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Abstract: A minimum-time torque control strategy for permanent-magnet ac motor
drives is presented. The proposed solution is obtained by an ad-hoc procedure based on
the computation of reachability and controllability sets which in turn requires solving
iteratively a fourth-degree polynomial equation. For its efficient implementation an
algorithm based on Sturm sequences is proposed. The algorithm has been implemented
on a laboratory prototype and the experimental results, showing the effectiveness of the
proposed technique, are included in the paper. Copyright c©2005 IFAC
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1. INTRODUCTION AND MOTIVATION

In view of the urgent industrial demand for high-
performance drives, much research effort has recently
been made to improve transient torque control. Ac-
tually, in many special-purpose devices, like spin-
dles, internal combustion engine test benches, auto-
motive safety applications and fast robotic manip-
ulators, prompt response to sharp speed reference
changes is an essential requirement. Interior perma-
nent magnet (IPM) synchronous motor drives are the
most appropriate candidates for this job since they can
deliver very high torque to low-inertia motors. Torque,
and thus acceleration, can be modified by varying
the currents in the stator windings Li and Xu (2001).
Conventional PI control does not guarantee the best
dynamics, especially during large transients where the
handling of output voltage saturation phenomena is
still an open problem. To this aim, voltage overmod-
ulation techniques accounting for phase current dy-
namics have recently been presented Holtz and Beyer
(1995).

1 Corresponding author. Email blanchini@uniud.it

An alternative approach is followed in this paper:
precisely, a control strategy that ensures the fastest
transition between two torque levels under given in-
put and state constraints is proposed. The first studies
on minimum-time techniques focused on the on-line
computation of the input voltage capable of achieving
the fastest transition between two system states corre-
sponding to two torque values (point-to-point control)
Bianchi et al. (2003). However, due to the high com-
plexity of the equation describing the optimal trajec-
tory, which can be solved only by recursive numeri-
cal techniques, a sub-optimal minimum-time control
strategy was developed and tested on a laboratory
prototype Bolognani et al. (2004b). The present con-
tribution represents a substantial improvement over
previous methods because it solves the more general
problem of determining the minimum-time transition
between two torque levels (point-to-curve control). In
fact, the proposed algorithm automatically finds the
time-optimal arrival state on the constant-torque locus
aimed at.

The main contribution of the present paper is that
of providing a feedback form solution to the point–
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to–curve time–optimal control problem based on the
controllability and reachability sets without resorting
to the solution of an HJB equation that would render
it practically unsuitable. It is shown that such solu-
tion is achieved by computing a sequence of Sturm
polynomials to determine the existence of a real root
of a fourth order polynomial. A detailed description
of the operations necessary for the computation of
the optimal time and the control, within an assigned
tolerance, is also provided.

After a brief description of the drive mathematical
model in Section 2, the basic idea to determine the
state-feedback minimum-time control strategy is de-
scribed in Section 3. The computational details are
given in Section 4 while experimental results are pre-
sented in Section 5.

2. MODEL DESCRIPTION

The IPM motor model can be described in a d, q
reference frame synchronous to the rotor, with the d-
axis conventionally placed along the permanent mag-
net (PM) flux linkage. In the following, the infinite-
inertia hypothesis will be adopted, which is equivalent
to considering the speed as a constant during torque
transients. The dependence of stator inductances Ld ,
Lq on direct and quadrature currents id , iq is also
neglected; as a consequence, the relationships between
id , iq and direct and quadrature flux linkages x1, x2 are
affine:

x1 = Ld id + L mg x2 = Lqiq (1)

where L mg is the permanent magnet flux linkage. The
equations describing the direct and quadrature stator
voltages ud , uq are:

ud = Rid +Ld
did
dt

−ωmeLqiq

uq = Riq +Lq
diq
dt

+ωmeLd id +ωmeL mg

(2)

where ωme denotes the electromechanical speed.

In practice, the resistive voltage drops Rid and Riq
are negligible compared to the other terms in (2). By
taking this fact into account, from (1) and (2) the
following linear dynamic model is obtained:

ẋ(t) =
[

0 ωme
−ωme 0

]
x(t)+u(t) (3)

where x(t) = [x1(t) x2(t)]T and u(t) = [ud(t) uq(t)]T .

The constraint on stator input voltage is expressed as:

‖u(t)‖=
√

u2
d(t)+u2

q(t)≤ Ū , ∀t ≥ 0. (4)

The set of all input functions satisfying (4) will be
denoted by Ū .

The electromagnetic torque is related to the flux link-
ages by:

τe =
3
2

px2

[(
1
Lq

− 1
Ld

)
x1 +

L mg

Ld

]
(5)

where p is the number of motor pole pairs. The prob-
lem considered in this paper can be stated as follows.

Problem 1. Given the initial direct and quadrature
flux linkages, the stator voltages constraint (4) and
a desired electromagnetic torque τe, find an optimal
feedback strategy u(t) = Φ( x(t),τe)∈ Ū which drives
the system to direct and quadrature flux linkages cor-
responding to the desired torque in minimum time.

3. PROBLEM SOLUTION

The considered problem falls within the framework of
input-constrained optimal control with terminal con-
straints Sage and White (1977). Therefore, the optimal
solution may be characterized either in terms of the
pointwise minimizer of an ad-hoc Hamiltonian or in
terms of the solution of an HJB-type equation. Unfor-
tunately, these techniques do not lead to a simple, even
implicit, representation of the optimal control law due
to the presence of the terminal constraint. Although
this constraint could be managed by Pontryagin’s prin-
ciple, a simpler and more intuitive approach is fol-
lowed in the sequel, which leads to a practically im-
plementable solution of the above-mentioned problem
in feedback form. To simplify notation, let us define

x̄1 = L mgLq
Lq−Ld

, τ = τe
2(LqLd)

3p(Ld−Lq) so that (5) becomes

(x1− x̄1)x2 = τ (6)

and denote by Lτ the locus of all points satisfying (6)
for a given τ , i.e.:

Lτ = {(x1,x2) : equation (6) is satisfied}. (7)

Given the desired value of τ and initial condition
x(0) = x, Problem 1 entails the determination of the
minimum-time function

T (x,τ) = min
u∈Ū

{t : x(t) ∈Lτ}. (8)

Once this function has been found, the derivation of
the optimal state-feedback control law u = Φ min(x,τ)
is straightforward. Indeed, it can be obtained as the
pointwise minimizer of the directional derivative:

Φ min(x,τ) = arg min
‖u‖≤Ū

D+T (x,τ,u)

where D+T (x,τ,u) denotes the generalized Lyapunov
derivative (cf., e.g., Blanchini (1999)) of the system
under consideration:

D+T (x,τ,u) .= limsup
h→0+

T [x+h(Ax+u),τ]−T (x,τ)
h

where A is the system matrix in (3).

According to (4), the control action is confined in
the disk of radius Ū . The above-mentioned minimizer
coincides with the unique vector of magnitude Ū ,
aligned with the vector n normal to the level surface
of T and passing through the current state x. As will
be shown later on, this normal vector is well defined.
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In the remaining part of this section it is shown: (i)
how to compute T (x,τ), given x and τ , and (ii) how to
determine the normal direction n at x.

3.1 Reachability sets

Given state x, let us define the reachability set R(x,T )
as the set of all states x(T ) that can be reached from
x(0) = x at time T by means of a suitable input u∈ Ū ,
and the controllability set C (x,T ) as the set of all
states x(0) that can be driven to x(T ) = x by means
of a suitable input u ∈ Ū . Also, let us consider the
rotation matrix:

W( θ) =
[

cos(ωmeθ) sin(ωmeθ)
−sin(ωmeθ) cos(ωmeθ)

]
(9)

so that
W( −T ) = W T (T ) = W −1(T ) . (10)

Denoting by DŪ the disk of radius Ū centered at the
origin, the following proposition can easily be proved.

Proposition 1. The reachability and controllability
sets are given by

R(x,T ) = W( T )x+TDŪ (11)

C (x,T ) = W( T )T x+TDŪ . (12)

Therefore, sets R(x,T ) and C (x,T ) are disks of ra-
dius TŪ whose centers xc lie on the circumference
of radius ‖x‖ and form angles equal to ωmeT and,
respectively, −ωmeT in the clockwise direction with
vector x. The minimum time to reach the constant-
torque hyperbola Lτ from x(0) = x corresponds to
the minimum time t = T such that circle R(x,T ) is
tangent to either of the branches of Lτ (see Fig. 1).

C

x

z

(z,T)

x

(x,T)Rx

1

1

2

1 2(x − x  )  x  = τ

Fig. 1. Reachability set R(x,T ) and controllability set
C (x,T )

Among the points on the target curve (see Fig. 1),
the tangency point z can be reached in the short-
est time. It is evident that x is on the boundary of
the controllability set C (z,T ). The controllability sets
characterize the level curves of function T (x,τ) as
follows. If all possible “landing” points z on both
branches of the target curve are considered, then for
fixed T a family of circles C (z,T ) with the same

radius TŪ will be obtained. The envelope of these cir-
cles are smooth curves representing the level surfaces
of T (x,τ), which are the loci of the points x that can be
driven to Lτ in the same minimum time T (x,τ) = T
(see Fig. 2).

A level surface is the envelope of circles with the
same radius TŪ . The vector n, normal to any point
of the envelope, can be computed straightforwardly as
the unit vector aligned with the vector that connects
the center y of circle C (z,T ) to x (see Fig. 2). It
is important to note that point y can uniquely be
determined from the current state x and the target
curve τ , i.e. y = φ(x,τ). On the basis of this geometric
interpretation, it is possible to determine the control
action in a feedback form as:

Φ min(x,τ) =
y− x
‖y− x‖

Ū =
y− x

T
, (13)

provided that y can be computed as a function of
x. The control u can be obtained according to the
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Fig. 2. Determination of the curve of constant
minimum–time T to reach the target line

following procedure, consisting of two basic steps.

Procedure 3.1.

(1) Given the current state x, determine the mini-
mum value of T such that R(x,T ) touches Lτ .

(2) Compute the “landing” point z as well as the cen-
ter y of the controllability circle C (z,T ). Then
the control action at x is given by (13).

After curve Lτ has been reached, the state must
be maintained on Lτ , which is possible only if the
reached point is a steady–state one. Now, the admissi-
ble steady states are obtained by solving the equilib-
rium equations:

ωmex2 +u1 = 0, −ωmex1 +u2 = 0

subject to constraint (4). The set of their solutions is
the circle:

S = {(x1,x2) :
√

x2
1 + x2

2 ≤ Ū
ωme

} . (14)

This introduces a new constraint on the “landing” state
z = [z1 z2]T , which takes either the form:

xmin
1 (τ,ωme) ≤ z1 ≤ xmax

1 (τ,ωme) (15)
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or the form:

xmin
2 (τ,ωme)≤ z2 ≤ xmax

2 (τ,ωme) (16)

where xmin
1 (τ,ωme), xmax

1 (τ,ωme) (resp. xmin
2 (τ,ωme),

xmax
2 (τ,ωme)) are the coordinates of the lower and

upper intersections (whose computation is trivial) of
Lτ with the boundary of S .

4. CONTROL IMPLEMENTATION

The first step of Procedure 3.1 is critical, since it
requires the computation of the minimum time. The
equation of the circular boundary of R(x,T ), whose
center and radius are, respectfully, xc = W( T )xand
TŪ , is:

[z1− cos(ωmeT )x1− sin(ωmeT )x2]2 +[z2+
sin(ωmeT )x1− cos(ωmeT )x2]

2 = T 2 Ū2 (17)

From (6) and (17) we get:

p(z2,T ) .= z4
2 +[−2w2]z3

2 +[‖x‖+ x̄1−
2w1x1−T 2Ū2]z2

2 + τ[x̄1−w1]z2 + τ
2 = 0

(18)

where w = [w1 w2 ]T = W( T )x and we have exploited
the fact that ‖x‖= ‖w‖.

Let us assume that the landing point z2 belongs to the
interval [z−2 ,z+

2 ] 2 . On the basis of the properties of
the reachability sets, the following proposition can be
proved

Proposition 2. A state x can be driven to the target
curve in the interval [z−2 ,z+

2 ] in a time not exceeding
T if and only if (18) admits a real solution in [z−2 ,z+

2 ].

By the nature of the problem, it is immediate to see
that if two roots are present, then they must have
the same sign while, if four roots are present, two
of them are positive, and the others are negative. If
there are no constraints, the presence of a double
(positive/negative) root discriminates which branch
(upper/lower) of the characteristic is reachable in the
shortest time. With reference to the interval [z−2 ,z+

2 ],
the optimal T corresponds either to the tangency at
an internal point or to the fact that one of the two
extremes is a zero of (18) and (18) is positive at all
other points of [z−2 ,z+

2 ]. From the operative point of
view, a simple bisection algorithm can be followed to
find the optimal T , starting from an upper bound Tr
and iterating according to the following criterion: if
for the current value of T polynomial (18) has a zero
inside the considered interval, then T is decreased;
otherwise, it is increased. The procedure is repeated
until one of the above-mentioned optimality condi-
tions is satisfied (within a reasonable tolerance). Since
the formulas for finding the roots of fourth-degree

2 In practice it is desirable to reach a specified branch of the target
hyperbola without exceeding a given time bound, which defines an
admissible landing interval. The unconstrained case is managed by
assuming [−∞, +∞]

polynomial equations Birkhoff and Lane (1965) are
unsuitable for on-line implementation (using standard
hardware), the following alternative procedure based
on Sturm sequences Stoer and Bulirsch (2002) has
been conceived (note, in this regard, that the roots cor-
responding to the current T need not be determined;
only their existence must be ascertained).

To simplify notation, let us rewrite polynomial (18) as:

p0(z) = z4 + p03z3 + p02z2 + p01z+ p00 (19)

where p03 = −2w2, p02 = ‖x‖+ x̄1 − 2w1x1 −T 2Ū2,
p01 = x̄1−w1, p00 = τ2.

Denote by p0(z), p1(z), . . . , p4(z) the polynomials in
the Sturm sequence obtained from (19). Therefore:
p1(z) = p′(z) .= p13z3 + p12z2 + p11z + p10, where
p13 = 4, p12 = 3p03, p11 = 2p02, p10 = p01 and the
other polynomials pk(z) in the sequence are computed
as the opposite of the remainder of the division of
pk−2(z) by pk−1(z) (thus each of the coefficients pk j,
corresponding to the jth power of the Sturm polyno-
mial whose order is 4− k, can be computed by simple
linear operations on the coefficients of the preceding
two polynomials).

The following theorem holds (see for instance Stoer
and Bulirsch (2002)).

Theorem 4.1. Given the interval [z−,z+] let m− be the
number of sign changes in the sequence

p0(z−), p1(z−), p2(z−), p3(z−), p4(z−)

and m+ be the number of sign changes in the sequence

p0(z+), p1(z+), p2(z+), p3(z+), p4(z+)

then the number of roots of p(z) in the interval [z−,z+]
is m−−m+.

Furthermore, the last non–zero polynomial of the se-
quence is the greatest common divisor of p0(z) = p(z)
and p1(z) = p′(z). Therefore the polynomial has a sin-
gle double root if and only if p40 = 0 and p31 6= 0. In
this case the double root is given by z2 =−p30/p31 so
that, from (6), the other state component is z1 = τ

z2
+

x̄1. (note that the last expression is always defined
because zeros in the origin are not allowed for (18)).

The above result can be easily exploited to find out
whether a branch of the constant-torque hyperbola is
intersected by a reachability circle. Let us assume for
simplicity that positive values of z2 are of interest, so
that z−2 = 0 and z+

2 = ∞. In this case it is possible
to consider only the signs of the constant coefficients
p00, p10, p20, p30, p40 and those of the leading ones 1,
p13, p22, p31, p40. In the opposite case, z2 ≤ 0 we need
consider the signs of 1, −p13, p22, −p31, p40 and p00,
p10, p20, p30, p40.

Depending on the relationship between the currently
selected time T and the minimum-time T (x,τ), the
following situations may occur:
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• If T ≤ T (x,τ) there are no roots of p(z2,T ) for
z2 ≥ 0, so that m−−m+ = 0.

• If T ≥ T (x,τ) there are roots of p(z2,T ) for
z2 ≥ 0 so that m−−m+ = 2.

• If T = T (x,τ) there exist two coincident positive
roots of p(z2,T ), so that m−−m+ = 2, p40 = 0.
The double root is z =−p30/p31.

Thus the following algorithm to compute the optimal
time can be adopted:

Procedure 4.1. Inputs: the current state x, the
torque value τ an upper bound Tr on the reachability
time, a tolerance ∆ on the computation of the optimal
time.

Outputs: The optimal time value T̂ (up to the toler-
ance ∆) and the “landing point” z on the upper (lower)
branch.

(1) Let T = 0, T̄ = Tr.
(2) Set T = (T + T̄ )/2
(3) Compute p(z2,T ) and the corresponding Sturm

sequence.
(4) Compute m−−m+, the number of roots in the

interval under consideration.
(5) If m−−m+ = 0, then T := T .
(6) If m−−m+ = 2, then T̄ := T .
(7) If T̄ −T > ∆ go to Step 2; else Set z2 =−p30/p31

and z1 = x̄1 + τ

z2
.

(8) Compute vector y = W( −T )z and control u as:

u =
y− x
‖y− x‖

Ū . (20)

It is worth saying that the above procedure can be
easily accommodated to incorporate constraints like
(15) and (16). At each iteration, the operations to
compute the Sturm sequence polynomials need be per-
formed. Denoting by n f lops the corresponding number
of flops, the proposed bisection procedure stops after
nstep =

⌈
log2

(Tr
∆

)⌉
steps, so that the overall number

of flops required at each iteration is nstepn f lops plus
the number of flops necessary for the computation of
y and for the computation of u via (20).

5. EXPERIMENTAL RESULTS

As stated in Sect. 3, the proposed procedure requires
iterating over T and calculating the coefficients of
the Sturm sequence. The proposed control proce-
dure 4.1 in Section 4 and the SVM timing calcula-
tions have been implemented on a Texas Instruments
TMS320C31 Floating Point DSP, with 33.3ns instruc-
tion cycle. A slave Fixed Point TMS320P14 DSP, with
160ns instruction cycle, featuring 16 individual bit-
selectable I/O and six PWM channels, with a period
resolution of 40ns, handles digital I/O management
and switching pattern generation. Control software
routines for the slave processor have been written in

Table 1. Floating Point Operations for the
procedure 4.1 (Sect.3)

+ * / Table Accessing
Initialization 3 8 0 0
Init while cycle 1 2 0 0
Sturm Algorithm 33 31 4 1
End while cycle 9 8 2 3

Assembly language, for a closer link with the em-
bedded hardware peripherals. The procedure 4.1 has
been written in C language, optimized for shortest
execution time. For the sake of clarity, it has been
split in different phases, and the number of real time
floating point operations for each step has been col-
lected and reported in Table 1 (table accessing figures
derive from trigonometrical functions look-up tables).
With the available hardware, a single while cycle takes
about 19µs. It is worth noticing that writing substan-
tial portions of code directly in assembly language
could yield further reduction of the cycle length. On
average, it has been found that a satisfactory com-
putation of the reachability time (condition 7, proce-
dure 4.1) needs about seven or eight iterations, that
is, 154µs. By considering a DSP load factor of 70%
as a minimum requirement to let room enough for the
remaining parts of the drive management algorithm,
a sampling time of 245 µs has been selected, corre-
sponding to a switching frequency of about 4 kHz. Fig.
3 reports the behavior of direct and quadrature flux
linkages during a torque transient from 1% to 65% of
the rated torque.

Fig. 3. Direct and quadrature flux linkages during the
torque transient from 1% to 65% of rated torque

Fig. 4 shows the behavior of the direct and quadra-
ture motor currents, which are related to the flux
linkages by (1). The test has been performed with a
DC bus voltage Udc = 375V , and the transient takes
five steps (1.22ms). At steady state a conventional
Proportional-Integral (PI) control is adopted, to avoid
chattering usually related to hysteresis control tech-
niques Bianchi et al. (2003); Bolognani et al. (2004b).
The onset of a new torque reference step triggers the
TOC strategy, which holds until the measured state
falls again within a predefined area surrounding the
selected landing point, where the PI control is se-
lected again. Particular care has to be paid for a fine-
tuning of the software mechanism that manages the
toggle between the two control strategies, as reported
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in Bolognani et al. (2004b). The area around the final
steady state condition has to be large enough to avoid
continuous toggling between PI and TOC, but not too
large, to get the maximum time saving during transient
operations.

Fig. 4. Motor currents during the torque transient
during the torque transient from 1% to 65% of
rated torque

It is meaningful to compare the results shown in Fig.
4 with those obtainable by conventional current con-
trol techniques. A first test has been carried out by
imposing to the current control the same initial and
final states, which were (id = iq = −0.1A and (id =
−5.2A, iq = −2.1A) respectively. For a classical PI
control and for a predictive current control Bolognani
et al. (2004b) (the experimental results of this are
depicted in Fig. 5) the transient times, measured as

Fig. 5. Currents during the torque transient, predictive
current control, final point fixed by TOC

mean value of several transients under the same con-
ditions, were 1.61ms and 1.45ms, respectively, with
the landing point in the constant (final) torque curve
suggested by the proposed time optimal control. Ac-
tually, it does not coincide with the final state selected
by the conventional control strategies, which usually
impose a maximum torque-per-ampere trajectory in
the state plane. Accordingly, the final point is selected
in the constant (final) torque curve by imposing the
minimum current module. Under the same initial con-
ditions, the final state was (id = −2.9A, iq = −3.3A),
different from the one selected by the time optimal
strategy. The transient times in this case rise up to
1.87ms for the PI control and 1.71ms for the predictive
control. A similar behavior has been experienced with
different starting points and final torque levels.

It is worth to note that the selected switching fre-
quency of 4081Hz is a good compromise between
the current ripple and switching losses in the power
switches. Of course, the availability of faster DSP
would shorten the algorithm execution, and the switch-
ing frequency could be shifted towards the ultrasonic
range, to get both a silent functioning and a ripple-
free torque generation. At present, the choice of a DSP
with such potentiality is out of the range for a cost-
effective drive design. The growing interest towards
the use of low cost, high density Field Programmable
Gate Arrays (FPGA) as DSP co-processors could
mark a turning point Bolognani et al. (2004a). In the
next future, complex algorithms as that proposed in
this paper could be implemented by HDL (hardware
descriptor language) coding into an FPGA, while a
less performing DSP will be dedicated to drive au-
tomation and peripheral control.
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