can never do worse than with
separate excitation, and one can often do much better.
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