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Abstract

For state estimation over a communication network, efficiency and reliability of the network are critical issues. The presence
of packet dropping and communication delay can greatly impair our ability to measure and predict states. In this paper,
multiple description (MD) codes, a type of network source codes, are used to compensate for this effect on Kalman filtering.
We consider two packet dropping models: in one model, packet dropping occurs according to an independent and identically
distributed (i.i.d.) Bernoulli random process and in the other model, packet dropping is bursty and occurs according to a
Markov chain. We show that MD codes greatly improve the statistical stability and performance of Kalman filter over a large
set of packet loss scenarios in both cases. Our conclusions are verified by simulation results.
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1 Introduction

One of most significant challenges for control theory today is that the control objective is being enlarged from single
physical systems to large-scale, complex systems and networks [13]. Tremendous amounts of information need to
be sensed, processed and transmitted among different subsystems. Examples include congestion control in routers
for the Internet, optimal operation of power grid, air traffic control networks, and many others. Communication
networks play an important role in these examples. The theory of networked control systems (NCS) provides an
approach to investigate the impact of communication constrains on feedback control systems by replacing the “ideal”
feedback links with communication networks. Fig. 1 shows a simplified version of networked control system that omits
the communication channel from the controller to the dynamic system. The link from observer to estimator is not
modelled as a single, exclusive communication channel, but rather as a possible path through a large, complex
communication network shared with many other users.

Efficient and reliable communication requires improvements in both source and channel coding. In addition, dynam-
ical evolution of the system and priori acknowledge of the dynamics can give us extra benefits on top of just using
current state-of-the-art communication theory and technology. This merging between control and communication
has received considerable interest. Works like [10,16,17,19,20] have focused on answering a fundamental question:
how much information at least do we need to send to achieve stability? The main idea in these works is that the
uncertainty of the states of the dynamic system changes with respect to time. In order to stabilize the system,
the minimum feedback information must be large enough to compensate for the increase in the uncertainty. Other
papers, such as [1,2], have studied the sensitivity of the feedback system to quantization noise. They point out that
feedback information can be useful even with different levels of resolution.
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Fig. 1. Diagram of a networked control system.

Most modern communication networks are digital and are implemented using packet-based protocols. Thanks to the
incredible developments in communication technology, the ratio of cost to bandwidth of communication links has
dropped dramatically. However, the reliability of communication link in networks has become an important issue.
Communication networks are not used exclusively for transmitting information between two single points. Packets
have to be dropped whenever the network becomes congested. Stochastic packet dropping is very common in large
scale networks [21]. Using transmission control protocol (TCP), dropped packets are resent after certain delays. For
networked control systems, this protocol does not help if we assume estimator and controller only use available new,
“real-time” data packets to update estimation and control laws due to limited memory and computation ability.

In this paper, we ignore the controller in Fig. 1 and focus on the problem of state estimation. Rather than worrying
about limited bandwidth, we are concerned about that packets can be dropped by the communication network. We
want to understand how the packet dropping affects state estimation and what we can do to compensate for this
unreliability?

There are two popular models for packet dropping in large scale networks. The Bernoulli model [21] describes
packet losses according to an i.i.d. Bernoulli random process. Another model is the Gilbert-Elliott model [3,6] which
describes packet dropping as a Markov chain and is used to handle bursty packet dropping. Sinopoli et al. [15]
has used the Bernoulli model to study the statistical convergence properties of the estimation error covariance in
a Kalman filter by solving a Modified Algebraic Riccati Equation (MARE). This work shows that packet dropping
degrades the performance of Kalman filter. Liu et al. [11] extended the results to the case with partial observation
losses in sensor networks. In this paper, we show that multiple description (MD) source codes, a type of network
source codes [4], can be used to compensate for the unreliability of communication networks. MD codes have been
studied in information theory for over 30 years [5,8] and successfully used in transmission of real-time speech and
audio/video over the internet [7,9]. The efficiency of MD codes have been proved in situations where data can be
used at various resolution levels. However, this is the first time such coding scheme is applied to networked control
systems.

This paper is organized as follows. In Section 2, state estimation problem in networked control systems is described
and networking assumptions are given. In Section 3, MD source codes are introduced and theoretical limits are
discussed. We formulate the state estimation problem with MD coding in Section 4 and present results for the
i.i.d. Bernoulli model. In addition, examples and simulation results are listed. Then the same estimation problem is
studied for the Markov chain model in Section 5 and conclusions are summarized in Section 6.

2 State Estimation Problem and Assumptions

In this paper, we study the state estimation problem for the following discrete-time linear dynamic system:

xk+1 = Axk + wk

yk = Cxk + vk

(1)

where xk ∈ Rn is the state vector, yk ∈ Rm is the output vector, wk and vk are Gaussian white noise vectors
with zero mean and covariance matrices are Q ≥ 0 and R > 0 respectively. We assume that A is unstable and use
standard discrete-time Kalman filter as the estimator. It is well known that if the pair (A,Q

1
2 ) is controllable, the
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pair (A,C) is detectable, and no measurements are lost, the estimation error covariance of Kalman filter converges
to a unique value from any initial condition.

For the networked control system in Fig. 1, the observation data is put into data packets and is sent through the
communication network after going through source and channel encoders. We list some assumptions for the network
which simplify our problem:

• We ignore channel coding and assume that the packet will be either received and decoded successfully at the end
of the links or totally lost.

• For the estimator, only the new, “real-time” data is used for each update cycle. We only consider the transmission
delay that is determined by the network bandwidth and length of the packet. If a packet arrives too late, it is
discarded and treated as a dropped packet. So the packet transmission is in a “UPD-like” style which means
packet re-sending is not used.

• The network does not provide preferential treatment to any packet. In other words, the network treats each single
packet equally without inspecting the content. Thus a multiple resolution code or a layered source code is not a
good choice for us since they mark packets with different priorities according to the contents.

• There is no feedback from the decoder to the encoder.
• We assume that number of bits in each data packet is relative large and the network is running at high bit rate

scenario.

We assume that packet dropping happens according to one of the two models:

• The i.i.d. Bernoulli model. A Bernoulli random variable γk indicates whether the packet k is received correctly. If
it goes through the network successfully, then γk = 1, otherwise, γk = 0. For any value of k, γk is independent and
identically distributed with probability distribution P (γk = 1) = λ and P (γk = 0) = (1 − λ). This is the simplest
and often used model for packet dropping in large scale networks.

• The Gilbert-Elliott channel model. This model considers the network as a discrete-time Markov chain with two
possible states - ‘good’ and ‘bad’. In the “good” state, the packet is received correctly, and in the “bad” state,
the packet is dropped. The network jumps between these two states according to a Markov chain with transition
probability matrix Q as

Q =

[
q00 q01

q10 q11

]
, (2)

where 1 is the good state, 0 is the bad state, and qij is the probability from the previous state j to the next state
i. The model can be easily extended to more possible states with different packet dropping probabilities. However,
for simplicity and without loss of generality, we consider the 2-state model in this paper. Unlike the first model,
this one is able to capture the dependence between consecutive losses, i.e., bursty packet dropping.

3 Multiple Description Source Coding

For networked control systems, the traditional source code is actually a quantizer q : Rm → Z with a state space
partition set {Vi} where i ∈ (1, 2, · · · , N),

⋂N
i=1 Vi = ∅, and

⋃N
i=1 Vi = Rm. For each partition Vi, there exist a

codeword vi ∈ Vi and the set of all the codewords is called a codebook. The encoder functions are fe(x) = i if
x ∈ Vi and decoder functions are fd(i) = vi. We call the integer i the description of the state x. The distortion
function at the decoder is defined as d(x, vi) = ‖x − vi‖2. Generally, if N is bigger, each partition will be smaller
and the average distortion at decoder side is smaller. However, the cost is sending more bits through the network.
Rate distortion theory, part of information theory, is used to study any possible partition set and the corresponding
average distortion. In this section, we focus on uniform scalar quantizers and assume that the state of the dynamic
system is uniformly distributed on a state space whose length is L. The optimal distortion rate function for single
description source codes is

D(R) ≤ L2

12
· 2−2R (3)

where R = log2(N) is the bits per source sample (bpss) and N is the number of the quantization levels. For other
state distributions, we have the similar distortion rate functions that all decay at the speed 2−2R.

Multiple description source codes are designed to achieve good rate-distortion performance over lossy links. The
unique feature of MD codes is that instead of using one single description to represent one source sample, MD codes
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use two or more descriptions. So at the end of the link, the decoder has much less chance of losing all descriptions. The
distortion at the decoder depends on how many descriptions it receives and could be at various quality levels. Also
we would like to keep the total bpss as small as possible. Thus the design of a MD code is a problem of minimizing
the size of the code over the redundancy between the descriptions. Also MD codes need to be non-hierarchical such
that the receiving order of descriptions is not important.

3.1 Theoretical limits of Multiple Description Codes

In this subsection, we introduce some theoretical limits for MD codes that fit our discussion on networked control
systems. We start with a 2-description MD code. An encoder is fed by a sequence of source sample values {Xk}.
The output of the encoder is {ik, jk}. The number of bits for each description are Ri and Rj . There are three cases
according to which descriptions are received:

• If for any k, the decoder receives none of the descriptions, we call this the “broken link” case. We will discuss this
case in Section 4.

• If for any k, the decoder receives both {ik} and {jk}, we call this the “central decoder” case. In this case, the
average distortion is Dc.

• If for any k, the decoder only receives {ik} or {jk}, we call this the “side decoder” case. The average distortions
are Di and Dj respectively.

The main theoretical problem of MD coding is to determine the achievable quintuple (Ri, Rj , Dc, Di, Dj). As dis-
cussed in [5], the fundamental tradeoff in MD coding is making descriptions individually good and sufficiently different
at the same time. If Ri = Rj and Di ≈ Dj , then we say the MD code is balanced. The achievable rate-distortion
region of a 2-description MD code for a memoryless unit variance Gaussian source with mean-squared error (MSE)
distortion is given by [14]: ⎧⎪⎪⎨

⎪⎪⎩
Di ≥ 2−2Ri

Dj ≥ 2−2Rj

Dc ≥ 2−2(Ri+Rj) · γ(Di, Dj , Ri, Rj)

(4)

where
γ =

1

1 −
(√

(1 − Di)(1 − Dj) −
√

DiDj − 2−2(Ri+Rj)
)2

for Di + Dj < 1 + 2−2(Ri+Rj) and γ = 1 otherwise.

For packet-based networked control systems, we use balanced MD codes and assume that Ri = Rj = R 	 1 and
Di = Dj 
 1, then we get

1
γ = 1 −

(
(1 − Di) −

√
D2

i − 2−4R
)2

≈ 1 − ((1 − Di) − Di)2 ≈ 4Di,

and
Dc · Di ≥ 1

4
2−4R. (5)

The inequality (5) shows the tradeoff between central and side distortions. Compared with inequality (3), it is clear
that the penalty in the exponential rate of decay of Di is exactly the increase in the rate of decay of Dc.

3.2 Multiple Description Scalar Quantization

In this section we present the actual design method for MD scalar quantizers (MDSQ). In networked control systems,
each source sample is a observation of the dynamic system and MDSQ gives two descriptions for each source sample.
This approach was proposed and popularized by Vaishampayan [18] and Fig. 2 shows the diagram of a 2-description
MDSQ:

• Step one, select a uniform quantizer with proper step size Δ and the number of step levels N . A source sample Y
is quantized by rounding off to the nearest multiple of a step size Δ and the index output of the uniform quantizer
is n which satisfies 0 < n ≤ N .
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• Step two, the index n is assigned to a pair of indexes (i, j) by using an index mapping matrix.
• Step three, the i and j are entropy coded and put into data packets respectively.

Observer Uniform Quantizer Index Mapping

Packetisation

Packetisation

i

j

for Description 1

for Description 2

X Y n

Step two Step threeStep one

P1 P2
Dynamic

System

Fig. 2. Diagram of 2-description MD source coding for NCS.

The index mapping problem in step two is the main part of MDSQ. We state this problem as follows: there exists
a
√

M × √
M matrix where M ≥ N . We need to arrange all these numbers from {1, · · · , N} into the cells of the

matrix. Each cell can hold one number at most and each index n gets a pair of matrix index (i, j) according to it’s
location, i.e., matrix index i is the row number and j is the column number. By this index mapping matrix, step
two transfers each single description n into two descriptions i and j. Since N ≤ M , the total number of the possible
index assignment methods is

∑M
n=1 M !/(M −n)!. The “modified nested” index assignment method is a popular and

systematical method and please refer to Appendix A for details. By choosing a proper index mapping matrix, we
get {

Dc ≈ C02−2R(1+α)

Di ≈ Dj ≈ C12−2R(1−α)
(6)

where C0 and C1 are constants that depend on the distribution of the initial state and uniform quantizer in step
one. The parameter α ∈ [0, 1] is a pre-defined parameter that indicates the tradeoff between the decay speeds of Dc

and Di. It is clear that the ”central decoder” equals a decoder for the uniform quantizer in step one.

The index mapping method can be extended to 3-description or 4-description MD codes. The first part of Table 1
shows some examples of average distortions for different description loss cases when we keep the central distortion
constant. It shows that more bits per source sample are needed in order to get the same central decoder distortion.
The second part shows that, when we keep bpss constant, the distortion increases when the number of descriptions
per sample increases. In the table, “lost k” means k descriptions have been lost, and “N/A” means not available.
The table shows that MD coding actually provides various quality levels corresponding to how many descriptions
the decoder receives.

Another issue about MD coding is that the computation complexity of decoding increases since the size of the
codebook increases at the decoder side as the number of descriptions increases. For example, for a traditional uniform
quantizer with N levels, the codebook for the corresponding L-description MD code has (2L − 1)N elements. We
need to consider this issue when choosing the number of the descriptions per source sample.

3.3 Quantization Noise of MD codes

As discussed in [12], the quantization noise of a uniform scalar quantizer with the assumptions of small partition
cells, reproduction values at cell’s midpoints, and large support region can be approximately modelled as an additive
uncorrelated white noise to the quantizer input. For balanced MD codes, the central decoder case actually is a
uniform scalar quantizer with the midpoints as the outputs and the average distortion is Dc ≈ Δ2

12 where Δ is the
length of partition cells. For the side decoder case, index mapping introduces a slight asymmetry between the two
side distortions and causes a small increase in distortion. However, for large bpss, this asymmetry asymptotically
disappears. According to Section 3, we have

Di ≈ Dj ≈ C1 ·
(C2

12
) 1+α

1−α · (Δ 1−α
1+α

)2
.
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Table 1
MSE for different MD codes.

Coding type No loss Lost 1 Lost 2 Lost 3 Total bpss

single description 8.33 × 10−6 N/A N/A N/A 10

2-description 8.33 × 10−6 1.56 N/A N/A 12

3-description 8.33 × 10−6 4.41 × 10−3 1.53 N/A 15

4-description 8.33 × 10−6 7.46 × 10−3 1.34 × 10−2 2.61 20

Coding type No loss Lost 1 Lost 2 Lost 3 Total bpss

single description 4.97 × 10−7 N/A N/A N/A 12

2-description 8.33 × 10−6 1.56 N/A N/A 12

3-description 9.87 × 10−5 1.97 × 10−2 2.15 N/A 12

4-description 9.32 × 10−4 8.04 × 10−2 0.113 2.18 12

For a balanced 2-description MD code, α is a constant and Di will be asymptotically negligible relative to
(
Δ

1+α
1−α

)2.
So as long as the bit rate Ri(= Rj) is big enough, the additive noise model is still a good approximation to represent
the quantization noise in the side decoder case. From now on, we model the MD quantization noise as Gaussian
white noise with zero mean and covariance Dc for central decoder case and Di for side decoder case.

4 Kalman Filtering Utilizing MD with i.i.d. Packet Dropping

4.1 Problem Formulation

We consider the discrete-time linear dynamical system described by equations (1) and assume that packet dropping is
independent and is described by an i.i.d. Bernoulli random process. We use a 2-description balanced MD code. Each
element yk of the measurement output Yk is encoded by two descriptions {ik, jk}. We organize these descriptions
into 2 description vectors as {Ik, Jk} and put them into two packets. Variables γI,k and γJ,k are used to indicate
whether the description vectors Ik and Jk are received correctly. If Ik is received correctly, then γI,k = 1, otherwise,
γI,k = 0, and similarly for γJ,k. We assume that γI,k and γJ,k are i.i.d. Bernoulli random variables with probability
distribution P (γI,k = 1) = P (γJ,k = 1) = λ.

Since γI,k and γJ,k are independent, we have three measurement rebuilding scenarios. First, we may receive both the
descriptions correctly. In this case, the measurement noise is the white noise vt plus the central distortion noise. We
use R0 = R + Dc to indicate the covariance where Dc is the central distortion covariance. Second, we may receive
only one description correctly and the measurement noise is R1 = R+Di where Di is the side distortion covariance.
Third, we may receive none of the descriptions correctly. In this case, we assume the measurement is corrupted by
an infinitely large noise. This is corresponding to the ”broken link” case in Section 3. The noise is changed into a
random variable v̂t after the decoder and the covariance Ck is:

Ck =

⎧⎪⎪⎨
⎪⎪⎩

R0 : probability is λ2

R1 : probability is 2(1 − λ)λ

σ2I : probability is (1 − λ)2
(7)

where σ → ∞.

The Kalman filter recursion thus becomes stochastic and the error covariance evolves as

Pk+1 = APtA
′ + Q

−γ(I, k)γ(J, k)APkC ′[CPkC ′ + R0]−1CPkA′

−(1 − γ(I, k))γ(J, k)APkC ′[CPkC ′ + R1]−1CPkA′

−γ(I, k)(1 − γ(J, k))APkC ′[CPkC ′ + R1]−1CPkA′.

6



Thus, the sequence of the error covariance matrix P∞
k=0 is a random process for any given initial value. Using the same

approach as in [15], we define the Modified Algebraic Riccati Equation (MARE) for Kalman filter using balanced
2-description MD codes as:

gλ(X) = AXA′ + Q

−λ2AXC ′(CXC ′ + R0)−1CXA′

−2(1 − λ)λAXC ′(CXC ′ + R1)−1CXA′
(8)

and the expected value of error covariance matrix E
[
Pk

]
evolves according to this MARE.

4.2 Statistical Convergence Properties

This subsection lists theorems which describe the convergence properties of the MARE in equation (8). These
theorems are based on the lemmas in Appendix B. The first theorem listed below states the uniqueness of the
MARE solution.

Theorem 1 Consider the operator

φ(K0,K1, X) = (1 − λ)2(AXA′ + Q) + λ2(F0XF ′
0 + V0) + 2(1 − λ)λ(F1XF ′

1 + V1) (9)

where F0 = A + K0C, F1 = A + K1C, V0 = Q + K0R0K
′
0, and V1 = Q + K1R1K

′
1. Suppose there exist K0, K1, and

P > 0 such that P > φ(K0,K1, P ). Then we have

(a) for any initial condition P0 ≥ 0, MARE (8) converges, i.e. the iteration Pk+1 = gλ(Pk) converges, and the
limit is independent of the initial value:

lim
k→∞

Pk = lim
k→∞

gk
λ(P0) = P̄ ;

(b) P̄ is the unique positive semi-definite solution of MARE function P̄ = gλ(P̄ ).

Proof (a) First, we show that the MARE converges with initial value Q0 = 0. Let Qk = gλ(Qk−1) = gk
λgλ(Q0),

then Q1 ≥ Q0 = 0 and
Q1 = gλ(Q0) ≤ gλ(Q1) = Q2.

By induction, we know that the sequence {Qk} is nondecreasing. Also by lemma 14, {Qk} is bounded and there
exists an MQ0 such that Qk ≤ MQ0 for any k. Therefore, the sequence converges and

lim
k→∞

Qk = P̄

where P̄ is a fixed point of the iteration P̄ = gλ(P̄ ).

Next we show that the iteration R̄k = gk
λ(R̄0) initialized at R0 ≥ P̄ also converges to P̄ . Since R1 = gλ(R0) ≥

gλ(P̄ ) = P̄ , then Rk ≥ P̄ for any k. Also

0 ≥ Rk+1 − P̄ = gλ(Rk) − gλ(P̄ )

= φ(KRk0,KRk1, Rk) − φ(KP̄0, KP̄1, P̄ )

≤ φ(KP̄0,KP̄1, Rk) − φ(KP̄0,KP̄1, P̄ )

= L(Rk − P̄ ).

According to lemma 13, for any Y ≥ 0,
lim

k→∞
Lk = 0.

So we get 0 ≥ limk→∞(Rk − P̄ ) = 0, i.e. the sequence Rk converges to P̄ .
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Then we show that, for any initial condition P0 ≥ 0, the iteration Pk = gk
λ(P0) converges to P̄ . Let R0 = P0 + P̄ ≥ P̄ ,

then 0 ≤ Q0 ≤ P0 ≤ R0, by induction, we have 0 ≤ Qk ≤ Pk ≤ Rk. Since {Qk} and {Rk} converges to P̄ , so

lim
k→∞

Pk = P̄ .

(b) Suppose there exists another positive semi-definite P̂ such that P̂ = gλ(P̂ ). Then let the iteration be initialized
at P̂ and generate a new sequence {P̂ · · · P̂} which should converges to P̄ . Thus P̂ = P̄ . �

The following theorem states the conditions for MARE convergence.

Theorem 2 If (A,Q
1
2 ) is controllable, (A,C) is detectable, and A is unstable, then there exists a λc ∈ [0, 1) such

that

(a) limk→∞ E[Pk] = +∞ for 0 ≤ λ ≤ λc and some initial condition P0 ≥ 0,
(b) E[Pk] ≤ MP0 ∀k for λc < λ ≤ 1 and any initial condition P0 ≥ 0,

where MP0 > 0 depends on the initial condition P0.

Proof Please refer to Appendix B

This theorem claims that there exists a critical value λc of the packet receiving probability. If λ is smaller than λc,
MARE (8) does not converge and the expected value of error covariance matrix will diverge.

Theorem 3 Let
λ = arg infλ[∃Ŝ | Ŝ = (1 − λ)2AŜA′ + Q] = 1 − 1

α

λ = arg infλ[∃X̂ | X̂ > gλ(X̂)]

= arg infλ[∃(K̂0, K̂1, X̂)|X̂ > φ(K̂0, K̂1, X̂)]

where α = max |σi| and σi are the eigenvalues of A. Then

λ ≤ λc ≤ λ. (10)

Proof Please refer to Appendix B

This theorem states the upper and lower bounds for λc. The lower bound is in a closed form. According to the next
theorem and corollary, we can reformulate the computation of λ as an LMI feasible problem.

Theorem 4 Assume that (A, Q
1
2 ) is controllable and (A,C) is detectable, then the following statements are equiv-

alent:

(a) ∃X̄ such that X̄ > gλ(X̄);
(b) ∃(K̄0, K̄1, X̄) > 0 such that X̄ > φ(K̄0, K̄1, X̄);
(c) ∃Z̄0, Z̄1 and 0 < Ȳ ≤ I such that Ψλ(Ȳ , Z̄0, Z̄1) > 0 where

Ψλ(Y, Z0, Z1) =

⎡
⎢⎢⎢⎢⎢⎣

Y Δ(Y, Z1) Ω(Y,Z0) Π(Y )

Δ(Y, Z1)′ Y 0 0

Ω(Y,Z0)′ 0 Y 0

Π(Y )′ 0 0 Y

⎤
⎥⎥⎥⎥⎥⎦ ,

Δ(Y,Z1) =
√

2(1 − λ)λ(Y A + Z1C), Ω(Y,Z0) = λ(Y A + Z0C), and Π(Y ) = (1 − λ)Y A.
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Corollary 5 The upper bound λ is given by the solution of the following optimization problem,

λ = arg min
λ

(
Ψλ(Y, Z0, Z1) > 0

)
where 0 < Y ≤ I.

Proof Please refer to Appendix B for the proof.

When C is invertible, we choose K0 = K1 = −AC−1 to make F0 = F1 = 0 and the LMI in theorem 4 is equivalent
to

X − (1 − λ)2AXA′ > 0.

Since X ≥ 0 exists if and only if (1 − λ)A is stable, i.e. all the magnitudes of eigenvalues of (1 − λ)A are smaller
than 1, we obtain λ = λ = 1

1−α . According to [15], the lower bound of using single description codes is 1− 1
α2 which

is bigger than using MD codes. Also if either C is invertible or the quantization noise Dc and Di are smaller than R
(which is always true for the high bpss case), it is easy to show that the upper bound of using single description codes
is also bigger than using MD codes. So using MD codes pushes λc to a smaller value and guarantee the convergence
over a larger packet dropping scenario.

The following theorem gives the upper and lower bounds on the expected value of error covariance matrix when
MARE converges. The lower bound S can be computed by standard Lyapunov Equation Solvers and the upper bound
V can be either computed via iterating Vt+1 = gλ(Vt) from any initial condition or transferred to a semi-definite
programming (SDP) problem.

Theorem 6 Assume (A,Q
1
2 ) is controllable, (A,C) is detectable, and λ < λ, then for any initial condition E[P0] ≥

0,
0 ≤ S ≤ lim

k→∞
E[Pk] ≤ V

where S and V are solutions of the equations S = (1 − λ)2ASA′ + Q and V = gλ(V ) respectively.

Proof Let Sk+1 = M(Sk) = (1−λ)2ASkA′ +Q and Vk+1 = gλ(Vk) with initial conditions S0 = 0 and V0 = E[P0] ≥
0. By induction and theorem 3, we obtain

Sk ≤ E[Pk] ≤ Vk

for any t. According to theorem 1, limk→∞ Vk = V where V = gλ(V ). Also since (A,Q
1
2 ) is controllable and all the

magnitudes of the eigenvalues of (1 − λ)A are smaller than 1, the sequence of the Lyapunov iteration converges to
the strictly positive definite solution of the Lyapunov function, i.e. limk→∞ Sk = S > 0. Therefore we can conclude
that

0 < S = lim
k→∞

Sk ≤ lim
k→∞

E[Pk] ≤ lim
k→∞

Vk = V . �

4.3 Simulation Results

In this subsection simulation results are given to verify the advantages of MD codes. We choose the discrete time
LTI system with A = −1.25 and C = 1. The noises wt and vt have zero means and covariances R = 2.5 and Q = 1
respectively. A balanced 2-description MD code is designed such that the central distortion D0 ≈ 8.33 × 10−6 and
the side distortion D1 ≈ 1.56. The bpss of the MD code is 12 and the bpss of a single description code with the same
distortion is 10 bits.

Fig. 3 shows the expected error covariance with the theoretical upper and lower bounds. The simulations are run
1000 times and we use the average values as the expected values. The asymptote λc has been pushed from 0.36 for
the single description code to 0.2 for the MD code. Convergence properties of error covariance at high packet loss
rate region are also improved dramatically. Note that when λ is close to the asymptote, some of the simulated error
covariances values are below the lower bound. The reason is that we only take limited time steps for the simulation
(2000 steps each) and some expected error covariances take longer time to converge.
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Fig. 4 shows some other simulation results. For each packet dropping rate, the centers of the error bars are the
mean values and 95% of the simulation results are located inside the error bars. It shows that, if we use a balanced
3-description MD code, the critical value λc is even smaller. So the benefits of using MD codes are clear and the cost
we need to pay is more bits for each source sample. It can be shown that when C is invertible, using a L-description
MD code we can get λc = 1−α−2/L. Unfortunately, finding an optimal L-description MD code for arbitrary L is still
an open problem in information theory. When we keep bpss constant, as shown in Fig 5, we get bigger quantization
noise as the number of descriptions increases. Compared with the previous figure, there are no obvious differences
due to the accuracy loss in this example.

In some cases, packet dropping rate of a practical communication network is fairly small. Fig 6 shows the expected
error covariance when packet dropping rate is low and MD codes give much better performance than the single
description code. Note that the 2-description MD code achieves as good performance as sending single description
code twice but saves up to 40% bandwidth.

5 Kalman Filtering Utilizing MD with Bursty Packet Dropping

5.1 Convergence Conditions and Boundaries

As discussed in Section 2, a way to model the bursty packet dropping is using a 2-state Markov chain with transition
probability matrix Q given by equation (2). For the case of a balanced 2-MD code, we are thus interested in a 4-state
Markov chain where the states correspond to both packets lost, only the 1st description packet lost, only the 2nd
description packet lost and no packet lost. The transition probability matrix of this chain is given as

QMD =

⎡
⎢⎢⎢⎢⎢⎣

q2
00 q2

00 q01q00 q01q00

q01q10 q01q10 q11q01 q11q01

q10q00 q10q00 q01q10 q01q10

q10q11 q10q11 q2
11 q2

11

⎤
⎥⎥⎥⎥⎥⎦ . (11)

Note that the state in which both description packets are lost is equivalent to no observation coming through, while
the other states correspond to the system being observed. If the Markov chain is stationary, the state probabilities
tend to a stationary distribution as k → ∞. However, we normally cannot directly study the problem over the
steady-state distribution since this distribution might not be achievable. This problem mathematically equals the
random sensor selection problem in sensor networks. Consider the system

xk+1 = Axk + wk

being observed through n sensors with the i-th sensor of the form

yi
k = Cixk + vi

k. (12)

Suppose only one sensor can be active at any time instant and the choice of the sensor is done according to a Markov
chain. We denote the Ricatti update in error covariance by fi (.) when the i-th sensor is used and denote

fk
i (.) = fi (fi (· · · (.) · · · ))︸ ︷︷ ︸

k times

.

The expected error covariance at time step k is denoted by E [Pk]. Probability of the network in Markov state j at
time k is denoted by πj

k and qij is the probability of the network state is i at time k + 1 given the network state is
j at time k.

Lemma 7 For any Ricatti update operator fi(P ), we have

(a) fi(P ) ≥ Q;

12



(b) If X < Y , then fi(X) ≤ fi(Y );
(c) fi(P ) is concave w.r.t. P .

When a single description code is applied, according to equation (12), packet dropping can be treated as the
observation jumps between 2 sensors which have the same Ci matrices and different Gaussian noises with covariance
R0 and σ2I respectively where σ → ∞. The Kalman filter error covariance updates are

{
f0(P ) = APA′ + Q

f1(P ) = APA′ + Q − APC ′(CPC ′ + R0)−1CPA′.

Similar to the i.i.d. Bernoulli model, we discuss the conditions and the upper/lower bounds for expected values of
estimation error covariances converging.

Theorem 8 When using a single-description code and with the Markov probability transition matrix given by equa-
tion (2), the lower bound for E [Pk] is Yk where

Yk = qk
00π

0
0fk

0 (P0)

+
∑k−1

i=1 qi
00

(
π0

k+1−i − q00 · π0
k−i

)
f i
0 (Q) + π1

kf1(Q).
(13)

The upper bound is Xk where

Xk =
1∑

j=0

1∑
i=0

fj

(
Xi

k−1

)
qjiπ

i
k−1 (14)

and Xi
k−1 = E[Xk−1|state is i at time (k − 2)].

proof Suppose k starts from 1, and for any k, we define event Ei as last packet was received at time k − i where
i ∈ [0, · · · , k]. So the probability of Ei is

pi =

⎧⎨
⎩

qk
00π

0
0 i = k

qi−1
00 q01π

1
k−i 0 < i < k

π1
k i = 0

and the error covariance Pk if Ei happens is

Pk|Ei =

⎧⎨
⎩

fk
0 (P0) i = k

f i
0(f1(Pk−i)) 0 < i < k

f1(Pk) i = 0.

So

E[Pk] =
∑k

i=0 pi · Pk|Ei

= qk
00π

0
0fk

0 (P0) +
∑k−1

i=1 qi
00q01π

1
k−if

i
0(f1(Pk−i)) + π1

kf1(Pk).

According to Lemma 7, f1(Pk−1) ≥ Q, so

E[Pk] ≥ qk
00π

0
0fk

0 (P0) +
∑k−1

i=1 qi
00q01π

1
k−if

i
0(Q) + π1

kf1(Q)

= qk
00π

0
0fk

0 (P0) +
∑k−1

i=1 qi
00

(
π0

k+1−i − q00 · π0
k−i

)
f i
0 (Q) + π1

kf1(Q).
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For upper bound, let us denote Sk is the network state at time k. For single description code, Sk ∈ [0, 1]. Then
E[Pk] =

∑1
j=0 πj

k · E[Pk|Sk = j]. Also

πj
k · E[Pk|Sk = j] = πj

k

∑1
i=0 E[Pk|Sk = j, Sk−1 = i] · p(Sk−1 = i|Sk = j)

=
∑1

i=0 E[fj(Pk−1)|Sk−1 = i]qjiπ
i
k−1

≤ ∑1
i=0 fj([Pk−1|Sk−1 = i])qjiπ

i
k−1

since fj(·) is concave. �

Proposition 9 A sufficient condition for divergence of expected error covariance is:

q00 · α2 > 1, (15)

where α = max |σi| and σi are the eigenvalues of A.

Using a balanced 2-MD code, the corresponding sensor selection problem has 4 sensors which have same C matrices
and noise covariances are R0, R1, R1, and σ2I respectively. The Ricatti updates are⎧⎪⎪⎨

⎪⎪⎩
f0(P ) = APA′ + Q

f1(P ) = f2(P ) = APA′ + Q − APC ′(CPC ′ + R1)−1CPA′.

f3(P ) = APA′ + Q − APC ′(CPC ′ + R0)−1CPA′.

Using the same approach, we get

Proposition 10 When using 2-description code and with the underlying Markov probability transition matrix given
by (2), the lower bound for E [Pk] is Yk where

Yk = q2k
00π0

0fk
0 (P0)

+
∑k−1

i=1 q2i
00

(
π0

k+1−i − q2
00 · π0

k−i

)
f i
0 (Q) +

∑3
j=1 πj

kfj(Q).
(16)

The upper bound is Xk where

Xk =
3∑

j=0

3∑
i=0

fj

(
Xi

k−1

)
qjiπ

i
k−1 (17)

and Xi
k−1 = E[Xk−1|state is i at time (k − 2)].

A sufficient condition for divergence of expected error covariance is:

q00 · α > 1. (18)

The equations for lower and upper bounds are pretty messy but can be calculated iteratively. Also, these bounds
are dependent on value of q11 and initial distribution of packet dropping πi

0.

5.2 Simulation Results

We use the same LTI system as in Section 4. In figure 7 we plot the theoretical upper and lower bounds for the
error variance as a function of q10 under the conditions as q11 = 0.95 and uniform distribution of πi

0. The lowering of
the bounds is indicative of the performance getting better with MD codes. The simulation results with parameters
q11 = 0.05 and q11 = 0.95 with different coding schemes are shown in figure 8.
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In the Markov chain model, q01 = 1 − q11 is a measure of the frequency of the bursty dropping while q00 = 1 − q10

indicates how big the burst dropping is. According to the simulation results, expected error covariance diverges
more quickly with higher q01. This makes sense since if the error bursts happen often, we expect the estimation
error covariance to diverge. It is seen from the figures that the system diverges around q10 = 0.36 with the single
description code case, and diverges around q10 = 0.2 with the 2-MD code. (Limited simulation time steps make the
results smaller than lower bounds near asymptotes.) Thus the stability margin is enlarged if we use MD codes. Also,
for same q10, using MD codes greatly decreases the expected error covariance.

6 Conclusion

In this paper, we present a new coding method for state estimation problem counter-acting the effect of packet drop-
ping: using multiple description source coding. The accuracy of the decoder only depends on how many descriptions
are successfully received. We considered two typical network packet dropping models: the i.i.d. Bernoulli model and
the Gilbert-Elliott model. Using MD codes, the convergence region of the estimation error covariance is much larger
than using traditional single description code and the steady expected values are also much smaller. Moreover, MD
code is an optimal code which saves considerable bandwidth than sending duplicated packets.

The main goal of this paper is trying to understand the impact of communication constrains from another angle: in
high bit rate scenario and with large, complex communication networks, what can we do to compensate for packet
loss as well as to satisfy the real-time demands? In this papere, we have to compromise the accuracy of the source
code to improve the convergency properties of MARE. This is a good demonstration to indicate the close relationship
between communication theory and control theory when we face the challenges in “an information rich world” [13].

There are several promising research directions for the future. From the communication theory side, a more general
theory and design method for MD coding for arbitrary number of description is needed. Also, since using MD codes
greatly increases the computation complexity of the decoder, a more efficient search algorithm for decoding is needed.
From the feedback control theory side, the stability and robustness of close-loop networked control systems with MD
coding need to be studied.
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A The “Modified Nested” Index Assignment Method for MDSQ

i i+k

i

i+k

(a)

i i+k

i

i+k

(b)

Fig. A.1. Two actions of MD index mapping: part(a) is the action Ei and part (b) is the action Si

The “modified nested” index assignment method in [18] is a tractable and systematical method. From 1 to N , the
index n is placed on the main diagonal and the 2k diagonals that lie closest to the main diagonal, from left-upper
corner to right-lower corner. Note that 0 < k <

√
M , let ki = min(k,

√
M − i). Define the action Ei as putting index

n into the sequence of matrix cells (i, i), (i, i+1), (i+1, i), (i, i+2), (i+2, i), · · · , (i, i+ki), (i+ki, i) and the action
Si as putting index n into the sequence of matrix cells (i, i), (i + 1, i), (i, i + 1), (i + 2, i), (i, i + 2), · · · , (i + ki, i),
(i, i + ki). Fig. A.1 shows these two different actions.
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Fig. A.2. Index mapping for: part(a) M = 64, k = 1 and part (b) M = 64, k = 2

From n = 1 and matrix cell (i, i) = (1, 1), we repeat action Ei k times, then repeat action Si k times, then switch
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to action action Ei for k times again and continue this process until we reach (i, i) = (
√

M,
√

M). Then we have:⎧⎪⎪⎨
⎪⎪⎩

N = (2k + 1)
√

M − k(k + 1)

R = Ri = Rj = log2(
√

M)

Rc = log2(N)

where Rc is the bit number per symbol value of the uniform quantizer in step one. For given k and R, we use
MN(R, k) to denote the MD code. Let

√
M = k1/α where 0 < α < 1. When M and N is large, i.e., at high bit rate,

we can get these relationships about the central and side distortion:{
Dc ≈ C02−2R(1+α)

Di ≈ C12−2R(1−α)

where C0 and C1 are constants. There exists two extreme cases:

• When α approaches 1, Dc decreases at the maximum rate of 2−4R while both Di and Dj exhibit zero decay rates.
In this case, the matrix is almost full and M ≈ N ;

• When α approaches 0, Dc, Di and Dj decay at the same rate of 2−2R. In this case, the matrix is only filled in the
main diagonal.

Intermediate rates can be achieved by selecting other values of α.

B Lemmas and Some Proofs of MARE Convergence with i.i.d. Packet Dropping

Those theorems in Section 4 are based on these lemmas which can be easily proved by using similar approach in
[15]. We list the lemmas here and omit the proofs.

Lemma 11 Let the operator

φ(K0,K1, X) = (1 − λ)2(AXA′ + Q) + λ2(F0XF ′
0 + V0) + 2(1 − λ)λ(F1XF ′

1 + V1)

where F0 = A+K0C, F1 = A+K1C, V0 = Q+K0R0K
′
0, and V1 = Q+K1R1K

′
1. Assume X ∈ S = {S ∈ Rn×n|S ≥

0}, R0 > 0, R1 > 0, Q > 0, and (A, Q
1
2 ) is controllable. Then the following facts are true:

(a) With Kx0 = −AXC ′(CXC ′ + R0)−1 and Kx1 = −AXC ′(CXC ′ + R1)−1, gλ(X) = φ(Kx0,Kx1, X);
(b) gλ(X) = min(K0,K1) φ(K0,K1, X) ≤ φ(K0,K1, X) ∀(K0, K1);
(c) If X ≤ Y , then gλ(X) ≤ gλ(Y );
(d) If λ1 ≤ λ2, then gλ1(X) ≥ gλ2(X);
(e) If α ∈ [0, 1], then gλ(αX + (1 − α)Y ) ≥ αgλ(X) + (1 − α)gλ(Y );
(f) gλ(X) ≥ (1 − λ)2AXA′ + Q;
(g) If X̄ ≥ gλ(X̄), then X̄ ≥ 0;
(h) If X is a random variable, then (1 − λ)2AE[X]A′ + Q ≤ E[gλ(X)] ≤ gλ(E[X]).

Lemma 12 Let Xk+1 = h(Xk) and Yk+1 = h(Yk). If h(X) is a monotonically increasing function, then:

X1 ≥ X0 ⇒ Xk+1 ≥ Xk,∀k ≥ 0;

X1 ≤ X0 ⇒ Xk+1 ≤ Xk,∀k ≥ 0;

X0 ≤ Y0 ⇒ Xk ≤ Yk,∀k ≥ 0.

Lemma 13 Define the linear operator L(Y ) = (1−λ)2AY A′ +λ2F0Y F ′
0 +2(1−λ)λF1Y F ′

1 and suppose there exists
Ȳ > 0 such that Ȳ > L(Ȳ ).

(a) For all W ≥ 0, limk→∞ Lk(W ) = 0;
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(b) Let V ≥ 0 and consider the linear system Yk+1 = L(Yk) + V initial at Y0, then the sequence {Yk} is bounded.

Lemma 14 Suppose there exists K̄0, K̄1, and P̄ > 0 such that

P̄ > φ(K̄0, K̄1, P̄ ),

then for any initial value P0, the sequence Pk = gk
λ(P0) is bounded, i.e. there exists MP0 ≥ 0 dependent of P0 such

that
Pk ≤ MP0 ,∀k.

Proof of Theorem 2 Obviously there are two special cases:

• When λ = 1, then the MARE reduces to the standard Algebraic Riccati Equation and it converges to a unique
positive semi-definite solution.

• When λ = 0, then all the packets are lost. Since A is unstable, the covariance matrix diverges for some initial
values.

Next, we need to show that there exists a single point of transition between the two cases. Suppose for 0 < λ1 ≤ 1,
Eλ1 [Pk] is bounded for any initial values. Then for any λ2 > λ1, we have

Eλ1 [Pk] = E[gλ1(Pk)] ≥ E[gλ2(Pk)] = Eλ2 [Pk].

So Eλ2 [Pk] is also bounded. Now we can choose

λc = {inf λ∗ : λ > λ∗ ⇒ Eλ[Pk] is bounded for any initial value P0 ≥ 0}

and finish the proof. �

Proof of Theorem 3 For the lower bound of λc, we define the Lyapunov operator M(X) = ĀXĀ′ + Q where
Ā = (1 − λ)A. If (A, Q

1
2 ) is controllable, (Ā, Q

1
2 ) is also controllable. Then the Ŝ = M(Ŝ) has a unique strictly

positive definite solution Ŝ if and only if maxi |σi(Ā)| < 1, so we get λ = 1− 1
α . Consider the iteration St+1 = M(St)

for any λ > λ, it converges. While for λ ≤ λ, it is unstable and Sk tends to infinity for any initial values.

For the mean value of the error covariance matrix E[Pk] initialized at E[P0] ≥ 0, consider 0 = S0 ≤ E[P0], it’s true
that

Sk ≤ E[Pk] ⇒ Sk+1 = M(Sk)

≤ (1 − λ)2AE[Pk]A′ + Q

≤ E[gλ(Pk)] = E[Pk+1].

By induction, it is obvious that when λ < λ, limk→∞ E[Pk] ≥ limk→∞ Sk = ∞. This implies that for any initial
condition E[Pk] is unbounded for λ < λ, therefore λ ≤ λc.

For the upper bound of λc, consider the sequence Vk+1 = gλ(Vk) and V0 = E[P0] ≥ 0, we have

E[Pk] ≤ Vk ⇒ E[Pk+1] = E[gλ(Pk)]

≤ gλ(E[Pk])

≤ gλ(Vk) = Vk+1.

A simple induction shows that for any k, Vk ≥ E[Pk]. So for λ > λ, according to lemma 11 part (g), there exists
X̄ > 0. Therefore all conditions of lemma 14 are satisfied and we have

E[Pk] ≤ Vk ≤ MV0

19



for any k. This shows that λc ≤ λ. �

Proof of Theorem 4 Using lemma 11, it is easy to show that if X̄ > gλ(X̄) exists, then X̄ > 0 and X̄ > gλ(X̄) =
φ(KX̄0,KX̄1, X̄). Also it is clear that X̄ > φ(K0, K1, X̄) ≥ gλ(X̄), so (a) is equivalent to (b). The only trick we need
for the remaining proof is to use Schur complement decomposition to obtain the function Ψλ.

φ(K0,K1, X) = (1 − λ)2(AXA′ + Q) + λ2(F0XF ′
0 + V0)

+2(1 − λ)λ(F1XF ′
1 + V1)

= (1 − λ)2AXA′ + Q + λ2F0XF ′
0 + 2(1 − λ)λF1XF ′

1

+λ2K0R0K
′
0 + 2(1 − λ)λK1R1K

′
1

The part (b) is equivalent to

[
X − (1 − λ)2AXA′ + λ2F0XF ′

0

√
2(1 − λ)λF1√

2(1 − λ)λF ′
1 X−1

]
> 0.

Using Schur complement decomposition two more times to obtain⎡
⎢⎢⎢⎢⎢⎣

X
√

2(1 − λ)λF1 λF0 (1 − λ)A√
2(1 − λ)λF ′

1 X−1 0 0

λF ′
0 0 X−1 0

(1 − λ)A′ 0 0 X−1

⎤
⎥⎥⎥⎥⎥⎦ > 0.

Let Y = X−1, Z1 = X−1K1, and Z1 = X−1K1, we get⎡
⎢⎢⎢⎢⎢⎣

Y
√

2(1 − λ)λ(Y A + Z1C) λ(Y A + Z0C) (1 − λ)Y A√
2(1 − λ)λ(A′Y + C ′Z ′

1) Y 0 0

λ(A′Y + C ′Z ′
0) 0 Y 0

(1 − λ)A′Y 0 0 Y

⎤
⎥⎥⎥⎥⎥⎦ > 0

and this is what we define as Ψλ(Y, Z0, Z1). Since Ψλ(αY, Z0, Z1) = αΨλ(Y, Z0, Z1), so Y can be restricted to
0 < Y ≤ I. �
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