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Abstract

Repetitive processes are a distinct class of 2D systems (i.e. information propagation in two independent directions) of both systems theoretic
and applications interest. They cannot be controlled by direct extension of existing techniques from either standard (termed 1D here) or 2D
systems theory. In this paper, we exploit their unique physical structure to show how two term, i.e. proportional plus integral (or PI) action,
can be used to control these processes to produce desired behavior (as opposed to just stability).
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Repetitive dynamics; Stability; Stabilization; Controller design; LMI

1. Introduction

The essential unique characteristic of a repetitive process is
a series of sweeps, termed passes, through a set of dynamics
defined over a fixed finite duration known as the pass length.
On each pass an output, termed the pass profile, is produced
which acts as a forcing function on, and hence contributes to,
the dynamics of the next pass profile. This, in turn, leads to the
unique control problem for these processes in that the output
sequence of pass profiles generated can contain oscillations that
increase in amplitude in the pass-to-pass direction.

Physical examples of repetitive processes include long-wall
coal cutting and metal rolling operations (see, for example,
Rogers & Owens, 1992). Also in recent years applications have
arisen where adopting a repetitive process setting for analysis
has distinct advantages over alternatives. They can, for example,
be used as an analysis tool in iterative learning control (ILC)
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schemes as fully explained in Owens, Amann, Rogers,
and French (2000). In this paper we consider control in the
presence of disturbances for so-called discrete linear repetitive
processes.

Throughout this paper, the null matrix and the identity ma-
trix with the required dimensions are denoted by 0 and I, re-
spectively. Moreover, M > 0 (< 0) denotes a real symmetric
positive (negative) definite matrix.

2. Background

Following (Rogers & Owens, 1992) the state space model of
a discrete linear repetitive process has the following form over
0�p�� − 1, k�0:

xk+1(p + 1) = Axk+1(p) + Buk+1(p) + B0yk(p) + Ew(p),

yk+1(p) = Cxk+1(p) + Duk+1(p) + D0yk(p) + Fw(p). (1)

Here on pass k, xk(p) ∈ Rn is the state vector, yk(p) ∈ Rm

is the pass profile vector, uk(p) ∈ Rr is the input vector and
w(p) ∈ Rq a disturbance vector and here is assumed to be the
same on each pass. Also the boundary conditions are, without
loss of generality, taken as zero initial pass profile and xk+1(0)=
dk+1, k�0, where dk+1 has constant entries.
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This state space model allows for disturbances which enter
both the state and pass profile dynamics on each pass. The sta-
bility theory (Rogers & Owens, 1992) for linear repetitive pro-
cesses is based on an abstract model in a Banach space setting
which includes the vast majority of such processes as special
cases. In this model it is the pass-to-pass coupling (noting again
the unique control problem for them) which is critical. This is
of the form yk+1 = L�yk, where yk ∈ E� (E� a Banach space
with norm ‖ · ‖) and L� is a bounded linear operator mapping
E� into itself. Two concepts of stability can be defined but in
general it is the stronger of these, so-called stability along the
pass which is required. This holds if, and only if there exist
numbers M∞ > 0 and �∞ ∈ (0, 1) independent of � such that
‖Lk

�‖�M∞�k∞, k�0 (where ‖·‖ also denotes the induced op-
erator norm) and can be interpreted as bounded-input bounded-
output stability independent of the pass length.

It can be shown from results in Rogers and Owens (1992)
that stability along the pass holds for (1) if, and only if,

C(z1, z2) = det(I − z1Â1 − z2Â2) �= 0 in U
2
, (2)

where U
2 = {(z1, z2) : |z1|�1, |z2|�1}, and

Â1 =
[
A B0
0 0

]
, Â2 =

[
0 0
C D0

]
.

In this work, we use the following LMI based sufficient condi-
tion derived from (2) which, unlike all other existing stability
tests, leads immediately (see below) to systematic methods for
control law design.

Theorem 1 (Gałkowski et al., 2003). A discrete linear repeti-
tive process described by (1) is stable along the pass if there
exist matrices Y > 0 and Z > 0 such that the following LMI
holds:⎡⎣Z − Y 0 Y ÂT

1
0 −Z YÂT

2
Â1Y Â2Y −Y

⎤⎦ < 0.

It is also possible to represent discrete linear repetitive pro-
cesses of the form considered here in terms of the models aris-
ing in the analysis and control of spatially distributed systems,
e.g., Dullerud and D’Andrea (2004). In fact, it is a Roesser
model interpretation of the process dynamics which results,
whose role in onward analysis has already been extensively in-
vestigated, e.g. Rogers and Owens (1992). Moreover, such a
model removes the key unique feature of these processes, i.e.
repeated sweeps through a set of dynamics defined over the
finite pass length with resetting of part of the boundary condi-
tions (the pass state initial vector) before the start of each new
pass. Note also that the boundary conditions can be an explicit
function of the previous pass profile and this alone can cause
instability. Clearly, however, proper exploitation of the links (at
the level of the model structures and the analysis tools/control
law design algorithms) between these two areas could be highly
beneficial (in both directions).

3. PI control

In terms of “acceptable”, or desired, performance from a
given example, it is clear that stability along the pass must hold
and how to ensure this property has been the subject of recent
research (Gałkowski et al., 2003). In particular, it has been
shown (by exploiting Theorem 1) that a control law of the form

uk+1(p) = Kxxk+1(p) + Kz1yk(p) (3)

can be used to give this property where Kx and Kz1 are com-
patibly dimensioned matrices to be designed.

If stability along the pass holds, then the resulting pass profile
sequence converges strongly, i.e. in the sense of the norm on
E� in the pass-to-pass direction to a so-called steady or limit
profile denoted by y∞. Also for the processes considered here,
y∞ is described by a stable 1D discrete linear systems state-
space model. The new question solved in this paper is how to
obtain a specified limit profile yref(p) even in the presence of
disturbance terms, where the transient characteristics of y∞ are
most naturally defined in terms of standard 1D measures.

Consider (1) at point p on pass k. Then the total tracking
error at this point is defined as

�k(p) :=
k∑

j=0

(yj (p) − yref(p)) (4)

i.e. the error at point p summed from pass 0 to k. Now,
introduce the so-called extended output vector zk+1(p) :=
[yT

k+1(p) �T
k+1(p)]T. Then substitution from the process state-

space model and some routine re-arranging yields

zk+1(p) =
[
C

C

]
xk+1(p) +

[
D0 0
D0 I

]
zk(p)

+
[
D

D

]
uk+1(p) +

[
0

−I

]
yref(p) +

[
F

F

]
w(p).

(5)

Suppose now that as k → ∞, xk(p) → x∞(p), zk(p) →
z∞(p), uk(p) → u∞(p), and let �∞(p) denote limk→∞�k(p).
Also define the following so-called incremental vectors ẑk(p)=
zk(p) − z∞(p), ûk(p) = uk(p) − u∞(p), x̂k(p) = xk(p) −
x∞(p).Then using (1) and (5) we obtain

x̂k+1(p + 1) = Ax̂k+1(p) + B̂0ẑk(p) + Bûk+1(p),

ẑk+1(p) = Ĉx̂k+1(p) + D̂0ẑk(p) + D̂ûk+1(p), (6)

where

B̂0 = [B0 0], Ĉ =
[
C

C

]
, D̂0 =

[
D0 0
D0 I

]
,

D̂ =
[
D

D

]
and the key point now is that the influence of the disturbance
has been completely rejected. The task now is to meet the
specification that the limit profile (for the original process) be
equal to the prescribed vector yref(p).

In (6), the matrix D̂0 always has eigenvalues with modulus
at least equal to unity and therefore (from (2)) a necessary
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condition for stability along the pass does not hold. Hence to
obtain any limit profile from it control action must be applied.
Consequently consider applying the control law

ûk+1(p) = Kxx̂k+1(p) + Kz1ŷk(p) + Kz2�̂k(p) (7)

to (6). Then the following result whose proof follows imme-
diately on interpreting Theorem 1 for the controlled process
state-space model and hence the details are omitted here.

Theorem 2. Suppose that a control law of the form (7) is
applied to a discrete linear repetitive process described by a
state-space model of the form (6). Then the resulting process
is stable along the pass if there exists matrices Y > 0, Z > 0
and N such that the following LMI holds:⎡⎣ Z − Y 0 Y ÃT

1 + NTB̃T
1

0 −Z YÃT
2 + NTB̃T

2
Ã1Y + B̃1N Ã2Y + B̃2N −Y

⎤⎦ < 0

where B̃1 = [BT 0]T, B̃2 = [0 D̂T]T and

Ã1 =
[
A B̂0
0 0

]
, Ã2 =

[
0 0
Ĉ D̂0

]
.

If this condition holds then the matrices in the control law are
given by

[Kx Kz1 Kz2] = NY−1.

Suppose now that this last result holds. Then it follows im-
mediately that y∞(p) = yref(p) as required. Moreover,

uk+1(p) = Kx(xk+1(p) − x∞(p)) + Kz1(yk(p) − yref(p))

+ Kz2(�k(p) − �∞(p)) + u∞(p).

As the final form of the control law to be applied to the original
process is

uk+1(p) = [Kx Kz1]
[
xk+1(p)

yk(p)

]
+ Kz2�k(p), (8)

where (Xa
k+1)(p) := [xT

k+1(p) yT
k (p)]T is termed the aug-

mented state vector, we also have

−Kxx∞(p) − Kz1yref(p) − Kz2�∞(p) + u∞(p) = 0.

Hence the final control law (8) has a two term structure, where
the first term (involving Xa

k+1(p)) is static, or proportional con-
trol action for stability and the second (involving �k(p)) is
integral action to enforce tracking of the desired limit profile
yref(p).

As a numerical example, consider the unstable along the pass
special case of (1) given by

A =
⎡⎢⎣

0.92 0.14 −0.98 0.41
−0.76 −0.93 −0.62 0.13
0.68 −0.65 1.02 −0.81
0.94 0.04 0.83 0.2

⎤⎥⎦ , E =
⎡⎢⎣

0.91
0.59
0.18
0.31

⎤⎥⎦ ,

B=
⎡⎢⎣

0.99 −0.99 0.07
0.07 −0.94 −0.63
0.98 −0.73 0.02

−0.37 0.19 −0.65

⎤⎥⎦ , B0=
⎡⎢⎣

−0.01 −0.43
0.29 −0.13
0.98 1.09
1.09 0.17

⎤⎥⎦ ,

Fig. 1. (a) First channel response to [−3 0]T; (b) Second channel response
to [−3 0]T.

C =
[−0.75 0.75 0.31 0.84
−0.86 0.99 0.33 −0.84

]
, F =

[−0.06
0.36

]
,

D =
[−0.33 −0.14 0.59
−0.18 0.94 −0.17

]
, D0 =

[
1.11 −0.66
0.46 1.23

]
over the pass length �=100. The disturbances w(p) is two full
periods of a sine wave. The control law matrices Kx, Kz1 and
Kz2 resulting from applying Theorem 2 in this case are given.

In order to assess the quality of the controlled process per-
formance we focus on the fact that y∞ is a 1D discrete linear
system and follow the standard route of using a step signal ap-
plied in each of the two channels in turn. Figs. 1a and b show
the controlled process response to the case when yref(p) =
[−3 0]T, 0�p�99. Here the interaction in the second chan-
nel is initially quite large but the key feature is that the pro-
cess converges relatively quickly to the limit profile which has
exactly the along the pass dynamics predicted and, in par-
ticular, the integral term completely kills off the interaction.
Figs. 2(a) and (b) show the controlled process responses in the
case when yref(p) = [0 3]T, 0�p�99, and the same general
comments hold. (These simulations are for the boundary con-
ditions dk+1 = [−1.33 − 0.32 1.13 − 1.56]T and zero initial
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Fig. 2. (a) First channel response to [0 3]T; (b) Second channel response to
[0 3]T.

pass profile y0(p).)

Kx =
[−1.7945 1.0158 0.134 1.1219

0.5075 −0.5836 −0.5438 1.1854
0.3834 −0.7341 −0.6099 −0.4623

]
,

Kz1 =
⎡⎣ 1.8756 −0.6793

0.0952 −1.3957

−0.7203 0.3862

⎤⎦ ,

Kz2 =
⎡⎣ 0.0673 0.0407

0.0441 −0.0559

−0.0606 0.0056

⎤⎦ .

Further work could profitably directed towards tuning the con-
verge rate. This has no immediate solution but one option may
be to investigate the role of a Youla–Kucera parameterization.
By ad-hoc numerical studies we conjecture that this design is
not too conservative.

4. Conclusions

A control law design for discrete linear repetitive to achieve
stability along the pass and a specified performance objective
has been developed. This result only deals with disturbances
which are constant from pass-to-pass and this reduces its gen-
eral applicability. One alternative is to seek to attenuate the ef-
fects of such disturbances to a prescribed degree, e.g. in an H∞
or H2/H∞ setting, which is an obvious area for further work.
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