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Abstract—In some of the recently-developed algorithms for intersection is a facet of both regions. We will refer to this
convex parametric quadratic programs it is implicitly assumed  as the facet-to-facet property.
that the intersection of the closures of two adjacent critical In [4] and [5] the authors propose a method in which each

regions is a facet of both closures; this will be referred to as - . . .
the facet-to-facet property. It is shown by an example, whose facet of the critical region is examined and, depending on

solution is unique, that the facet-to-facet property does not hie ~ Whether the facet ensures feasibility or optimality, thévac
in general, and consequently, some existing algorithms cannot set in the neighboring critical region is found by adding
guarantee that the entire parameter space will be explored. or removing a constraint from the current active set. The
A simple method applicable to several existing algorithms is o, s mination of each facet relies on a number of assumptions
presented for the purpose of overcoming this problem. . . e
Index Terms— Parametric programming. Quadratic pro- and in cases where these assumptions are not satisfied,
gramming. Explicit model predictive control. the algorithm assumes that the facet-to-facet propertgishol
when stepping a small distance over a facet to determine the
active set in the adjacent region.
The algorithms presented in [1], [2], [12], [3] and [4] are
Several algorithms for solving a convex parametri@applied to strictly convex pQPs and utilized to obtain exipli
quadratic program (pQP) [1], [2], [3], [4], [5] and a paramet solutions to model predictive control problems. We show by
ric linear program (pLP) [6] have recently been developedin example that for this problem class a critical region may
The growing interest in parametric programming is dudave more than one adjacent critical region for each facet.
to the observation that explicit solutions to model predic€onsequently, the facet-to-facet property does not gépera
tive control (MPC) problems can be obtained by solvindiold. Finally, we present a simple and efficient modification
parametric programs [7], [2], [3]. Parametric linear andf the algorithm in [4], based on results from [2], such that
guadratic programs are also used as tools in constraingdloes not rely on the facet-to-facet property.
control allocation [8], in the computation of non-consemnea
penalty weights for the soft constrained linear MPC problem [l. PRELIMINARIES

[9], in prioritized infeasibility handling in MPC [10] andbf If A is a matrix or column vector, them; denotes
solving sub-problems in parametric nonlinear programming,o th (oW of A4 and A; denotes the sub-matrix of the
algorithms [11]. _ . .. rows of A corresponding to the index s@t Recall that
The algorithms proposed in [2] and [6] introduce artificiakne set of affine combinations of points in a setc R”
cuts in the parameter space in the search for the solutia, cajled theaffine hull of S, and is denotedff(S). The
while in [3] an algorithm based on considering all combinagimension of a selS ¢ R” is the dimension ofaff (),
tions of constraints is presented. In [1] and [12] the awthory g is denotedlim(S); if dim(S) = n, then S is said to
propose a method for exploring the parameter space, whichgg fy)i-dimensional. Theslosure and interior of a sets is
conceptually and computationally more efficient than in [2]genotedc](S) andint(S), respectively. Theelative interior
[6] and [3]; by stepping a sufficiently small distance ovelyf g sets is the interior relative tauff(S), i.e. relint(S) :=
the boundary of a so-called critical regloand solving an {z € S|B(z,r) Naff(S) C S for somer > 0}, where the
LP or QP for the resulting parameter, a new critical region ig | B(z,r) = {yl|ly __96” <r} and]| -| is any norm.
defined. This procedure looks promising, but implicitlyiesl 5 polyhedronis the intersection of a finite number of
on the assumption that the facets of the closures of adjacgiiyseq halfspaces. A non-empty st is a face of the
critical regions satisfy a certain property, namely thatirth polyhedronP  R™ if there exists a hyperplanf: € R™ |

5 . o . y a’z = b}, wherea € R", b € R, such thatF = PN {z €
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1A critical region is defined as the set of parameters for wharhesfixed 1
set of constraints are fulfilled with equality at all solutsof an optimization v* (9) .— min < 2T Hx
problem. zER™

I. INTRODUCTION
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wheref € R® is the parameterof the optimization problem,
and the vector: € R™ is to be optimized for all values &f €

O, where® C R* is some polyhedral set. Moreovet], =
HT ¢ R™" H >0, AcR>*" bec R, andS € RI*,
For a given parametef, the minimizer to (1) is denoted
by z*(0). Without loss of generality, the following standing
assumption is made [2], [6]:

Assumption 1:The set of admissible paramete€ is
full-dimensional, and for all € O, the set of feasible
points X (0) := {x € R | Az < b+ S0} is non-empty.

Definition 1 (Optimal active set)Let = be a feasible
point of (1) for a givend. The active constraints are the
constraints that fulfilld;z — b; — S;0 = 0. The indices of the
constraints that are active at the solutiof{#) is referred to
as theoptimal active setind it is denoted byd* (), i.e.

Definition 2 (Critical region): Given an index set4, the
critical region® 4 associated with4 is the set of parameters
for which the optimal active set is equal i, i.e.

O4:={0 0| A% 0) = A}

In the above definition, note that ifl is not an optimal
active set for some parameter, thén, is the empty set.
Hence, when referring to a critical regio® 4, we will
assume thatd is an optimal active set for sontec O.

Definition 3 (LICQ): For an index se#4, we say that the
linear independence constraint qualification (LICQ) hdtus
A if the gradients of the set of constraints indexed.4dare
linearly independent, i.ed 4 has full row rank.

Theorem 1 (Solution properties [2])Consider the pQP
in (1). The value functior’* : ® — R is convex and con-
tinuous. The minimizer function* : © — R” is continuous

Algorithm 1 Exploring the parameter space.

Input: Data to problem (1).

Output: Set of closures of full-dimensional critical re-
gionsR.

1: Find a6 € © such thatdim (cl (6 4+(p))) = s.

22 R« {Cl (@A*(G))} andUf — {Cl (GA*(6)>}

3: while U # () do

4:  Choose any elemerif € U.

5

6

7

U —u\{U}.

for all facetsf of U do
Find the setS of full-dimensional critical regions
adjacent toUU along the facetf.
U—UU(S\R).
R—RUS.

end for

end while

8:
9:
10:
11:

ie.
* <

Re= o) = {o e o] A Sherovd

4)
then the restriction of the minimizer function* to the
polyhedronR;, is given byz*|g, (0) = =% (0). If LICQ does
not hold, then closure of a critical region associated with a
optimal active set can be found by projecting a polyhedron
in the (x, \)-space onto the parameter space [2], [5].

In the sequel, the closure of a critical region will be writte

in the more compact form
cl(@y)=:{0e€0|Cih<d;, i=1,...,J}, (5

where (5) is obtained from (4) or by projection. An inequal-
ity C;0 < d, in the description ofl(© 4) is said to befacet-

and piecewise affine in the sense that there exists a finite skefiningif {0 |C;0 = d, } equals the affine hull of one of the

of full-dimensional polyhedr& := { Ry, ..., Rx} such that
© = UL Ry, int(R;) Nint(R;) = 0 for all i # j and the
restrictionz*| g, : Rx — R" is affine forallk € {1,..., K}.

facets ofcl(© 4). If there exists more than one facet-defining
inequality for a given facet, these inequalities are reféo
ascoinciding inequalitiesA representation ofl(© 4) where

A method for computing the expression for the restrictiovery redundant inequality has been removed is referred to

(affine function) z*|g, and its polyhedral domairR, is
summarized below. The KKT conditions for (1) are:

Hx+ATA=0, MeRY, (2a)

Ai (Aix—b; —8,0) =0, Vie{l,...,q}, (2b)
Az —b— 56 <0, (2c)

N >0, Vie{l,... q} (2d)

where\ are the Lagrange multipliers. Assume that an index Definition 4 (Adjacent critical regions)Two

as anirredundant representation (note that an irredundant
representation does not have any coinciding inequalities)

IIl. ALGORITHMS FOR EXPLORING THE PARAMETER
SPACE

The goal of most algorithms for solving pQPs is to identify
only the closures of the full-dimensional critical regidi$,
[2], [6], [12], [4], [5]. For this purpose we introduce the
notion of adjacent critical regions
full-

set A is given such that it is an optimal active set for somelimensional critical region® 4 and ©; are said to be

parameterd € © and letAN := {1,2,...,¢}\A. If LICQ

adjacent ifdim (cl(©4) Ncl(Op)) = s — 1.

holds for.4, then the KKT conditions can be manipulated [2] The framework for studying the various algorithms is

to obtain the following two affine functions:

w4(0) == —H T ALNA(0),
)\2(6‘) = —(AAH_IAﬁ)_l(b_A + S40).

(3a)
(3b)

If Ry is the closure of the critical region associated with

given in Algorithm 1, where the auxiliary sét is defined

as the set of closures of identified regions whose adjacent
regions have not been found. The output of Algorithm 1 is a
collection R of closures of full-dimensional critical regions
for (1). From this point on, we will lef{ denote the number

of sets inR. Where it is clear from contexty, will refer to



Procedure 1 Finding an adjacent full-dimensional critical |-Q

region along a given facet. | 1 -1

Input: Irredundant representation of the closure v R
of a full-dimensional critical region U =: 4
(0|Ci0<di, i=1,...,J} and the index; whose R 4
corresponding inequality defines facét 2__, [

Output: Closure of a full-dimensional critical regio® R3
adjacent toUU along the facetf.

S — 0.

: Choose any € relint(f).

. if the facetf is not on the boundary o® then
Choose any scalar> 0 such that) := é+€CJT €0

R

Fig. 1. lllustration that Algorithm 1 may fail to identify athe critical
regions if the facet-to-facet property does not hold, thetsgies in
Section IlI-A or llI-B are employed at step 7 of Algorithm 1 amb
additional assumptions on the problem are given. The shaegidrr is

and#é is in a full-dimensional critical region adjacent unexplored.

to U.
: Compute4*(6) by solving the QP (1).
6: S« {Cl (@A*(G))}
7. end if

the k™ set inR and R4 will refer to the set inR associated

with the optimal active set.

We will consider the algorithms in [4], [1], [12] and [5]. It

in Section IlI-A, only one adjacent critical region is id#ietd
for each facet with this strategy.

C. Required solution properties

Consider now the question: What conditions must the
solution to (1) satisfy in order to ensure that the strategie
in Section IlI-A or llI-B guarantee that[JkK:1 R, = ©7 For
this purpose, we introduce the following definition:

should be noted that, on a conceptual level, these algasithm Hafinition 5 (Facet-to-facet)Let P := {P, | i € I}

differ only in step 7 in Algorithm 1 and that the different o 5 finite collection of full-dimensional polyhedra &,
strategies may not always yield a satisfactory result. Th\ﬁhereint(Pi)mint(Pj) — 0 for all (i, 5), i # j. We say that

will be addressed in the rest of this section.

A. Identifying adjacent regions from a QP

the facet-to-facetproperty holds forP if F; ;) := P; N P;
is a facet of bothP; and P; for all (s — 1)-dimensional
intersectionsr(; ;.

~ The procedure used in [1] and [12] as step 7 of Algo- |tis clear that the facet-to-facet property is importanewh
rithm 1 is given in Procedure 1. This method is also usegkferring to the set of full-dimensional critical regionis(t).

in The Multi Parametric Toolbox (MPT) [13].

Note that at |f the set of closures of the full-dimensional critical regs

most one adjacent critical region is identified for each facejo not satisfy the facet-to-facet property, then it may be
of the region under consideration. The implementation ef thinsufficient to only identify one adjacent region for each

procedure will not be discussed.

B. Identifying adjacent regions from inequalities

Let A be a given optimal active set for sonfee ©.
The objective is to identify a critical region adjacentég,

along a given facef of its closure. Consider the following

conditions [4]:
1) LICQ holds for.A.
2) There are no coinciding inequalities for fagetin (4),

where redundant constraints have not yet been re-

moved.

3) There are no weakly active constraintscatd) for all
0 € cl(04), that is,pi € A = X:(0) =0, V0 €
cl (@A)

If these conditions hold, then [4] proves that there is

only one critical region adjacent t® 4 along facetf and

facet, as illustrated in Figure 1.

The following example illustrates that the facet-to-facet
property does not generally hold for strictly convex pQPs.
Hence, the algorithms in [1], [12], [4] and [5] cannot
guarantee that the entire parameter space will be explored.

Example 1:Consider the problem:

1
V*(0) := min { —alz|lz e 73(9)}, 0eo,
TER3 2
1 — T3 < —-1+40,
—I1 — T3 < —-1-0
— 3 Ty — T3 < —-1-6,
PO):=<zeR oy < 116, [
%331-%%*9,%2—.%‘3 < —-14+6;
—Sp -y —xy < —1—0,
0:={0eR’| -3< 6 <3 i=12}.

that the corresponding optimal active set can be found bihe unique set of full-dimensional critical regions is de-

determining what type of inequality that defings If the
inequality that definesf is of the typeX; > 0, theni is
removed fromA, henceS = {cl (©.4(;})}. On the other
hand, if the inequality is of the typd,z* (6) < b; + S0,
then i is added toA, henceS = {cl(©.au)}. If the

picted in Figure 2, where we have indexed the criti-
cal regions with the optimal active sets. The critical re-
gions Ry 45y, Ry13,6), Ry24,5), and Rz 36, have more

than one adjacent critical region along one of their facets,
hence the facet-to-facet property is violated for the set of

conditions do not hold, then Procedure 1 is used. Clearly, atosures of full-dimensional critical regions.



Procedure 2ldentifying all adjacent full-dimensional critical

regions along a given facet.

Input: Irredundant representation of the closure
of a full-dimensional critical region U =:
{0|C;6 <d;, i=1,...,J} and the indexj whose
corresponding inequality defines facét

Output: SetS of closures of full-dimensional critical re-
gions adjacent t&/ along the faceff, and set7 which
is a subset of the full-dimensional critical regions not
adjacent tal.

1: S—0and7 « 0.
2: if the facetf is not on the boundary od then
Fig. 2. Facet-to-facet property violated. 3: if the conditions in Section IlI-B holthen
4: Find the optimal active set as described in Sec-
tion lI-B and let7T «— T Ucl(©4).
In [14] it is verified analytically that LICQ holds for 5 else

all optimal active sets, that the KKT conditions hold g: Choose any scalar > 0 and construct the polyhe-
for (z*(9),A\*(#)) for a parameter in the interior of each dron

full-dimensional cri_tica_l region, a_nd numericf'illy ve_r'diehat Cio < dy, Vie{l,... JN{}
every other combination of active constraints yield empty Mo=locolco > d

or lower-dimensional critical regions. Thus, the violatiof ! Co < die

the facet-to-facet property is not a consequence of nualeric o=

inaccuracies. However, there is a lower-dimensionaloziiti  7: Compute the sef()M;) by solving the pQP (1) for
region of particular interest, namely the critical regioe-d all € M; using the algorithm in [2].

fined by A = {1,...,6}, which is analytically computed in 8: for eachA € C(M;) do

[14] as o: if dim(cl(©@4)NU)=s—1then
64 1600 1600 10: S — SU{cl(B.4)}. {Adjacent critical regioh
c(©1,..6)) = {9 th = “o5 Tt < by < 1 } 1L else
12: T —TU{cl(©4)}.
The representations dt;; 451, R{1.3.6), R2.45) Ri2s6y, 13 end if
Ri135y, and Ry, 46, obtained from (4) all have three 14: end for
coinciding inequalities along the lirlg = —$26,. This sug- 15:  end if

gests that, due to the statements in Section 11I-B, coingidi 16: end if

inequalities in the description of the critical regions iz

the reason for the violation of the facet-to-facet property

Empirical examination also shows that the presented examgieen found. For a given optimal active st if the goal is
is not an isolated incident of the facet-to-facet propegting to identify the critical regions adjacent #4 along a given
violated. By letting the constant values on the right hac si facet f of its closure, then the polyhedrad must be full-
be written as-[1,1,1, 14+a, 1+a, 1+a]T, the facet-to-facet dimensional and satisfy the property:

property is violated for anyx € [+, 2]. A(©4) N M = f
A =7

107 5
IV. A NEW EXPLORATION STRATEGY For use in the proposed method, the set of optimal active

The algorithm in [2] does not rely on the facet-to-facesets associated with the polyhedrdf is defined as:
property but, as mentioned in the introduction, introduaes o . .
number of artificial cuts in the parameter space as it searcheC(M) ={ACHL2, g dim (M0 el(8.4)) = s}
for the solution. As a consequence the performance degradesmethod for obtaining all adjacent regions is given in
as the number of critical regions become large. In [4Procedure 2. The choice afin step 6 is arbitrary from
the authors propose a more efficient way of exploring the theoretical point of view, but it is important to note that
parameter space, but it relies on the facet-to-facet ptgppertoo small a value will cause numerical problems and too
We aim at modifying the algorithm in [4] in order to large a value may result in an unnecessary increase in the
ensure it's correctness. The proposed method finds aktakiti computational effort. This issue will be further discussed
regions adjacent to a critical region along a given facet anflection V. Note that(M;) may define additional critical
in order to preserve the efficiency of the algorithm in [4]regions that are not adjacent to the critical region comsitle
the modification is to be utilizednly when the conditions and/or critical regions that have already been discovered.
in Section 11I-B do not hold. We use the algorithm in [2] However, this is not a problem since one can either choose
to explore the parameter space in a small polyhedral subgetkeep them as identified regions or discard them. In Pro-
M c © and discard the artificial cuts once the solution hasedure 2 we have chosen to return all those critical regions




(b) First iteration (Bemporad et al. (2002b)).

(d) Third iteration (Bemporad et al. (2002b)). (e) First iteration. proposed method (f) Regions after artificial cuts are discarded

Fig. 3. lllustration of different exploration strategies

which are not adjacent t&/ and those that have alreadyis proven in Theorem 2.

been discovered; step 8 of Algorithm 1 can be replaced by Theorem 2 (Correctness of the AlgorithmAlgorithm 1
U—UUS\R)U(T\R) and step 9 byR — RUSU7. combined with Procedure 2 ensures that , R, = ©.

We illustrate the difference between the exploration sgwt Proof: Let (P,R) be a partition of

in [2] and the proposed method with an example. {1 (6.4) |dim (6.4) = s for (1)},

Example 2: Assume that the set of closures of full- R . ) )
dimensional critical regions for a pQP is as depicted i@nd M;* denote the set in Procedure 2 associated with the

Figure 3(a). The first step of the algorithm in [2] is t0J" facet of 2 € R. Moreover, assume the proposed method
find an initial critical regionR; and then partition the rest {€rminates withUzer R C ©. By the correctness of the
of the parameter space into a set of unexplored polyhedf@0rithm in [2] and the fact thatim (c1(©4) N M) =5
U, see Figure 3(b). It then continues by exploring one of 1 and ©.4 are adjacent along thg"" facet of R, all
these polyhedra, for instané&, finds a new regiorR, and full-d!mensmnal critical regions adjacent tB8 have been
partitions the space again, see Figure 3(c). A possible thifdentified. Hence, for any paii®, P) € R x P we must have
iteration is depicted in Figure 3(d). In Figure 3(e) we havélim (RN P) < s—1, otherwiseP would be a member dR.
shown a possible first iteration of the proposed method. Notdoreover, we havéd = (Urer R) U (Upep P). Hence, by
that for two facets ofR; the conditions in Section I1I-B do Lemma 1 in [14], a contradiction is reached sir@ecannot
not hold, and hence, the seid, and M, are constructed. be convex when the dimension of the intersection gtz R
After identifying the optimal active sets if/;, the set of andUpcp P is less thans — 1. u
critical regions is as illustrated in Figure 3(f). V. NUMERICAL EXAMPLE

The two key issues we want to illustrate with the above |n this section we make a quantitative comparison of the
example is that) for the algorithm in [2] the artificial cuts following exploration strategiesi)the algorithm in [2], and
affect the exploration strategy in parts of the parametacep (;;) the proposed algorithm of combining Algorithm 1 and

where the cuts are unnecessary, causing the performancep{@cedure 2. The algorithms are tested on an MPC problem
degrade for largeX, andii) the proposed method discardsfor g linear time invariant system

the artificial partitioning once a sed/; has been fully

explored. Since the number of regions intersecting is 2(k +1) = ®z(k) + L'u(k), 2(0) = 0, ©®)
expected to be small, the algorithm in [2] is well suited tavhere z(k) € R* andu(k) € R? are the state and input at
explore insideM/;. time k, respectively, an® andI' are matrices with suitable

The efficiency of the algorithm in [4] compared to thedimensions. The objective is to minimize the following cost
one in [2] is well documented, so the performance of théunction
proposed procedure relies on how often the conditions in N
Section 11I-B do not hold. Numerical results will be givenin ~ J(z0) := > _ (2(k)"Qz(k) + u(k — 1) Ru(k — 1))
the next section. The correctness of the proposed algorithm k=1



LPT LP? QP Times found
e=10"1 5.7-107 | 4.5.10% | 1.8 103 7.6
e=10"2 7.9-10% | 5.8-10% | 2.4- 103 8.3
e=0.5 2.5-10° | 1.4-10%7 | 6.6 - 103 9.9
Bemporad et al] 2.8-10° | 3.7-10% | 6.8 - 103 17.2
TABLE |

SIMULATION RESULT FOR RANDOM DATA.

VI. CONCLUSION

It has been shown by an example that, for strictly convex
parametric quadratic programs, a critical region may have
more than one adjacent critical region for each facet. This
renders some of the recently developed algorithms for this
problem class without guarantees that the entire parameter
space will be explored. A simple and efficient method based
on the algorithms in [2] and [4] was proposed such that
the completeness of the exploration strategy is guaranteed
Numerical results also show that the proposed method is

where@ = QT > 0 andR = R” > 0, subject to the system
equation (6), state constraintss Z := {z |z < z <z}, and
input constraintsy € U := {u|u <wu <u}. This problem
is recast as a pQP as described in [2] and the algorithms
are tested on 80 random instances (&,T,Q, R, Z,U)
with a prediction horizonN € [3,5]. For simplicity, all f
systems are stable, controllable and observable. Thetses E
are given in Table I, where we have also tried different valu
for e, and used the following abbreviations: L:PAverage
number of LPs solved to obtain irredundant representations
of polyhedra, LB: Average number of LPs solved to find an
interior-point of a polyhedron, QP: Average number of QPsm
solved obtain optimal active sets, and Times found: Average
number of times a critical region is discovered. The sohgio
have an average of 317 critical regions. In Figure 4 the total”
number of optimization problems solved by the algorithms

are compared. (3
; (4]
18% 100 ‘ . .
o ef| Bemrjgrad etal. EEE [5]
2 = = =¢=10 ERE
® 14f | —— g4 R
3 £=10 : = [6]
£ 12} :
% :
& 10 : 1 [7]
c < z
9o 8r H
g : -
£ 6f = = (8]
S a4}
S
#*# 2r [°]
O ] L L L
200 400 600 800
Critical Regions [10]
Fig. 4. Comparison of the number of optimization problems solwethe
algorithm, that is, the sum of LR LP? and QP.
[11]

As expected, the computational effort used to find an
explicit solution is on average lowest for alternat{vg). This  [12]
shows that alternativgii) is preferable also in practice. Note
that although the performance of the proposed method religg;
on the choice oft, it is not difficult to chose a value such
that the proposed method is more efficient than the algorithm‘]
in [2]. Even for the inappropriate choice ef = 0.5, the
computational effort is lower. Also, from Figure 4 it is
apparent that the difference in the computational effort is
expected to grow a& increases.

computationally more efficient than the algorithm in [2].
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