N

N

Convergence analysis of instrumental variable recursive
subspace identification algorithms

Guillaume Mercere, Marco Lovera

» To cite this version:

Guillaume Mercere, Marco Lovera. Convergence analysis of instrumental variable recursive subspace
identification algorithms. Automatica, 2007, 43, pp.1377-1386. 10.1016/j.automatica.2007.01.014 .
hal-00169461v2

HAL Id: hal-00169461
https://hal.science/hal-00169461v2
Submitted on 29 Nov 2007

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00169461v2
https://hal.archives-ouvertes.fr

Convergence analysis of instrumental variable recursive subspace
identification algorithm*

Guillaume Mercere
Université de Poitiers
Laboratoire d’Automatique et d’Informatique Industrielle
40 avenue du recteur Pineau
86022 Poitiers, France
Email: guillaume.mercere@Quniv-poitiers.fr

Marco Lovera
Dipartimento di Elettronica e Informazione
Politecnico di Milano
Piazza Leonardo da Vinci 32, 20133 Milano, Italy
Email: lovera@elet.polimi.it

Abstract

The convergence properties of recently developed recursive subspace identification methods are in-
vestigated in this paper. The algorithms operate on the basis of instrumental variable (IV) versions of
the propagator method for signal subspace estimation. It is proved that, under suitable conditions on
the input signal and the system, the considered recursive subspace identification algorithms converge
to a consistent estimate of the propagator and, by extension, to the state-space system matrices.
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1 Introduction

The problem of recursive subspace model identification (RSMI) has been an active area of research
in recent years (see, e.g., [16, 1, 4, 9, 14, 10]). Most RSMI algorithms are inspired by offline versions of
subspace model identification (SMI) techniques and therefore rely on the availability of efficient updating
methods for the numerical linear algebra algorithms used in batch SMI.

So far, two main approaches to the RSMI problem have been considered. First, some works have
proposed adaptations of SMI algorithms in order to update the singular value decomposition (SVD)
[16, 1]. Unfortunately, these techniques have the drawback of requiring the disturbances acting on the
system output to be spatially and temporally white, which is restrictive in practice. The other approach
[4, 9, 14, 10] relies on the strong analogies between RSMI and signal processing techniques dedicated
to direction of arrival (DOA) estimation [6]. More precisely, two points of view are suggested to find
alternatives to the SVD in a recursive framework:

e The first one consists in adapting the so-called Yang’s criterion [18] to the recursive update of the
observability matrix [9, 14]. In particular, DOA estimation algorithms have been adjusted in order
to deal with more general types of perturbations thanks to the use of instrumental variables (IV).
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e The second one rests on the adaptation of another array signal processing technique: the propagator
method [13]. The advantage of this approach over the previous conception lies in the use of a
linear operator and quadratic criteria which lead to recursive least squares implementations for the
algorithms [11, 10, 12].

While a significant level of maturity has now been reached on the algorithmic side, very limited atten-
tion has been dedicated to the analysis of the convergence properties of the developed RSMI techniques.
In [14], the proposed gradient-based RSMI method was analysed and conditions on the gain of the gradi-
ent iteration were derived. However, the convergence study is based on assumptions on the signal-to-noise
ratio which limit the validity of the results.

In the light of the above discussion, the aim of this paper is to analyse the convergence properties of two
recursive implementations of the MOESP class [15] of subspace identification algorithms. More precisely, the
Instrumental Variable Propagator Method (IVPM) and the Extended Instrumental Variable Propagator
Method (EIVPM) RSMI techniques, which operate on the basis of the IV version of the propagator method
for signal subspace estimation, have been considered and the following results have been derived:

e for the EIVPM algorithm it can be shown that asymptotic convergence can be characterised in terms
of the so-called critical relation for the consistency of IV subspace identification algorithms, first
derived in the classical paper [5]. As a consequence, convergence can be guaranteed

— under suitable persistency of excitation conditions in the absence of process noise;

— in a number of special cases (e.g., single input systems, white noise or ARMA input signal)
whenever process noise is present.

e for the IVPM algorithm, which can be considered as a special case of EIVPM, a detailed analysis
is proposed for single input systems. More precisely, it is possible to show that in this case IVPM
converges to consistent estimates under less restrictive persistency of excitation conditions than for
EIVPM.

The paper is organised as follows. In Section 2, the system model is introduced, the main notations
are defined and the general assumptions are stated. In Section 3 an overview of the considered RSMI
algorithms is provided. In particular, the stages necessary to the recursive estimation of the state-
space matrices are developed. The analysis of the convergence properties of the considered algorithms
is presented in Section 4. Conditions on the input signal and the identified system are more precisely
given, which ensure the consistency of the propagator estimates and, by extension, of the extended
observability matrix. These convergence properties of the propagator are completed by the expressions
of the asymptotic distribution of the estimates. Some simulations are presented in Section 5 to illustrate
these theoretical results. Finally, concluding remarks are provided in Section 6.

2 Problem formulation and notations

Assume that the true system can be described by the discrete-time linear time-invariant state-space
model in innovation form

x(t +1) = Ax(t) + Bu(t) + Ke(t)

y(t) = Cx(t) + Du(t) + e(t) (1)

with n, outputs y, n, inputs u, n, states x. e is a white process noise. Furthermore, the following
assumptions hold throughout the paper:
1. the innovation process e is a stationary zero mean white process noise with second moments
E [e(t)e” (1)] = Redir (2)
where §;, is the Kronecker delta;

2. the system (1) is asymptotically stable;



3. the pair {A, C} is observable and the pair {A, [B K]} is reachable;

4. the input u is a quasi stationary deterministic sequence uncorrelated with the noise e.
To deal with deterministic and stochastic signals in a compact manner, the following operator is defined

E[]= lim —ZIE (3)

N—oo N

where E is the expectation operator. For two signals a(t) and b(t), the cross covariance matrix will
be denoted as Rap = E [a(t)b” (t)] while estimates of signal correlations will be denoted by Ran(t) =
Sh_y A Fa(k)bT (k), where 0 < X < 1 is a forgetting factor.

3 Overview of RSMI algorithms

The algorithms considered in this paper recursively estimate the {A, B, C,D} state space matrices
at each new data acquisition. The proposed methods are based on the estimation of a basis for the
observability subspace from the input-output (I/O) relation [10]

yr(t) =Tyx(t) + Hpup(t) + Grey(t) =

= Tyx(t) + Hyuy(t) + by (t) (4)
where the stacked vectors y¢, uy and ey are defined as
T no f
yit)=[y"() - YT+ f-1] eRMWI (5)

with f > ng, I'y is the observability matrix

Ffz[cT ca’ ... (CAf'*l)T]T, (6)

H; is the block Toeplitz matrix of the impulse responses from u to y [17] and by = Gre; with G the
block Toeplitz matrix of the impulse responses from e to y. The class of techniques considered herein is
based on the application of the so-called propagator method [13] to the recursive estimation of I'y. To
this purpose, note that letting Y; € R™/ >N Uy € R*/*N and By € R"/*Y be the Hankel I/O data
matrices defined as

Yit)=[ys®) - ysE+N-1)], (7)
with N >> f>nand ¢t =t+ N — 1, equation (4) can be written in matrix form as

Yi(t) =TpX(t) + HpUy(t) + By(2), (8)
where X(t) = [ (t) -+ x(t+N-— 1)} As is well known from the offline subspace identification

literature, a quantity directly related with the observability subspace can be obtained by computing the
projection Z; of Yy on the kernel of Uy

Zp(t) = YOy, (f) =
= (T X(#) + By (f)) My (2). (9)
Considering now the time update of Zy
Z;(t) = [2;(t-1) z(D)], (10)

it is clear that the observation vector z¢(t) will carry all the relevant information for the estimation of the
observability subspace contained in the data at time ¢. Therefore, a two-step procedure for the recursive
estimation of the system matrices can be devised:

1. the update of the observation vector z; from the I/O measurements by considering a recursive
formulation of the orthogonal projection performed in equation (9) (see Subsection 3.1);

2. the estimation of a basis of I'y from this observation vector by adapting the propagator method
[13] (see Subsection 3.2).

Both stages are considered in the following subsections.
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3.1 Recursive estimation of the observation vector

The problem of updating the observation vector can be solved by recursively updating the projection
(9) at each iteration. Several techniques for the computation of this update have been developed in the
literature (see, e.g., [9, 14]). In this paper, an approach based on the matrix inversion lemma [3] is used.
It has indeed the advantage of providing an explicit expression of the observation vector in terms of the
I/O data. The idea is to recursively update the quantity Z;(¢) = Y (QHU? (t)

-1
Zp(D) = Y, (0 {1-UT @) (U;(OUF (D) Us(D)}
at each new data acquisition, knowing that

Up(f) = [Us(t=1) up(®)],Y,(0) = [Ys(t—1) ys(f)]

-1
by applying the matrix inversion lemma to (U fU?) . It can be shown that the observation vector

z¢(t) can be recursively computed with the following algorithm:

Algorithm 1 Assume that, at time t — 1, Wy(t — 1) = (Uf(t_— I)U?(f— 1)) and Vit — 1) =

Y(t— l)U?(f— 1) have been estimated. Then, when a new I/O data sequence {us(t),y(t)} is acquired,
the observation vector is updated by means of the recursion

Br(t) = W(t — L)us(t) (11a)
8¢(t) = uf (1)By (1) (11b)
1

af(t) = m (11c)
zy(t) = ay(t) (v (5) = Vit = 1)Bs(#)) (11d)
Vi(t) = Vy(t = 1) +yy(t)uf () (11e)
W (D) = Wi — 1) — ay (0B (DL (D). (111)

Remark 2 It is easy to show that the observation vector z¢(t) can be equivalently written as
2(?) = s () (%) + bs(D) . (12)

where

by (f) = by(7) — By (f — HUF (T — 1)8;(7) (13)
%(£) = x(D) — X(F — 1)U (F — 1)81 (D). (14)

Therefore, it is possible to apply the propagator method to the subspace identification problem by exploiting
the analogy between (12) and the data generation model used in array signal processing problems [6]

2(t) = T(0)s(t) + b(t) (15)

where z is the output of the n, sensors of the antenna array, I'(@) the steering matriz, s the vector of the
ng signal waveforms and b the additive noise.

Remark 3 In the following, the scaling factor oy (see (12)) will be neglected for simplicity

27 (f) = TyX(f) + by(D). (16)

Note that this simplification does not affect the properties of the algorithm since (16) provides all the
information needed to estimate spang, {I'r}.



3.2 Recursive update of the observability matrix

Once the observation vector is estimated, the second step of the recursive subspace identification
procedure consists in the online update of the observability matrix. A number of methods have been
developed in the literature in order to avoid the computation of a complete SVD in this step of recursive
subspace identification [9, 14, 10]. In this paper, the focus is on algorithms based on the propagator
concept [13].

Under assumption 3, since I'y € R X" with ny f > ng, the extended observability matrix has at
least n, linearly independent rows, which can be gathered in a submatrix I'y,. Then, the complement
'y, of T'y, can be expressed as a linear combination of these n, rows. So, there is a unique linear operator
Py e R > (v f=n2) named propagator [13], such that

Ly, = P?F.fl' (17)
Furthermore, it is easy to verify that
) = it - )
Ty= " = Sl =aF| Ty 18
f |:I‘f2 ]_:)}‘1"f1 P? fi (18)

Thus, since rank {I'y, } = n,
L.,
Spallce) {Ff} = spall. { |:PC}":| } : (19)

Equation (19) implies that it is possible to estimate the observability matrix (in a particular basis)
by estimating the propagator. This operator can be estimated from (16). Indeed, applying a data
reorganization to the observation vector so that the first n, rows of I'y are linearly independent, (16) can

be partitioned as )
=[] -l 0]

where z;, € R"*! and z;, € R("/~"<)X! are the components of z; respectively corresponding to T'y,
and I'y,. In the noise free case, it is easy to show that

Zf2 = P?Zj’l. (21)

In the presence of noise, this relation no longer holds. However, by assuming we have collected (or are
about to collect) N I/O measurements, an unbiased estimate of the propagator P; can be obtained by
introducing an instrumental variable &€ € R™¢*! assumed to be uncorrelated with the noise but sufficiently
correlated with the state vector x, in the sense that

Re;¢ = 0 and rank {Ry¢} = ng, (22)

and by defining the cost function (see [4])

. R 2

Tiv(Py) = [Rap,e(V) — PRy, e(V)| (23)
Four algorithms (IVPM, EIVPM, EIVsqrtPM and COIVPM [11, 12]) have been developed to minimise this
criterion according to the number of instruments in €. In the following the IVPM and EIVPM algorithms
will be described in detail. However it should be noticed that, along the same lines, the asymptotic
properties of the other two algorithms can be worked out (the details are omitted for brevity). In fact,
the EIVsqrtPM and the COIVPM algorithms differ from the IVPM and EIVPM only in an algorithmic way
and are based on the same least squares estimate [12].

3.3 The IVPM algorithm

Assuming that it is possible to build an instrumental variable such that ng = n,, the least squares
estimate of the propagator is given by

PT(N) = Ry, ¢ (N)R; L (V) (24)
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provided the indicated inverse exists (see Section 4 for invertibility conditions). Then, an RLS recursive
version of (24), named IVPM [10], can be obtained by applying the matrix inversion lemma [3] to Ry, ¢

T MLy (t—1)

Klt) = FFETLs D) (252)
Ly(t) = 5 (Lt — 1)~ Ly(t — g, (0K (1) (25b)
PI(t) =P (t—1)+

25¢
(Zfz Pj t_ 1)Zf1( )) Kf(t)v ( )

where L (t) = lf{;flls(t) and 0 < A <1 is a forgetting factor.

3.4 The EIVPM algorithm

In many cases, it is difficult or impossible to construct an instrumental variable such as ng = ng.
Thus, it is necessary to increase the number of instruments. By assuming that the input is sufficiently
“rich” (see Section 4) so that the (rectangular) matrix R, 1, €(N) is full rank, the least squares estimate
of the propagator is given by

PT(N) =R, e(MR] (V) (26)

with f{lflg(N) sz ¢(N) (f{zflg(N)sz E(N)) . Then, a recursive version of (26), named EIVPM

[10], can be obtained by adapting the overdetermined instrumental variable technique first proposed in

2]
{ 2,6t zj, (t)} (27a)
{ } (27b)

= [R £(t) zfl(t)j| (27c)
(A(t) +oT(t Lf(t_1)\11f()) !

(27d)
i (t)Ly(t - 1)
PL(t) =P (t—1)+ (270)
+ (gr(t) = PF(t — 1) (1)) Ky(1)
Ry, elt) = XRyy et — 1) + 27, (07 (1) (271)
Roelt) = MRyyelt = 1) + 27, (€7 (1) (27g)
Ly () = 5 (Lt = 1) = Lyt — DB (OK (1) (27h)

R —1
with Ly (t) = (thg(t)ths(t)) .

Remark 4 The computational complexity of EIVPM and IVPM has been analysed in [10], where a com-
parison with other RSMI algorithms based on PAST [18] and EIVPAST [/] has been presented. It was more
precisely shown that the overall computational cost of PM approaches is comparable to the one of PAST and
its by-products.

It is interesting to note that, from the second iteration on, the update of the estimated subspace is

always in the form f‘f = [Inm P f}T. This means that, after a short transient period, the recursive
estimation is made in the same state-space basis. This loss of flexibility can be firstly considered as a
drawback, more particularly from a numerical point of view. Indeed, the fact that the first n, rows of
I ¢ are equal to the identity matrix could lead to conditioning problems when the proposed algorithms

6



are applied to ill conditioned systems. However, we have not encountered any numerical problems when
simulating the algorithm in MATLAB. Furthermore, contrary to the PAST approach where the signal
subspace is obtained by minimising a modified function obtained after an approximation, the PM cost
functions are always computed without approximations nor constraints. More particularly, in the PAST
framework, the minimization of approximated criterion leads to a matrix having columns that are not ex-
actly orthonormal. This property evolves during the recursive minimization since, under some conditions,
the minimizer converges to a matrix with orthonormal columns [18]. This evolution can be interpreted
as a slow change of basis, which implies that it is not possible to guarantee that I'y(t) and T'y(¢ — 1)
are expressed in the same state-space coordinates. This might represent a problem in the estimation of
the state-space realization A, ]3, C and ]f), and particularly so whenever RSMI techniques are used for
change detection purposesThe PM algorithms do not suffer from this drawback.

4 Convergence analysis

In this Section, the convergence conditions and the asymptotic distribution of the estimation error of
the EIVPM and IVPM algorithms are derived. More precisely, conditions will be established by which the
considered recursive algorithms converge to consistent estimates of the propagator P .

4.1 Convergence analysis of EIVPM

Consider the extended instrumental variable estimate (26) and assume that A = 1. Then

1. 1. ;

PTOR) = | 1R, e RS, (1) (28)

with R(t) = [%f{zhg(t)%flzfl&(t)] . Note that the right hand side of (28) can be equivalently written as

P (R (1) = E S, <T>£T<T>] L (29)

Now, since

o] =[] s 0] a

it is possible to write z¢, in terms of the true P;*C
27,(1) = Pfzy, (1) + (b (t) ~ PYBA (1)) (31)

Letting n(t) = (f)fz (t) — Pl:]flz)f1 (t)) and introducing equation (31) in the relation (29), we get

R 1. 1. 1. 1.
PYR) = PY 1Ry, () TRE, (1) + TRoe() TRE, (1) (32)
and finally, from (28) and (32) we have
PL(t) — PY) R(t) = + Rpe ()~ R
(PF() = PF) R(t) = S Rae()7RE, (). (33)

Along the lines of [8, Chapter 4], the convergence analysis of EIVPM is based on the analysis of (33), i.e.,
1. proving that (f’?(t) - P?) R(t) — 0 with probability 1 (w.p.1) as t — oo;

2. deriving conditions under which R(t) converges to a constant matrix R as ¢ — oo, with R full rank.

These two steps are considered in the following subsections.

7



4.1.1 Convergence of (P?(t) - P?) R(t)
From (33), it is easy to establish the following proposition:

Proposition 5 Under assumptions 1-4, consider algorithm (27) and further assume that & € R"™*1
(neg > ny) is uncorrelated with the noise but sufficiently correlated with the state vector x, i.e., (22) holds.

Then (f—’?(t) - P:]C) R(t) — 0 w.p.1 as t — oco.
Proof 6 This result can be proved by showing that the quantity %Rng(t), which appears in the right hand

side of equation (33), converges to 0. To this purpose, consider the definition of Bf in equation (13) and
compute the correlation

1 t
T T
7 2 brme(

and note that the above quantity tends to (see, e.g., [7])

Z Gy (ef(7) — Ey(r = YU (r = 1)Bs(7)) £ (7)] (34)

wl}—l

Gy (Refﬁ - RefufR;flRuf&) (35)

w.p.1 when t — oo. Furthermore, according to the assumptions on £ and u, it is straightforward that

Refuf =0 and Refg = 0. Thus, we have

% ( 1T (1) = 0 wp.1 ast — oo (36)

AM~

and recalling that n(t) = by, (t) — P?Bfl (t) we have
1
7 Zn(T)ET(T) — 0 w.p.1 as t — oo, (37)

from which, in view of (33), the thesis follows.

4.1.2 Convergence of R(t)

In order to complete the convergence analysis, we need to study under which conditions R.(t) converges
to a full rank matrix in order to conclude that P? (t) tends to P? w.p.1 as ¢ tends to infinity. To this

purpose, it is sufficient to analyse the rank of R, 1 £(t) as t tends to infinity by construction of R(t).
Indeed, if conditions are fulfilled such as R, 5,£(t) is full rank, R(¢) will satisfy the same property and
will be invertible. For that, note first of all that in the propagator basis (see (30)) the first n, rows of
(16) (i.e., the zy, part) are given by

z5, (t) = X(t) + by, (1), (38)

Then, recalling the definition of X given in (14), we have that

L. bel M+ 7 X [l - X - U - 0B) €] )

Since (36) holds, the first term of the right hand side of (39) can be neglected. Therefore, we have that

1.4 _ _
nghg(f) — Ry ¢ = Rug — Rouu, Ry Ruye (40)
w.p.1 when ¢ tends to infinity. Noting that matrix Rx¢ — Rxu; R;J}Ru ;¢ is the Schur complement of the
block Ry, in matrix

|:Rx£ quf] ,

Rufﬁ Ruf
8



a sufficient condition that guarantees that R, 5, ¢ 1s full rank is given by

rank {E H‘i{f(m [ uﬁf(m T] } =y + fra. (41)

Note that the above condition does not depend on the choice of the instrumental variable. Thus, the
invertibility of R is ensured for any choice of instrumental variable such that (41) holds.

Therefore, (41) is a sufficient condition that guarantees that R(t) converges to a constant, full rank
matrix R, as t — co.

If the instrumental variable vector is constructed as

¢t) = [yZ(®) uZ(®)]" = [y7 - - yT(t-1) uT(t-p) ~ uT-1)]" (42)

where parameter p defines the horizon over which past input and output data are taken to form the IV
vector, then equation (41) corresponds to the so-called critical relation for the consistency of IV subspace
identification algorithms, first derived in the classical paper [5]. In particular, conditions under which
(41) holds have been derived in the cited paper and lead to the following result for the convergence of
the EIVPM algorithm.

Proposition 7 Under assumptions 1-4 (see Section 2), consider the EIVPM algorithm (27) and further
assume that:

e K =0 (i.e., no process noise);
e the instruments are composed by past input and output data with p > n, (see (42));

e the input u is persistently exciting of order f + p+ ng;

the forgetting factor X\ is chosen equal to 1.
Then P}F(t) —PL wp.last— oo
In addition, convergence can also be guaranteed if K # 0, for example?

Proposition 8 Under assumptions 1-4 (see Section 2), consider the EIVPM algorithm (27) and further
assume that:

e the instruments are composed by past input and output samples with p > n, (see (42));
e the input u is a zero mean white sequence;
o rank{C, {A,B} C,{A,G}} =n, with
Cp{L,M} = [LP"'M -.-LM M| (43)
G=E{x(t+1)y"(t)}; (44)
o the forgetting factor X is chosen equal to 1.
Then f’?(t) — P? w.p.1 ast — oo

Other special cases (e.g., single input systems, ARMA input signal) can be analysed by exploiting the results
in [5], and are omitted for brevity.

I This particular case will be considered in the numerical experiments.



4.2 Convergence analysis of IVPM

In the special case of the IVPM algorithm, the previous analysis can be further developed in order
to derive more stringent convergence conditions. For that, note first of all that, assuming A = 1, the
quadratic criterion (23) is minimised by P?(t) such that

. 1.

P (R() = 1 Rae(0) (45)
where now R(t) = %]::{Z 1, £(t). By following the same steps as in paragraph 4.1.1, it is straightforward to
prove that

(PT(1) ~ PT) R(1) = 1 Rye(t) (16)

and that %f{ng (t) — 0 w.p.1 as t — oo when the input u is uncorrelated with the innovation e (system in
open loop) and when the instrumental variable £& € R"=*! is uncorrelated with the noise but sufficiently
correlated with the state vector x. Thus, the following proposition is verified:

Proposition 9 Under assumptions 1-4 (see Section 2), consider algorithm (25) and further assume
that & € R™=*! is uncorrelated with the noise but sufficiently correlated with the state vector x. Then

(f’?(t) - P?) R(t) = 0 w.p.1 as t — oo.

The second step of the convergence analysis of IVPM is, just as before, the derivation of conditions
under which R(¢) converges to a full rank matrix. More precisely, it is possible to exploit the conclusions
obtained in analysing EIVPM in order to conclude that

R(t) = R = Ry¢ — R, Ry Ru¢ (47)

w.p.1 when ¢ tends to infinity. Indeed, the sufficient condition (41) insures, as previously, that R(t)
converges to a full rank matrix. However, in the IVPM case, a constraint has to be satisfied: ne = n,. To
study the influence of this condition in a widespread situation, consider that the instruments are chosen
as past inputs, ¢.e.,

£t =uy(t) = [ul(t—p) --- uT(t-1)" (48)
with n,p = n,. Thus, we get

R(t) - R = R'xup - quf Rl_lflRufup (49)

w.p.1 when ¢ tends to infinity. As in paragraph 4.1.2, the application of the Schur complement leads to
a sufficient condition for the invertibility of R
T
{x(t) ] {“p(t)] ] > 0. (50)

|: qup RXUf:| — ]E
Rufup uy ur (t) uy (t)

In order to check if (50) holds, we proceed along the lines of the analysis of the IV-4SID algorithm
performed in [5]. To this purpose, the state vector is decomposed into its deterministic and its stochastic
parts

x(t) = x4(t) + x°(t) (51)
where x? is due to the observed inputs u

x?(t) = F(q"")u(t) (52)
and x° is caused by the innovation e

x*(t) = F°(q"")e(t) (53)




since u is assumed to be uncorrelated with the innovation. Now, let

-1
P = ) (55)
with Npu(q~!) = Nlmlxq_l + -+ Npy ¢~ " and Dgu (1) = Dgy + -4 Dpu g ". Then, the deter-
ministic state x¢ can be easily related to the input and the state-space matrices as follows
u(t —ng)
Npu - NFﬂ : . (56)

x!(1) :
u(t—1)

" Dru(q 1) [

In the single input case, equation (54) can be equivalently written as

E Hx“)] [“P(t)ﬂ — M- Ea@na’ ()] (57)

ur()] [ur(H)] | 7 Dru(g™t)
with a(t) = [u(t —ng) - u(t+f-1)]" and
NF% . NF}” 0 cee 0
DFZ, -+ Dps Dy 0
e | | | (59)
0 Dgy -+ Dry Dry

It is possible to show that M is full rank if the system is reachable (see [5, Appendix A] for details). By
assuming this condition is fulfilled, the matrix in (57) is positive definite if u is persistently exciting of
order f + n,. Therefore R in (49) is also nonsingular and P}F(t) — P} w.p.1 ast — oo. This result is
summed up in the following proposition:

Proposition 10 Under assumptions 1-4 (see Section 2), consider the IVPM algorithm (25) and further
assume that:

e the system is single input;

o the input is persistently exciting of order f + ng;

o the forgetting factor X is chosen equal to 1.
Then P?(t) — P? w.p.1 as t — oo.

4.3 Asymptotic distribution

Once it is proved that the IVPM and EIVPM algorithms lead to consistent estimates, the following
phase consists in expressing the asymptotic distribution of the projector estimates, which can provide a
useful tool for the assessment of the accuracy of the computed estimates. For that, we first analyse the
distribution of the EIVPM estimate. IVPM will follow as a special case.

The probability distribution of the EIVPM estimate is characterised by the following proposition:

Proposition 11 Consider the EIVPM algorithm (27). Then, under the assumptions of Proposition 7, the
propagator estimate is asymptotically normal:

1
Vivee {P{(t) = PT} € AsN [ 0, (R], (R @ 1) ?, 0 (59)
Qne
with sz1§ = Rxg - RXUfR;}Rufg’ R = RZthZflE and
t t
Q= Jim 78| 3 n0)e ()2 &k (60)



Proof 12 From (33), it follows that

N 1. 1. 1. 1.
T T T T
(PF0) = PF) | TR0 RE, (0] = F R0 RE, (0 (61)
According to paragraph 4.1.2, we have (see (40))
1. _ B
;szlg(t) — Ry ¢ = Rxg — R, Ry Ruye wp.1 ast — oo (62)

Thus, by wvectorizing P?(t) - P?, knowing that [3] vec{ABC} = (CT ® A) vec{B} where ® is the

Kronecker product, we get
L&
5Ty _ pT\ _ (RT R-1 T
Vitvec {Pf () Pf} (thgR @1) Vec{ \/E;:ln(T)g (T)} (63)

Now, from the central limit theorem we know that, by writing the i — th component of €& as &;, for all i

¢
% S n(r)el () € AsN(0, Q). (64)
T=1
with Q; defined as in (60). Thus, it follows that
1 t Ql
VGC{% ZU(T)ST(T)} €AsN |0, o “-. o0 . (65)
T=1

Q..
(59) follows by combining (63) and (65).
In the same way, it is straightforward to prove that:

Proposition 13 Consider the IVPM algorithm (25); then, under the assumptions of Proposition 10, the
propagator estimate is asymptotically normal:

Q
Vitvec {P?(t) — P?} € AsN | 0, (Rf1 oD |log - o (66)
an
with R = Roxu,, — Rxu,; Ry Rusju, -
5 Simulation example
Consider the following fourth-order system:
0.67 067 0 0 0.6598 —0.1027
x(e+1) = | 4T o o x4 | 1R luo+ [ 380 e on
0 0 0.67 —0.67 —2.6436 ~0.5133
y(t) = [ ~0.5749 1.0751 —0.5225 0.183 ] x(t) (68)
—0.7139 u(t) + 0.9706 e(t). (69)

This SISO process has been chosen in order to apply at the same time the IVPM and EIVPM algorithms.
The input w and the innovation e are white Gaussian noises with zero mean and variance 1 and 9
respectively. This leads to a signal to noise ratio (of variances) at the output (cov(y]/covle]) of 4.4. The
initial estimates of the system matrices are randomly generated under the constraint that the absolute
value of the maximum eigenvalue of A(O) is less than 1 (stability requirement). The forgetting factor is
fixed at 1 in order to meet the assumptions of the convergence study. The instrumental variable vector
is constructed using past values of the input w. All these conditions allow to satisfy the constraints

12
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Figure 1: Estimated poles obtained with IVPM, EIVPM, EIVPAST and PI MOESP algorithms
for a Monte Carlo simulation of size 100.

of Propositions 8 and 10. The results presented in this Section have been obtained by repeating the
identification procedure 100 times using different noise realizations for e.

The first result to be verified is the asymptotic convergence of the matrix R(¢) to a full rank matrix;
for the considered example, R(t) converges to a matrix with a condition number of about 3 (0. =~ 30
and o ~ 3).

In order to underline the efficiency of the instrumental variable propagator based methods, it is
next proposed to compare the accuracy of the estimated poles obtained with IVPM and EIVPM and two
other subspace identification techniques: the recursive EIVPAST algorithm [4, 9] and the batch PI MOESP
algorithm [15]. More precisely, the eigenvalues of the estimated A matrices during the Monte Carlo
simulation are plotted and compared with the true ones (i.e., +0.67 &+ 0.677). 300 samples are used for

each realization. The final model, i.e., {A(?)OO), B(300), C(300), D(300)} is considered for the recursive

methods. The parameters are chosen as follows: f = p = 4 for IVPM and f = p = 8 for the other
algorithms. Figure 1 shows that IVPM and EIVPM produce eigenvalue estimates which are equally accurate
as the ones obtained with the batch PI MOESP algorithm. On the contrary, the EIVPAST method yields
several poorly accurate estimates. It can be noted that the variance of the eigenvalue estimates of IVPM is
slightly larger than the EIVPM one. Furthermore, in practice, it seems to be more convenient to use EIVPM
instead of IVPM since the first one only needs an upper bound of the system order for the instrumental
variable construction, which is not the case with IVPM.

Finally, the averaged time histories of the real parts of the estimated eigenvalues obtained with EIVPM
and EIVPAST techniques have been analysed. These averaging results (omitted for brevity) illustrate
the fact that the transient behaviour of EIVPAST method is relatively more chaotic than the EIVPM one.
This could be explained by the fact that the projection approximation which characterises PAST-based
algorithms might lead to a loss of accuracy during transients.
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6

Concluding remarks

In this paper, the convergence properties of a class of recursive subspace identification algorithms have

been investigated. More precisely, online implementations of the MOESP methods based on instrumental
variable versions of the propagator technique for signal subspace estimation have been analysed, conver-
gence proofs for the IVPM and EIVPM algorithms have been derived and conditions on the input signal
have been given which guarantee consistent estimates of the observability matrix. A simulation example
has been used to illustrate the validity of the underlying assumptions and to assess the performance of
the algorithms.
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